
Mining Produuct Unit

Genetic Algor;fhms
David J. Janson and James F. Frenzel, University of Idaho

works contain multiple layers of simple

ically, this summation I S then squashed by

PRODUCT WZT NEURAL NETWORKS ARE USEFUL BECAUSE

INPUTS. TRAINED USZNG TRADZTZONAL BACKPROPAGATZON,

summation units, where each input is mul-
tiplied by a weight and then summed. Typ-

a nonlinear equation such as a logistic
function Given enough summation units,
such networks can approximate any func-

THEY CAN HANDLE HZGHER ORDER COMBINATZONS OF

HOWEVER, THEY ARE OFTEN SUSCEPTIBLE TO LOCAL
MZNZM4. USZNG GENETZC ALGORlTHMS CAN HELP.

tion to any arbitrary degree of accuracy.’
However, many functions are complicated
enough that the number of summation units
needed to duplicate them is prohibitive.
One such common task is the formation of
higher order combinations of inputs, such
as X’ or X * Y , which facilitates the con-
struction of polynomial expressions.’-‘

One proposed solution is the sigma-pi
in which a weight is applied not only

to each input but also to the second and
possibly higher order products of the in-
puts. While this is much more powerful
than the traditional summation unit, the
number of weights increases rapidly with
the number of inputs, and soon becomes
unmanageable when applied to large prob-
lems. Also, since many problems require
only one or at most a few of these terms, the
sigma-pi unit can be “overkill.”

An alternative to the sigma-pi unit--called
the product unit-computes the product of
its inputs, each raised to a variable power:6

26

Thep(i) term is treated the same as weights
for summation units.

Product units are much more general
than sigma-pi units. While a sigma-pi unit
is constrained to using just polynomial
terms, product units can use fractional and
even negative terms; they can also form
simple product expressions by constrain-
ing weights to integer values.

Product units can be used in a network in
many ways, but the overhead required to
raise an arbitrary base to an arbitrary power
makes it more likely that they will supple-
ment rather than replace summation units.6
In this article, we use the term product
neural networks (or product networks) to

0885/9000/Y3/1000-0026 $3 00 0 1993 IEEE _ _ _ _ _ ~ ~ ~ ~

refer to networks containing both product
and summation units (see Figure 1).

While product units increase a neural
network’s capability, they also add compli-
cations. Traditional neural networks are typ-
ically trained using backpropagation, a form
of gradient descent optimization. Starting
from a random point in the solution space,
training data is applied to the network, and
the sum of the squared error is calculated.
The weights are then adjusted such that the
network’s operating point moves in the
direction of the most negative slope.

Backpropagation works best when the
solution space is relatively smooth, with
few local minima or plateaus. Unfortu-
nately, the solution space for product net-
works can be extremely convoluted. with
numerous local minima that trap backprop-
agation. This is because small changes

IEEE EXPERT ~

I

in thep(i) exponent can cause large chang-
es in the total error. (As an example, Figure
5 shows the error surface between two
points in the solution space corresponding
to the network in Figure 2; both figures will
be discussed in more detail later.) The
complexity of the solution space motivated
us to investigate genetic algorithms, an
alternative class of optimization methods.
Because genetic algorithms do not rely on
the slope for optimization, we expected
that they would be more successful than
traditional backpropagation at training the
network.

Genetic algorithms

A genetic algorithm is an exploratory
procedure that can often locate near-opti-
mal solutions to complex problems. To do
this, the GA maintains a set of trial solu-
tions (called chromosomes) and forces them
to evolve toward an acceptable solution. A
representation for possible solutions must
first be developed. Then, with an initial
random population, the algorithm uses “sur-
vival of the fittest” as well as old knowl-
edge in the gene pool to improve each
generation’s ability to solve the problem.
This improvement is achieved through a
four-step process of evaluation, reproduc-
tion, breeding, and mutation.

Representation. Before applying a GA
to a task, a representation for possible solu-
tions must be found. The most common way
to represent possible solutions is with a
bitstring. Higher order strings (such as char-
acter strings) or trees (such as binary trees)
have also been Since the designer
knows the architecture of the product net-
works to be trained, a binary string repre-
sentation containing a fixed number of bits
for each weight can be constructed. This
representation permits each chromosome to
be decoded easily, while still allowing each
weight a large degree of freedom. The typ-
ical population in our experiments contained
30 to 100 members, with 32 bits represent-
ing a weight. In the network in Figure 2,
there are 37 adjustable weights, resulting in
a chromosome length of 1,184 bits.

Evaluation. The first step in each gener-
ation is to evaluate the current chromo-
somes. This is the only step where we use

~

Figure 1. Two possible product network configurations.6

Figure 2. The product neural network trained to select the width of a CMOS switch.

all other steps, the chromosome is just
treated as a bitstring. Each chromosome in
the population is decoded, and the result-
ing network is tested with the training data.
T o evaluate product networks, we calcu-
late the sum of the squared error (SSE) for
the training set, with the fitness of the
chromosome equal to l/(l+SSE). This
means that the better a network performs,
the higher its fitness, with a perfect net-
work having a fitness of 1 .

Reproduction. The next step in each
generation is to create a new population
based on an evaluation of the current one.
Every chromosome generates a number of
copies of itself based on its performance,
with the best chromosomes producing sev-
eral copies of themselves, and the worst
not producing any. This is the step that
allows GAS to take advantage of a survival-
of-the-fittest strategy.

There are several ways to calculate the
the interpretation of the chromosome; in number of offspring generated by each

chromosome. The most common technique
is ratioing: Each chromosome produces a
number of offspring proportional to its
fitness, with the restriction that the total
number of chromosomes per generation
remains constant. Thus, if one chromo-
some’s fitness is twice that of another, the
superior chromosome would produce twice
as many offspring. However, there are two
major problems with this method. First, if
all the chromosomes have a similar fitness,
each member in the population will pro-
duce one offspring. This results in little
pressure to improve the fitness of the pop-
ulation. Second, if one chromosome has a
fitness much larger than any other, that
chromosome will create most, if not all, of
the new offspring. The chromosome will
dominate the population, resulting in a loss
of genetic diversity. This problem has been
labeled premature convergence.

The method we used to train the product
networks is ranking,9 in which the whole
population is sorted by fitness. The number

__ __
OCTOBER 1993 27

c

I

Table 1. Sample from the data points used to train the network.

VOLTAGE TEMPERATURE CONDUCTANCE DESIRED WIDTH

(V I (O K) (P M H O) (P M)

3 303 1.026 2
3 303 3.806 3
3 303 6.593 4
3 303 12.04 6
3 303 17.52 8
3 303 28.51 12
3 303 39.51 16
3 303 61.52 24

Table 2. Representative output from the resulting
product network, bred without a penalty function.

EXPECTED OUTPUT CALCULATED OUTPUT

2 9.1 79998
3 9.1 83343
4 9.1 86628
6 9.193188
8 9.1 99744

12 9.212848
16 9.225952
24 9.252160

0.003

0.0028

0.0026
0 50 100 150 200 250 300 350 400 450 500

Generations

Figure 3. Ten runs with a population of 100, a mutation rate of 0.1 percent, and no penalty function.

of offspring each chromosome generates is
determined by how it ranks in the popula-
tion. With the ranking algorithm we used,
the top 20 percent of the population gener-
ates two offspring each, the bottom 20
percent generates no offspring, and the rest
generate one offspring each. No one chro-
mosome can overpower the population in a
single generation, and no matter how close
the actual fitness values are, there is al-
ways pressure to improve. The primary
disadvantage of ranking is speed, because
better chromosomes cannot easily guide
the population, forcing good answers to
develop more slowly.

Breeding. The previous step creates a
population whose members are currently
the best at solving the problem; however,
many of the chromosomes are identical,

and none differ from those in the previous
generation. Breeding combines chromo-
somes from the population and produces
new chromosomes that, while they did not
exist in the previous generation, maintain
the same gene pool. In natural evolution,
breeding and reproduction are the same
step, but in GAS they have been separated
to allow different methods for each to be
experimented with and independently eval-
uated. It is during breeding that GAS can
exploit knowledge of the gene pool by
allowing good chromosomes to combine
with chromosomes that aren’t as good.
This is based on the assumption that each
individual, no matter how good it is, doesn’t
contain the answer to the problem. The
correct answer is contained in the popula-
tion as a whole, and can only be found by
combining chromosomes.

There are several methods for breeding,
the most common being crossover. Cross-
over typically swaps parts of two chromo-
somes to create two new ones. Many vari-
ations on crossover have been used, but
there is no consensus as to which is best.
We used a simple two-point crossover, in
which two random points are chosen in the
chromosome, and the bitstring between the
two points is swapped between the two
chromosomes.

Mutation. The last step in creating a
new generation is based on the assumption
that while each generation is better than the
previous, the individuals that produce no
offspring might have some information
that is essential to the solution. It is also
possible that the initial population didn’t
have all the necessary information. Thus
the process of mutation reinjects informa-
tion into the population. There are many
ways to implement mutation, but essential-
ly all choose and change members of the
population randomly.

The method we used was to randomly
distribute a constant number of mutations
every generation (approximately 0.1 percent
of the total number of bits in the entire popu-
lation). This means that any specific chro-
mosome might or might not mutate, with a
small chance that it could mutate severely.

An application

The last decade has seen a tremendous
increase in the availability of computer-
aided design tools. For example, synthesis
tools for digital logic can transform sche-
matic or language circuit descriptions into
VLSI circuit layouts. The number of ana-
log computer-aided design tools has also
increased; however, while many excellent
analysis tools (such as Spice) are available,
very few software packages can transform
performance specifications into a complete
circuit schematic.

28 IEEE EXPERT

CMOS circuit designers might be able to
use the product network proposed by
Thelen.'O Given temperature, supply volt-
age, and minimum conductance as inputs,
the network could calculate the optimal
transistor widths for a CMOS switch. Such
a tool would eliminate the typical iterative
process of estimating proper component
values, simulating, and redesigning. This
network configuration (see Figure 2) uses
existing information about the equations
for modeling a CMOS switch (other appli-
cations should consider the more generic
configurations suggested by Durbin and
Rumelhart6). Four of the 41 weights are
fixed, allowing the network to approxi-
mate an equation used to calculate the
switch conductance. For example, the -1
weight forces the output of the lower half
of the network to be treated as the denom-
inator, whereas the node with a constant -
1 input provides an offset. However, Thelen
was unable to train the network using tra-
ditional backpropagation, so we selected it
as a vehicle for evaluating GAS for training
product networks.

We extracted our training data from sev-
eral Spice simulations with differing tran-
sistor dimensions, temperatures, and pow-
er supply voltages. In the training set created
from this data, the voltages ranged from 3
to 12 volts, the temperature from 303 to
403" K, and the transistor width from 2 to
20 micrometers. Using these inputs, the
conductance could range from approxi-
mately 1 to 500 ymhos. Table 1 shows a
sample from the 200 data points collected.

Results. The first attempts at training
the product network produced consistently
incorrect results. Through many runs of
the CA, every solution represented a net-
work that gave outputs of approximately
I O y m for the transistor width, with no
regard for the input. Figure 3 shows, for
several runs, the fitness of the best chromo-
some as the population evolved over 500
generations. Each run used a population of
100 chromosomes and a mutation rate of
0.1 percent. Table 2 shows the output from
a product network found by one of these I O
runs.

These initial results surprised us. The
CA's inability to find an appropriate solu-
tion meant that either the network could
not solve the problem, or that the real
solution to the problem was extremely dif-
ficult to find. Previous work by Thelen

Generations

Figure 4. Ten runs with a population of 100, a mutation rate of 0.1 percent, and a penalty
function.

showed that a solution to this problem did
indeed exist.I0 This meant that the real
solution must be difficult for the CA to

Table 3. Representative output from the
resulting product network, bred with a

penalty function.
find.

The first success came when we seeded
the population with an approximation to
the solution, which we derived withacurve-
fitting program using the training data.
When seeded, the CA quickly improved
the approximation and found a network
that gave the desired output. While seeding
verified that there was a correct answer and
that the CA could find it, we wanted the
CA to be able to find the answer using an
initial random population.

There are three ways to make a problem
difficult for a CA to solve:

the solution space misleads the CA,
the solution space is extremely convo-
luted, or
the best solution occupies a very small
portion of the solution space.

Since it is hard to prove whether a CA is
being misled, we considered the other two
possibilities. Comparing the solutions found
in different runs of the C A showed that
they converged to the same answer each
time. If the solution space were extremely
convoluted, we would have found many
different solutions; thus, we rejected this
possibility.

The third possible problem for GAS

EXPECTED OUTPUT CALCULATEO OUTPUT

2 1.959561
2.804309 3

4 4.1 01839
6 5.501904
8 7.928023

12 12.3001 84
16 14,906841
24 23.877340

occurs when local minima occupy so much
of the search space that the best solution is
almost impossible to find. We can correct
for this by adding apenalty function, which
decreases a chromosome's fitness by add-
ing constraints to the solution. The penalty
we used to train the product network added
a value to a chromosome's error based on
how close the output of two consecutive
data points were. The closer the two out-
puts for the two points, the larger the pen-
alty. Figure 4 shows how the CA trained
with the addition of this penalty, keeping
all the other CA parameters the same as
before. Table 3 shows the output from the
product network found by the best run.

OCTOBER 1993 29

The fact that the GA could find a correct 1 difficult. However, we can view slices of
the error surface by holding most of the

surface along the line between the local
minimum and the global minimum. The solution using a penalty function leads us

indeed dominate the solution space. Unfor-
tunately, because there are 37 free weights,
the solution space is 37-dimensional, mak-
ing visualization of the error surface very

weights. Alternatively, we can travel on a
straight line through the solution space by
incrementing the weights by fixed amounts.
For example, Figure 5 shows the error

G5 1,000 r-
I

10
loo i

11
Local minimum Global minimum

I
Figure 5. Error surface for the straight line between the two minima, with no penalty.

i l
1 t

Local minimum Global minimum

I
Figure 6. Error surface for the straight line between the two minima, with penalty added.

30

position labeled “local minimum” is the
solution found by the GA without penalty,
and the position labeled “global minimum”
is the solution found by the GA with the aid
of the penalty function. Several important
regions on the error surface help explain
the GA’s behavior. Near the center of the
figure is a large flat region, bounded by
high peaks. The error of this region is large
enough that the GA tends to discount it
early in the evolution and avoids becoming
trapped. The areas to the left and right of
this region are much more interesting in
determining why the GA cannot find the
correct solution.

On the left is an area ofattraction for the
local minimum, and on the right is one for
the global minimum. The error for the area
of attraction around the global minimum is
about 2.5 times greater than that for the
local minimum. In fact, there is only a very
small region about the global minimum
where the error is lower than that around
the local minimum. This explains why it
was difficult for the GA to locate the global
minimum unless the population was seed-
ed with a solution close to that region.
However, this is a one-dimensional view
of a 37-dimensional space; additional fea-
tures might exist off of the line between the
two minima.

Figure 5 gives us valuable insight into
the error surface for our network, but how
does adding the penalty function change
this surface? Figure 6 shows the error sur-
face between the same two points with the
penalty function added. As we expected,
the error surface around our global mini-
mum has changed very little; the penalty
was specifically designed not to affect the
desired solution. However, the surface
around the local minimum is completely
changed. The GA can ignore this local
minimum and continue searching for the
best solution.

This illustrates one possible problem
with GAS: They are often used when the
solution space is not well known, and sub-
optimal answers can dominate the solution
space. In this example, the penalty func-
tion distorts the solution space by placing
a pole in the middle of the unwanted solu-
tion, thus allowing the GA to continue
searching without the distraction of this
particular local minimum. However, a pen-
alty function is added only after the GA has

IEEE EXPERT

I

Generations

Figure 8. Thirty runs with a population of 30 and a 0.1-percent mutation rate.

tried to find the optimal answer, so i t is
designed to discourage unwanted answers.
Consequently, penalty functions are prob-
lem specific, and their usefulness depends
on the features of the particular solution
space.

Parameter sensitivity. Next we explored
the sensitivity of the GA’s performance to
several of its parameters. Figure 7 shows
30 runs of the GA with a population of 100
and a mutation rate of 0.1 percent. Figure 8
shows the same parameters except with a
population of 30. Both settings were run
for 500 generations. However, because the
population of 100 has 10/3 more individu-
als than the population of 30, it does 10/3
more computations to run the same number
of generations. To make a fair comparison
based on computational complexity, the
performance of the larger population should
be compared to the smaller one after 150
generations.

From these figures, we see that each run
has two stages of evolution: a period of
rapidly increasing fitness, followed by a
period of lesser improvement. These peri-
ods correspond directly to the population’s
diversity. At first there are significant dif-
ferences between individuals within the
population; then, as the GA converges to
an answer, this diversity is lost and the
population becomes homogeneous. Also,
the larger population maintains its diversi-
ty longer and finds better solutions. The
smaller population seems to become ho-
mogeneous quickly, and from thatpoint on
improvement is slow, driven primarily by
mutation. However, the smaller popula-
tion arrives at better answers much faster
than the larger population. This indicates
that large populations are less influenced
by good potential solutions early on, anal-
ogous to having a greater degree of inertia.
Consequently, there is a tradeoff between
the convergence rate and the fitness of the
final answer.

Because smaller populations must rely
on mutation to compensate for a smaller
gene pool, it is natural to ask, What hap-
pens i f we increase the mutation rate?
Figure 9 shows 30 runs of the GA with a
population of 100 and the mutation rate
increased to 1 percent. Figure 10 also
shows 30 runs of the G A and a 1-percent
mutation rate, but with a population of 30.
By comparing these plots with the previ-
ous two, we see that a higher mutation

OCTOBER 1993

i
rate is disruptive to larger populations, but 1 tioned earlier, backpropagation is the tradi-
beneficial to smaller populations that lack tional method for training neural networks,
genetic diversity. 1 relying on gradient descent to minimize the

network error. Figure 11 is a histogram of

1
Comparison to backpropagation. For the results of 50 runs using backpropaga-

comparison purposes, we also used back- tion with random initial starting points.
propagation to train the network. As men- I The sum of the squared error for even the

0 50 100 150 200 250 300 350 400 450 500
Generations I Figure 7. Thirty runs with a population of 100 and a 0.1-percent mutation rate.

i l l 0.2 }

0

n

0 50 100 150 200 250 300 350 400 450 500
Generations

Figure 9. Thirty runs with a population of 100 and a 1-percent mutation rate.

I 0.2

0
I
I 0 50 100 150 200 250 300 350 400 450 500
I Generations

Figure 10. Thirty runs with a population of 30 and a 1-percent mutation rate.

best solutions was 5 to 20 times worse than
the global answer found using the CA.
This indicates that there are several, if not
many, local minima that cause backpropa-
gation to get trapped. Further analysis of
the solutions revealed at least a dozen dif-
ferent local minima. These results were
anticipated based on the features observed
in Figure 5 . While it is possible for local
minima to occur with conventional neural
networks, they are particularly prevalent
in networks containing product nodes, due
to the effect of exponentiation. This char-
acteristic supports the decision to use GAS
for training these networks.

on backpropagation or GAS, a better meth-
od might be to combine the two. If we used
GAS to find the area of the best solution, we
would avoid many (if not all) problems
withlocal minima. Wecould then use back-
propagation to improve the best solutions,
avoiding the problems associated with a
lack of genetic diversity. This would com-
bine the best of both worlds, and avoid the
pitfalls of both. We expect that this tech-
nique can be applied to more complicated
systems.

Ac knowledgmen t I
This research was supported by the National

Aeronautics and Space Administration under ~

Space Engineering Research Center Grant
NAGW-1406.

References I
1. G. Cybenko, “Continuous-Valued Neural

Networks with Two Hidden Layers Are
Sufficient,” tech. report, Dept. of Comput-
er Science, Tufts Univ., Medford, Mass.,
1989.

2. K.N. Gurney, “Training Nets of Hardware
Realizable Sigma-Pi Units,’’ Neural Net-
works, Vol. 5 , No. 2, 1992, pp. 289-303.

3. M. Lee, S.Y. Lee, and C.H. Park, “Neural
Controller of Nonlinear Dynamic Systems
Using Higher Order Neural Networks,”
EZectronicsLerrers, Vol. 28, No. 3, Jan. 30,
1992, pp. 276-277.

4. P.F. Wyard and C. Nightingale, “A Single-
Layer Higher Order Neural Net and Its
Application to Context-Free Grammar Rec-
ognition,” Connection Science, Vol. 2, No.
4, 1990, pp. 347 ff.

,

IEEE EXPERT 1 32

5. D.E.Rumelhart,G.E.Hinton,andR.J. Wil-
liams, ‘.Learning Internal Representations
by Error Propagation,” in Paralle/ Distrib-
ured Processing I , D.E. Rumelhart and J.L.
McClelland, eds., MIT Press, Cambridge,
Mass., 1986, pp. 318-362.

6. R. Durbin and D. Rummelhart, “Product
Units: A Computationally Powerful and
Biologically Plausible Extension to Back-
propagation Networks,” Neural Computa-
tion,Vol. 1,No. 1. Spring 1989,pp. 133-142.

7. H.J. Antonisse, “A Grammar-Based Ge-
netic Algorithm,” Foundations of Generic
Algorithms, G. Rawlins, ed.,MorganKauf-
mann, San Mateo, Calif., 1991, pp. 193-
204.

8. J . Koza, “A Hierarchical Approach toLeam-

Rawlins, ed., Morgan Kaufmann, San Ma- l ing the Boolean Multiplexer Problem,” in
Foundations of Generic Algorithms, G.

teo, Calif., 1991, pp. 171-192.

I

9. D. Whitley, “The Genitor Algorithm and
Selection Pressure: Whv Rank-Based Al-

Proc. Thirdlnr’l Con$ Generic Algorithms,
Morgan Kaufmann, San Mateo, Calif., 1989,
pp. 116-123.

10. D. Thelen. “A Neural Network for De-
signing CMOS Switches: An Application
for Product Units,” Proc. 1991 Joint WSU/
U1 Interstate Student Conf. on Neural
Compuration, 1991, pp. 100-109. Avail-
able from Jack Meador, Electrical Eng.
Dept., Washington State Univ., Pullman,
WA 99163.

David 1. Janson is a
masters level graduate
student at the Universi-
ty of Idaho. His research
involves genetic algo-
rithms, neural networks,
and VLSI design. He
received his BS in com-
puter engineering from
the University of Idaho

location of Reproductive Trials is Best,” in 1990 and expects his MS in 1993.

James F. Frenzel is
assistant professor of
electrical engineering at
the University of Idaho
and interim assistant di-
rector of the Microelec-
tronics Research Center.
His research interests in-
clude genetic algo-
rithms, VLSldesign and
testing, computer ar-

chitecture, and fault-tolerant computing. He
received his BS i n physics from Bucknell
University in 1981, and his MS and PhD in
electrical engineering from Duke University
in 1983 and 1989, respectively. He is a member
of IEEE.

The authors can be reached at the Dept. of
Electrical Engineering, University of Idaho,
Moscow,ID 83844- 1023; e-mail,djanson@kz.ee.
uidaho.edu or j.frenzel @ieee.org

This conference encompasses the technical aspects of specifying, designing, imple- REGISTER TODAY!
menting, and evaluating tools with artificial intelligence and tools for artificial intelli-
gence applications. The topics of interest include the following aspects:

- Machine Learning
AI and Software Engineering - Logic and Intelligent Database - AI Knowledge Base Architectures

- Anificial Neural Networks

* Expen Systems and Environments

please return registration for,,, and fee to:
Prof. Cris Koutsougeras
Dept. of Computer Science
School of Engineenng
Tulane University,
301 Stanley Thomas Hall, New Orleans, LA 701 18
Phone: (504) 865-5840, E-Mail: ck@rex.cs.tulane.edu

* Natural Language Processing
* AI Algorithms
* Intelligent Multimedia Systems
* AI and Object-Oriented Systems
* Reasoning Under Uncertainty, Fuzzy Logic Parallel Processing and Hardware Suppon

Early registrations for the conference must be received by Monday,

order in U.S. currency only, payable to TA1 ‘93.

Conference Registration
Advance (Until 10/25/93)
0 Member $300 0 Member $360
0 Nonmember $375 0 Nonmember $450
0 Student $100 0 Student $100

- AI Applications 5 th Intemational Conference on October 25,1993. Payments must be remitted by check 01 money

Late/& Site (After 10/25193j WORKSHOP: TOOLS
WITH Intelligent Tools & Their Applications

Chair Nikolaos G. Bourbakis, SUNY - Binghamton
The workshop I S included in the conference fee.

MTlFlCW KEYNOTE ADDRESSES:
The Architecture of Intelligent Agents Total Enclosed: $
Raj Reddy, Camegie Mellon University

What I S the Trend of Information Technology?
INTELLIGENCE ~ no Written later than requests Monday, for refunds October must 25. be Refunds received are by subject Prof. Koutsougeras to a $50 pro-

cessing fee. All no-show registrations will be billed in full. Students Alan Salisbury. Learning Group International

How Can Knowledge-Based Techniques Help Software Development?
Sam DiNitto, USAF Rome Laboratory

Experience with Knowledge-Based Computer-Aided Design
Steve Szygenda. University of Texas at Austin

Integrating T&E in the Acquisition Process to Reduce Cost
Raymond A. Paul, OEC, US. Army

PANEL SESSIONS:
W ~ l l Symbolic AI be Replaced by Neutral Networks?
Integration of AI, Database, and Software Engineering: Research Issues, Practical Problems
Quality of Heuristic Programs
Real-Time and AI
Tools for Constraint Satisfaction
The Future Direction of AI Tools

November 8-1 1, 1993 - Cambridge (Boston), Massachusetts

Sponsored by IEEE Computer Society
IEEE

are required to show current picture ID cards at the time of registration. Registrations after Oclober
25 will be accepted on-site only.

The conference fee includes conference attendance, workshop attendance, refreshments at breaks. ban
quet. and one copy of the proceedings.

Name
LASTfiAMILY FIRST MIDDLE INITIAL

Company

AddressIMailstop

City /StdteL?ip/Country

Daytime Phone Number

Fax Number

E-Mail Address

IEEE or CS Membership Number
REQUIRED FOR MEMBER RATE

1

http://uidaho.edu
mailto:ieee.org
mailto:ck@rex.cs.tulane.edu

