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Abstract—Mutual information is a good indicator of relevance between variables,
and have been used as a measure in several feature selection algorithms.
However, calculating the mutual information is difficult, and the performance of a
feature selection algorithm depends on the accuracy of the mutual information. In
this paper, we propose a new method of calculating mutual information between
input and class variables based on the Parzen window, and we apply this to a
feature selection algorithm for classification problems.
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1 INTRODUCTION

MUTUAL information is considered as a good indicator of relevance
between two random variables [1]. Recently, efforts to adopt
mutual information in feature selection problems resulted in a
series of researches [2], [3], [4]. Because the computation of mutual
information between continuous variables is a very difficult job
requiring probability density functions (pdf) and involving
integration of those functions, mutual information feature selector
(MIFS) [2], and its variants [3], [4] used histograms in approximat-
ing the pdfs to avoid these complexities. Thus, the performance can
be degraded as a result of large errors in estimating the mutual
information. In addition, MIFS methods have another limitation in
that these methods do not provide a direct measure to judge
whether to add additional features or not. More direct calculation
of mutual information is attempted using the quadratic mutual
information in the feature transformation field [5], [6], [7], but the
relationship between Shannon’s mutual information and the
quadratic mutual information is not clear so far.

In this paper, a new feature selection method with the mutual
information maximization scheme is proposed for classification
problems. In calculating the mutual information between the input
features and the output class, instead of dividing the input space into
several partitions, we use the Parzen window method to estimate the
input distribution. With this method, more accurate mutual
information is calculated giving better performance than other
methods.

In the following section, the basics of information theory and the
Parzen window method are briefly presented. In Section 3, we
propose a new feature selection method and in Section 4, the
proposed algorithms are applied to several classification problems to
show their effectiveness. And finally, conclusions follow in Section 5.

2 PRELIMINARIES

2.1 Entropy and Mutual Information

The entropy is a measure of uncertainty of random variables. If a
discrete random variable X has X alphabets and the pdf is
pðxÞ ¼ PrfX ¼ xg; x 2 X , the entropy of X is defined as

HðXÞ ¼ ÿ
X
x2X

pðxÞ log pðxÞ: ð1Þ

Here the base of log is 2 and the unit of entropy is the bit.
When certain variables are known and others are not, the

remaining uncertainty is measured by the conditional entropy:

HðY jXÞ ¼ ÿ
X
x2X

X
y2Y

pðx; yÞ log pðyjxÞ: ð2Þ

The information found commonly in two random variables is of

importance in our work, and this is defined as the mutual

information between two variables:

IðX; Y Þ ¼
X
x2X

X
y2Y

pðx; yÞ log
pðx; yÞ
pðxÞpðyÞ : ð3Þ

If the mutual information between two random variables is large

(small), it means two variables are closely (not closely) related. The

mutual information and the entropy have the following relation:

IðX; Y Þ ¼ HðY Þ ÿHðY jXÞ: ð4Þ

For continuous random variables, though the differential

entropy and mutual information are defined as

HðXÞ ¼ ÿ
Z
pðxÞ log pðxÞdx

IðX; Y Þ ¼
Z
pðx; yÞ log

pðx; yÞ
pðxÞpðyÞ dxdy;

ð5Þ

it is very difficult to find pdfs (pðxÞ; pðyÞ; pðx; yÞ) and to perform the

integrations. Therefore, we usually divide the continuous input

feature space into several discrete partitions and calculate the

entropy and mutual information using the definitions for discrete

cases. The inherent error that exists in this process is of concern in the

computation of entropy and mutual information of continuous

variables.

2.2 The Parzen Window Density Estimate

The Parzen window density estimate can be used to approximate

the probability density pðxxÞ of a vector of continuous random

variables XX [8]. (From now on, the boldfaced letters represent

vectors.) It involves the superposition of a normalized window

function centered on a set of random samples. Given a set of

n d-dimensional training vectors D ¼ fx1; x2; � � � ; xnx1; x2; � � � ; xng, the pdf

estimate of the Parzen window is given by

p̂pðxxÞ ¼ 1

n

Xn
i¼1

�ðxxÿ xxi; hÞ; ð6Þ

where �ð�Þ is the window function and h is the window width

parameter. Parzen showed that p̂pðxxÞ converges to the true density

if �ð�Þ and h are selected properly [8]. The window function is

required to be a finite-valued nonnegative density function whereZ
�ðyy; hÞdyy ¼ 1; ð7Þ

and the width parameter is required to be a function of n such that

lim
n!1

hðnÞ ¼ 0; ð8Þ

and

lim
n!1

nhdðnÞ ¼ 1: ð9Þ

For window functions, the rectangular and the Gaussian

window functions are commonly used. The Gaussian window

function is given by
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�ðzz; hÞ ¼ 1

ð2�Þd=2hdj�j1=2
exp ÿ zz

T�ÿ1zz

2h2

� �
; ð10Þ

where � is a covariance matrix of a d-dimensional vector of
random variables zz.

3 MAXIMIZING MUTUAL INFORMATION WITH PARZEN

WINDOW

3.1 Problem Formulation

The success of a feature selection algorithm depends critically on
how much information about the output class is contained in the
selected features. Using Fano’s inequality [1], the minimal
probability of incorrect estimation PE of class C using inputs XX
is lower bounded by

PE �
HðCjXXÞ ÿ 1

logN
¼ HðCÞ ÿ IðXX;CÞ ÿ 1

logN
: ð11Þ

Because the entropy of class HðCÞ and the number of classes N is
fixed, the lower bound of PE is minimized when IðXX;CÞ becomes
the maximum. Thus, it is necessary for good feature selection
methods to maximize the mutual information IðXX;CÞ.

Battiti [2] formalized this concept of selecting the most relevant
k features from a set of n features in the following FRn-k problem
and adopted a greedy selection scheme to solve this problem.

(FRn-k). Given an initial set F with n features and an output
class C, find the subset S � F with k features that minimizes
HðCjSSÞ, i.e., that maximizes the mutual information IðSS;CÞ, where
SS is a k-dimensional random vector whose components are the
elements of S.

In this scheme, starting from the empty set of selected features,
we add the best available input feature to the selected feature set
one by one until the size of the set reaches k.

The ideal greedy selection algorithm using mutual information
(MI) is realized as follows:

1. (Initialization) set F ÿ “initial set of n features,” S ÿ
“empty set.”

2. (Computation of the MI with the output class) 8fi 2 F ,
compute Iðfi;CÞ.

3. (Selection of the first feature) find the feature that
maximizes Iðfi;CÞ, set F ÿF n ffig; S ÿffig.

4. (Greedy selection) repeat until desired number of features
are selected.

a. (Computation of the joint MI between variables)
8fi 2 F , compute Iðfi; SS;CÞ.

b. (Selection of the next feature) choose the feature fi 2
F that maximizes Iðfi; SS;CÞ, and set

F ÿF n ffig; S ÿffig:

5. Output the set S containing the selected features.

To compute the mutual information, we must know the pdfs of
input and output variables, but this is difficult in practice, so the
histogram method has been used in estimating the pdfs. But, the
histogram method needs extremely large memory space in calculat-
ing mutual information. For example, in selecting k features
problem, if the output classes are composed of Kc classes and we
divide the jth input feature space into Pj partitions to get the
histogram, there must beKc ��k

j¼1Pj cells to compute Iðfi; SS;CÞ. In
this case, even for a simple problem of selecting 10 important
features, Kc � 1010 memories are needed if each feature space is
divided into 10 partitions. Therefore, realization of the ideal greedy
selection algorithm is practically impossible by estimating the pdfs
with histogram. To avoid this practical obstacle, alternative methods
[2], [3], [4] use only joint pdfs of two variables in calculating mutual
informations. Although these methods report good results on some

problems, these are prone to errors because they do not use direct
mutual information. To overcome these problems, we propose a new
method for computing the mutual information in the following
section.

3.2 Calculation of Mutual Information with Parzen
Window

In classification problems, the class has discrete values while the
input features are usually continuous variables. In this case,
rewriting the relation of (4), the mutual information between the
input features XX and the class C can be represented as follows:

IðXX;CÞ ¼ HðCÞ ÿHðCjXXÞ:

In this equation, because the class is a discrete variable, the entropy
of the class variable HðCÞ can be easily calculated as in (1). But, the
conditional entropy

HðCjXXÞ ¼ ÿ
Z
XX

pðxxÞ
XN
c¼1

pðcjxxÞ log pðcjxxÞdxx; ð12Þ

where N is the number of classes, is hard to get because it is not
easy to estimate pðcjxxÞ.

Now, we present a new method to estimate the conditional
entropy and the mutual information by the Parzen window method.
By the Bayesian rule, the conditional probability pðcjxxÞ can be
written as

pðcjxxÞ ¼ pðxxjcÞpðcÞ
pðxxÞ : ð13Þ

If the class has N values, say 1; 2; � � � ; N , we get the estimate of the
conditional pdf p̂pðxxjcÞ of each class using the Parzen window
method as

p̂pðxxjcÞ ¼ 1

nc

X
i2Ic

�ðxxÿ xxi; hÞ; ð14Þ

where c ¼ 1; � � � ; N ; nc is the number of the training examples
belonging to class c; and Ic is the set of indices of the training
examples belonging to class c. Because the summation of the
conditional probability equals one, i.e.,

XN
k¼1

pðkjxxÞ ¼ 1;

the conditional probability pðcjxxÞ is

pðcjxxÞ ¼ pðcjxxÞPN
k¼1 pðkjxxÞ

¼ pðcÞpðxxjcÞPN
k¼1 pðkÞpðxxjkÞ

:

The second equality is by the Bayesian rule (13). Using (14), the
estimate of the conditional probability becomes

p̂pðcjxxÞ ¼
P

i2Ic �ðxxÿ xxi; hcÞPN
k¼1

P
i2Ik �ðxxÿ xxi; hkÞ

; ð15Þ

where hc and hk are class specific window width parameters. Here,
we used p̂pðkÞ ¼ nk=n instead of true density pðkÞ. If we use the
Gaussian window function (10) with the same window width
parameter and the same covariance matrix for each class1 (15)
becomes

p̂pðcjxxÞ ¼
P

i2Ic expðÿ ðxxÿxxiÞ
T�ÿ1ðxxÿxxiÞ
2h2 ÞPN

k¼1

P
i2Ik expðÿ ðxxÿxxiÞ

T�ÿ1ðxxÿxxiÞ
2h2 Þ:

ð16Þ
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1. For multiclass classification problems, there may not be enough
samples such that the error for the estimate of class specific covariance
matrix can be large. Thus, we use the same covariance matrix for each class
throughout this paper.



Now in the calculation of the conditional entropy (12) with
n training samples, if we replace the integration with a summation of
the sample points and suppose each sample has the same probability,
we get

ĤHðCjXXÞ ¼ ÿ
Xn
j¼1

1

n

XN
c¼1

p̂pðcjxxjÞ log p̂pðcjxxjÞ; ð17Þ

where xxj is the jth sample of the training data. With (16) and (17),
we get the estimate of the mutual information.

The computational complexity for (17) is propotional to n2 � d.
When there is a computational problem because of large n, we may
use the clustering method [9] or the sample selection method [10]
to speed up the calculation. The methods based on histograms
require computational complexity and memory proportional to qd,
where q represents number of quantization levels. Note that the
proposed method does not require excessive memory, unlike the
histogram based methods.

With this estimation, the FRn-k problem can be solved by the
greedy selection algorithm represented in the previous section.
Note that the dimension of a input feature vector xx starts from one
at the beginning and increases one by one as a new feature is
added to selected feature set S.

3.3 Properties of the Proposed Method

In the proposed mutual information estimation, the selection of the
window function and the window width parameter is very
important. As mentioned in Section 2, the rectangular window
and the Gaussian window is normally used for the Parzen window
function. In our simulation, we used the Gaussian window rather
than the rectangular window because it does not contain any
discontinuity. For the window width parameter h, we used k=logn
as in [11], where k is a positive constant and n is the number of the
samples. This choice of h satisfies the conditions (8) and (9).

To see the properties of the proposed algorithm, let us consider
the typical four points XOR problem. Let xx ¼ ðx1; x2Þ be a
continuous input feature vector and the samples for xx are given
(0,0), (0,1), (1,0), (1,1). The term c is the discrete output class which
takes a value in fÿ1; 1g. In the Parzen window method, each
sample point influences the conditional probability throughout the
entire feature space. The influence �ðxxÿ xxi; hÞ of a sample point xxi
is drawn according to the polarity of its corresponding class. We
call it a class specific influence field, which is similar to an electric
field produced by a charged particle. The influence fields
generated by given four sample points in the XOR problem are
shown in Fig. 1. In the figure, the slope and the range of the
influence field are determined by the window width parameter h.
The smaller h is, the sharper the slope and the narrower the range
of influence becomes. Fig. 1 was drawn with h ¼ 1

2logn , where n is
the number of sample points which is four in this case. With this h,
the higher (lower) estimate for the conditional probability of class c
being ÿ1 or 1 for each sample point is 0.90 (0.10) by (16). With (17),
the conditional entropy estimate ĤHðcjx1; x2Þ becomes 0.465, and the
entropy HðcÞ is 1 by (1). Thus, the estimate of the mutual

information between two input features and the output class
ÎIðc;x1; x2Þ (¼ HðcÞ ÿ ĤHðcjx1; x2Þ) is 0.535. The significance of
ÎIðc;x1; x2Þ being greater than zero will become clear later.

In Fig. 2, we provide the conditional probability of class 1
calculated by (16) on the input feature space. Note that we can get a
Baye’s classifier if we classify a given input to class 1 when pðc ¼
1jxxÞ > 0:5 and to class ÿ1 when pðc ¼ 1jxxÞ < 0:5. This classifier
system is a type of Parzen classifier [9], [12], [10], [13]. Since the
classifier system is not our concern, we do not go further with this
issue.

In the process of the greedy selection scheme, the mutual
information Iðx1; cÞ, Iðx2; cÞ between the variables x1, x2 and the
class c is zero, while the estimate of the mutual information
ÎIðc;x1; x2Þ between the output class and both input features is far
greater than zero. Thus, we know that using both features gives more
information about the output class than using only one of the
variables in the greedy selection scheme with the Parzen window.
But, in the conventional feature selection methods such as MIFS [2]
and MIFS-U [3], we do not get this knowledge because these methods
do not use the mutual information of multiple variables. Instead, to
avoid using too many memory cells in calculating mutual informa-
tion with the histogram method, they make use of some measure on
redundancy between variables which can be obtained by calculating
the mutual information between two input features. These methods
report good performances in several problems, but they are prone to
errors in highly nonlinear problems like XOR problem and have to
resort to some other methods like Taguchi method [4].

One more advantage of the proposed method is that it provides
a measure that indicates whether to use additional features or not.
Though it is quite difficult to estimate how much the performance
will increase with one more feature by the increase of the mutual
information, we can at least get a lower bound of error probability
by the Fano’s inequality and can compare the increments of mutual
information or the error probability which will aid the decision
whether to add more features or not.
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Fig. 1. Influence fields generated by four sample points in the XOR problem.
Fig. 2. Conditional probability of class 1 pðc ¼ 1jxxÞ in XOR problem.

Fig. 3. Selection order and mutual information estimate of PWFS for sonar data set
(Left bar: Type I, Right bar: Type II. The number on top of each bar is the selected
feature index.)



4 EXPERIMENTAL RESULTS

In this section, we applied the greedy selection algorithm with
Parzen window to some of the classification problems and show
the effectiveness of the proposed method.

In all the following experiments, we set h ¼ 1
logn , where n is the

sample size of a particular data set as in [11]. Because the off diagonal
terms in the covariance matrix can be prone to large errors and need
great computational efforts, we used only diagonal terms in the
covariance matrix for simplicity if not otherwise stated.

In addition, to expedite the computation, we restricted the
influence range of a sample point to 2� � h for each dimension, i.e.,
made the influence to zero in the outer domain of 2� � h from the
sample point, where � is a standard deviation of the corresponding
feature. This can greatly reduce the computational effort, especially
when there are already enough selected features. For convenience,
we will refer to the proposed method as PWFS (Parzen window
feature selector) from now on.

4.1 Sonar Data Set [14]

This data set was constructed to discriminate between the sonar
returns bounced off a metal cylinder and those bounced off a rock,
and it was used in [2] and [4] to test the performances of their feature
selection methods. It consists of 208 patterns including 104 training
and testing patterns each. It has 60 input features and two output
classes: metal and rock. As in [2], we normalized the input features to
have the values in [0,1] and allotted one node per each output class
for the classification. We divided each input feature space into
10 partitions to calculate the entropies and mutual information. We
do not know which features are important a priori, so we selected
3 � 12 features (top 5 percent � 20 percent) among the 60 features,
and trained the neural network with the set of training patterns
using these input features. Multilayer perceptrons (MLP) with one
hidden layer were used and the hidden layer had three nodes as in
[2]. The conventional back-propagation (BP) learning algorithm was
used with the momentum of 0.0 and learning rate of 0.2. We trained
the network for 300 epochs in all cases as Battiti did [2].

For comparison, we used two types of PWFS for this data set;
first one only uses diagonal terms in the covariance matrix (Type I),
and the other uses full covariance matrix (Type II). We present the
selection order and the mutual information estimate ÎIðSS;CÞ for
PWFS in Fig. 3 In the figure, the left bars show the results of Type I
and the right bars show those of Type II. Here, C and SS are as
defined in Section 3.1. In the figure, the number on top of each bar
represents the index of selected feature. We can see the estimate of
the mutual information is saturated after 10 (9) features were
selected with Type I (Type II) thus, we used 10 (9) features and did
not use more features in PWFS. Note that the selected features of
Type I and Type II give nearly the same ÎIðSS;CÞ and are the same
when the number of selected features is small.

In Table 1, we compare the performance of PWFS with those of
the conventional MIFS and MIFS-U. In addition, we also report the
result of stepwise regression [15]. The results of MIFS, MIFS-U, and
stepwise regression are from [4]. In the table, all the resulting

classification rates are the average values of 10 experiments and the
corresponding standard deviations are shown in the parentheses.

From the Table 1, we can see that PWFS produced better
performances than the others and the performances of Type I and
Type II do not differ much.

4.2 Vehicle Data Set [16]

The purpose of the data set is to classify a given silhouette as one of
four types of vehicle, “Opel,” “Saab,” “bus,” and “van,” using a set of
features extracted from the silhouette. The vehicle may be viewed
from one of many different angles. There are 18 numeric features that
were extracted from the silhouettes. Total number of examples are
946, which includes 240 Opel, 240 Saab, 240 bus, and 226 van. Among
these, we used 200 data as a training set and the other 646 data as a
test set.

We compared PWFS with MIFS and MIFS-U. The stepwise
regression cannot be used because this is a classification problem
with more than two classes. The classification was performed
using MLP with a the standard BP algorithm. Three hidden nodes
were used with learning rate of 0.2 and zero momentum. We
trained the MLP for 300 iterations, 10 times for each experiment.
Table 2 is the classification rates of various numbers of selected
features. The numbers in the parentheses are the standard
deviations of 10 experiments. The result show that PWFS is better
than the other algorithms for vehicle data set.

4.3 Other UCI Data Sets

We tested PWFS for various data sets in the UC-Irvine repository
[14] and compared the performances with those of MIFS and
MIFS-U. Table 3 contains brief information of the data sets used in
this paper. For these data sets, we have selected several features, and
the results are shown in Tables 4, 5, 6, and 7. As classifier systems,
we used the decision tree classifier C4.5 [16] for “letter” and “breast
cancer” data sets and the nearest neighborhood classifier with
neighborhood size of three for “waveform” and “glass” data sets. In
the experiments, we used 75 percent as the training set and the other
25 percent as the test set for “letter” data, 50 percent as the training
set and the other 50 percent as the test set for “breast cancer,”
30 percent as the training set and 70 percent as the test set for
“waveform.” Since the number of instances is relatively small in
“glass” data set, we used the 10-fold cross-validation for this data
set. In most experiments, we can see that PWFS exhibits better
performances than MIFS and MIFS-U.

5 CONCLUSIONS

In this paper, we have proposed a method for calculating mutual
information between continuous input features and discrete output
class and applied this to a greedy input feature selection algorithm
for classification problems. Although the mutual information is a
very good indicator of the relevance between variables, the reasons
why it is not widely used is its computational difficulties, especially
for continuous multiple variables. The proposed method make use
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TABLE 1
Classification Rates with Different Numbers of Features for Sonar Data Set (%)

(The numbers in the parentheses are the standard deviations of 10 experiments.)



of the Parzen window in getting the conditional density in a feature
space. With this method, we can compute the mutual information
between output class and multiple input features without requiring
a large amount of memory.

The computational complexity of the proposed method is
proportional to the square of the given sample size. This might be a
limiting factor for huge data sets, but with a simple modification that
confines each influence field in a finite area, we can greatly reduce the
computational efforts. Furthermore, it is expected that a clustering or
sample selection method can be used to overcome this limitation.

We applied the method for several classification problems and
obtained better performances than those of the conventional
methods such as MIFS, MIFS-U, and the stepwise regression.
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