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Genetic algorithm for fuel spill identification
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Abstract

Gas chromatography is frequently used to fingerprint fuel spills, with the gas chromatograms of the spill sample and the
different candidate fuels compared visually in order to seek a best match. However, visual analysis of gas chromatograms is
subjective and is not always persuasive in a court of law. Pattern recognition methods offer a better approach to the problem of
matching gas chromatograms of weathered fuels. Pattern recognition methods involve less subjectivity in the interpretation of
the data and are capable of identifying fingerprint patterns within gas chromatographic (GC) data characteristic of fuel-type,
even if the fuel samples comprising the training set have been subjected to a variety of conditions. In this paper, we report on
the development of a genetic algorithm (GA) for pattern recognition analysis of GC fuel spill data. The pattern recognition GA
incorporates aspects of artificial intelligence and evolutionary computations to yield a “smart” one-pass procedure for feature
selection. Its efficacy is demonstrated by way of two studies recently completed in our laboratory on fuel spill identification.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Water from underground wells or aquifers is an
important natural resource, supplementing or replac-
ing surface water supplies in many households and
communities in the Southeastern US. The possible
contamination of this natural resource by jet fuels
stored in leaking underground tanks and pipelines has
prompted the US Air Force to develop new methods
to identify fuel materials recovered from subsurface
environments at or near military airfields. Burgeoning
interest in techniques that can establish the type of jet
fuel responsible for the contamination of an under-
ground well or aquifer is motivated in large measure
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by the cleanup costs, legal fees, and fines incurred by
the polluter.

Water samples from underground wells or aquifers
contaminated by leaking fuels exist in one of two
forms. Either the water sample collected from the
well has a layer of floating fuel or the sample contains
dissolved hydrocarbons from the leaking fuel. In the
worse case scenario, that of a leaking fuel, the fuel
layer is collected and analyzed by capillary column
gas chromatography. The technique is easy to use,
sample preparation is minimal, and the instrumenta-
tion required for the analysis is inexpensive and read-
ily available. Although optical techniques, e.g. near
infrared, mid infrared, and fluorescence spectroscopy,
have also been used to characterize oil and fuel spills
[1], they do not possess sufficient discriminatory
power to type jet fuels because the chemical compo-
sition of a jet fuel is primarily middle distillates, i.e.
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C-9 to C-18 alkanes and alkenes. (Aromatics are only
minor constituents.) By comparison, gas chromatog-
raphy is able to classify volatile and highly complex
mixtures of hydrocarbons because of the high resolu-
tion of capillary columns and the high sensitivity and
linearity of flame ionization detectors towards middle
distillates.

Typically, the gas chromatogram of a fuel spill and
a number of suspected hydrocarbon sources are com-
pared visually in order to obtain a match. However,
this approach to fuel spill identification is subjective
and is not always persuasive in a court of law. Fur-
thermore, visual analysis suffers from the drawback
that it cannot always take into account the influence
of weathering on the overall GC profile of the spill.
Small variations in the GC operating conditions (e.g.
small changes in the temperature programming rate of
the GC column) can also be a problem complicating
the identification of leaking fuel [2].

Due to the complexity of the hydrocarbon mixture
that constitutes a processed fuel, a systematic compar-
ison of gas chromatograms is necessary to ensure that
differences between GC profiles of various fuel-types
are significant. Therefore, pattern recognition methods
[3,4] offer a better approach to the problem of match-
ing gas chromatograms of hydrocarbon fuels. Pattern
recognition methods involve less subjectivity in the
interpretation of GC data and are capable of identify-
ing fingerprint patterns within GC data characteristic
of fuel-type, even if the fuel samples comprising the
training set have been subjected to a variety of con-
ditions. Thus, discriminants can be developed that are
less sensitive to changes in the overall GC profile of
the fuel due to contamination, weathering or analyti-
cal error.

In this paper, the development of a genetic algorithm
(GA) for pattern recognition analysis of fuel spill data
is reported. The pattern recognition GA [5–7] selects
features (i.e. GC peaks) that optimize the separation of
the fuel classes in a plot of the two or three largest prin-
cipal components of the data. A good principal compo-
nent plot can only be generated using features whose
variance or information is primarily about differences
between the fuel classes. This fitness criterion dramat-
ically reduces the size of the search space since it lim-
its the search to these types of feature subsets. In addi-
tion, the GA focuses on those classes and/or samples
that are difficult to classify as it trains by boosting the

relative importance of classes and samples that consis-
tently score poorly. Over time, the algorithm learns its
optimal parameters in a manner similar to a neural net-
work. The fuel spill GA integrates aspects of artificial
intelligence and evolutionary computations to yield a
“smart” one-pass procedure for feature selection.

Two studies demonstrating the efficacy of the fuel
spill identification GA are discussed at length. In the
first study, classifiers developed from the gas chro-
matograms of 284 neat jet fuels were used to predict
the fuel-type of 31 jet fuels recovered from a subsur-
face environment. The features used to develop the
classifier were identified by the pattern recognition
GA. The second study focused on water samples that
contained dissolved hydrocarbons, i.e. water contam-
inated by aviation turbine fuels. Each water sample
was prepared by equilibrating a neat jet fuel with wa-
ter in a specially designed reaction vessel designed
to maximize the contract surface area between the
two phases. Pattern recognition analysis of the 133
GC profiles of the dissolved hydrocarbons revealed
the existence of fingerprint patterns within the data
characteristic of fuel-type. The ease of classifying
these highly complex mixtures by selective fraction-
ation prior to gas chromatography becomes apparent
when taking into account the fact that an equilibration
time of only 3 h is necessary to obtain a reproducible
profile of the water-soluble components of a jet
fuel.

2. Experimental

Neat samples of JP-4, Jet-A, JP-7, JPTS, JP-5, JP-8,
and 100/130-octane aviation gasoline (AVGAS) were
obtained from Wright Patterson and/or Mukilteo En-
ergy Management Laboratories. These fuel samples
were splits from regular quality control standards used
by the two laboratories to verify the authenticity of
manufactures claims. The control standards were col-
lected by the two laboratories over a 5-year period and
constituted a representative sampling of the fuels.

2.1. Weathered jet fuel dataset

For the first study, each jet fuel sample was stored
in a sealed container at 20◦C. Prior to GC analy-
sis, each fuel sample was diluted with methylene
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Fig. 1. High-speed gas chromatograms of JP-4, Jet-A, JP-7, JPTS, JP-5, and AVGAS.

chloride. The fuel samples were injected onto a capil-
lary column using a split column technique. The high
efficiency fused silica capillary column (10 m in length
with an i.d. of 0.10 mm and coated with 0.34 mm
of a bonded and cross-linked 5% phenyl-substituted
polymethylsiloxane stationary phase) was temper-
ature programmed from 60 to 270◦C at 18◦C/min.
The resulting high-speed gas chromatograms were
digitized using an HP-3357 laboratory automation
system. High-speed gas chromatograms representa-
tive of JP-4, Jet-A, JP-7, JPTS, JP-5, and AVGAS are
shown in Fig. 1. The gas chromatograms of the neat
jet fuels constituted the training set (see Table 1). The
prediction set consisted of 31 gas chromatograms of
weathered jet fuels (see Table 2). Seventeen of the 31
weathered fuels were collected from sampling wells
as a neat oily phase found floating on top of the wa-
ter; 11 of the 31 fuels were extracted from the soil
near various fuel spills; and the other three fuels had
been subjected to weathering in a laboratory.

Table 1
Training set

Fuel-type Number of samples

JP-4 54
Jet-A 66
JP-7 28
JPTS 34
JP-5 44
AVGAS 18
JP-8 40

Total 284

2.2. Dissolved hydrocarbon dataset

The water-soluble fraction was obtained by equi-
librating 2 ml of a neat jet fuel with 250 ml of
water while stirring gently for 12 h in a vessel de-
signed by McIntyre and Burris [8] to maximize sur-
face contact between fuel and water while avoiding
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Table 2
Prediction set

Fuel-type Sample number

JP-4 2650-T9W007a

JP-4 2660-T9W008
JP-4 2670-T9W009
JP-4 2680-T9W010
JP-4 2690-T9W011
JP-4 2700-T9W012
JP-4 2710-T9W013
JP-4 2720-KSE1M2b

JP-4 2730-KSE2M2
JP-4 2740-KSE3M2
JP-4 2750-KSE4M2
JP-4 2760-KSE5M2
JP-4 2770-KSE6M2
JP-4 2780-KSE7M2
JP-4 27908/9/90SMP1c

JP-4 28008/9/90SMP2
JP-4 28108/9/90SMP3
JP-4 28208/9/90SMP4
JP-4 2830STALE-1d

JP-4 2840STALE-2
JP-4 2850STALE-3
JP-5 2860PIT1UNKe

JP-5 2870PIT1UNK
JP-5 2880PIT2UNK
JP-5 2890PIT2UNK
JP-4 0010TYNDL-1f

JP-5 2910PIT2UNKe

JPTS 2600PATg

JPTS 2610PATg

AVGAS 3100Richmndh

AVGAS 3200Richmnd

a Sampling well at Tyndall. The sampling well was near a pre-
viously functioning storage depot. Each well sample was collected
on a different day.

b Soil extract near sampling well at Tyndall. Dug with a hand
auger at various depths. Distance between sampling well and soil
extract was approximately 80 yards.

c JP-4 diluted with methylene chloride was added to sand and
later re-extracted (simulated soil extract).

d Weathered in laboratory.
e Sampling pit at Keywest Naval Air Station. Two pits were

dug near a seawall to investigate a suspected JP-5 fuel leak.
f Recovered from a previously functioning storage facility at

Tyndall.
g Recovered from the subsurface environment at Patrick Air

Force Base.
h Subsurface fuel spill from Richmond Airport.

mixing. Following equilibration, several milliliters of
water were discharged from the vessel to ensure the
delivery tube was clear of fuel, and two 25 ml aliquots
of the water phase were delivered into gas tight

syringes equipped with Luer-lock open shut valves.
Solid phase extraction (SPE)/gas chromatography was
used to characterize the 25 ml water samples contain-
ing the dissolved hydrocarbons. For the SPE proce-
dure, each 25 ml aliquot was forced through a C-18
Sep-pak (Millipore Corporation) SPE cartridge. The
Sep-Pak was partially dried with a 5 ml slug of air and
was extracted with 1 ml of carbon disulfide. A 1 ml
aliquot of each carbon disulfide extract was injected
directly onto a fused silica capillary column (0.25 mm
bonded polyethylene glycol stationary phase), which
was temperature programmed from 40 to 200◦C at
5◦C/min with an initial isothermal hold of 4 min. Gas
chromatograms of the carbon disulfide extract were
obtained using a Hewlett Packard 5880 GC equipped
with a mass selective detector. Fig. 2 shows GC pro-
files (i.e. total ion chromatograms) representative of
the solid phase extracts of JP-4, Jet-A, JP-7, JPTS,
JP-5, and AVGAS. The SPE dataset, which consisted
of 133 gas chromatograms, is described in Table 3.
Further information about this dataset can be found
elsewhere [9].

3. Data preprocessing

The GC data were digitized and stored using an
HP-3357 laboratory automation system implemented
on an HP-1000-F minicomputer. A FORTRAN pro-
gram was used to translate the integration reports
into ASCII files that were formatted for entry into
SETUP [10], a computer program for peak-matching.
SETUP matches peaks by first: (1) computing the
Kovat’s retention index for the compounds eluting off
the GC column or (2) dividing each chromatogram
into intervals defined by major peaks that are always
present and linearly scaling the retention times of
the peaks within the intervals for best fit with re-
spect to a reference chromatogram. For the neat jet
fuels, the n-alkane peaks were the most prominent
features present [11], so it was a simple matter to
compute Kovat’s retention indices for the GC peak in
the weathered jet fuel dataset. For the SPE gas chro-
matograms, there were a number of peaks that are
present in all the gas chromatograms so developing
a retention scale rotted on the majors was feasible.
The peak-matching program then analyzed the GC
data in three distinct steps. First, a template of peaks
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Fig. 2. Reproduced total ion chromatograms representative of the solid phase extracts of JP-4, Jet-A, JP-7, JPTS, JP-5, and AVGAS.

was developed by examining integration reports,
and adding features to the template, which did not
match the retention indices of previously observed
features. (The integration reports list the integrated
areas of the chromatographic peaks in each gas chro-
matogram.) Second, a preliminary data vector was
produced for each gas chromatogram by matching
the retention indices of GC peaks with the retention
indices of the features in the template. (The template
lists the standardized retention indices of the differ-
ent peaks encountered in the gas chromatograms of
the dataset being investigated.) A feature is assigned

Table 3
Solid phase extraction dataset

Fuel-type Number of
fuel samples

Number of
chromatograms

JP-4 20 27
Jet-A 27 54
JP-7 4 8
JPTS 10 20
JP-5 9 18
AVGAS 6 6

Total 76 133

a value corresponding to the normalized area of the
GC peak in the chromatogram. Unmatched peaks are
zeroed, whereas poorly resolved and tailing peaks
are excluded from the analysis. (A peak is matched
provided that differences in adjusted retention times,
e.g. KI values for the neat jet fuels or retention times
rotted on the majors for SPE, fall within the user
specified tolerance window for a given peak pair.)
Third, the frequency of each feature was computed,
i.e. the number of times a particular feature is found
to have a nonzero value is calculated, and features
below a user specified number of nonzero occur-
rences (which is set equal to 10% of the total number
of fuel samples in the training set) are deleted from
the dataset, whereas features that passed the nonzero
frequency criterion are retained. The peak-matching
software yielded a final cumulative reference file con-
taining 85 peaks for the weathered jet fuel dataset
and 48 peaks for the SPE dataset. Hence, for pattern
recognition analysis, each neat jet fuel gas chro-
matogram was initially represented as an 85 dimen-
sional data vector, x = (x1, x2, x3, . . . , xj , . . . , x85),
and each SPE gas chromatogram was initially rep-
resented as a 48-dimensional data vector x =
(x1, x2, x3, . . . , xj , . . . , x48) where xj is the area of
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Fig. 3. A block diagram of the pattern recognition GA used for fuel spill identification.

the jth peak. The data vectors were normalized to
constant sum, i.e. each xj was divided by the total
integrated peak area.

3.1. Pattern recognition analysis

A block diagram of the pattern recognition GA for
fuel spill identification is shown in Fig. 3. The GA
[12,13] builds a population of binary strings, each
of which represents a possible solution, i.e. a unique
subset of the GC peaks. For a feature to be included
in the subset, it is necessary for the corresponding bit
in the string to be set at 1. If the bit is set to 0, the GC
peak is not included in the feature subset. During each
generation, the strings are decoded yielding the actual
parameter set, which is sent to the fitness function
for evaluation. The fitness function determines the
string’s relative importance to other members of the
population. Fit solutions are selected for crossover,
that is, fit feature subsets are broken up, swapped, and
recombined creating new subsets of features, which
are introduced into the population of potential solu-
tions. This process is repeated until a specified number
of generations are executed or a feasible solution is
found.

The pattern recognition GA for fuel spill identifi-
cation differs from conventional GAs in the types of
operators that it utilizes. The fitness function, which
is graphically based, actually emulates human pat-
tern recognition through machine learning to iden-
tify a set of features (i.e. GC peaks) that optimize
the separation of the fuel classes in a plot of the two

largest principal components of the data. To track and
score the principal component plots, class and sam-
ple weights, which are an integral part of the fit-
ness function, are computed (see Eqs. (1) and (2))
where CW(c) is the weight of class c with c varying
from 1 to the total number of classes in the dataset.
SWc(s) is the weight of sample s in class c. The
class weights sum to 100, and the sample weights
for the objects comprising a particular class sum to a
value that is equal to the class weight of the class in
question.

CW(c) = 100
CW(c)∑
cCW(c)

(1)

SW(s)= CW(c)
SW(s)∑
s∈cSW(s)

(2)

Each principal component plot generated for each
feature subset after it has been extracted from its
chromosomes is scores using the K-nearest neighbor
classification algorithm [14]. For a given data point,
Euclidean distances are computed between it and ev-
ery other point in the principal component plot. These
distances are arranged from smallest to largest. A
poll is taken of the point’s Kc-nearest neighbors. For
the most rigorous classification (which was also the
case for the two studies described in this paper), Kc

equals the number of samples in the class to which
the point belongs. (Thus, Kc usually has a differ-
ent value for each class.) The number of Kc-nearest
neighbors with the same class label as the sample
point in question, the so-called sample-hit count,
SHC(s), is computed (0 < SHC(s) < Kc) for each
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sample. It is then a simple matter to score a principal
component plot (see Eq. (3)). First, the contribution
to the overall fitness by each sample in class 1 is
computed, with the scores of the samples comprising
the class summed to yield the contribution by this
class to the overall fitness. This simple calculation is
again repeated for classes 2, 3, etc., with the scores
from each class summed to yield the overall fitness,
F(d).

F(d) =
∑

c

∑

s∈c

1

Kc

× SHC(s) × SW(s) (3)

To better understand how principal component plots
are scored, consider a dataset with two classes, which
have been assigned equal weights. Class 1 has 50 sam-
ples, and class 2 has 10 samples. At generation 0,
the samples in a given class have the same weight.
Thus, each sample in class 1 has a sample weight of
1, whereas each sample in class 2 has a weight of 5.
Suppose a sample from class 2 has as its nearest neigh-
bors 8 class one samples. Hence, SHC/K = 0.8, and
(SHC/K) × SW = 0.8 × 5, which equals 4. By sum-
ming (SHC/Kc) × SW for each sample, each prin-
cipal component plot can be scored. One advantage
of using this procedure to score the principal compo-
nent plots is that a class with a large number of sam-
ples will not dominate the analysis due to the class
weights.

The fitness function of the GA is able to focus on
samples and classes that are difficult to classify by
boosting their weights over successive generations.
(Boosting the weights is referred to as adjusting
the internal parameters in the block diagram of the
pattern recognition GA.) In order to boost, it is nec-
essary to compute both the sample-hit rate (SHR),
which is the mean value of SHC/Kc over all fea-
ture subsets produced in a particular generation (see
Eq. (4)), and the class-hit rate (CHR), which is the
mean SHR of all samples in a class (see Eq. (5)).
φ in Eq. (4) is the number of chromosomes in the
population, and AVG in Eq. (5) refers to the average
or mean value. During each generation, class and
sample weights are adjusted by a perceptron (see
Eqs. (6) and (7)) with the momentum, P, set by the
user. (g + 1 is the current generation, whereas g is
the previous generation.) Classes with a lower CHR

are boosted more heavily than those classes that score
well.

SHR(s) = 1

φ

φ∑

i=1

SHCi (s)

Kc

(4)

CHRg(c) = AVG(SHRg(s) : ∀s ∈ c) (5)

CWg+1(s) = CWg(s) + P(1 − CHRg(s)) (6)

SWg+1(s) = SWg(s) + P(1 − SHRg(s)) (7)

Boosting is crucial for the successful operation of the
fuel spill identification GA because it modifies the fit-
ness landscape by adjusting the values of the class and
sample weights. This helps to minimize the problem
of convergence to a local optimum. Hence, the fitness
function of the GA changes as the population evolves
towards a solution.

The selection operator of the pattern recognition
GA utilizes both the adults and children to develop
new solutions. Potential solutions are placed in two
columns. In the first column, the solutions are ordered
from best to worst with respect to their fitness. In the
second column, a copy of the same population is ran-
domly ordered with respect to the fitness of the chro-
mosomes. The first row of the first column is combined
with the first row of the second column using a set of
rules encoded in the crossover operator to yield new
and potentially better solutions for the fuel spill iden-
tification problem. Typically, the selection pressure is
set at 0.5 so, the top half of the ordered population is
mated with strings or chromosomes from the top half
of the random population. For each pair of strings se-
lected for mating, two new strings are generated. Be-
cause the best feature subsets are always being used,
each new population is expected to yield better results
than the previous generation. However, each chromo-
some (i.e. potential solution) has a chance of being
selected (because of the second column) ensuring that
a significant degree of diversity is maintained during
the search for the best solution. It is unlikely that any
individual feature will be zeroed out of the analysis
when this selection procedure is used.

The reproduction operator of the pattern recog-
nition GA generates new solutions employing an
unusual variation of three-point crossover. As in the
case of simple crossover, the length of each new
string is the same as the dimensionality of the data.
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Fig. 4. Crossover operator with a reordering algorithm embedded in it. (a) Loci of selected chromosomes are randomly chosen, and (b)
children are produced based on the recombination of chromosomal fragments. The preservation of original fragment order is not required.

Unlike simple three-point crossover, the crossover
operator used by the pattern recognition GA is not
compelled to preserve order among exchanged string
fragments, which safeguards the loss of information
or features in the population (see Fig. 4). As a result,
it becomes less likely for the population variability
to fall below a critical value due to the additional
degree of freedom provided by the reordering. This
variation of three-point crossover is also useful in
searching for good string arrangements. For exam-
ple, consider a population with bad ordering, i.e.
where great distances separate good features. Simple
crossover would probably destroy these important
feature packets. In this situation, there is a chance to
obtain good ordering, if a crossover operator is used
with a reordering algorithm embedded in it.

In the last step of reproduction, a mutation operator
is applied to the new strings. The mutation probabil-
ity of the operator is set at 0.01, so 1% of the feature
subsets are selected at random for mutation. A chro-
mosome marked for mutation has a single bit flipped.
This allows the GA to explore other regions of the pa-
rameter space. If the GA finds a better point in the so-
lution space, the chromosome representing this point
will invade the population, allowing optimization to
continue in a new direction.

The pattern recognition GA was coded using Matlab
5.3. All calculations in this study were performed on
a 166 MHz Pentium computer with 128 Mb of EDO
RAM running under Windows 95. Fitness evaluation
was the step with the highest computational load. The

3–4 h were typical run times for the pattern recognition
GA on this platform.

4. Weathered jet fuels

The first step in any fuel spill identification prob-
lem is to apply principal component analysis (PCA)
to the data. PCA is a method of transforming the
original measurement variables into new, uncorrelated
variables called principal components. Each principal
component is a linear combination of the original mea-
surement variables. The largest principal component
is formed by determining the direction of largest vari-
ation in the data and modeling it by a line that passes
through the center of the data. The second largest prin-
cipal component lies in the direction of next largest
variation; it passes through the center of the data and
is orthogonal to the largest principal component. The
third largest principal component lies in the direction
of next largest variation; it passes through the center
of the data and is orthogonal to the first and second
largest principal components, and so forth. By using
PCA, the original measurement variables, which con-
stitute a correlated axis system, can be converted into
an orthogonal system that removes correlations by
forcing the new axes to be independent. This require-
ment dramatically reduces the dimensionality of the
data because only a few independent axes are nec-
essary to describe the data. PCA is routinely applied
to high dimensional data to affect dimensionality
reduction, classify samples, and/or identify outliers.
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Fig. 5. A plot of the two largest principal components of the 85 GC peaks obtained from the 284 neat jet fuel gas chromatograms. Each
fuel sample or gas chromatogram is represented as a point in the map (1 = JP-4, 2 = Jet-A, 3 = JP-7, 4 = JPTS, 5 = JP-5, 6 = AVGAS,
and 7 = JP-8). The two largest principal components explain 65% of the total cumulative variance.

Fig. 5 shows a plot of the two largest principal com-
ponents of the 85 GC peaks obtained from the 284
neat jet fuel gas chromatograms. Each fuel sample
or gas chromatogram is represented as a point in the
map. The high degree of overlap of Jet-A, JP-5, and
JP-8 fuel samples in the principal component map of
the data is not altogether surprising. JP-5 and JP-8 are
kerosene-based jet fuels that are similar in composi-
tion to Jet-A, the fuel used by civilian airliners. May-
field and Henley [15] observed that Jet-A and JP-5
fuels are more difficult to classify than other types of
jet fuels because of the similarity in their overall hy-
drocarbon composition. Lavine et al. [16,17] showed
that statistical discriminant analysis could be used to
differentiate Jet-A, JP-5, JP-4, JPTS, and JP-7 fuels.
However, when this approach was applied to a set
of chromatograms that included JP-8, the statistical

discriminant could not differentiate Jet-A from JP-5
and JP-8.

The next step was feature selection. It is important
to delete uninformative features to ensure that dis-
criminatory information about fuel-type is the major
source of variation in the data. If noisy features are
not removed from the data, their presence can be
detrimental to the performance of pattern recognition
techniques such as linear and quadratic discrimi-
nant analysis [14] or SIMCA [18], since information
characteristic of fuel-type will be swamped out by
the large amount of qualitative and quantitative data
due to experimental conditions [19]. Furthermore,
many pattern recognition techniques, e.g. linear and
quadratic discriminant analysis, do not perform well
in small sample/high dimensional settings requiring
the user to select an optimal set of features for dis-
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criminant analysis [20]. Methods that estimate the
inverse of the covariance matrix for each class will
often not do well in these settings because of the dif-
ficulties in computing the inverse of the covariance
matrix for each class due to the problem of collinear-
ity, which arises from having more features than sam-
ples. It is the smaller of the two (features or samples)
that define the number of independent axes needed to
describe the data. Collinearity will inflate the size of
the larger eigenvalues at the expense of the smaller
eigenvalues. Since the inverse of the covariance ma-
trix is determined by the smaller eigenvalues, this
deflation resulting in values near the noise level in the
data is a serious problem for unregularized methods
such as quadratic or linear discriminant analysis [21].

Feature selection can also transform a difficult prob-
lem pattern recognition problem into a simple one.
If separation by sample type is evident in a princi-

Fig. 6. A plot of the two largest principal components of the 22 GC peaks selected by the pattern recognition GA for fuel spill identification.
Each fuel sample or gas chromatogram is represented as a point in the map (1 = JP-4, 2 = Jet-A, 3 = JP-7, 4 = JPTS, 5 = JP-5,
6 = AVGAS, and 7 = JP-8). The two largest principal components explain 60% of the total cumulative variance.

pal component score plot of the selected features, the
probability of successfully developing a classifier from
these features is high since the between group differ-
ences are large compared to among group differences.

The pattern recognition GA for fuel spill identifica-
tion was used to uncover features characteristic of the
GC profile of each fuel class. For this study, the GA
was configured in the following manner. The number
of chromosomes or binary strings in each population,
φ, was set to 100, whereas the length of each binary
string was 85. The momentum, P, was 0.8, and Kc for
each class equaled the number of samples in the class.
The selection pressure was 0.5 and the mutation rate
was 0.01. Maximum number of iterations for a run
was set to 100.

The pattern recognition GA sampled key feature
subsets, scored their principal component plots, and
tracked those samples and/or classes that were most
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difficult to classify. The boosting routine used this in-
formation to steer the population to an optimal so-
lution. After 100 generations, the GA identified 22
standardized retention time windows whose principal
component plot showed clustering of the fuel samples
on the basis of fuel-type (see Fig. 6). This suggests
that information about fuel-type is contained within
the gas chromatograms of the neat jet fuels.

The 22 GC peaks identified by the GA were used as
the starting point for a seven-way classification study
involving JP-4, Jet-A, JP-7, JPTS, JP-5, AVGAS, and
JP-8 fuels. This classification study, which is a logical
extension of an earlier effort [16,17], was undertaken
because of the change from JP-4 to JP-8 as the prin-
cipal US Air Force fuel. The difficulty of identifying
JP-8 fuels from GC data has been previously reported
[16].

A classification rule was developed from the 22 GC
peaks using regularized discriminant analysis (RDA)

Fig. 7. A plot of the two largest principal components of the 48 GC peaks obtained from the 133 SPE gas chromatograms. Each gas
chromatogram is represented as a point in the plot (1 = JP-4, 2 = Jet-A, 3 = JP-7, 4 = JPTS, 5 = JP-5, and 6 = AVGAS). The two
largest principal components explain 70% of the total cumulative variance.

[21]. RDA is similar to SIMCA but employs a more
complex scheme to obtain a biased estimate of the in-
verse of the class covariance matrix. Optimum values
for the shrinking parameters used in RDA are com-
puted for a given dataset by cross validating on the
total number of misclassifications. (In other words, a
vector of misclassifications as a function of the shrink-
age parameter is generated, with the value of the eval-
uated parameter corresponding to the lowest error rate
selected.).

When λ was set at 0.5 and γ was set at 0, the ap-
parent classification success-rate for the neat jet fuels
was 100%. The predictive ability of these descriptors
was assessed by first computing the cross-validated
and bootstrapped error rate which was approximately
2%. To further test the predictive ability of these GC
peaks and the discriminant that they supported, a pre-
diction set of 31 gas chromatograms was employed
(see Table 2). 30 of the 31 samples in the prediction
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set were correctly classified using the discriminant de-
veloped from the gas chromatograms of the neat jet
fuels. The only misclassification involved a JP-5 fuel
recovered from a monitoring well at Keywest Naval
Air Station. The regularized discriminant recognized
the fuel as Jet-A. (It classified the fuel sample as Jet-A
with a 65% probability; the remaining 35% of the
probability was assigned to the JP-5 fuel class.) This
result is not altogether surprising because of the simi-
larity in the overall hydrocarbon composition of these
two fuel materials. Anecdotal data from our labora-
tory suggests that some JP-5 fuels are simply Jet-A
fuels containing different surfactant additive packages.
Clearly, the high classification success-rate obtained
for the weathered jet fuels suggests that information
about fuel-type is present in the 22 GC peaks identi-
fied by the pattern recognition GA. Furthermore, the
potential of using gas chromatography to differenti-
ate JP-4 (principal USAF fuel prior to 1990) and JP-8

Fig. 8. A plot of the two GC peaks (standardized retention time windows 8 and 23) identified by the pattern recognition GA for fuel spill
identification. (1 = JP-4, 2 = Jet-A, 3 = JP-7, 4 = JPTS, 5 = JP-5, and 6 = AVGAS).

(currently the principal USAF Fuel) from Jet-A and
JP-5 has been demonstrated.

5. Dissolved hydrocarbons

Fig. 7 shows a plot of the two largest principal com-
ponents of the 48 GC peaks obtained from the 133
SPE gas chromatograms. Each gas chromatogram is
represented as a point in the plot (1 = JP-4, 2 = Jet-A,
3 = JP-7, 4 = JPTS, 5 = JP-5, and 6 = AVGAS).
JP-4 and JP-7 yield well define clusters, well sepa-
rated from the gas chromatograms of the other fuels.
The overlap of JP-5, Jet-A, and JPTS fuel samples in
the PC plot is not surprising because of the similar-
ity in the physical and chemical properties of these
fuels, e.g. flash point, freezing point, vapor pressure,
and distillation curve [22]. Mayfield and Henley [15]
observed that gas chromatograms of kerosene-based
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fuels (e.g. Jet-A, JP-5, and JPTS) are more difficult
to classify than other types of jet fuels due to the
similarity in their overall hydrocarbon composition.
Nevertheless, Mayfield and Henley were able to iden-
tify fingerprint patterns within the gas chromatograms
of kerosene-based jet fuels characteristic of fuel-type,
which in turn motivated us to investigate the existence
of these types of patterns in SPE data.

The fuel spill identification GA was used to un-
cover features characteristic of the GC profile of each
fuel class. For this study, the GA was configured in
the following manner. The number of chromosomes
or binary strings in each population, φ, was set to 100,
whereas the length of each binary string was 48. The
momentum, P, was 0.5, and Kc for each class equaled
the number of samples in the class. The selection pres-
sure was 0.5 and the mutation rate was 0.1. The max-
imum number of iterations for a run was set to 100.

After 100 generations, the GA identified two
standardized retention time windows (standardized
retention time windows 8 and 23) whose plot showed
clustering of the fuel samples according to fuel-type
(see Fig. 8). Uncovering this solution was possible
because the initial population was configured to con-
sist of sparse feature subsets. (The number of features
in each feature subset of the initial population can be
a critical parameter.) If the feature sets are initially
sparse, the probability of including features, which
are neither good nor bad, is low since the fitness
function does not provide additional points for adding
them. On the other hand, the probability of removing
these same features as a result of using less sparse
feature subsets is also low since there is no advantage
to deleting them.

Clearly, information about fuel-type is captured by
the gas chromatograms of the water-soluble compo-
nents of the jet fuels. The ease of classifying jet fuels
using selective fractionation becomes apparent when
taking into account the fact that an equilibration time
of only 3 h is necessary to obtain a reproducible pro-
file of the water-soluble components of a jet fuel [23].

6. Conclusions

The pattern recognition GA, which involves the
evaluation, reproduction, and boosting of potential so-
lutions, is well suited for analyzing GC data of fuel

spills because of its attributes. First, the GA utilizes
a multivariate approach to feature selection ensuring
identification of all relevant features. Second, features
that contain discriminatory information about a spe-
cific pattern recognition problem would be expected
to be correlated, which is why feature selection meth-
ods based on PCA are preferred. Third, chance classi-
fication is not a serious problem since the bulk of the
variance or information content of the feature subset
selected is about the class membership problem be-
ing investigated. Fourth, the PCA routine of the fitness
function is able to dramatically reduce the size of the
search space since it can correctly assess the true di-
mensionality of the data ensuring that only those re-
gions of the solution space with information about the
problem of interest are investigated. The fitness func-
tion of the GA which combines human pattern recog-
nition and machine learning implemented through the
language of reproduction and natural selection, pro-
duces a learning paradigm superior to that of man or
machine alone because of the synergism created by
coupling these different learning approaches.
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