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Abstract

New statistical modelling methods, such as neural networks (NNs), allow us to take a step further in the
understanding of complex relations in aquatic ecosystems. In this paper the results from the analysis of
macro-invertebrate communities in a complex riverine environment are presented. We attempted to
explain observed changes in species composition and abundance with neural network modelling methods
and compared the results to linear regression. The NN method used is an improved form of the RF5
algorithm, developed to effectively discover numeric laws from data. RF5 uses Product Unit Networks
(PUNs), which are in effect multivariate non-discrete power functions. The data set consisted of a 10-year
time series of monthly samples of macro-invertebrates on artificial substrates in the rivers Rhine and
Meuse in the Netherlands. During this period the invertebrate community has largely changed coinciding
with the invasion of Ponto-Caspian crustaceans. We used physical –chemical data and data on the
abundance of the invasive taxa Corophium curvispinum and Dikerogammarus villosis to explain the ob-
served changes in the resident invertebrate community. The analyses showed temperature, abundance of
invasive taxa and peak discharges as important factors. Comparison of the results from NN modelling to
linear regression revealed that the factors temperature and abundance of Dikerogammarus villosis ex-
plained equally well in both cases. Only the neural network was able to use information on peak
discharge and timing of the peak in the previous winter to improve model performances. Neural net-
works are known to yield excellent modelling results, a drawback however is their lack of transparency or
their ‘black box’ character. The use of relatively easy interpretable (white box) PUNs allows us to
investigate the extracted relations in more detail and can enhance our understanding of ecosystem
functioning. Our results show that peak discharges might be an important factor structuring invertebrate
communities in rivers and hint on the existence of interacting effects from invasive species and discharge
peaks. They finally show the value of biological data sets that are collected over a long period and in a
highly standardised way.
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Introduction

Aquatic communities in Dutch rivers have been
subject to human influences like river regulation
and pollution for centuries (Bij de Vaate 2003).
More recently, a large-scale human induced im-
pact of these ecosystems is the invasion by non-
indigenous species. Important vectors for these
species are ships’ ballast water and invasions
from the Ponto-Caspian area after the construc-
tion of the Main-Danube canal (Bij de Vaate
et al. 2002). Some of these species have had ma-
jor impacts on autochthonous fauna (Van den
Brink et al. 1993; Van der Velde et al. 1994).
Understandably, this has implications for eco-
logical rehabilitation of rivers. A side effect is
that it influences ecological water quality assess-
ment as required by the EU Water Framework
Directive (Directive 2000/60/EC). The aim of
ecological assessment is to show the effects of
human impacts on the aquatic ecosystem. How-
ever to quantify these anthropogenic effects,
knowledge is needed of the ways in which the
environment influences ecological processes and
ultimately species composition. Much work still
has to be done in this field, especially in complex
situations where combined effects of multiple
factors play a role. New computational tech-
niques like neural networks can help us qualify
and quantify these complex relations.

We used linear and neural network modelling
methods to analyse the factors influencing the
changes in invertebrate community composition
on artificial substrates from 1992 to 2001. During
this period major invasions of Ponto-Caspian
invertebrate species have occurred. Some of these
species have been so successful that they domi-
nate the native invertebrate community. The most
spectacular invasions in recent years are by the
crustacean’s Corophium curvispinum and Dikero-
gammarus villosis. These species have had a great
impact on the resident taxa; the filter feeding
C. curvispinum by covering hard substrata in the
river bed with muddy tubes (van den Brink et al.
1993) and D. villosis because of its predatory
behaviour (Dick and Platvoet 2000). Data on the
abundance of these taxa and the whole inverte-
brate community was used to compare linear
models to non-linear models that were fitted by
neural network methods. There are already quite
a few examples of applications of NN to data on

macro-invertebrates (e.g. Cereghino et al. 2001;
Park et al. 2003a; Park et al. 2003b) and fish (e.g.
Lek et al. 1996; Guégan et al. 1998; Brosse et al.
1999; Brosse et al. 2001; Reyjol et al. 2001; Ibarra
et al. 2003). Most studies use feed-forward neural
networks or multi-layer perceptrons (MLPs).
These are supervised NNs, both input as well as
targets are presented to the network. An often-
mentioned drawback of the use of MLPs is that
these methods are basically considered ‘black
box’ methods. For this reason there have been
some attempts to find methods to gain explana-
tory insight into the contributions of each vari-
able (e.g. reviews by Olden and Jackson 2001;
Olden and Jackson 2002; Gevrey et al. 2003).
However, the contributions of the explanatory
variables remain rather implicit, lacking inter-
pretable estimated relations such as with linear
regression models.

We used an improved form of the RF5 algo-
rithm (Saito and Nakano 1997a; Saito and Nak-
ano 1997b; Oost et al. 2002) for NN modelling.
This uses so-called Product Unit Networks
(PUNs) for equation discovery. The resulting
functions are multivariate non-discrete power
functions that are reasonably comprehensible and
can hence be called ‘white box’. PUNs distinguish
themselves from traditional NNs such as MLPs
because of the relatively easy interpretation of the
extracted relations. The relations extracted from
the data can help us identify and understand
complex relations between species and their envi-
ronment. Therefore, throughout this paper we
focus mainly on the ecological interpretation of
the output from both linear and NN methods. The
main question is: can we understand what these
methods come up with? In the discussion we
present a brief synthesis of the results and focus on
the added value and applicability of the PUNs
with respect to the interpretability of estimated
mathematical functions.

Methods

Macro-invertebrates

The data set consists of samples from artificial
substrates of four sites in the rivers Rhine and Me-
use in theNetherlands. Figure 1 shows the locations
of the two sampling sites in the lower river Rhine, at
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the towns of Lobith and Kampen, and the two sites
in the river Meuse, at the towns of Borgharen and
Grave. The artificial substrates consisted of iron
cases containingmarbles that were left suspended in
the river for colonisation during a period of
1 month. After amonth the sampleswere taken out,
washed and the invertebrates collected and fixed in
formalin. Invertebrates were identified to the lowest
taxonomic level possible, species level in most cases.
The samples were collected monthly (two samples
per site) from spring to autumn (April –October)
from 1992 to 2001. In total this yielded between
120 –130 samples per site. For the analysis the
abundance of taxa has been transformed using
ln(x+1) transformation.

Physical –chemical measurements

At different sampling sites in the rivers, physical
and chemical measurements were taken routinely
on different time intervals, ranging from hourly for
discharge to weekly for chlorophyll-a. For the
analysis the measurements have been transferred
to the average, minimum and maximum of the
previous month. In the case of discharge also the

peak discharge of the previous year has been used
(this is the highest discharge in previous 365 days,
usually in winter). Since not only the peak dis-
charge but also the moment it occurred might be
of importance, the number of days between the
peak discharge and the sampling date has been
taken into account. Table 1 gives an overview of
the variables that were used for the analysis, their
measuring unit and the number of samples or
measurements per year.

Statistical methods

Clustering and ordination
We used the software program FLEXCLUS (Van
Tongeren 1986) to group samples into clusters by
calculating similarities between samples containing
information on abundance or presence/absence of
taxa. For ordination we used the software package
CANOCO version 4.02 (Ter Braak and Smilauer
1999). Indirect ordination was used to investigate
the major source of variation in community com-
position and direct ordination to relate it to envi-
ronmental characteristics. We used (canonical)
correspondence analysis, which assumes unimodal
(Gaussian) responses of species to environmental

Rhine

Meuse

Borgharen

Kampen

Grave

Lobith

Figure 1. The four sampling sites of macro-invertebrates in the

rivers Rhine (Lobith and Kampen) and Meuse (Borgharen and

Grave) in the Netherlands.

Table 1. Average values of selected physical and chemical

variables at the sampling sites ‘Lobith’ in the river Rhine and

‘Eijsden’ in the river Meuse during the period 1990 –2001. The

table also shows the number of measurements per year, which is

set at 365 in the case of multiple daily measures.

Variable Unit Rhine Meuse Number of

measurements

per year

Cadmium lg/ll 0.07 0.34 25 –52

Chlorophyll-a lg/ll 9.3 12.8 25 –52

Discharge m3/s 2354 272 365

Mercury lg/ll 0.03 0.03 13 –52

NH4–N mg/l 0.16 0.46 25 –52

o-PO4-P mg/l 0.09 0.30 25 –52

Oxygen % 96 81 52 –340

Oxygen mg/l 10.2 8.7 320 –362

Pentachlorophenol lg/l 0.01 0.02 12 –52

Secchi-depth dm 5.4 7.4 1 –52

Silicate mg/l 2.24 2.39 25 –52

Sodium mg/l 72 27 13 –27

Sulfate mg/l 61 42 25 –52

Total organic carbon mg/l 4.3 5.2 12 –52

Total-P mg/l 0.21 0.44 25 –52

Water temperature �C 14.0 14.5 365
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factors. To test for unimodality we determined
gradient length by running a Detrended Corre-
spondence Analysis (DCA), in case of a gradient
length <3 SD generally a linear model is used (Ter
Braak and Smilauer 1998). Both direct (DCCA)
and indirect (DCA) ordinations have been carried
out. With direct ordination environmental factors
are directly related to species composition, thereby
influencing ordination scores. With indirect ordi-
nation sample scores are calculated on species
composition alone, environmental factors are
afterwards related to the scores of samples on the
ordination axes. For this we used multiple tech-
niques (see the analysis section).

Multiple linear regression modelling
Multiple linear regression or linear regression is a
common statistical modelling method. Applica-
tions of linear regression in ecosystems are useful if
the ecosystem is adequately understood and can,
hence, be described in (transformed) linear rela-
tions. For linear regression we used the software
package SPSS11.0.

Neural network modelling
The algorithm used for neural network modelling
is an improvement of the existing RF5 (Rule
extraction from Facts version 5) algorithm, which
was developed to effectively discover numeric laws
from numeric data. The original RF5 algorithm
(Saito and Nakano 1997a, 1997b) consists of a
combination of three techniques;

–Using Product Unit Networks (PUNs) for func-
tion approximation, resulting in multivariate
non-discrete power functions

–Training them with the BPQ optimisation algo-
rithm (a second-order learning algorithm) and

–Selecting the number of hidden nodes with the
MDL (Minimum Description Length) metric.

This procedure iteratively continues, until an
optimal PUN is estimated based on the MDL
score. A product unit (neuron) is defined as

Yi¼I

i¼1
X

pi
i instead of the regular

MLP summation unit
Xi¼I

i¼1
wi � Xi

in which p is a power weight, w a multiplicative
weight and i=I the number of inputs. In general a
Product Unit Network (PUN) can be described as

Y ¼
Xj¼J

j¼1
wj

Yi¼I

i¼1
X

pi
i

in which j=J is the number of units. PUNs can
approximate many relatively comprehensible non-
linear relations, if-then-else constructions and
interactions directly related to input variables. For
more details we refer to Saito and Nakano (1997a
and 1997b).

The RF5 algorithm as described above has been
successfully applied to small data sets. To optimise
the comprehensibility of the results and to be able
to use it on larger data sets, some improvements
have been made (Oost et al. 2002). First, an esti-
mated PUN can be simplified using a pruning
algorithm to reduce irrelevant connections
(parameters). Since most pruning algorithms have
been created for MLPs, a new pruning algorithm is
used that is specifically designed for pruning single
weights from PUNs (Oost et al. 2002). This
method is called the Enhanced Sensitivity-based
Pruning (ESP) method (Moody and Utans 1992).
Other improvements were introduced as well, for
instance the use of Levenberg –Marquardt as a
search algorithm instead of BPQ. For more details
we refer to (Oost et al. 2002). The improved
existing RF5 algorithm is programmed in the
software package Matlab R13.

Analysis

The aim of our study was to identify the major
factors influencing invertebrate community com-
position in Dutch rivers and in doing so to com-
pare neural networks to linear models. For this we
used the methods and data that were mentioned in
the previous sections. From the invertebrate data
set we removed the recently invaded crustaceans
Corophium curvispinum and Dikerogammarus vil-
losis and used the (ln(x+1)) transformed abun-
dances of these species as explanatory factors
instead. The reason for this is that they are
thought to have a major impact on community
composition, using them as explanatory factors
allows us to investigate the strength of this impact.
For the preliminary analysis of the full data set
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(four locations) we also used the variables river
(Rhine or Meuse), location (distance from country
border), day (day of sampling from January 1) and
year (year of sampling). These were used to pro-
vide us with information on the influence of river
specific, location specific and seasonal variations
and trends in time.

For the analysis we used multiple combinations
of techniques. For our preliminary analysis we
used clustering and ordination of the full data set
to identify the major source of variation and the
most important factors explaining this variation.
For the analysis of the abundance of a single
species we used linear regression and neural net-
work modelling. For the analysis of the whole
community we used combinations of linear
regression and neural networks with detrended
correspondence analysis.

Results

Preliminary analysis of the full data set

First we analysed the full data set (4 locations, 504
samples) by clustering and ordination. Clustering
yielded three groups of samples (Table 2). The
results show that the major variation in the
invertebrate community can be attributed to
location specific differences, all samples taken
from sampling station ‘Borgharen’ clearly differ
from the other three sampling stations. The next
largest variation can be attributed to the year of
sampling. For the three remaining stations the
samples taken after 1995 to 1997 (depending on
location) clearly differ in species composition from
the earlier ones. This implies that on all three
sampling sites drastic changes have occurred

around 1995 –1997. Direct ordination (not pre-
sented here) revealed that parameters identifying
river (Rhine or Meuse), location (distance from
country border), year of sampling, the abundance
of invasive taxon D. villosis and temperature could
explain the major variation in species composition.
Since the major source of variation could be
attributed to location specific differences, we chose
to use the data from sampling station ‘Lobith’
(Rhine) for further analyses. This allows us to
focus on changes in the invertebrate community in
time.

Application of linear models and neural networks
to single species

The changes in the abundance of the invasive
taxon C. curvispinum reflect the changes of the
whole invertebrate community on the location
Lobith in the river Rhine. This species can be seen
as a key stone species. It dominated the inverte-
brate community since 1988 until after 1995 a
sudden drop in the abundance of this taxon and in
the total invertebrate community occurred. More
or less at the same time new taxa invaded the river-
ecosystem. D. villosis probably represents the most
important of these, being a large and voracious
predator (Dick and Platvoet 2000). We tried to
link the changes in the abundance of the former
dominant C. curvispinum to the abundance of
D. villosis and a number of environmental factors.
Table 3 shows the results of the analysis by both
linear and NN modelling for the training set
(n=100) and a small test set (n=6) of randomly
chosen samples. Because the improved RF5 algo-
rithm yields multiple solutions, from simple to
complex models with low to high performance, we
only present a selection of the results. This selec-
tion is made on the basis of simplicity and per-
formance (r2) and ranges from single factor models
to models with four factors. We used the same
factors to construct linear regression models. The
high r2 for the test in Table 3 set is, in this case, a
result of the small number of samples (n=6) and
the absence of extreme values.

The analysis reveals that the most important
factor explaining the abundance of C. curvispinum
is temperature. This factor alone explains roughly
60% of the total variation in taxon abundance.
Temperature reflects the seasonal variation in

Table 2. Results of the clustering of the macro-invertebrate

data set. For each sampling site the total number of samples (n)

and the number of samples per cluster is given. The clusters that

emerged from the analysis are characterised by sampling site

and year of sampling.

Sampling

site

cluster 1:

Borgharen

all years

cluster 2:

other sites

1992 –1995/6

cluster 3:

other sites

1996/7 –2001

Borgharen (n=130) 130

Grave (n=120) 63 57

Kampen (n=128) 66 62

Lobith (n=126) 46 80
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production and decomposition of the community
and is in that respect an indicator of ecological
processes and a number of relevant variables like
light and food availability. The fact that for both
techniques temperature explains equally well
shows that the relation is approximately linear.
The next important factor explaining the variation
in abundance of C. curvispinum is the abundance

of D. villosis. This species was first recorded in the
river near Lobith around 1994 and became abun-
dant in 1995, corresponding to a dramatic decline
in C. curvispinum and overall taxon abundance.
Peak discharges in the winter of 1994/1995 caused
severe flooding of large areas along the rivers
Rhine and Meuse. These events have had a cata-
strophic effect on the invertebrate community by
way of a major washout of individuals. It seems
that in this – after disturbance – climate, D. vil-
losis was able to quickly colonise and establish it-
self seemingly at the expense of C. curvispinum and
other species. That this might be the case is sup-
ported by the observations of voracious predatory
behaviour of D. villosis in the Rhine system,
whereas this species is mainly detrivorous in its
original habitat (Dick and Platvoet 2000). The
importance of peak discharge itself is finally tested
by adding the variables peak discharge in the
previous year and time elapse since this peak
occurred. Table 3 shows the results of adding these
variables to the model and concludes that only
PUNs can use this information to explain another

Table 3. Results for the linear model (LIN) and the product

unit network (PUN) from the analysis of Cororphium curvisp-

inum abundance in relation to temperature, abundance of

Dikerogammarus villosis, peak-discharge and time (number of

days since peak). The table shows the percentage of variance

explained (r2) and root mean square error (RMSE) for the

training set (n=100) and test set (between brackets, n=6).

Model r2 RMSE

PUN LIN PUN LIN

temperature 59 (91) 57 (91) 1.30 (0.64) 1.33 (0.64)

added Dikerogammarus 78 (88) 75 (88) 0.96 (0.74) 1.02 (0.73)

added peak discharge 79 (90) 75 (87) 0.95 (0.66) 1.01 (0.74)

added time 83 (94) 76 (88) 0.83 (0.52) 1.00 (0.72)
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part (±5%) of the remaining variation. Figure 2
shows the developments graphically. In the figure
the drop in overall taxon abundance and
abundance of C. curvispinum after the floodings in
early 1995 are plotted against the increase in
abundance of and D. villosis. Figure 3 compares
the results of the linear model to the PUN, arrows
indicating discharges larger than 9000 m3/s. The
largest deviations of the linear model occur after
or around these high discharges, indicating that a
PUN is better able to explain these from data on
peak discharges. Note that the deviation of the
linear model after a high discharge is not always
the same. This might be caused by combined
effects of peak discharge, timing and D. villosis.

Application of linear models and neural networks
to the whole community

In order to apply the modelling techniques to data
from whole invertebrate communities it is conve-
nient to capture variation in community compo-
sition into one or a few parameters. The relations
between environment and these parameters – as
abstractions of the whole community – can then
be identified. A method that is widely used for

such a purpose is ordination. This technique is
able to extract hypothetical gradients from large
data sets containing many taxa with their abun-
dances (Ter Braak and Smilauer 1998). Ordination
yields species and sample scores that can be plot-
ted in ordination diagrams. Recently the Kohonen
Self Organising Map (SOM), an unsupervised
neural network, has been used for the purpose of
community ordination. Application of SOM on
ecological data sets has shown results similar to
those obtained with conventional statistical com-
munity ordination methods (Brosse et al. 2001;
Cereghino et al. 2001; Giraudel and Lek 2001;
Park et al. 2003a, 2003b). However, for purposes
of directly relating environmental variables to
communities, traditional ordination is a proven
and straightforward method.

To calculate the ordination scores we ran a
DCA on the invertebrate data from Lobith
(excluding C. curvispinum and D. villosis). Figure 4
shows the ordination diagram depicting sample
scores and environmental variables. Again we used
temperature, peak discharge, time (number of days
since peak) and the abundance of D. villosis as
explanatory variables and added the (ln(x+1)
transformed) abundance of C. curvispinum. Due to
some missing values for environmental data, fig-
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ure 4 shows a somewhat smaller subset (n=106)
than the original ordination (n=126).

To compare linear models to PUNs we related
the environmental factors to the calculated scores
on the ordination axes. Table 4 summarises the
results. In this case the major source of variation is
explained by the abundance of D. villosis, this
alone explains approximately 50% (training set)
and 38 –39% (test set) of the total variation on the
first and most important axis. Adding the time of
the peak and peak discharge itself gives clearly
better results for the PUN (57% training, 47% test
set) but hardly for the linear model (52 and 38%
respectively). This suggests that peak discharge in
the previous winter is an important, non-linear
factor determining community composition and
abundance on artificial substrates in the River
Rhine near Lobith. When temperature and the
abundance of Corophium curvispinum are added,
this results in improved performance for both
models (73 and 61% respectively). The results
presented here are for the PUNs that yielded the
highest r2 and lowest RMSE for both the training-
set and the test set. Models that performed better
on the training set (highest r2 = 89%) predicted
the test set poorly due to a few (extreme) low
discharge events in this set. The total number of

observations that the model is based on (95) limits
the complexity (risk of over-fitting), more data are
needed to properly fit more complex models. The
overall results however show that the PUNs are
better able to explain the variation in invertebrate
community composition from the explanatory
variables.

Table 5 summarises the formulas from linear
and NN models. Comparison reveals that the
simplest models, that only take into account the

DCA axis 1

D
C

A
 a

xi
s 

2 

1992 1993 1994 1995 1996 1997 1998 1999 2000

temperature

peak discharge

time (since peak)

Dikerogammarus villosis

Corophium curvispinum

Figure 4. Indirect ordination (DCA) of the macro-invertebrates from sampling site Lobith. The dots showing the sample scores on the

first and second ordination axis in relation to the environmental factors (arrows) that were used to explain variations in species

composition. The year of sampling is indicated by the shape and colour of the symbol.

Table 4. Percentage of variance explained (r2) and root mean

square error (RMSE) for linear (LIN) and product unit

network (PUN) models from the analysis of the ordination-

scores of the first axis in relation to temperature, abundance of

Dikerogammarus villosis and Corophium curvispinum, peak-

discharge and time of the peak (number of days since peak).

The table shows the percentage of variance explained (r2) and

root mean square error (RMSE) for the training set (n=95) and

test set (between brackets, n=11).

Model r2 RMSE

PUN LIN PUN LIN

Dikerogammarus 50 (39) 50 (38) 0.53 (0.60) 0.53 (0.61)

added time 50 (38) 52 (38) 0.53 (0.61) 0.52 (0.61)

added peak and time 57 (47) 52 (38) 0.49 (0.56) 0.52 (0.61)

added temperature 58 (51) 53 (41) 0.48 (0.54) 0.52 (0.59)

added Corophium 73 (65) 61 (51) 0.39 (0.46) 0.47 (0.54)
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abundance of D. villosis and timing of peak dis-
charge, are approximately linear. Subsequent
models also taking peak discharge, temperature
and C. curvispinum into account are more com-
plex. However, examining each node (product
unit), for example by plotting it as a separate
response to the factors incorporated in the model,
makes them easier to interpret and reveals the

influence of separate (combinations of) factors. In
many cases the response of a node is largely
determined by only one or two factors.

Further interpretation of Table 5 reveals that
the full model, incorporating all five variables,
seems to distinguish between situations where
D. villosis is present and cases where this species is
absent. Figure 5 shows the response of the inver-

Table 5. Linear models and product unit networks from the analysis of the ordination-score of the first axis in relation to temperature

[temp], abundance of Dikerogammarus villosis [DV] and Corophium curvispinum [CC], peak-discharge [peak] and number of days since

peak [time]. For modelling purposes, values for zero abundance of D. villosis and C. curvispinum are 0.1 for all models.

Model Linear

Dikerogammarus 2.04)0.24*[DV]

added time 2.33)0.25*[DV])0.0013*[time]

added peak 2.32)0.25*[DV])0.0013*[time]+0.0000019*[peak]

added temperature 2.67)0.26*[DV])0.0010*[time]+0.0000041*[peak]-0.021*[temp]

added Corophium 2.54)0.17*[DV])0.0014*[time])0.00000182*[peak])0.092*[temp]+0.22*[CC]

Model Product unit network Nodes

Dikerogammarus 2.02)0.17*[DV]1.23 1

added time 2.02)0.14*[DV]1.22*[time]0.034 1

added peak 8.09)4.28*[DV]0.25*[peak]0.0063 –0.12*[DV])0.48*[time]0.31*[peak]0.066 2

added temperature 8.52)5.36*[DV]0.424*[time])0.12*[peak])0.020 –0.57*[DV])0.16*[time]0.22*[peak]0.043*[temp]0.12 2

added Corophium 36667)56315*[temp])0.0074*[CC]0.0032*[DV]0.0011*[peak]0.0012*[time]0.0027 +

19178*[temp])0.021*[CC]0.0092*[DV]0.0032*[peak]0.0045*[time]0.0076 + 586*[peak])0.085
3

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000
height of discharge peak (m3/s)

sc
or

e 
on

 fi
rs

t o
rd

in
at

io
n 

ax
is

 (
D

C
A

)

D. villosis absent D. villosis at mean abundance

low
 discharge, different com

position

high discharge,

sim
ilar com

m
unity

Figure 5. Graphical representation of the modelled effect of the height of discharge peaks on community composition (axis score) in

the absence of Dikerogammarus villosis (dotted line) and when this species is present at mean abundance (solid line). The figure is

derived from the full model that uses all variables from Table 5b.
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tebrate community (score on first ordination axis)
as a function of the highest discharge in the pre-
vious year, while all other factors are kept constant
at their mean values. Dependent on the presence
(mean value) or absence of D. villosis, the curves
have a different shape. Interestingly the outcome
of the model differs quite a lot in the case of low
and intermediate discharges, whereas the model
predicts a more similar community composition
(ordination score) at high discharges.

Application of linear regression and NN tech-
niques to the scores on the second ordination axis
(not further presented here) revealed temperature
as the most important factor (linear models ex-
plain about 70%, PUNs about 80% of total vari-
ation on the second axis).

Discussion

The analysis of the time-series of macro-inverte-
brates in Dutch rivers yielded interesting results.
The frequency and time span of sampling allowed
us to gain insight in seasonal variations as well as
trends in time. The seasonal variation in single
species and whole communities is well explained
by temperature as an indicator of ecological
processes and other season-related variables. The
major trend in time is illustrated by the invasion
of Ponto-Caspian invertebrate taxa. The results
suggest that some of these taxa have had an
enormous impact on the resident (autochthonous
and allochthonous) invertebrate taxa. These
findings are supported by literature, e.g. Van den
Brink et al. (1993) and Dick and Platvoet (2000)
who describe the invasions of C. curvispinum and
D. villosis and their possible impacts on river
food webs. Apart from these factors a third and
probably very important factor that emerged
from the analysis, is peak discharge. Both the
height of the peak and the moment at which it
occurred seem to play an important role in this.
After washout of invertebrates during a distur-
bance event, recolonisation and inter- and intra-
specific interactions such as predation and
competition determine community composition.
In our example we found different effects of peak
discharge in the presence or absence of D. villosis.
This is an important result that also makes sense
ecologically; the general effect of a peak discharge

is washout of invertebrates causing an overall
decline in taxon abundance. The effect of a peak
discharge in the presence of D. villosis might be
different because after a disturbance and sub-
sequent washout, the development of the com-
munity might be strongly influenced by this
voracious predator. The peak discharge resets the
community and the pathway to a new (stable)
situation is determined by the relative success of a
single species to colonise a habitat, escape pre-
dation and compete for resources and space.
These findings are supported by earlier work that
describes the effects of hydrological disturbance
and the effects of the introduction of new species.
Townsend et al. (1998), Jaarsma et al. (1998) and
Townsend and Riley (1999) investigated the ef-
fects of disturbances, and timing of disturbance
(Townsend et al. 1997), on stream food webs.
They found significant effects on the web com-
plexity, the most frequently disturbed sites being
the least taxon rich and having the simplest webs.
Lancaster (1996) mentions changes in the com-
petitive strength of two invertebrate predators
after a disturbance. Wootton et al. (1996) found a
77% reduction in the abundance of invertebrate
taxa after a brief spate. Mulholland et al. (1991)
found that the response of periphyton commu-
nities to a disturbance could be explained by
interactions between disturbance, nutrient avail-
ability and grazing. Finally, Fausch et al. (2001)
found a relation between the flood disturbance
regime and the invasion success of rainbow trout.
Success was highest in rivers with a disturbance
regime that matched those in their native range.
Thus, the disturbance regime might affect habitat
availability, inter-specific competition and preda-
tion, invasion success and ultimately the river-
community on different temporal and spatial
scales. The effects of disturbance might be en-
hanced in an environment that is under severe
stress of human and human-induced impacts like
river regulation and invasions of non-indigenous
species. These interacting effects have to be taken
into account when taking measures for river res-
toration or designing methods for ecological
assessment.

In this paper we present the results from an
improved RF5 algorithm, which is designed to
obtain understandable rules from PUNs. To our
knowledge the use of supervised neural networks
in aquatic ecology is mostly restricted to feed
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forward networks like MLPs. These often yield
very good results in the amount of variance ex-
plained but are often considered ‘black box’
models because they provide little explanatory
insight in the relative contribution of each vari-
able. Attempts to ‘illuminate’ the black box have
been made (e.g. Olden and Jackson 2001; Olden
and Jackson 2002; Gevrey et al. 2003). These
authors used various approaches like neural
interpretation diagrams or sensitivity analysis to
assess the contribution of each variable. Al-
though they might improve explanatory power
greatly, none of these methods provides directly
estimated, interpretable formulas. PUNs are
more ’user friendly’ in that they give more
transparent (though still complex) functions. For
instance, non-linearity is incorporated at
explanatory variable scale, using (non-discrete)
power weights, instead of transfer functions at
unit scale in the case of MLPs. This allows for a
more detailed analysis of the extracted relations,
which will help us understand ecosystem func-
tioning better.

For instance, in our analysis of the whole
invertebrate community at Lobith, two separate
nodes emerged describing the effects of a peak
discharge. One node (interaction of variables)
describes the general effect, the other describes the
effect in the presence of D. villosis. In our opinion
PUNs provide a valuable tool for analysing these
kinds of complex interactions between explanatory
variables.

Like MLPs, PUNs are able to describe all
kinds of different relations, from linear to logis-
tic, quadratic etc. The flexibility of these methods
ensures that complex relations can be extracted,
given the fact that the right explanatory variables
are offered to the NN. The other way around,
when NNs predict poorly this might be because
important factors are overlooked. NN modelling
may provide hints where to look for these fac-
tors.

Combinations of traditional and new tech-
niques, for example community ordination (PCA
or CA) and NNs, offer possibilities to gain a
more subtle understanding of ecosystems than a
‘one-way’ approach. Knowledge of the factors
underlying ecological processes is always neces-
sary to decide whether results are valid. If some
of these relations are already known, this

knowledge can be combined with the use of
NNs.

Conclusions

In this paper we have shown that supervised NNs,
that are trained using the improved RF5 algorithm,
can provide us with a valuable tool to qualify and
quantify relations between species and their envi-
ronment. In the examples shown, the effects of a
dynamic environment (discharge variations) and
the impact of invasive taxa on the invertebrate
community are complexly interwoven. It is prom-
ising that even in such a dynamic environment,
empirical models, such as the estimated PUNs, are
able to extract the major factors underlying the
observed changes in community composition. The
flexibility of the improved RF5 algorithm com-
bined with the possibilities to interpret the ex-
tracted relations makes it both a useful method to
explore ecological data and to quantify relations.
Therefore we believe that the improved RF5 algo-
rithm can help us to gain new insights in ecosystem
functioning, in particular in the complex pathways
in which the environment affects species composi-
tion. To successfully use analysing techniques in
general, large data sets are needed that have been
sampled in a standardised way. Problems often
encountered using large data sets are differences in
the taxonomic determination level, faults in taxon
identification or habitat sub-sampling. These dif-
ferences introduce noise, thereby obscuring the real
variation. It remains to be seen if such data sets are
or will become available. For the successful appli-
cation of conventional or new techniques and a
further unravelling of ecological processes, the
availability of high quality data might very well
prove to be the bottleneck. This is at the same time
a justification for putting effort into standardised
sampling and a challenge to develop highly stan-
dardised sampling methods.
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