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Abstract A high-order feedforward neural architecture,
called pit -sigma (πtσ) neural network, is proposed for lossy
digital image compression and reconstruction problems. The
πtσ network architecture is composed of an input layer, a
single hidden layer, and an output layer. The hidden layer
is composed of classical additive neurons, whereas the out-
put layer is composed of translated multiplicative neurons
(πt -neurons). A two-stage learning algorithm is proposed to
adjust the parameters of the πtσ network: first, a genetic
algorithm (GA) is used to avoid premature convergence to
poor local minima; in the second stage, a conjugate gradi-
ent method is used to fine-tune the solution found by GA.
Experiments using the Standard Image Database and infra-
red satellite images show that the proposed πtσ network per-
forms better than classical multilayer perceptron, improving
the reconstruction precision (measured by the mean squared
error) in about 56%, on average.
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1 Introduction

The expansion of multimedia information processing sys-
tems, associated to physical limitations on bandwidth of
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transmission lines and limited capacity of storage devices,
resulted in an increasing interest on data compression tech-
nologies, both in industry and in academia. And, since high
quality digital images are one of the most demanding (in
terms of required storage space) elements in a multimedia
information system, specific research on digital image com-
pression methods is of great interest. Methods such as Dis-
crete Cosine Transform (DCT) and wavelet transform have
been widely applied for lossy image compression and recon-
struction.

Because of its nonlinear processing capabilities and uni-
versal approximation characteristic, classical Multilayer Per-
ceptron (MLP) neural networks and some of its variations
have already been applied in lossy image compression
problems [10,13]. On the other hand, applications of neu-
ral network architectures employing multiplicative neurons
in image compression and reconstruction problems have not
been investigated yet. These multiplicative networks may
present better approximation capability and faster learning
times than the classical MLP (which employ additive neurons
only), because of its capability of processing higher-order
information from training data [3,9,14]. Therefore, multi-
plicative networks have higher nonlinear processing abilities
than classical neural network models. Because digital im-
ages are highly nonlinear mappings, neural networks with
expanded nonlinear processing abilities are needed to real-
ize better compression using the smallest amount possible of
computational resources.

Therefore, a multiplicative neural network, called pit -
sigma (πtσ) network, is proposed for image compression
and reconstruction problems. The πtσ network is a feedfor-
ward network composed of an input layer, a hidden layer of
additive neurons, and an output layer composed of translated
multiplicative neurons (πt -neurons) [7]. It has been shown
that neural networks using πt -neurons and trained by super-
vised learning techniques may present better performance
than classical neural networks in function approximation [7]
and pattern classification problems [5]. The πtσ network is
trained using a supervised learning algorithm, composed of
two stages: (1) a genetic algorithm (GA) is used to avoid
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local minima in the error surface; and (2) the scaled conju-
gate gradient (SCG) is applied to fine-tune the solution found
by GA.

To assess the efficacy of the proposed method, two im-
age compression/reconstruction experiments are performed.
In the first one, the ability of πtσ network to produce high
quality reconstructed images is investigated using the Stan-
dard Image Database (SIDBA). In this experiment, images
compressed and reconstructed using πtσ network have, on
average, mean squared error (MSE) 20% lower than those
produced by classical MLP. In the second experiment, the
generalization ability ofπtσ network is evaluated, using infra-
red images taken by a Geostationary Operational Environ-
mental Satellite (GOES). The MSE of images compressed
and reconstructed by the proposed approach is about 20%
lower than that of classical MLP.

In Sect. 2, the main approaches for neural image com-
pression are reviewed. Sect. 3 presents the πt -neuron model.
Sect. 4 describes the πtσ -network and its learning algorithm.
Sect. 5 presents the results obtained in compression/recon-
struction experiments using SIDBA and infrared satellite
images.

2 Feedforward neural networks for image compression

There are many possible approaches for image compres-
sion using neural networks proposed in the literature [8].
Among these approaches, lossy image compression using
feedforward neural networks trained by supervised learning
techniques have produced promising results [10,13]. These
methods make use of the universal approximation capabil-
ity of such neural networks to produce high quality recon-
structed images, which are approximations of the original
image.

The procedure adopted for image compression and recon-
struction using feedforward neural networks can be described
as follows: initially, a digital image of size M × N pixels is
divided in m · n blocks and these blocks are arranged in vec-
tors x11, . . . , xmn of size l = (M · N )/(m · n), as shown in
Fig. 1. These m · n vectors of dimension l form the training
data set for the neural network. Define g : �l → �l , such that
g(xi j ) = xi j , i = 1, . . . , m, j = 1, . . . , n. The objective is
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Fig. 1 Construction of neural network training data set. Here, l =
(M · N )/(m · n)

to design a neural network able to approximate the mapping
g(·), i.e., a neural network whose output yi j (∈ �l) is given
by

yi j ≈ g(xi j ) = xi j . (1)

Figure 2 presents an overview of this learning procedure,
where an MLP with a single hidden layer with K hidden neu-
rons is used to approximate the mapping g(·). Note that, to
reconstruct the original image, it is necessary to have the out-
puts of the hidden neurons for each training pattern and the
weights between hidden neurons and output layer. In Fig. 2,
there are K · l weights between hidden and output layers, and
K · m · n numerical values representing the hidden neuron
outputs for each training pattern. Therefore, the compression
rate ρ is defined by

ρ = K (m · n + 1)

M · N
. (2)

Ifρ < 1, then a successful compression has been achieved.
In the following, image compression methods employing the
procedure presented above are briefly described.

Namphol et al. [13] propose a hierarchical neural network
architecture for image compression, composed of three hid-
den layers, denoted combiner, compressor, and decombine.
An image is divided in a number of sub-scenes and each of
the sub-scenes is processed by a group of neurons in the com-
biner layer. The decombine layer is also divided in groups of
neurons, each of them responsible for reconstructing a sub-
scene from the signals generated by the compressor layer.

Ma and Khorasani [10] apply single hidden layer neural
networks designed by a constructive learning algorithm to
image compression. The learning algorithm is based on the
cascade correlation algorithm [2]. Several experiments are
performed to compare the constructive approach and fixed
structure networks. Comparisons with baseline JPEG are also
provided.

Although these two methods may perform better than
existing image compression techniques, they employ neu-
ral networks composed of classical additive neurons only. It
has been shown that neural architectures employing multi-
plicative neurons may outperform classical neural network
architectures [3,9,14], both in terms of approximation accu-
racy and computational cost. This happens because multi-
plicative neurons can extract high-order information from
learning data more efficiently than additive neurons.

3 Translated multiplicative neuron (πt -neuron)

Artificial neuron models are usually composed of two blocks:
an aggregation operator followed by an activation function
[1]. The aggregation operator combines the neuron’s inputs
to produce a signal-called level of internal activation v(∈ �).
The output s(∈ �) of the neuron is then given by s = f (v),
where f : � → � is the model’s activation function.

Neuron models can be classified according to the type of
aggregation operator and activation function employed [1].
When v is produced by an additive weighted composition of
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Fig. 2 Construction of neural network training data set

neuron’s inputs, then the model is called additive neuron (or
σ -neuron, for short), defined by

v =
m∑

i=1

wi pi , (3)

s = f (v),

where wi (∈ �), i = 1, . . . , m, are the weights (adjustable
parameters) of the neuron and pi (∈ �), i = 1, . . . , m are
the neuron’s inputs. The model in (3) is the traditional
McCulloch–Pitts neuron model.

The multiplicative neuron (π-neuron) [15] is defined by

v =
m∏

i=1

wi pi , (4)

y = f (v),

where wi (∈ �), i = 1, . . . , m, are the weights of the model.
Note that the model in (4) has two properties that may limit its
applicability in complex problems [7]: (1) it has an excessive
number of parameters and (2) decision surfaces generated by
this model are always centered in the origin of the neuron’s
input space �m .

To expand the capabilities of the π-neuron model, the
translated multiplicative neuron (πt -neuron) has been pro-
posed [7]. The πt -neuron model is defined by

v = b
m∏

i=1

(pi − ti ), (5)

s = f (v),

where the parameters ti (∈ �), i = 1, . . . , m, represent the
coordinates of the center of the decision surface generated
by the model, and b(∈ �) is a scaling factor. The πt -neuron
model has two advantages, when compared to the traditional
multiplicative neuron: (1) it has a meaningful set of adjust-
able parameters and (2) the decision surfaces generated by
this model can be placed in any point of its input space.

The πt -neuron model has been tested in some supervised
learning problems, including nonlinear regression [7] and
pattern classification [5]. In most of these problems, neu-
ral networks employing πt -neurons could achieve better per-
formance than classical neural network models. It has also
been shown that a single πt -neuron can solve the N -bit parity
problem [6]. These results confirm that the πt -neuron has ex-
panded information processing capabilities when compared
to the classical additive neuron model. These capabilities
seem to be more evident when the data to be approximated
has a high degree of nonlinearity.

Because typical digital images are mappings contain-
ing high degree of nonlinearity, a neural network should
have improved nonlinear processing capabilities to realize
the mapping in (1) using the smallest amount possible of
computational resources (i.e., number of hidden neurons and
connection weights). Since networks using πt -neurons have
expanded nonlinear processing abilities, a neural network
architecture containing πt -neurons as processing elements
is proposed for digital image compression and reconstruc-
tion problems. The proposed network is described in detail
in Sect. 4.

4 The pit -sigma (πtσ ) neural network

The pit -sigma (πtσ) neural network used for image com-
pression and reconstruction is depicted in Fig. 3. The πtσ is a
feedforward neural network, composed of an input layer with
l nodes, a hidden layer of Kσ -neurons, and an output layer
of lπt -neurons. The network’s output yp(∈ �), p = 1, . . ., l,
is given by

yp = bp

K∏

i=1

⎛

⎝ f

⎛

⎝
l∑

j=1

(wi j x j − w0 j )

⎞

⎠ − tpi

⎞

⎠, (6)
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Fig. 3 The pit -sigma (πtσ) neural network architecture

where wi j (∈ �), i = 1, . . . , K , j = 1, . . . , l, is the weight
connecting the input x j to the hidden neuron i and w0 j (∈ �)
is the weight connecting the bias term x0 = +1 to the i th
hidden neuron. The parameters bp(∈ �) and tpi (∈ �), p =
1, . . . , l, i = 1, . . . , K , are the parameters of the πt -neurons
in the output layer of the network.

The σ -neurons in the hidden layer work as a feature
extractor, thus reducing the dimensionality of the input space.
Because of the multiplicative characteristic of the πt -neuron
model, the output layer of the πtσ network is able to (indi-
rectly) detect higher-order correlations in the learning data.
In other words, it has expanded information processing capa-
bilities in comparison with the classical MLP model. There-
fore, the πtσ network has the potential to better describe the
true input–output mapping using a smaller number of hidden
neurons.

The πtσ network can be considered as an extension of the
pi-sigma neural architecture [3], which employs the π-neu-
ron model defined in (4) in its output layer. Since the original
pi-sigma neural architecture has the universal approximation
property, it is clear that the πtσ network is also a universal
approximator.

4.1 Learning algorithm of πtσ neural network

Although there are numerous heuristics and strategies to ini-
tialize classical MLP networks [4, Chap. 4], strategies to ini-
tialize the weights of networks containing of πt -neurons have
not been established yet. During the initial experiments stage,
the SCG algorithm [12] was used to train πtσ networks,
but convergence to poor local optima was observed very
often.

To avoid the premature convergence problem, a two-stage
learning procedure is adopted. First, a GA is used to find
a suboptimal solution. After the termination of the genetic

search, the SCG is used to fine-tune the solution found by
GA.

The standard GA [11] is employed and its main charac-
teristics are as follows.

• Codification: a chromosome is a floating-point vector p of
dimension (l + 1)K + (K + 1)l, where each element of
the vector represents an adjustable parameter (wi j , bp, and
tpi ) of the network described in (6) and depicted in Fig. 3.

• Fitnes function: each chromosome is evaluated by

f i t (p) = 1

M SE(p)
,

where M SE(p) is the mean squared error of the network
codified by p, defined as

M SE(p) = 1

2m · n

m·n∑

i=1

l∑

j=1

(
y(i)

j − x (i)
j

)2
, (7)

where y(i)
j is the j-th network output for i-th training pat-

tern, and x (i)
j is its corresponding target value.

• Selection operator: chromosomes are selected for the next
generation using the roulette wheel operator, which assigns
selection probabilities proportional to the fitness of the
individual.

• Crossover operator: uniform crossover, where the elements
of two parent chromosomes are exchanged with a certain
proability.

• Mutation operator: gaussian mutation, where an element
pi of a chromosome selected for mutation is modified
according to

pi = pi + N (0, 1),

where N (0, 1) is a gaussian random variable with 0 mean
and standard deviation 1.

The SCG algorithm is chosen because it does not require
any line search procedure and does not have any critical user-
defined parameter. Details about SCG can be found in [12].

To confirm the efficacy of the proposed learning scheme, a
simple compression/reconstruction experiment is performed
using the benchmark image lenna. In this experiment, the
performance of a πtσ neural network with five hidden neu-
rons trained using SCG only is compared to a πtσ network
trained by the proposed GA+SCG learning algorithm. The
parameters of the GA are as follows:

• population size: 150;
• maximum number of generations: 10,000;
• crossover probability: 0.8;
• mutation probability: 0.0001.

For the SCG, the maximum number of epochs is set to
10,000, whereas the stop criterion is defined as norm of error
gradient smaller than 0.001.



Image compression and reconstruction using pit -sigma neural networks 57

Table 1 Mean squared error (MSE) for Standard Image Database (SIDBA) reconstructed images

Image Number of hidden neurons
4 5 6 7
MLP πtσ MLP πtσ MLP πtσ MLP πtσ

Airplane 0.0478 0.0185 0.0285 0.0141 0.0461 0.0111 0.0353 0.0095
Barbara 0.0741 0.0222 0.0337 0.0156 0.0308 0.0122 0.0335 0.0082
Boat 0.0189 0.0089 0.0175 0.0054 0.0170 0.0045 0.0220 0.0043
Bridge 0.0830 0.0412 0.0606 0.0322 0.0494 0.0271 0.0370 0.0243
Building 0.0335 0.0135 0.0427 0.0103 0.0255 0.0066 0.0245 0.0065
Cameraman 0.0397 0.0232 0.0336 0.0188 0.0401 0.0147 0.0418 0.0145
Girl 0.0214 0.0072 0.0164 0.0064 0.0164 0.0049 0.0107 0.0043
Lax 0.0732 0.0434 0.0494 0.0333 0.0543 0.0285 0.0641 0.0243
Lenna 0.0250 0.0111 0.0201 0.0091 0.0285 0.0081 0.0170 0.0063
Lighthouse 0.0688 0.0322 0.0457 0.0294 0.0326 0.0204 0.0474 0.0165
Text 0.0302 0.0294 0.0305 0.0204 0.0274 0.0178 0.0299 0.0151
Woman 0.0268 0.0116 0.0390 0.0085 0.0208 0.0068 0.0237 0.0061

Fig. 4 Comparison of proposed learning algorithm: a Original image;
b compressed and reconstructed with SCG only; c Compressed and
reconstructed with GA+SCG

The images compressed and reconstructed by the com-
pared learning algorithms are shown in Fig. 4b and c. The
MSE of the image obtained using SCG only is 0.027, whereas
the MSE of the image obtained by GA+SCG is 0.007. There-
fore, the efficacy of the proposed GA+SCG learning algo-
rithm is confirmed.

5 Compression and reconstruction of the SIDBA
and infrared satellite images

To confirm the validity of the proposed approach, two experi-
ments are performed. In the first experiment, images from the

SIDBA are employed to evaluate the approximation capabil-
ity of the proposed πtσ neural network. In the second exper-
iment, the generalization capability of πtσ neural network is
investigated using infrared images taken by a Geostationary
Synchronous Satellite. In both experiments, the performance
of πtσ network is compared to that of classical multilayer
perceptrons.

5.1 Compression and reconstruction of the SIDBA

The SIDBA is composed of 12 grayscale images, some of
them widely used to test the performance of image process-
ing algorithms. The images of SIDBA are shown in Fig. 5.
All the images are of size 256 × 256, i.e., N = M = 256.
To construct the training data set for the neural networks,
all the images are divided in blocks of size 4 × 4, i.e., n =
m = 4. Therefore, the dimension of the input space is l = 16
and there are 16,556 training patterns. The images of the
SIDBA can be downloaded from http://www.sp.ee.musashi-
tech.ac.jp/app.html.

Two neural architectures are compared:

(1) Multilayer perceptron with sigmoidal activation function
in the hidden neurons and linear activation function in the
output neuron. The MLP is trained using the SCG algo-
rithm. The maximum number of epochs is set to 10,000
and the stop criterion is norm of error gradient smaller
than 0.001.

(2) Pit -sigma neural network, with logistic activation func-
tion in the hidden neurons and linear activation function
in the output neurons. The parameters for the GA are as
follows:

• population size: 150;
• maximum number of generations: 10,000;
• crossover probability: 0.8;
• mutation probability: 0.0001.
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Fig. 5 The Standard Image Database (SIDBA): a airplane; b barbara; c boat; d bridge; e building; f cameraman; g girl; h lax; i lenna; j lighthouse;
k text; l woman

Fig. 6 Airplane image compressed and reconstructed by: a MLP; b πtσ
network. Both networks have five hidden neurons

Fig. 7 Woman image compressed and reconstructed by: a MLP; b πtσ
network. Both networks have five hidden neurons

For the SCG, the maximum number of epochs is 10,000,
whereas the stop criterion is norm of error gradient
smaller than 0.001.

For each neural architecture, the number of hidden neu-
rons is varied between four and seven.

Table 1 shows the mean squared error of the images com-
pressed and reconstructed by MLP and πtσ networks. For all
the cases the proposed πtσ network obtained better

Fig. 8 Lax image compressed and reconstructed by: a MLP; b πtσ
network. Both networks have five hidden neurons

performance than traditional MLP. Figures 6, 7, and 8 show
examples of images compressed and reconstructed by the two
neural networks considered. From these figures, it is possible
to notice the higher quality of the images reconstructed using
the proposed method.

From the results it is confirmed that, using the same num-
ber of hidden neurons, the proposed πtσ network can achieve
better performance than the classical MLP.

5.2 Compression and reconstruction of infrared satellite
images

To evaluate the generalization capability of the proposed πtσ
neural network, a set of infrared images taken by a GOES
orbiting Japan is used. The images generated by this satellite
are grayscale, of size 800 × 800, i.e., M = N = 800. Six
images taken in January 2000 are chosen for this experiment;
one image is used to train the neural networks considered and
the other five images are used to test their generalization abil-
ity. These images are shown in Fig. 9.

To construct the training data set, the training image (Fig.
9a) is divided in blocks of size 8×8, i.e., m = n = 8. Thus,
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Fig. 9 The infrared Geostationary Operational Environmental Satellite (GOES) images: a 00012709.h; b 00010309.h; c 00010609.h;
d 00010709.h; e 00010809.h; f 00011009.h. The image (a) is used for training, whereas the images (b)–(f) are used for testing

the training data has dimension l = 64 and there are 10,000
training instances.

Two neural architectures are compared:

(1) Multilayer perceptron with eight hidden neurons using
logistic activation function and output neurons using lin-
ear activation function. The MLP is trained using the
SCG algorithm. The maximum number of epochs is set
to 10,000 and the stop criterion is norm of error gradient
smaller than 0.001.

(2) Pit -sigma neural network, with logistic activation func-
tion in the hidden neurons and linear activation function
in the output neurons. The parameters for the GA are as
follows:

• population size: 150;
• maximum number of generations: 10,000;
• crossover probability: 0.4;
• mutation probability: 0.0001.

For the SCG step, the maximum number of epochs is
10,000, whereas the stop criterion is norm of error gra-
dient smaller than 0.001.

Table 2 compares the results obtained by MLP and πtσ
neural networks. The performance measured used is the MSE,

Table 2 Mean squared error of Geostationary Operational Envi-
ronmental Satellite (GOES)-reconstructed images. Both networks have
eight hidden neurons. The image 00012709.h is the training image

Image MLP πtσ network

00012709.h 0.16976 0.07611

00010309.h 0.18273 0.08387

00010609.h 0.18585 0.08502

00010709.h 0.18570 0.08415

00010809.h 0.18656 0.08261

00011009.h 0.18705 0.08399

defined in (7). In this experiment, πtσ neural network can
again achieve better performance than classical MLP, in all
the images considered. Figure 10 shows the images com-
pressed and reconstructed by MLP, whereas Fig. 11 shows
the images obtained using the proposed πtσ neural network.
Again, it is possible by visual inspection to notice that the
images reconstructed by the proposed method are of higher
quality than those reconstructed by MLP.

The results of this experiments show that, besides having
better approximation properties, πtσ network has also better
generalization capability than the traditional MLP.
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Fig. 10 The infrared GOES images compressed and reconstructed by Multilayer Perceptrons (MLP). The image (a) is the training image

6 Conclusions

A neural architecture called πtσ neural network is proposed
for digital image compression and reconstruction. The
πtσ neural network is composed of an input layer, a hidden
layer of additive neurons, and an output layer of translated
multiplicative neurons (πt -neurons) [7]. The multiplicative
characteristic of πt -neuron model enables the proposed πtσ
network to extract (indirectly) high-order information from
the training image data.

The learning algorithm of πtσ network is composed of
two stages. First, a floating-point GA is used to avoid local
minima in the network’s error surface. After the evolution-
ary process, the SCG [12] is used to fine-tune the solution
found by GA. Experiment results show that the combined
GA+SCG learning algorithm produces reconstructed images
with MSE about 20% lower than that produced using SCG
only.

To evaluate the performance of πtσ network in image
compression and reconstruction problems, two experiments
are conducted. In the first experiment, images from the SID-
BA are used to evaluate the approximation capability of πtσ
network. The images compressed and reconstructed using the
πtσ network have MSE about 57% lower than those obtained
using classical MLP.

The generalization capability of πtσ network is evaluated
using a set of infrared images obtained by a GOES. The set
is composed of six images, where one is used for training
and the remaining five are used for testing. The test images
compressed and reconstructed by πtσ network have an MSE
55% smaller than those obtained by MLP.

The results confirm that the proposed πtσ network has
better nonlinear approximation and generalization capabili-
ties than the classical MLP architecture. They also confirm
the suitability of the proposed network to digital image com-
pression and reconstruction problems.

The proposed method requires long training times, due to
the burden imposed by the GA and the big size of the training
data. Since the proposed approach operates offline, this does
not limit the applicability of the method. Furthermore, with
the rapid advance of hardware computational power, it is cer-
tain that the proposed method will be running much faster in
the near future. Another way to shorten the training time is to
develop smart heuristics for initializing a πtσ network, thus
eliminating the need for GA. This is certain a topic for future
research.

Another future research direction is to investigate the per-
formance of πtσ network in compression and reconstruction
of color images. Furthermore, the applicability of πtσ net-
work in video compression problems will also be considered.
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Fig. 11 The infrared GOES images compressed and reconstructed by πtσ network. The image (a) is the training image
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