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An SVM classifier incorporating simultaneous noise reduction and
feature selection: illustrative case examples
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Abstract

A hybrid technique involving symbolization of data to remove noise and use of conditional entropy minima to extract relevant
and non-redundant features is proposed in conjunction with support vector machines to obtain more robust classification
algorithm. The technique tested on three data sets shows improvements in classification efficiencies.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Classification tasks continue to interest researchers and
every year several new algorithms are proposed claiming
improved accuracy. While the majority of these learning al-
gorithms perform well on domains with relevant informa-
tion, they degrade in adverse situations like: data with high
noise content, small sample sizes relative to number of fea-
tures, irrelevant or redundant information and non-linearity.
Markovitch[1] identifies irrelevant, noisy and redundant in-
formation as detrimental elements leading to the inaccura-
cies in prediction. The efficiency of the learning algorithms
decreases on domains with irrelevant and redundant features
[2–9]. Moreover, as the number of features used for classifi-
cation task grows, the number of training samples required
for statistical model fitting and/or supervised learning sys-
tems grows exponentially[10,11], a situation highly unde-
sirable in low sample size situations. Improved performance
may be achieved by discarding such noisy, irrelevant and
redundant information[12–14]. Literature suggests the use
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of feature preprocessing schemes like Feature Extraction,
Feature Construction and Feature Selection to deal with this
problem[8]. Feature extraction schemes (like Principal com-
ponent analysis, Linear discriminant analysis, Locally linear
embedding, Isomap, Multidimensional scaling, etc.) carry
out linear/non-linear transformation of data and project it to
a lower dimensional space in such a way that most of the in-
formation is retained while discarding the noisy component
of data. Feature construction attempts to simplify hypothe-
sis search by adding newer features with additional infor-
mation[15]. These two approaches try to solve the problem
of irrelevant information in the feature space by changing
the representation. Feature selection is a special case of fea-
ture extraction involving selection of a subset of features
that describe the hypothesis at least as well as the original
set [16,17]. Feature extraction makesN measurements to
obtainM-dimensional data(N?M). Feature selection, on
the other hand, discards (N -M) irrelevant features requiring
to collect only relevant attributes reducing the cost of data
collection. The benefits of feature selection thus include a
reduction in the amount of data needed to achieve learning,
improved predictive accuracy, more compact and easily un-
derstood knowledgebase and reduced execution time. The
last two factors are of particular importance in the area of
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commercial and industrial data mining making it the more
preferred. It is desirable that the overall scheme should also
be capable of handling noisy component of the features
selected.

2. Previous work

The literature regarding the feature selection methods
and applications is widespread across many fields, includ-
ing document classification, data mining, object recognition,
biometrics, remote sensing and computer vision. It is rele-
vant to any task where the number of features is larger than
the number of training samples, or too large to be compu-
tationally feasible. Existing feature selection methods for
machine learning typically fall into two broad categories:
wrappers and filters[18].

The wrapper approaches are heuristic search procedures
that evaluate the quality of the feature subset by using the
prediction accuracy of the target-learning scheme. They
include techniques such as the sequential forward and
backward feature selection[19], the greedy variants of hill
climbers [20], best-first search[3], beam search[21] and
the randomized algorithms like Simulated Annealing[22]
and Genetic algorithms[23,24]. Wrappers often give better
results (in terms of the final predictive accuracy of a learn-
ing algorithm) than filters because feature selection is opti-
mized for the particular learning algorithm used. However,
since a learning algorithm is employed to evaluate each and
every set of features considered, wrappers are prohibitively
expensive to run, and can be intractable for large databases
containing many features. Furthermore, since the feature se-
lection process is tightly coupled with a learning algorithm,
wrappers are less general than filters and must be rerun
when switching from one learning algorithm to another.

The Filter approach evaluates the features independent of
the classifiers and attempts to remove the irrelevant features
from the feature set before it is used by the learning algo-
rithm [8]. The examples of feature evaluating measures are
intrinsic properties of the data, probabilistic distance mea-
sures, probabilistic dependence measures, interclass distance
measures, information theoretic measures like entropy etc.
[23]. FOCUS [25], cross-entropy filter[26] and RELIEF
and its variants[27,28], decision tree filter[29] are some of
the well-known filter schemes. These measures capture the
relationship of the feature with the target concept. Filter ap-
proaches are computationally less expensive and more gen-
eral in nature but return a large feature subset. Also, some
of the filter algorithms previously described do not handle
noise in data (Focus), and others require that the level of
noise be roughly specified by the user a priori[30].

Another noticeable observation from these works is that
there is no algorithm that performs optimally on all do-
mains, as shown by variability in experimental results. This
is understandable as feature selection is a highly domain
specific task. Finding the optimal set of features is usually

intractable[4] and many problems related to feature selec-
tion have been shown to be NP-hard[31,32]. For most prac-
tical problems, an optimal solution can only be guaranteed if
a monotonic criterion for evaluating features can be found,
but this assumption however rarely holds in the real world.
As a result, we are forced to find heuristic solutions that
represent a trade-off between solution quality (w.r.t. gener-
alization, predictive accuracy) and time.

3. Proposed system

This work describes an efficient and robust scheme that
discards the noisy, irrelevant and redundant information
present in data, while still retaining the discriminating
power of the data. A combination of filter and wrapper ap-
proaches is suggested to get improved accuracy, efficiency
and better generalization. Here filter provides an intelligent
starting feature subset for a wrapper—a process that is
likely to result in a shorter, and hence faster search for the
wrapper. The proposed scheme applies the method of data
symbolization for solving the dual problem of filtering and
noise reduction. Data symbolization involves discretization
of the raw data features into a stream of limited set of
values called symbols, which retain dominant deterministic
features while suppressing measurement noise. Further the
conditional entropy of class label with respect to the fea-
ture attribute (converted into symbolic form) is computed
to determine whether the feature is decidedly correlated to
the class or not. Here lower the conditional entropy, higher
is the coupling. Similarly we can find the degree of cou-
pling of a feature to other features. Quantities such as the
correlation coefficient or the correlation function often do
not provide unequivocal indication of the coupling feature
variables and class information (since these can be sparse
and noisy). Symbolization scheme, on the other hand,
works even in presence of external noise[33,34]. The data
symbolization method can be applied to deterministic or
stochastic, linear or non-linear systems, without any a priori
assumptions about the nature of the underlying dynami-
cal process and has a practical advantage of simplifying
and speeding up subsequent computations as data space is
changed from continuum to discrete form.

Outline of the proposed scheme is as follows:

1. Convert the data into symbolic form.
2. Compute the conditional entropy of the class information

with respect to all features one-by-one. Here conditional
entropy is used as relevance filter. We therefore threshold
the relevance values to divide the feature set into rele-
vant and irrelevant features. This can be done either by
thresholding the conditional entropy value directly or by
selecting the lowest n values and discarding the remain-
ing features. This comprises subset 1.

3. Compute the conditional entropy of the feature (with
highest coupling with class information) with respect to
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all remaining features (in subset 1) one-by-one. Features
showing high correlation (low values of conditional en-
tropy) are discarded. Here too we either use a direct
threshold or select the highestn values and discard the
remaining features. We get subset 2.

4. Arrange subset 2 features in ascending order of their con-
ditional entropy with class information. Take feature with
second lowest conditional entropy and compute its con-
ditional entropy with respect to features with conditional
entropy higher than it. Features are chosen in similar way
as in step 3.

5. Repeat step 4 until the last feature.
6. Features obtained from step 5 are used as an input to the

wrapper scheme using support vector machines (SVMs)
as the learning algorithm. Support vector machines based
on rigorous statistical learning theory has many desirable
properties such as nonlinear learning, improved general-
ization performance etc.[35,36]. Here SVM is assisted
by genetic algorithm and quasi Newton algorithm for op-
timal tuning of parameters[37]. In wrapper step we have
carried an exhaustive enumeration of all possible feature
subsets in filtered space.

In the following sections, we discuss in brief the process of
data symbolization, calculation of the conditional entropy
and SVM methodology for classification problem. There-
after the performance estimation and parameter tuning of
SVM is discussed. Finally the data sets used, results ob-
tained and conclusions are discussed, respectively.

4. Symbolization

Symbolization implies coarse graining. Typically the
range of each original feature (or the range of some trans-
form of the original data such as the first differences be-
tween successive values) is partitioned into a finite number
of discrete cells and assigning different symbols to each cell
[38,39]. Each original value of an attribute is thus uniquely
mapped to a particular symbol depending on the domain in
which the measurement falls. Thus

Si =




1 Xmin<Xi <XC1
2 Xc1<Xi <XC2
3 XC2 <Xi <XC3 <Xmax
...

. . . n symbols

HereXC1,XC2,XC3 are critical points, defining the bound-
aries of cells. 1,2,3, . . . , n are the symbols. The number of
symbols used,n, is referred as thesymbol-set.In the sim-
plest (binary) casen=2. The number of symbols determines
how much of the original information is retained. A higher
value ofn takes into account more details of original data,
along with the effects of any measurement noise that might
be present. For example, whenn equals the number of dis-
tinct values in the data, the symbolized data and the original

1 2 3 4 5 6 7 8 9 10 11

0.72

0.7

0.68

0.66

0.64

0.62

0.6

S
ha

nn
on

 E
nt

ro
py

Number of Symbols

Fig. 1. Shannon entropy vs. number of symbols for equal interval
binning.

data are equivalent in the sense that they contain the same
information (that is, there is no loss of information due to
symbolization). Also for any symbol set size, the placement
of critical points affects the characteristics of the symbolic
description of the data. Partitioning of data should be car-
ried out carefully, as poor choice of partition locations may
lead to loss of meaningful information[40,41]. Thus, even
though symbolization minimizes the effects of noise in data,
it also causes the loss of meaningful information during the
process. It is necessary that the loss of information during
the process be at its minimum. We implement this trade-off
(between the reduction of noise and loss of meaningful in-
formation) by partitioning the data in conjunction with the
information entropic analysis[42–45]as described in below.

For analysis, the symbol series is transformed into sym-
bolic sequences by defining a finite length(L) template that
can be moved along symbol series one-step at a time, each
step revealing new sequence (seeFig. 1).

For convenience of reference and identification every
short sequence is uniquely denoted by just one integer

�=
L∑
i=1

ML−iSi , (1)

whereM is number of different symbols andL is length of
symbolic sequence. This symbol sequence series (or coded
series) can be characterized using information theoretical
measures such as Shannon entropy defined as[34]

E =− 1

L

∑
�

P� ln P�, (2)

whereP� is the probability of finding a particular sequence
�. It is defined as number of times this sequence can be
found in the symbolic series divided by the number of
all short sequences. The Shannon entropy is a gauge to
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quantify the information content in the symbolic series. The
optimal number of symbols that should be used for maxi-
mizing the information content and minimizing the effect of
noise can be obtained by maximizing entropy E, with respect
to (a) the number of critical points and (b) the placements
of these critical points. The entire process of symbolization
is illustrated below for a data with one single feature:

0.4966 0.8998 0.8216 0.6449

0.8180 0.6602 0.3420 0.2897

0.3412 0.5341 0.7271 0.3093

0.8385 0.5681 0.3704 0.7027

0.5466 0.4449 0.6946 0.6213

The procedure is illustrated for the number of cells equal to
n=3 (equal size), and for symbol sequence length ofL=4.
The above data can be converted into the symbolized data
for three discrete cells as

2 3 3 2 3 2 1 1 1 2 3 1 3 2 1

3 2 1 2 2

Now for L= 4, the sequences are:

2 3 3 2; 3 3 2 3; . . . ; 2 1 2 2

The equivalent code for first sequence as obtained from
Eq. (1):

(3∧3)∗2+ (3∧2)∗3+ (3∧1)∗3+ (3∧0)∗2= 92

By repeating this coding step for all remaining sequences,
we get the following coded series:

92 117 110 88 103 67 41 45 55

87 101 61 105 74 61 104 71

This whole process is repeated forn = (2,3,4, . . . ,10).
The resultant entropies calculated using Eq. (2) show that
a maximum entropy (0.7083) was obtained for number of
symbolsn = 4 (Fig. 1). Thus symbolized data forn = 4
would be optimal. In case of multi-feature data, we need to
follow the same procedure for each feature independent of
other features. Test data (or online data) is symbolized with
same cell boundaries as used for training. If test data exceed
the range covered by training data (on either side), then it
is assigned the lowest and highest symbol in accordance of
the boundary crossed.

4.1. Conditional entropy

For two signals{X} and{Z} the conditional information
entropy is defined as[34]

E(Z/X)=− 1

Nx

∑
Sx

∑
Sz

P (Sz/Sx) ln P(Sz/Sx), (3)

whereNx is the total number of differentSx values that are
observed andP(Sz/Sx) is the probability for the variableZ

to take symbolic value ofSz when the variableX occupies
the symbolic value ofSx .

One can interpret the conditional entropy as the amount
of uncertainty remaining aboutZ after X has been ob-
served. Lower the conditional entropy higher the correlation
between two variables.

5. SVM classification

SVMs based on the tenets of statistical learning theory
is now being routinely used for several binary and multi
class classification tasks in different fields. Computational
biologists have also employed SVM for carrying important
tasks such as structural classifications of proteins[46–50].
The methodology, algorithms and software are now readily
available[51–53]. We therefore provide a very brief treat-
ment of the binary SVM classification algorithm in this sec-
tion. Methodologies for extending the analysis to multi-class
problems are available in literature[54,55]. Starting with a
set of input–output training pairs

(x1, y1), (x2, y2), . . . , (xN, yN) x ∈ Rd , y ∈ R.

The SVM decision function in terms of an appropriately
defined kernel function can be obtained as

f (x)=
N∑
i=1

yi�iK�(xi , x)+ b, (4)

whereN is the sample size andK�(xi , x) is the kernel
function mapping the input vectors into a feature space and
� a set of parameters andb is bias. The coefficients�i are
obtained by solving the following quadratic optimization
problem:

w(�)=
N∑
i=1

�i − (1/2)
N∑
i=1

N∑
j=1

�i�j yiyjK�(xi , xj ) (5)

subject to the constraints

0� �i i = 1, . . . , N (6)

N∑
i=1

�iyi = 0 (7)

If in the above hard margin SVM optimization problem (no
explicit provision for penalizing training errors) the equality
is satisfied for the pointsxi with the corresponding�i >0,
these nonzero points are called as support vectors. If the
separating hyperplane is allowed to pass through the origin
by takingb=0, then the equality constraint in Eq. (6) disap-
pears and the problem formulation is called as hard margin
SVM without threshold.

In case of non-separable training patterns, the training
errors are allowed and the problem formulation in that case
is called as soft margin SVM. The inequality constraint in
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Eq. (5) is slightly modified as 0� �i�C whereC is viewed
as a constant penalizing the training errors (i.e. regulariza-
tion parameter). Soft margin SVM can also be considered as
a special case of hard margin SVM[56] with the modified
kernel function as

K ← K + I
C
.

The kernel function appearing in the problem can be selected
by using the Mercer’s theorem. In our work, we have used
Gaussian radial basis function (RBF) kernel of the following
form:

K(xi , xj )= exp


−

∑
i

(xi − xj )2
2�2
i


 , (8)

where� is the kernel width parameter.
If we take� to be constant and allow some training error,

then kernel parameterC is to be optimized/tuned along with
� to minimize the generalization error. A number of attrac-
tive error bounds have been proposed in the literature[56,57]
including the more popular radius/margin bound[58].

Vapnik et al.[56] use gradient descent algorithm, while
Keerthi et al. [58] use the quasi-Newton updates for
automatic tuning. Both these methods can converge to
sub-optimal local solutions[59], requiring the use of better
methods such as the use of a hybrid framework based on the
combination of quasi-Newton (with BFGS update)[60,61]
and genetic algorithms. A detailed stepwise procedure for
tuning the SVM parameters (to minimize radius/margin
bound) is discussed in[37].

6. Experiments

In order to evaluate the proposed method we conducted
three experiments over three different data sets. Two data
sets “Ionosphere Data”, “Wine Recognition Data” are
selected from the UCI repository of machine learning
databases http://www.ics.uci.edu/˜mlearn/MLrepository.
The Third data set is the Colon-cancer data from
(http://microarray.princeton.edu/oncology).

The ionosphere data set has 34 attributes for a total 351
instances for a binary classification task corresponding to
“Good” radar returns and “Bad” returns. The data set is split
randomly into two sets: 150 patterns for training and 201
for testing.

The wine data set represents 13 chemical constituents of
178 Italian wines derived from three different cultivars. We
have solved here all two-class problems, thus discarding the
48 instances corresponding to third class in wine data. The
remaining 130 data points are divided into 80 train and 50
testing instances.

The Colon-cancer data set consists of 62 samples of colon
epithelial cells from colon-cancer patients. The samples con-
sist of tumor biopsies collected from tumors, and normal

biopsies collected from healthy part of the colons of the
same patient. The number of genes in the data set is 2000.
The data set is split into two sets: 30 patterns for training
and 32 for testing.

7. Results and discussions

The proposed methodology as applied to classification
of data sets is illustrated inFig. 2. The original data can
be directly subjected to classification using the SVM al-
gorithm. This classifier is designated as F1 in the flow
diagram. The original data may contain some noise and
outliers, which can be removed through the process of sym-
bolization. The data so obtained can then be classified and
designated as F2. The symbolized data can be further pro-
cessed to identify the irrelevant and redundant features by
computing conditional entropies.Figs. 3–5show the plots of
conditional entropy of class information with respect to all
features one-by-one, for the three data sets. As mentioned
previously, here conditional entropy is used as relevance
filter. We therefore threshold the relevance values to divide
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Fig. 2. Flow diagram illustrating methodology.
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Fig. 3. Conditional entropy of class information with respect to all
features one-by-one for ionosphere data.
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features one-by-one for colon cancer data.
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Fig. 5. Conditional entropy of class information with respect to all
features one-by-one for wine data.

the feature set into relevant and irrelevant features. This is
done by thresholding the conditional entropy value directly.
Lower values of conditional entropies signify importance of
that feature and those above a certain threshold can be con-
sidered as irrelevant. InFigs. 3–5 horizontal solid lines rep-
resent the user defined threshold value. InFig. 3, conditional
entropy equal to 0.27 represents user-defined threshold and
features{2,3,4,5,6,7} with conditional entropy lower than
this threshold constitutes the relevant set. Thus relevance
filter alone has reduced the number of features from 34 to
6. In Fig. 5, conditional entropy equal to 0.295 represents
user-defined threshold and features{1,2,6,7,10,13} rep-
resents the relevant set. In this case too decrease in relevant
features is significant from 13 to 6. Similar trend is seen
for colon cancer data (Fig. 4), where conditional entropy
equal to 0.23 represents user-defined threshold. In the same
way redundancy is removed by computing feature–feature
conditional entropies. Sometimes even after removal of ir-
relevant and redundant information we are left with a large

Table 1
SVM Classifier results for non-noisy case

Classifier Ionosphere Wine Colon cancer
type data data data

Test error (%) Test error (%) Test error (%)

F1 12.44 5 18.75
F2 12.44 0 18.75
F3 5.97 2.5 15.63
F4 4.98 0 9.38

Table 2
SVM Classifier results for noisy case(SNR= 3)

Classifier Ionosphere Wine Colon cancer
type data data data

Test error (%) Test error (%) Test error (%)

F1 16.42 12.5 15.63
F2 16.42 2.5 12.50
F3 16.42 12.5 15.63
F4 14.93 2.5 15.63

number of features. These can be further pruned using wrap-
per with SVM as induction algorithm to obtain those select
few that are more important. Once the relevant attributes are
identified we can use the numerical values associated with
them for purpose of classification. This classifier is desig-
nated as F3 whereas use of symbols for these attributes gives
classifier F4.

In case of wine data we identify attributes 1, 10 and 13
while for ionosphere data the attributes 2,4 and 5 are found to
be important. Similarly the colon cancer data give attributes
(560, 1745, 765) as optimal sets. To carry out symbolization
we used the equal-size intervals over a feature range and
thus do not search for the optimum locations of critical
points. Shannon entropy is thus maximized with respect to
the number of symbols only. The results indicate that even
this simplified approach gave excellent results.

To study the effect of noise on classification efficiency,
random noise was generated and added to each attribute in
the data set before the application of learning algorithms.
The classification results for various data sets for noisy and
non-noisy cases are presented inTables 1and2. From these
results it is clear that the feature selection procedure gives
significant improvement to the classifier’s performance,
both in noisy and non-noisy cases. Also the classification
obtained is generally better for symbolized data than for
original data. The reason for these improvements is that
irrelevant, redundant and noisy information of the data is
removed by the combined effect of feature selection and
symbolization which minimizes the impact of small ampli-
tude details in the measurements that are not related to the
dynamics that dominate the large-scale events.
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Table 3
SVM Classifier CPU-TIME for non-noisy case: (seconds)

Classifier type Ionosphere data Wine data Colon cancer data

F1 2.8290 0.6560 3.0000
F2 2.7810 0.5630 2.9530
F3 2.1250 0.4370 0.2340
F4 2.0320 0.4360 0.2190

Table 4
SVM Classifier CPU-TIME for noisy case: (seconds)

Classifier type Ionosphere data Wine data Colon cancer data

F1 2.8600 0.5160 3.1250
F2 2.7970 0.4380 2.9220
F3 2.0470 0.5000 0.2350
F4 1.7350 0.4220 0.2340

Table 5
KNN Classifier results for non-noisy case

Classifier Ionosphere Wine Colon cancer
type data data data

Test error (%) Test error (%) Test error (%)

F1 11.99 0 9
F3 8.06 1 8

Additionally a significant advantage of having to deal
with only few distinct values is gained. This has a practical
advantage of simplifying and speeding up subsequent com-
putations (e.g. wrapper step). The time taken for one time
training and testing of SVM classifiers for all three data sets
in both non-noisy and noisy cases is presented inTables 3
and4. It is clear from the results that the feature selection
and symbolization has lessened the computation time con-
siderably. The computational time reported is the CPU time
required to carry out one iteration of training and testing
of SVM classifier. All the simulations were carried out on
Pentium IV, 512 MB RAM machine.

To test the generalization of the method we classify data
sets usingk nearest neighbors (KNN) algorithm with se-
lected features. Note that the data used with KNN is without
any symbolization, as symbolization is irrelevant in case of
the distance based KNN method. The results for KNN are
presented inTables 5and6. As can be seen, performance of
the KNN classifier is comparable for both cases: data with
total number of features and data with reduced number of
features.

The main contribution of this work is the simultaneous
execution of feature selection and noise reduction with bet-
ter generalization of feature selection concept. In the present
work we have considered attributes individually while

Table 6
KNN Classifier results for noisy case

Classifier Ionosphere Wine Colon cancer
type data data data

Test error (%) Test error (%) Test error (%)

F1 15.42 3 9
F3 16.92 3 10

calculating the feature-class and feature–feature couplings
and higher order correlations are ignored. These can be in-
cluded but need large data samples, computation time and
cost.

8. Conclusions

In this work, we have presented a novel algorithm to
simultaneously discard noisy, irrelevant and redundant in-
formation. The benefits of such a preprocessing include a
reduction in amount of data needed to achieve learning, im-
proved accuracy and efficiency. Also the hybrid scheme is
more general than filter and wrapper alone as demonstrated
by KNN results.
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