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summation units, where each input is mul- 
tiplied by a weight and then summed. Typ- 

a nonlinear equation such as a logistic 
function Given enough summation units, 
such networks can approximate any func- 
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tion to any arbitrary degree of accuracy.’ 
However, many functions are complicated 
enough that the number of summation units 
needed to duplicate them is prohibitive. 
One such common task is the formation of 
higher order combinations of inputs, such 
as X’ or X * Y ,  which facilitates the con- 
struction of polynomial expressions.’-‘ 

One proposed solution is the sigma-pi 
in which a weight is applied not only 

to each input but also to the second and 
possibly higher order products of the in- 
puts. While this is much more powerful 
than the traditional summation unit, the 
number of weights increases rapidly with 
the number of inputs, and soon becomes 
unmanageable when applied to  large prob- 
lems. Also, since many problems require 
only one or at most a few of these terms, the 
sigma-pi unit can be “overkill.” 

An alternative to the sigma-pi unit--called 
the product unit-computes the product of 
its inputs, each raised to a variable power:6 
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Thep(i) term is treated the same as weights 
for summation units. 

Product units are much more general 
than sigma-pi units. While a sigma-pi unit 
is constrained to using just polynomial 
terms, product units can use fractional and 
even negative terms; they can also form 
simple product expressions by constrain- 
ing weights to integer values. 

Product units can be used in a network in 
many ways, but the overhead required to 
raise an arbitrary base to an arbitrary power 
makes it more likely that they will supple- 
ment rather than replace summation units.6 
In this article, we use the term product 
neural networks (or product networks) to 
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refer to networks containing both product 
and summation units (see Figure 1). 

While product units increase a neural 
network’s capability, they also add compli- 
cations. Traditional neural networks are typ- 
ically trained using backpropagation, a form 
of gradient descent optimization. Starting 
from a random point in the solution space, 
training data is applied to the network, and 
the sum of the squared error is calculated. 
The weights are then adjusted such that the 
network’s operating point moves in the 
direction of the most negative slope. 

Backpropagation works best when the 
solution space is relatively smooth, with 
few local minima or plateaus. Unfortu- 
nately, the solution space for product net- 
works can be extremely convoluted. with 
numerous local minima that trap backprop- 
agation. This is because small changes 
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in thep(i) exponent can cause large chang- 
es  in the total error. (As an example, Figure 
5 shows the error surface between two 
points in the solution space corresponding 
to the network in Figure 2; both figures will 
be discussed in more detail later.) The 
complexity of the solution space motivated 
us to investigate genetic algorithms, an 
alternative class of optimization methods. 
Because genetic algorithms do not rely on 
the slope for optimization, we expected 
that they would be more successful than 
traditional backpropagation at training the 
network. 

Genetic algorithms 

A genetic algorithm is an exploratory 
procedure that can often locate near-opti- 
mal solutions to complex problems. To do 
this, the GA maintains a set of trial solu- 
tions (called chromosomes) and forces them 
to evolve toward an acceptable solution. A 
representation for possible solutions must 
first be developed. Then, with an initial 
random population, the algorithm uses “sur- 
vival of the fittest” as well as old knowl- 
edge in the gene pool to improve each 
generation’s ability to solve the problem. 
This improvement is achieved through a 
four-step process of evaluation, reproduc- 
tion, breeding, and mutation. 

Representation. Before applying a GA 
to a task, a representation for possible solu- 
tions must be found. The most common way 
to represent possible solutions is with a 
bitstring. Higher order strings (such as char- 
acter strings) or trees (such as binary trees) 
have also been Since the designer 
knows the architecture of the product net- 
works to be trained, a binary string repre- 
sentation containing a fixed number of bits 
for each weight can be constructed. This 
representation permits each chromosome to 
be decoded easily, while still allowing each 
weight a large degree of freedom. The typ- 
ical population in our experiments contained 
30 to 100 members, with 32 bits represent- 
ing a weight. In the network in Figure 2, 
there are 37 adjustable weights, resulting in 
a chromosome length of 1,184 bits. 

Evaluation. The first step in each gener- 
ation is to evaluate the current chromo- 
somes. This is the only step where we use 
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Figure 1. Two possible product network configurations.6 

Figure 2. The product neural network trained to select the width of a CMOS switch. 

all other steps, the chromosome is just 
treated as a bitstring. Each chromosome in 
the population is decoded, and the result- 
ing network is tested with the training data. 
T o  evaluate product networks, we calcu- 
late the sum of the squared error (SSE) for 
the training set, with the fitness of the 
chromosome equal to l/(l+SSE). This 
means that the better a network performs, 
the higher its fitness, with a perfect net- 
work having a fitness of 1 .  

Reproduction. The next step in each 
generation is to create a new population 
based on an evaluation of the current one. 
Every chromosome generates a number of 
copies of itself based on its performance, 
with the best chromosomes producing sev- 
eral copies of themselves, and the worst 
not producing any. This is the step that 
allows GAS to take advantage of a survival- 
of-the-fittest strategy. 

There are several ways to calculate the 
the interpretation of the chromosome; in number of offspring generated by each 

chromosome. The most common technique 
is ratioing: Each chromosome produces a 
number of offspring proportional to its 
fitness, with the restriction that the total 
number of chromosomes per generation 
remains constant. Thus, if one chromo- 
some’s fitness is twice that of another, the 
superior chromosome would produce twice 
as many offspring. However, there are two 
major problems with this method. First, if 
all the chromosomes have a similar fitness, 
each member in the population will pro- 
duce one offspring. This results in little 
pressure to improve the fitness of the pop- 
ulation. Second, if one chromosome has a 
fitness much larger than any other, that 
chromosome will create most, if not all, of 
the new offspring. The chromosome will 
dominate the population, resulting in a loss 
of genetic diversity. This problem has been 
labeled premature convergence. 

The method we used to train the product 
networks is ranking,9 in which the whole 
population is sorted by fitness. The number 
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Table 1. Sample from the data points used to train the network. 

VOLTAGE TEMPERATURE CONDUCTANCE DESIRED WIDTH 

(V I  ( O K )  ( P M H O )  ( P M )  

3 303 1.026 2 
3 303 3.806 3 
3 303 6.593 4 
3 303 12.04 6 
3 303 17.52 8 
3 303 28.51 12 
3 303 39.51 16 
3 303 61.52 24 

Table 2. Representative output from the resulting 
product network, bred without a penalty function. 

EXPECTED OUTPUT CALCULATED OUTPUT 

2 9.1 79998 
3 9.1 83343 
4 9.1 86628 
6 9.193188 
8 9.1 99744 

12 9.212848 
16 9.225952 
24 9.252160 

0.003 

0.0028 

0.0026 
0 50 100 150 200 250 300 350 400 450 500 
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Figure 3. Ten runs with a population of 100, a mutation rate of 0.1 percent, and no penalty function. 

of offspring each chromosome generates is 
determined by how it ranks in the popula- 
tion. With the ranking algorithm we used, 
the top 20 percent of the population gener- 
ates two offspring each, the bottom 20 
percent generates no offspring, and the rest 
generate one offspring each. No one chro- 
mosome can overpower the population in a 
single generation, and no matter how close 
the actual fitness values are, there is al- 
ways pressure to improve. The primary 
disadvantage of ranking is speed, because 
better chromosomes cannot easily guide 
the population, forcing good answers to 
develop more slowly. 

Breeding. The previous step creates a 
population whose members are currently 
the best at solving the problem; however, 
many of the chromosomes are identical, 

and none differ from those in the previous 
generation. Breeding combines chromo- 
somes from the population and produces 
new chromosomes that, while they did not 
exist in the previous generation, maintain 
the same gene pool. In natural evolution, 
breeding and reproduction are the same 
step, but in GAS they have been separated 
to allow different methods for each to be 
experimented with and independently eval- 
uated. It is during breeding that GAS can 
exploit knowledge of the gene pool by 
allowing good chromosomes to combine 
with chromosomes that aren’t as good. 
This is based on the assumption that each 
individual, no matter how good it is, doesn’t 
contain the answer to the problem. The 
correct answer is contained in the popula- 
tion as a whole, and can only be found by 
combining chromosomes. 

There are several methods for breeding, 
the most common being crossover. Cross- 
over typically swaps parts of two chromo- 
somes to create two new ones. Many vari- 
ations on crossover have been used, but 
there is no consensus as to which is best. 
We  used a simple two-point crossover, in 
which two random points are chosen in the 
chromosome, and the bitstring between the 
two points is swapped between the two 
chromosomes. 

Mutation. The last step in creating a 
new generation is based on the assumption 
that while each generation is better than the 
previous, the individuals that produce no 
offspring might have some information 
that is essential to the solution. It is also 
possible that the initial population didn’t 
have all the necessary information. Thus 
the process of mutation reinjects informa- 
tion into the population. There are many 
ways to implement mutation, but essential- 
ly all choose and change members of the 
population randomly. 

The method we used was to randomly 
distribute a constant number of mutations 
every generation (approximately 0.1 percent 
of the total number of bits in the entire popu- 
lation). This means that any specific chro- 
mosome might or might not mutate, with a 
small chance that it could mutate severely. 

An application 

The last decade has seen a tremendous 
increase in the availability of computer- 
aided design tools. For example, synthesis 
tools for digital logic can transform sche- 
matic or language circuit descriptions into 
VLSI circuit layouts. The number of ana- 
log computer-aided design tools has also 
increased; however, while many excellent 
analysis tools (such as Spice) are available, 
very few software packages can transform 
performance specifications into a complete 
circuit schematic. 
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CMOS circuit designers might be able to 
use the product network proposed by 
Thelen.'O Given temperature, supply volt- 
age, and minimum conductance as inputs, 
the network could calculate the optimal 
transistor widths for a CMOS switch. Such 
a tool would eliminate the typical iterative 
process of estimating proper component 
values, simulating, and redesigning. This 
network configuration (see Figure 2) uses 
existing information about the equations 
for modeling a CMOS switch (other appli- 
cations should consider the more generic 
configurations suggested by Durbin and 
Rumelhart6). Four of the 41 weights are 
fixed, allowing the network to approxi- 
mate an equation used to calculate the 
switch conductance. For example, the -1 
weight forces the output of the lower half 
of the network to be treated as the denom- 
inator, whereas the node with a constant - 
1 input provides an offset. However, Thelen 
was unable to train the network using tra- 
ditional backpropagation, so we selected it 
as a vehicle for evaluating GAS for training 
product networks. 

We  extracted our training data from sev- 
eral Spice simulations with differing tran- 
sistor dimensions, temperatures, and pow- 
er supply voltages. In the training set created 
from this data, the voltages ranged from 3 
to 12 volts, the temperature from 303 to 
403" K, and the transistor width from 2 to 
20 micrometers. Using these inputs, the 
conductance could range from approxi- 
mately 1 to 500 ymhos. Table 1 shows a 
sample from the 200 data points collected. 

Results. The first attempts at training 
the product network produced consistently 
incorrect results. Through many runs of 
the CA, every solution represented a net- 
work that gave outputs of approximately 
I O  y m  for the transistor width, with no 
regard for the input. Figure 3 shows, for 
several runs, the fitness of the best chromo- 
some as the population evolved over 500 
generations. Each run used a population of 
100 chromosomes and a mutation rate of 
0.1 percent. Table 2 shows the output from 
a product network found by one of these I O  
runs. 

These initial results surprised us. The 
CA's inability to find an appropriate solu- 
tion meant that either the network could 
not solve the problem, or that the real 
solution to the problem was extremely dif- 
ficult to find. Previous work by Thelen 

Generations 

Figure 4. Ten runs with a population of 100, a mutation rate of 0.1 percent, and a penalty 
function. 

showed that a solution to this problem did 
indeed exist.I0 This meant that the real 
solution must be difficult for the CA to 

Table 3. Representative output from the 
resulting product network, bred with a 

penalty function. 
find. 

The first success came when we seeded 
the population with an approximation to 
the solution, which we derived withacurve- 
fitting program using the training data. 
When seeded, the CA quickly improved 
the approximation and found a network 
that gave the desired output. While seeding 
verified that there was a correct answer and 
that the CA could find it, we wanted the 
CA to be able to find the answer using an 
initial random population. 

There are three ways to make a problem 
difficult for a CA to solve: 

the solution space misleads the CA, 
the solution space is extremely convo- 
luted, or 
the best solution occupies a very small 
portion of the solution space. 

Since it is hard to prove whether a CA is 
being misled, we considered the other two 
possibilities. Comparing the solutions found 
in different runs of the C A  showed that 
they converged to the same answer each 
time. If the solution space were extremely 
convoluted, we would have found many 
different solutions; thus, we rejected this 
possibility. 

The third possible problem for GAS 

EXPECTED OUTPUT CALCULATEO OUTPUT 

2 1.959561 
2.804309 3 

4 4.1 01839 
6 5.501904 
8 7.928023 

12 12.3001 84 
16 14,906841 
24 23.877340 

occurs when local minima occupy so much 
of the search space that the best solution is 
almost impossible to find. We  can correct 
for this by adding apenalty function, which 
decreases a chromosome's fitness by add- 
ing constraints to the solution. The penalty 
we used to train the product network added 
a value to a chromosome's error based on 
how close the output of two consecutive 
data points were. The closer the two out- 
puts for the two points, the larger the pen- 
alty. Figure 4 shows how the CA trained 
with the addition of this penalty, keeping 
all the other CA parameters the same as 
before. Table 3 shows the output from the 
product network found by the best run. 
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The fact that the GA could find a correct 1 difficult. However, we can view slices of 
the error surface by holding most of the 

surface along the line between the local 
minimum and the global minimum. The solution using a penalty function leads us 

indeed dominate the solution space. Unfor- 
tunately, because there are 37 free weights, 
the solution space is 37-dimensional, mak- 
ing visualization of the error surface very 

weights. Alternatively, we can travel on a 
straight line through the solution space by 
incrementing the weights by fixed amounts. 
For example, Figure 5 shows the error 

G5 1,000 r- 
I 

10 
loo i 

11 
Local minimum Global minimum 

I 
Figure 5. Error surface for the straight line between the two minima, with no penalty. 

i l  
1 t 

Local minimum Global minimum 

I 
Figure 6. Error surface for the straight line between the two minima, with penalty added. 
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position labeled “local minimum” is the 
solution found by the GA without penalty, 
and the position labeled “global minimum” 
is the solution found by the GA with the aid 
of the penalty function. Several important 
regions on the error surface help explain 
the GA’s behavior. Near the center of the 
figure is a large flat region, bounded by 
high peaks. The error of this region is large 
enough that the GA tends to discount it 
early in the evolution and avoids becoming 
trapped. The areas to the left and right of 
this region are much more interesting in 
determining why the GA cannot find the 
correct solution. 

On the left is an area ofattraction for the 
local minimum, and on the right is one for 
the global minimum. The error for the area 
of attraction around the global minimum is 
about 2.5 times greater than that for the 
local minimum. In fact, there is only a very 
small region about the global minimum 
where the error is lower than that around 
the local minimum. This explains why it 
was difficult for the GA to locate the global 
minimum unless the population was seed- 
ed with a solution close to that region. 
However, this is a one-dimensional view 
of a 37-dimensional space; additional fea- 
tures might exist off of the line between the 
two minima. 

Figure 5 gives us valuable insight into 
the error surface for our network, but how 
does adding the penalty function change 
this surface? Figure 6 shows the error sur- 
face between the same two points with the 
penalty function added. As we expected, 
the error surface around our global mini- 
mum has changed very little; the penalty 
was specifically designed not to affect the 
desired solution. However, the surface 
around the local minimum is completely 
changed. The GA can ignore this local 
minimum and continue searching for the 
best solution. 

This illustrates one possible problem 
with GAS: They are often used when the 
solution space is not well known, and sub- 
optimal answers can dominate the solution 
space. In this example, the penalty func- 
tion distorts the solution space by placing 
a pole in the middle of the unwanted solu- 
tion, thus allowing the GA to continue 
searching without the distraction of this 
particular local minimum. However, a pen- 
alty function is added only after the GA has 
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Generations 

Figure 8. Thirty runs with a population of 30 and a 0.1-percent mutation rate. 

tried to find the optimal answer, so i t  is 
designed to discourage unwanted answers. 
Consequently, penalty functions are prob- 
lem specific, and their usefulness depends 
on the features of the particular solution 
space. 

Parameter sensitivity. Next we explored 
the sensitivity of the GA’s performance to 
several of its parameters. Figure 7 shows 
30 runs of the GA with a population of 100 
and a mutation rate of 0.1 percent. Figure 8 
shows the same parameters except with a 
population of 30. Both settings were run 
for 500 generations. However, because the 
population of 100 has 10/3 more individu- 
als than the population of 30, it does 10/3 
more computations to run the same number 
of generations. To make a fair comparison 
based on computational complexity, the 
performance of the larger population should 
be compared to the smaller one after 150 
generations. 

From these figures, we see that each run 
has two stages of evolution: a period of 
rapidly increasing fitness, followed by a 
period of lesser improvement. These peri- 
ods correspond directly to the population’s 
diversity. At first there are significant dif- 
ferences between individuals within the 
population; then, as the GA converges to 
an answer, this diversity is lost and the 
population becomes homogeneous. Also, 
the larger population maintains its diversi- 
ty longer and finds better solutions. The 
smaller population seems to become ho- 
mogeneous quickly, and from thatpoint on 
improvement is slow, driven primarily by 
mutation. However, the smaller popula- 
tion arrives at better answers much faster 
than the larger population. This indicates 
that large populations are less influenced 
by good potential solutions early on, anal- 
ogous to having a greater degree of inertia. 
Consequently, there is a tradeoff between 
the convergence rate and the fitness of the 
final answer. 

Because smaller populations must rely 
on mutation to compensate for a smaller 
gene pool, it is natural to ask, What hap- 
pens i f  we increase the mutation rate? 
Figure 9 shows 30 runs of the GA with a 
population of 100 and the mutation rate 
increased to 1 percent. Figure 10 also 
shows 30 runs of the G A  and a 1-percent 
mutation rate, but with a population of 30. 
By comparing these plots with the previ- 
ous two, we see that a higher mutation 
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rate is disruptive to larger populations, but 1 tioned earlier, backpropagation is the tradi- 
beneficial to smaller populations that lack tional method for training neural networks, 
genetic diversity. 1 relying on gradient descent to minimize the 

network error. Figure 11 is a histogram of 

1 
Comparison to backpropagation. For the results of 50 runs using backpropaga- 

comparison purposes, we also used back- tion with random initial starting points. 
propagation to train the network. As men- I The sum of the squared error for even the 

0 50 100 150 200 250 300 350 400 450 500 
Generations I Figure 7. Thirty runs with a population of 100 and a 0.1-percent mutation rate. 
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Figure 9. Thirty runs with a population of 100 and a 1-percent mutation rate. 
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Figure 10. Thirty runs with a population of 30 and a 1-percent mutation rate. 

best solutions was 5 to 20 times worse than 
the global answer found using the CA. 
This indicates that there are several, if not 
many, local minima that cause backpropa- 
gation to get trapped. Further analysis of 
the solutions revealed at least a dozen dif- 
ferent local minima. These results were 
anticipated based on the features observed 
in Figure 5 .  While it is possible for local 
minima to occur with conventional neural 
networks, they are particularly prevalent 
in networks containing product nodes, due 
to the effect of exponentiation. This char- 
acteristic supports the decision to use GAS 
for training these networks. 

on backpropagation or GAS, a better meth- 
od might be to combine the two. If we used 
GAS to find the area of the best solution, we 
would avoid many (if not all) problems 
withlocal minima. Wecould then use back- 
propagation to improve the best solutions, 
avoiding the problems associated with a 
lack of genetic diversity. This would com- 
bine the best of both worlds, and avoid the 
pitfalls of both. We expect that this tech- 
nique can be applied to more complicated 
systems. 
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