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1 INTRODUCTION

1.1 Overview of Feature Selection

PATTERN recognition and classification problems occur across
many application domains. A generic problem is to formulate a
classifier fð x!Þ ! ! that assigns a class (category) label ! from the
set of class labels !1; . . . ; !Q

� 	
to a vector-valued observation

(measurement) x!, composed of features (scalar measurements) xj.
To be definite, let there be a total of Q class labels. Let there also be
a maximum of N available features that may compose an
observation vector x!. At an abstract level, fð x!Þ is a partitioning
of an N-dimensional vector space (feature space) X, into a set of
appropriately labeled hypervolume elements. The crux of pattern
classification methodologies is to formulate or “learn” fð x!Þ from a
combination of a priori domain knowledge, as well as a set Y ¼
f x!1; . . . ; x!Tg of training observations.

Motivated by purposes of economy, and for deeper reasons
related to the learnability of fð x!Þ from Y , feature selection (also
known as “variable selection,” “measurement selection,” and “data
selection”) determines the “best” r out of N available features to
compose reduced-dimensionality observations x! for formulating
fð x!Þ from Y . Feature selection continues to be a heavily studied
area. For additional background on feature selection, see [1] and [2,
Section 8.5]. A useful survey of feature selection methodologies is
shown in [3]. Comprehensive empirical evaluations of various
techniques are contained in [4], [5]. In addition to classical
approaches that often appeal to normal distributions parameter-
ized by low-order statistics, more recent “distribution-free”
mathematical programming-based approaches have been devel-
oped to formulate classifiers. Some of these approaches have been
augmented to perform feature selection. A useful overview is
provided in [6].

1.2 Realm of Applicability

Feature selection is a combinatorial optimization problem,
attempting to find z!, which maximizes some criterion function
Jð z!Þ, where z!2 0; 1f gN is a vector designating inclusion (1) or

exclusion (0) of each feature. The pertinent quality measure of
feature selection is the off-training-set Bayes error of the resulting
classifier fð x!Þ. Unfortunately, incorporating this measure within
the feature selection optimization is typically computationally
infeasible. Instead, to enable our technique, we impose two
simplifications on the form of the class-conditional probability
densities pð x!j!kÞ.

Our first simplification is to model the densities pð x!j!kÞ as
multivariate unimodal distributions (for example, Gaussians), with
possibly distinct covariance matrices. (This modeling can be
extended to mixtures of unimodal distributions by treating each
mode of pð x!j!kÞ for the given class !k, as a pseudoclass.) Two
favorable consequences ensue from this simplification. First, for
the two-class case (Q ¼ 2), the computationally-tractable Kullback-
Leibler (K-L) divergence between pð x!j!mÞ and pð x!j!nÞ (which
reduces to the Mahalanobis distance for equal covariance matrices)
is a monotone function of the Bayes error [7] and, therefore,
comprises a pertinent criterion Jð z!Þ. Second, for given z!, which
specifies some chosen subset of r features, the K-L divergence
between multivariate Gaussians pð x!j!mÞ and pð x!j!nÞ can only
increase upon admitting any additional feature into the subset. In
other words, the K-L criterion J z!

ÿ �
is monotonic in z!: J z!

ÿ �
�

J z!þ z!0
� �

(where þ is the inclusive-OR operator). This enables
employment of implicit enumeration to optimize J z!

ÿ �
, finding the

optimal combination of r features by (usually) evaluating
dramatically fewer than the full set of N

r

ÿ �
¼ N!

r!ðNÿrÞ! combinations
that would otherwise be required. (Note that, in general scenarios,
because there is no a priori means of ascertaining the behavior of
the Bayes error as a function of the chosen feature subset, the
strictly valid means of optimal feature selection is to exhaustively
evaluate the Bayes error over all N

r

ÿ �
possible feature subsets [8].)

The classical method for such optimal feature selection via implicit
enumeration is the branch-and-bound (B&B) method of Narendra
and Fukunaga [9].

Our second simplification is to model the pð x!j!kÞ with diagonal
covariance structure, i.e., where the principal axes of an underlying
distribution in fact coincide with the coordinate measurement axes,
or where we otherwise ignore (zero) the cross-moment terms. This
consequently implies that the classifier fð x!Þ will employ the
“naive Bayes” assumption, namely, the within-class independence
of the individual features xj in x!. This assumption allows the
pairwise K-L divergence between pð x!j!mÞ and pð x!j!nÞ to be
expressed as a linear combination of z!—

P
j cj � zj, with fixed

(precomputed) cj—and, thereby, to be compatible with our
employment of mixed-integer linear programming (MILP) based
solution, discussed later. This simplification is not as objectionable
as it might appear: Often, there are not enough training samples
available to estimate the parameters of the full (general) covariance
with sufficient reliability (low variance) and, moreover, the “naive
Bayes” assumption often works well in practice [10, Section 6].

1.3 Criteria for Multiclass Feature Selection

In the two-class problem, the Bayes error is a monotonically
decreasing function of the K-L divergence d and, thus, the
divergence is a suitable criterion to optimize. For instance, the
two-class probability of error Pe in the case of equal covariance
matrices and prior class probabilities is [11]:

Pe ¼ g
ffiffiffi
d
p

2

 !
g xð Þ ¼ 1ffiffiffiffiffiffi

2�
p

Z 1
x

eÿ
t2

2 dt: ð1Þ

Unlike the two-class case, multiclass criteria J z!
ÿ �

that are both

monotonic to the Bayes error and computationally tractable,

remain elusive [12]. Instead, we can proceed to form a multiclass

criterion that is an aggregate of the pairwise interclass divergences

di;j, thereby retaining tractability and relationship to Bayes error.
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For equal prior class probabilities, the average probability of error

Pe can be expressed as:

Pe ¼
1

Q

X
i

X
j6¼i

Z
Xj

pð x!j!iÞ; ð2Þ

where Xj is the feature space decision region for class j. However,

we and others [12] recognize that, since the presence of multiple

classes reduces the decision region Xj relative to what it would be

for the two-class case, the two-class error term g

ffiffiffiffiffi
di;j
p

2

� �
sets an

upper bound on the pairwise interclass contribution to the

multiclass Bayes error Pe, as follows:

Pe �
1

Q

X
i

X
j 6¼i

g

ffiffiffiffiffiffiffi
di;j

p
2

 !
: ð3Þ

Equations (2) and (3) indicate two useful guidelines for an

effective multiclass criterion J z!
ÿ �

. One is the employment of a
saturating transform (akin to gðÞ) on each pairwise divergence

(or other measure of interclass margin), so the unbounded
divergence di;j behaves like a bounded Bayes error term. This
provides rationale for the common use of various “separability

index” measures crafted for multiclass discrimination, such as
the transformed divergence, Jeffreys-Matusita (J-M) distance,

etc., [12]. The use of saturating transforms is also consistent
with the second guideline, that all pairwise margins be attended

to, and possibly constrained by, lower bounds, so as not to
allow a subset of these margins to dominate the optimization.

1.4 Motivation and Contribution of Proposed Methods

Motivated by the aforementioned desiderata for a multiclass

feature selection criterion, we initially formulated (Section 2.1.1) an
L1 metric-based integer nonlinear program (INLP) as a means to

maximize the number as well as the magnitude of pairwise
interclass margins. We use the term “metric” to denote a measure
of the pairwise “distance” (margin) between classes based on the

class-conditional distributions of the reduced feature vectors. This
L1 metric employs a saturating transform on the pairwise

margins, as motivated in the previous section (Section 1.3). Integer
nonlinear programs can be tricky to solve. By linearizing the

INLP model into a mixed-integer linear programming (MILP)
formulation, we enable employment of efficient off-the-shelf MILP

solvers. Our MILP formulation can easily be modified to substitute
an Lp metric on the pairwise interclass margins for the L1 metric,
so long as the metric is “diagonal” (i.e., excludes cross-moment

terms). In accordance with our original motivations for multiclass
feature selection (Section 1.3), this Lp metric version can be

additionally augmented with optional specific lower bound
constraints on each of the pairwise interclass margins.

Thus, the contribution of our proposed methods is the advanta-
geous reformulation of B&B feature selection as an MILP problem,

albeit for interclass distance measures complying with the “naive
Bayes” assumption (class-conditional feature independence). Our
criterion formulations for multiclass feature selection are not novel

(see Section 1.2) and, in fact, are a restricted subset of those amenable
to a branch-and-bound solution. Nevertheless, many practitioners

may welcome their ready representation and solution using off-the-
shelf MILP solvers. Moreover, advances in MILP solver technology

readily accrue to the feature selection application.
The outline of our paper is as follows: In Section 2, we present

our proposed methods of feature selection. In Section 3, we
provide guidelines for practical application, including an example

problem, discussion of computational complexity, and demonstra-
tion of application against some standard data sets.

2 MIXED-INTEGER PROGRAMMING FEATURE

SELECTION

2.1 The L1 Model

2.1.1 Initial Integer Nonlinear Programming (INLP)

Formulation

Employing the L1 distance metric, we can cast our feature
selection problem into the following form:

max
z!

J z!
ÿ �

¼
X
ðm;nÞ2C

max
j2F

a
ðm;nÞ
j � zj

� �
s:t:
X
j2F

zj � r; ð4Þ

where z!¼ z!ðrÞ denotes the value of the binary indicator vector
(defined earlier) that maximizes the criterion function given r, C is
the set of all pairwise combinations ðm; nÞ of classes, with
cardinality Cj j ¼ Q

2

ÿ �
, and F ¼ 1; . . . ; Nf g indexes the features.

The a
ðm;nÞ
j are component terms of a diagonal distance metric

(one that ignores cross-moments between features) for pairwise
combinations ðm; nÞ of classes. For example, using a weighted L1

metric applied to the class means, we might use

a
ðm;nÞ
j ¼ h c �

�m;j ÿ �n;j
�� ��

�m;j�n;j
�m;jþ�n;j

 !
; ð5Þ

with �m;j and �m;j the training set (sample) conditional mean and
standard deviation of the jth feature given class !m, hðÞ a bounded
function, and c a positive scale parameter. The use of a saturating
transform function hðÞ, such as the sigmoidal function tanhðÞ,
reduces the likelihood of selecting a set of features that produces a
few large interclass distances at the expense of distinguishing
between a number of other class pairs (see Section 1.3).

The a
ðm;nÞ
j component terms may alternatively be defined in

accordance with an L2 metric for the class means and dispersions,
for instance, the K-L divergence, which, given our assumption of
diagonal covariance, reduces to

a
ðm;nÞ
j ¼ h

c
2 �m;j ÿ �n;j
ÿ �2 1

�2
m;j

þ 1
�2
n;j

� �
þ c

2

�2
n;j

�2
m;j

þ �2
m;j

�2
n;j

ÿ 2

� �
0BB@

1CCA: ð6Þ

For equal covariance matrices �m and �n, the K-L divergence
reduces to the Mahalanobis distance. For unequal (distinct)
covariance matrices, the K-L divergence consists of two terms:
1
2 �!m ÿ �!n

ÿ �T
�ÿ1
m þ �ÿ1

n

ÿ �
�!m ÿ �!n

ÿ �
, an average Mahalanobis

distance sensitive to the difference in means �!m ÿ �!n

ÿ �
, and

1
2 tr �ÿ1

m �n þ �ÿ1
n �m ÿ 2I

ÿ �
, a term gauging the “shape disparity”

of the distributions, which may be nonzero even for a zero
difference in means.

Model (4) is an integer nonlinear program (INLP), with the

nonlinearity due to the max operator in the objective summand.

This operator is employed to preclude the selection of several

columns j of large-valued a
ðm;nÞ
j that occur within a small number of

rows of A ¼ a
ðm;nÞ
j

� �
, at the expense of neglecting the remaining

rows (interclass pairs) that might possess a feature yielding

satisfactory margin but whose selection would be otherwise

suppressed.

2.1.2 Mixed-Integer Linear Programming (MILP)

Reformulation

Unfortunately, INLP problems are notoriously difficult to solve,
due to computational burden as well as convergence problems.
Fortunately, we can recast this formulation into an equivalent
mixed-integer linear program (MILP), which can be solved by
generic MILP solvers, e.g., linear programming (LP)-based
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branch-and-bound (B&B) solvers [13], [14]. Furthermore, since
the B&B solver implicitly enumerates all N

r

ÿ �
possible values of

z!, it is sure to find the optimal z! (subject to time and
memory constraints). We recast our initial INLP into an MILP
as follows:

max
z!;w!

J z!; w!
ÿ �

¼
X
ðm;nÞ2C

X
j2F

a
ðm;nÞ
j � wðm;nÞj

� �
ð7Þ

s:t:
X
j2F

zj � r ð8ÞX
j2F

w
ðm;nÞ
j � 18ðm;nÞ 2 C ð9Þ

w
ðm;nÞ
j � zj8ðm;nÞ 2 C; j 2 F; ð10Þ

where the zj are the binary variables as before, and the w
ðm;nÞ
j are

continuous, nonnegative auxillary variables. For a given interclass
pair ðm;nÞ 2 C, the corresponding objective term is maximized by
allocating all the available (¼ 1) weight across the N variables
w
ðm;nÞ
j to the particular w

ðm;nÞ
j , corresponding to the largest a

ðm;nÞ
j

among the chosen features j. Note that this relies implicitly on our
choice of nonnegative weights a

ðm;nÞ
j in (5) or (6).

Upon completion of the optimization, the maximum number of

nonzero terms among the w
ðm;nÞ
j is limited by q ¼ Q

2

ÿ �
. Thus, in

cases where q < r, this method will pick at most q features

intelligently (and will either choose only q features, or will choose

additional features purely by chance). Another drawback is that

the model, by construction, may select only r0 < r features

intelligently, if there is a strong ranking among features with

respect to their corresponding “column sums”
P
ðm;nÞ2C a

ðm;nÞ
j

� �
.

This can be counteracted by setting the constraint (8) to be an

equality or, alternatively, employing our Lp model (with � ¼ r),
which we discuss next.

2.2 The Lp Model

A simple augmentation, that we designate as our Lp model,
overcomes the limitation of the L1 model, which is unable to
(intelligently) choose more than minðq; rÞ features (q ¼ Q

2

ÿ �
). This is

accomplished merely by modifying (9) as follows:X
j2F

w
ðm;nÞ
j � � 8ðm;nÞ 2 C; ð11Þ

where the (row of) auxiliary variables summation bound of 1 is
replaced by the integer � � r. The Lp model is able to intelligently
choose minðq � �; rÞ features.

Now, for a given interclass pair ðm;nÞ 2 C, the corresponding
objective term is maximized by allocating the available (¼ �)
weight evenly among those � variables w

ðm;nÞ
j , corresponding to the

� largest a
ðm;nÞ
j among the N features j. Now that the available

weight is distributed among � features instead of just a single
feature (for given interclass pair ðm;nÞ 2 C), it is appropriate to
succinctly denote this model as an Lp model, in accordance with
the elected definition of a

ðm;nÞ
j (see (5), (6), and Section 2.1.1).

However, the admissible Lp metric is restricted to “diagonal”
metric tensors.

2.3 The Constrained Lp Model

With the Lp model, as � is chosen to be increasingly greater than 1,
the advantage of the original L1 model in precluding a subset of
a
ðm;nÞ
j from dominating the optimization is increasingly forfeited.

Consequently, there is decreased advantage to retaining the
individual rows (interclass pairs) ðm;nÞ and their auxillary
variables w

ðm;nÞ
j , which form the criterion J z!; w!

ÿ �
. In response

to this, we offer an alternative formulation of the Lp model, which
we denote as the “constrained Lp model,” possessing three

modifications. The first modification replaces the criterion

J z!; w!
ÿ �

with the average interclass margin components. Max-

imization of such a criterion would be trivial (could be done by
inspection), were it not for the second modification, which

introduces lower-bound constraints on each of the pairwise

interclass margins. These, in turn, make the use of the max

operator in the objective unnecessary and, thus, make the auxiliary

variables w superfluous. This model is formulated as follows:

max
z!

J z!
ÿ �

¼
X
j2F

aj � zj
ÿ �

ð12Þ

s:t:
X
j2F

zj � r ð13Þ

X
j2F

a
ðm;nÞ
j � zj

� �
� � m;nð Þ 8ðm;nÞ 2 C; ð14Þ

where

aj ¼
1

q

X
ðm;nÞ2C

a
ðm;nÞ
j : ð15Þ

The added constraints force the solution to heed user-specified

lower bounds � m;nð Þ on the individual interclass margins. Although
the feasible magnitudes of such bounds may require discovery

through trial and error, an MILP solver can immediately report

whether a model with the stated constraints is completely
infeasible in its most relaxed (noninteger) form. The modifications

reduce the size of the model and, thus, its computational burden.

The lower-bound constraints retain and more directly enforce the
desirable property for multiclass discrimination exhibited by our

L1 model, namely, maximization of the number of occurrences, as

well as magnitudes of acceptable pairwise interclass margins (see
Sections 2.1.1 and 1.3).

3 PRACTICAL APPLICATION GUIDELINES

3.1 Example Application

We provide a concrete example in which we employ our multi-

class feature selection methods to find the best two features. Fig. 1a
is a representation of the feature space for a 10-class discrimination

problem containing 32 features. The class-conditional mean values

of the features (“feature value”) are plotted as a function of the
feature index, one plotted curve for each of the 10 classes,

assuming a common feature standard deviation (s.d.) � ¼ 0:03,

and diagonal covariance structure (uncorrelated features). In

applying our L1 method, we conditioned the interclass distances
employing tanhðÞ and using c ¼ 0:1 in (5). The tanhðÞ function

saturates at about three s.d. of margin. The corresponding author

will provide the raw feature data to readers wishing to reproduce
the results.

The best two features found by our L1 method for
discriminating among the 10 classes are features #10 and #18.

This is not surprising, given visual inspection of Fig. 1a. The

resultant interclass separations are shown in Fig. 1b, as plotted
within the coordinate subspace defined by features #10 and

#18, with each plotted point representing a class. The

classification error (numerically sampling Gaussian distributions

as posed, to gauge the fraction misclassified, assuming equal a
priori class probabilities) for a (quadratic) Bayes classifier

employing these features is 0.31.
The best two features found by our Lp method, with p ¼ 1 and

� ¼ 2, are features #17 and #18. When compared to Fig. 1a, the

resultant interclass separations shown in Fig. 1c reveal that the
Lp method has maximized the sum of interclass margins at the

expense of some individual margins. Consequently, the Bayes

error for employing these features is 0.75, substantially greater.
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Applying the constrained Lp method (p ¼ 1 and � ¼ 2) with a

common instance � m;nð Þ ¼ 0:14 of constraint (14) asserted for all

interclass distances, selects features #10 and #18, the same features

selected by our L1 method. This is expected on the following

basis. The minimum interclass mean disparity �m;j ÿ �n;j
�� �� in

Fig. 1b, is between 0.01 and 0.03 (by visual inspection). This

corresponds to a transformed interclass distance component (given

� ¼ 0:03, and using tanhðÞ and c ¼ 0:1 in (5)) between 0.05 and 0.2.

Therefore, a value of the constraint parameter(s) � m;nð Þ between

0.05 and 0.2 should force the constrained Lp method away from

selecting features #17 and #18 and toward selecting features #10

and #18, which in fact occurs.

3.2 Computational Complexity

The parameters Q (number of classes) and N (number of

features) determine the problem size and, together with r

(maximum number of features desired), determine the solution

time. The intrinsic MILP branch-and-bound solution timing is

typically driven by the number of discrete (binary) variables,

which for our formulations is N , rather than the number of

continuous variables. Both the L1 and Lp models are sparse:

either has Nð1þ qÞ variables and 1þ q þNq constraints with

Nð1þ 3qÞ nonzeros in the constraint matrix, where q ¼ Q
2

ÿ �
, so

the constraint matrix density is

Nð1þ 3qÞ
Nð1þ qÞ � ð1þ q þNqÞ; ð16Þ

which is asymptotically 0, as either N !1 or Q!1.

Contemporary commercial MILP solvers can exploit this

sparseness. In contrast, the constrained Lp model has N

variables and, including all pairwise interclass distance con-

straints (14), has 1þ q constraints with Nð1þ qÞ nonzeros in the

constraint matrix, giving it a density of 1. Commercial solvers

can also exploit constraints (8) and (13), each of which defines a

specially ordered set (SOS) [15], [16]. We note that there may be

an opportunity to reduce the number of binary variables in the

L1 model by preprocessing. If a
ðm;nÞ
j � aðm;nÞj0 8ðm;nÞ 2 C,

feature j will never be selected in preference to j0, and once

feature j0 is selected, constraint (9) will force w
ðm;nÞ
j ¼ 0.

The classical B&B approach [9] and our MILP formulations, both

share the same number N !
r!ðNÿrÞ! of potential solution (leaf) nodes in

their B&B enumeration trees. The enumeration tree of [9] is balanced,

as it starts with all N features, and proceeds by successively

removing features to attain the best r-out-of-N feature subset. An

MILP solver initially solves the linear relaxation LP, wherein the

integer variables are allowed to be real-valued. Its B&B tree traversal

successively constrains the integer variables to integrality. Thus,

when employing “variable dichotomy” [15] branching decisions, the

MILP enumeration tree for the binary decision variables z! is

unbalanced [13], which may or may not be advantageous. Tree

balancing may be achieved by employing SOS branching, which is a

capability provided by some MILP solvers. A notable attraction to [9]

is an efficient means for incrementally updating the quadratic

distance measure as features are successively added or deleted from

the feature vector. A similar efficiency is intrinsically gained for our

linearized criterion functions when using most MILP solvers, which

employ rapid incremental reoptimization of the LP when traversing

to a descendant node [13].

3.3 Empirical Confirmation

Table 1 presents results of trials against the standard “Glass” data
set from the UCI repository [17], comparing the versions of our
MILP method against a baseline B&B feature selection code within
PRTools [18]. The PRTools B&B code is essentially a Narendra-
Fukunaga method, although it recomputes from scratch the
quadratic distances at each node rather than employing their
efficient incremental update [9]. The “Glass” data set comprised
five classes, using the nine numeric features (we excluded class
label “6,” as its nine samples inexplicably had three zero-valued
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Fig. 1. (a) Feature values versus feature index plotted for 10 classes (one plot per
class). (b) Plot of the value of feature index #18 versus index #10, for each of the
10 classes. These are the two best features for discriminating between the
10 classes as selected by out L1 and constrained L1 MILP models. (c) Plot of the
value of feature index #18 versus index #17, for each of the 10 classes. These are
the two best features for discriminating between the 10 classes as selected by our
L1 MILP model.

TABLE 1
Comparison of MILP and Baseline B&B Methods

Against UCI Glass Data set



features). The table entries indicate the selected features and their

corresponding Bayes error �, as a function of method and subset

size r. Assuming equal prior class probabilities, the Bayes error is

gauged by numerically sampling the actual (full covariance)

Gaussian distributions to gauge the fraction misclassified, for a

(quadratic) Bayes classifier employing these features.
In the method notation, L1 orL2 indicate which form of the a

ðm;nÞ
j

was employed (see (5) and (6); c ¼ 0:2 in all cases). For the Lp (L1 or

L2) model methods, we chose � ¼ r (see Section 2.2). For the

constrained Lp (L1 or L2) model methods, we indicate the lower-

bound constraint value � employed (common across all interclass

pairs, see Section 2.3). Different features are nearly always selected

for lower-bounds notably smaller than indicated. The baseline

B&B method [18] employed a class-average covariance in comput-

ing as its criterion, either the sum of or the minimum of, the pairwise

interclass (squared) Mahalanobis distances. The use of the mini-

mum pairwise distance potentially helps in multiclass settings, as

motivated in Section 1.3.
For this data set, our Lp and L1 MILP models, using L2 distance

definitions, yielded the best results because scatterplots indicate the

actual data better matching our L2 measure (which registers

variance mismatch) than it does our L1. Our constrained Lp
MILP model yielded nearly as good results. All methods exhibited

similar execution times.
We applied the same methodology, albeit for abbreviated

comparisons shown in Table 2, for the UCI “Covtype” data set,

which has seven classes (forest ground-cover-type). The 10 numeric

features were employed (ignoring binary features), and we used

the L2 form of a
ðm;nÞ
j (see (6); c ¼ 0:8). The quality of the Lp and L1

MILP model solutions remained competitive with the baseline

B&B code. Our L1 MILP model chose only two features, even

when three or four were allowed (desired). It chose the desired

number r of features only when we set the constraint (8) to be an

equality (see Section 2.1.2).
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