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Abstract 
This paper presents a new approach to the Artificial Neural Networks (ANN) modelling of 

bacterial growth; using Neural Network models based on Product Units (PUNN) instead of on 

sigmoidal units (MLP) of kinetic parameters (lag-time, growth rate and maximum population density) 

of Leuconostoc mesenteroides and those factors affecting their growth such as storage temperature, 

pH, NaCl and NaNO2 concentrations under anaerobic conditions. To enable the best degree of 

interpretability possible, a series of simple rules to simplify the expresión of the model were setted up. 

The new model PUNN was compared to RS and MLP estimations developed previously. Standard 

Estimation Error of generalization (SEPG,) values obtained by PUNN were lower for Lag and GR but 

higher for yEnd than MLP when validated against a new data set. In all cases Bf and Af were close to 

unity, which indicates a good fit between the observations and predictions for the three models. In our 

study, PUNN and MLP models were more complex than the RS models, especially in the case of the 

parameter Gr, but described lower SEPG. With this work we have pretend to propose  a new approach 

to neural nets estimations for its application on predictive microbiology, searching for models with 

easier interpretation and that has the advantage of having a great ability to fit the boundaries of the 

range of the input factors. We consider that still there is a lot left to do but PUNN could be very 

valuable instrument for mathematical modeling. 

 

Keywords: Artificial Neural Networks, Product Units, growth model, Leuconostoc 

mesenteroides, spoilage bacteria 
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Introduction 
 

It is well known that the factors that most affect micro-organism growth are, among others, 

pH, storage temperature, water activity, preservatives and the modification of the atmosphere during 

the packaging (Gibson and others 1988). Given an adequate database, the response of many microbes 

in food could be predicted from knowledge of the food’s formulation, processing and storage 

conditions and afterwards can be applied in food product development and food safety risk 

assessment. There is a growing interest in microbial growth modelling as an alternative to time-

consuming, traditional, microbiological enumeration techniques.   

The models most frequently used for this purpose are usually polynomial regressions (also 

called Response Surface, RS), in general second order models, which provides a great simplicity and 

availability of user-friendly software. In this type of model the coefficients can be estimated by least 

square or through local search algorithms based on the gradient, like that of Lebengerg-Marquard. 

Moreover, RS require the model order to be specified a priori (that is, if it is of first, second or third 

order). They also need initial values for the coefficients of the model, so that the local search 

algorithm can obtain the model in the most efficient way. More recently, a number of new models 

have been introduced, some involving the application of Artificial Neural Networks (ANN) of the 

multi-layer perceptron type, MLP.  These have amply demonstrated their capacity for predicting the 

parameters associated with microbial growth (Hajmeer and others 1997; Geeraerd and others 1998; 

Hervás and others 2001; Jeyamkondan and others 2001; Lou and Nakai, 2001; García-Gimeno and 

others 2002; 2003, 2005).  

This paper presents a new approach for the ANN modelling of bacterial growth using Neural 

Network models based on Product Units (PUNN) instead of on sigmoidal units (MLP) like the one 

described above. The use of this new type of neuronal net model using product base functions is 

justified in the search for more easily interpretable models because the MLP models are considered to 

be of the “black-box” type.  This interpretability should not be obtained at the cost of drastically 
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decreasing either the good degree of prediction capacity or the robustness based on the variance of 

errors committed in different training sessions in these new types of PUNN nets.  

On the other hand, this type of model can be proposed in predictive microbiology since it is 

logical to suppose a priori that a strong interaction exists between the factors that affect the prediction 

of microbe growth parameters. Thus the use of PUNN has two major advantages: these product units 

are more effective in picking up the interactions between the factors and they are easier to interpret 

than MLP. In contrast to the usual black-box model or neural network based on sigmoidal functions, 

we can consider these networks as being “grey-box” models. The product units have the ability of 

implementing higher order functions and therefore they can also implement polynomial functions as a 

particular case (Gurney 1992). Moreover, the PUNN models are geometrically formed by linear 

combinations of functions of a potential type that are not as smooth as sigmoidal type functions.  This 

characteristic enables PUNN models to more easily approach complex decision making.. Despite 

these obvious advantages, PUNNs have a major drawback. Their training is more difficult than that of 

standard sigmoidal based networks using a back-propagation local algorithm (Durbin and Rumelhart 

1989), because small changes in the exponents can cause great changes in the total error. The main 

reason for this difficulty is that the PUNN tend to more local minima and plateaus (Ismail and 

Engelbrecht 2000). It is a well known issue that back-propagation is not efficient in training product 

units. Several efforts have been made to develop learning methods for PUNN (Janson and Frenzel 

1993; Ismail and Engelbrecht 1999, 2000; Leerink and others 1995).  Martinez-Estudillo and others 

(2005) proposed a model of evolutionary computation of PUNN to overcome this difficulty that 

evolves both the weights and the structure of these networks by using an algorithm based on 

evolutionary programming. 

This paper presents a new approach to the ANN modelling of bacterial growth; using Neural 

Network models based on Product Units (PUNN) instead  of on sigmoidal units (MLP) of kinetic 

parameters (lag-time, growth rate and maximum population density) of Leuconostoc mesenteroides  

and those factors affecting their growth such as storage temperature, pH, NaCl and NaNO2 

concentrations under anaerobic conditions. 
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Material and methods 

Experimental data 
The specific growth rate (Gr), lag-time (Lag) and maximum population density (yEnd) data of 

Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 (Spanish Collection of Strain Types, 

Valencia) were taken from Zurera-Cosano and others (2005). 

A Central Composite Design (CCD) was employed, incorporating the following variables and 

levels: temperature (10.5, 14, 17.5, 21 and 24.5ºC), pH (5.5, 6, 6.5, 7 and 7.5), concentrations of 

sodium chloride (0.25, 1.75, 3.25, 4.75 and 6.25 %) and concentrations of sodium nitrite (0, 50, 100, 

150, and 200 ppm) under anaerobic conditions shown in Table 1. Each of the 25 different factor 

combinations thus obtained was replicated seven times, and six center point replications were 

performed to estimate experimental variance.  

Models development 
PUNN  is a powerful basis for its application in modelling, and we will try to explain how 

these models are carried out. To start processing data, we avoided saturation problems in the product 

basis functions by preventing the driving of the weights to infinity and by improving the learning 

process.  Each of the input and output variables should be scaled in the rank [0.1, 1.1] and [1, 2] 

respectively. The new scaled variables are named t*, p*, c* and n*, for the input variables and l*, g* 

and y* for the output variables. For example, T and l is calculated as follows:  

 

t*= min

max min

0.1T T
T T

−
+

−
  (1) 

l*= min

max min

1l l
l l
−

+
−

  (2) 

 

where T and l are the original temperature ,  Lnlag, Tmin , lmin and Tmax, lmax are the minimum 

and maximum values, and t* , l* are the scaled temperature and Lnlag. Once obtained, model 

estimations should be de-scaled following the same equation. 
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We begin by defining the family of functions to be used in the modelling process and their 

representation through the corresponding PUNN model.   The general mathematical description of a 

family with this type of function is:  

Let k be a n  dimensional Euclidean space and K  a compact subset of it defined 

by { ∈= ),,,( 21 kxxxK K  k : ∈ix  +, }ki ,,2,1 K= . We represent by ( )F K  the family of 

functions ⊂Kf : k →  given by 
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where jij w,β ∈ , with 0≥jiw  and p, k ∈ .   

This typology of functions can be viewed as a polynomial with real exponents, and by 

appropriately choosing the exponents of the function f , it is easy to observe that the polynomial 

regression models are subsets of ( )F K . For example, by the appropriate selection of the 

exponents, { }2,1,0∈jiw , a second-order polynomial regression model or quadratic response surface 

can be obtained: 
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 Let now the data set be DE {xi, yi} for nl ,,2,1 K= , for which the regression model 

can be expressed by means of a lineal potential base function topology or PUNNs as Eq. (1). In these 

models, the product units can be defined as follows: 

∏
=
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    (5) 

where ),,,( 21 jkjjj wwww K= is a parameter set for the potential base functions. 

This kind of function topology can be represented by a neural network architecture, as shown 

in Figure 1, with the following features: one input layer for the input variables, one hidden layer with 

a suitable number of nodes, and one output layer, expressed as: “nº of input neurons”: “nº of hidden 
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neurons”: “nº of output neurons”. Furthermore, the nodes of one layer cannot be connected with each 

other and there are no direct connections between the input and output layers. In the microbial growth 

model addressed in this study, the independent variables ),,,( 21 kxxx K , are the four environmental 

conditions considered, the p nodes in the hidden layer represent the term numbers of the model and 

therefore the number of product units considered, and the one node in the output layer corresponds to 

the microbial kinetics parameters, the Lag or  Gr or yEnd 

The transfer function of the j-th node of the hidden layer is given by equation 3 where 

],0[ Lw ji ∈  is the weight for the connection between the i-th node of the input layer and the j-th ones 

of the hidden layer. The linear transfer function of the node of the output layer is given by equation 1 

where ],[ MMj −∈β  is the weight for the connection between the j-th node of the hidden layer and 

the node of the output layer. In summary, the topology for the functions defined in Eq. (1) can readily 

be represented by a PUNN model. 

 

Evolutionary algorithm. The general structure of the evolutionary algorithm, which is 

applied to an initial population of Np individuals, can be supported in the following steps: 

1. Generate initial population with randomly generated networks 

2. Evaluate the fitness score for each individual of the population based on the objective 

function. 

3. Copy the best individual to the next generation. 

4. The best 10% of population substitutes the worst 10% of individuals. 

5. Apply parametric mutation operators to the best 10% of population. 

6. Apply structural parametric mutation to the rest of the population. 

 

These steps should be repeated until the population converges or a previous fitted number of 

generation  is reached. 

The evolution of product-unit networks uses the operations of replication and two types of 

mutation: parametric and structural. Parametric mutation alters the values of the exponents and 
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coefficients of the functions of the population and structural mutation alters the architecture if the net 

(connections and nodes). Parametric mutations are applied to each parameter wji and βj of a function f 

with gaussian noise (a normal random variable is added to the weights), where the variance of normal 

distribution depends on the function´s T. The severity of a mutation to an individual f  is dictated by 

the adaptive function T(f) given by: 

   1)(0)(1)( ≤≤−= fTfAfT    (6)  

where A(f) is the fitness function. Thus, the adaptive function T(f) is determined by how close 

the function is to the solution to the problem. So networks with a high adaptive function are mutated 

severely, and those with a low adaptive function only slightly. This allows a coarse–grained search 

initially, and progressively finer-grained ones as the network approaches the solution of the problem. 

More details on parametric mutation are shown in Appendix A. 

Structural mutation is more complex because it implies a modification of the structure of the 

network. There are five different structural mutations: 

Addition of a node: the node is added with no connections to others layers in order to enforce the 

behavioural link with its parents. Deletion of a node: A node is selected randomly and deleted 

together with its connections. Addition of a connection: A connection is added, with weight 0, to a 

randomly selected node. There are two types of connection: from an input node to a hidden node and 

from a hidden node to the output node. Deletion of a connection:. A connection is selected and 

removed. Joint node: two hidden nodes a  and b  selected randomly were replaced by another node 

c . 

All the above mutations are made sequentially in the same generation on the same network. 

For each mutation there is a minimum value, m∆  and a maximum value M∆ and the number of 

elements (nodes and connections) involved in the mutation is calculated as follows: 

   [ ])()()1,0( mMm fTU ∆−∆+∆=∆    (7)   

where U(0,1) is an uniform distribution un the interval [0, 1] 

Finally, the system evolves until the average fitness of the network population stops growing; 

that is, if during 20 generations there is no improvement in the average performance of the best 20% 
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of the population, or until a number when functions )(1 tα and )(2 tα are near  zero, or when a number 

of generations decided a priori is reached (3000).  

The values of parameters used by the evolutionary algorithm for PUNN are shown in Table 2. 

It should be pointed out that the algorithm is quite robust to the modification of these parameters 

To evaluate the fitting and prediction accuracy of each model, Root-Mean-Squares Error 

(RMSE) and Standard Error of Prediction percentage (%SEP) were employed: 

%SEP= 100×

2

1

ˆ( )
n

i i
i

g g

n
g

=

−∑

    (8) 

and   

RMSE= 

2

1

ˆ( )
n

i i
i

g g

n
=

−∑
   (9) 

where gi  is the value of the growth parameter observed; ˆ ig  is the predicted value obtained 

with our PUNN model and g  is the mean of observed values. 

The Standard Error of Prediction percentage (% SEP), is a relatively typical deviation of the 

mean prediction values and has the advantage, compared to other error measurements, of not being 

dependent on the magnitude of the measurements while it can be used to compare the error of the 

different growth parameters for different ranges and scales. 

To increase the interpretability of the PUNN models found, a series of rules are set up to 

simplify the number of addends in the original model for certain domains of the input variables.  

(Setieno and others 2002).  Through these rules we will try to get simpler models (in certain sub-

regions of the definition domain of the factors used as net input) that are  therefore more easily 

interpretable without losing their generalization capacity.    Rules for function approximation 

normally take the form: if (a condition or restriction in the input variables, x, is satisfied), then the 

output predicts y = f(x), where f(x) is a constant or a linear or nonlinear simple function of x. This 

kind of rule is acceptable if we take into account its similarity to nonlinear classification and statistical 
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regression methods. Thus in this study we use heuristic rules in our best PUNN models to quantify the 

growth parameters as a function of the environmental factors used 

The new model PUNN will be compared to RS (Zurera-Cosano and others 2005) and MLP 

(García-Gimeno and others 2005) estimations developed previously.  

Model validation 
The models were tested against a growth data set obtained under the same experimental 

conditions (30% of the total data set), but not included in the development of the model (internal 

validation, test or generalisation). They were also contrasted with a new data set obtained under 

different experimental conditions, but included in the tange of  experimental design (external 

validation) (Table 3) which would be the equivalent of what has been called by other predictive 

microbiology authors “mathematical validation” (Van Impe and others 1998). In order to evaluate the 

predictive capacity of the proposed model, the aforementioned error criteria, RMSE and SEP (%), 

were calculated together with bias (Bf) and accuracy (Af) factors (Ross 1996). 
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Where gi is the observed i-th value and ˆ ig  is the predicted i-th value 

 
RESULTS AND DISCUSSION 

The best model from the entire PUNN model nets generated have been selected (that is, those with the 

lowest Standard Error of Prediction for generalization set, SEPG value) for each of the kinetic 

parameters.   

For the growth rate the best model had a 4:5:1 architecture net and was as follow: 

 Gr*= 2.9118 (T*) 1.91        (S1) 

+ 6.0509 (T*) 6.55 (NaCl*) 5.25      (S2) 

+1.8178 (T*) 0.17 (pH*) 0.13 (NaCl*) 0.11     (S3) 
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-0.2551 (T*) 0.11 (pH*) 1.59 (NaCl*) 0.40     (S4) 

-4.3718  (T*) 1.82 (NaCl*) 0.56 (NaNO2*) 0.04    (S5) 

 

For the  lag-time, the best model had a 4:5:1 architecture net and was as follow:  

Lnlag*= 2.1146 (NaCl*) 0.19       (S1) 

+1.3187 (NaCl*) 1.79 (NaNO2*)  2.09     (S2) 

-1.5026  (T*)  0.75 (pH*) 0.08 (NaCl*) 0.58    (S3) 

+2.6521 (T*) 0.80 (NaCl*) 2.65 (NaNO2*) 0.58    (S4) 

-3.6252 (T*) 0.39 (pH*) 0.28 (NaCl*) 2.66 (NaNO2*) 1.46   (S5) 

 

For the  maximum density population, the best model had a 4:6:1 architecture net and was as 

follow: 

LnyEnd*=  7.1439  (T*) 1.19 (pH*) 2.17 (NaCl*) 0.89 (NaNO2*)  3.65  (S1) 

-0.8340  (T*) 0.07 (pH*) 0.19 (NaCl*) 1.80     (S2) 

+ 2.0445  (NaCl*) 0.03       (S3) 

-2.2889  (T*) 0.23 (pH*) 0.51 (NaCl*) 0.54 (NaNO2*)  3.00   (S4) 

+2.8170  (T*) 1.28 (pH*) 2.19 (NaCl*) 1.31    (S5) 

-11.3193  (T*) 3.89 (pH*) 4.83 (NaCl*) 1.27 (NaNO2*)  0.90   (S6) 

 

Since these models give an impresión of being complex right from the start, and in order to 

enable the best degree of interpretability possible, we are going to set up a series of simple rules in 

order to simplify the expresión of the model. S1 to S6 are the six addends of the equations and they 

are associated to each nodd of the hidden layer of the net. There are addends in some areas of the 

factors that do not contribute significant values for the prediction of the corresponding growth 

parameter. (Table 4). 

Studying how the different addends afects the estimation of the models we observed that the 

Gr equation, has S3 as the base or tendential addend, expresses the obvious interaction between the 

temperature, pH, and salt, and over it the other four addends are accommodated, two by two. S1 and 

S5 reaches high values, the first with a positive sign associated only with the temperature and the 

second with a negative one associated with temperature and chloride. It is observed that the effect of 

the temperature is compensated, while when NaCl increases, the Gr decreases significantly. The 

addends S2 and S4 have a relative value lower than the previous ones, the first with a positive sign 
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and the second negative and only results in somewhat significant values for S2 when the temperature 

and the NaCl are high and for S4 when the pH is high.  This means that when the temperature rises 

along with the salt, the values of the two addends are compensated, while when the pH raises, the Gr 

decreases somewhat. Nitrate hardly affects the Gr since the temperature deprives it of protagonism. 

Under refrigeration conditions (T≤14°C) and/or with little salt, the equation can be simplified 

to only two addends.(Table 4). When the pH is low (pH< = 5.5), the S4 addend can be eliminated. 

In the lag equation, the primary (S1) and third (S3) addends always appear in the model with 

different values of environmental factors, which is why they are its base addends. This indicates that 

the lag value depends directly and basically on the amount of salt, and inversely on the interaction of 

salt with the temperature and the pH, and to a lesser extent on the amount of nitrate.  The relation 

between the S1 values is approximately double those of S3 when the values of the factors are high. 

This means that a strong direct relationship exists between NaCl and Lag.  Table 4 shows that when 

the salt hits minimum values, the equation can be simplified to two addends. The effect of the 

temperature and NaCl is compensated between S3, S4 and S5, although when pH rises the lag is 

decreased. 

When the temperature increases and the pH goes down, the lag is seen to decrease due to S3 

because the temperature is compensated by S4 and S5 addends and the pH continues to show an 

inverse relationship with lag in the S5 addend.  Increasing the nitrate increases the lag, since the sum 

of the values of the S2, S4 and S5 addends is always positive where nitrate appears.  

In the yEnd model, the addend 3 is the base addend around which the other addends are 

accommodated, showing the great influence salt holds on this kinetic parameter. The interaction of all 

the factors in the S1, S4 and S6 addends results in a negative effect added onto the value of yEnd.  For 

temperature and high pH, the effect on yEnd through the added effect of the S2 and S5 addends is 

positive. For small values of some factors, some of the addends in the model are not significant 

enough.  So if the pH is low, the S1, S5 and S6 addends are insignificant, allowing simplification of 

the equation as can be seen in Table 4. When nitrates are absent (NaNO2= 0), then the S1 and S4 

addends do not contribute significant values for the calculation of yEnd. When salt is 0.25%, the S2 

addend is not significant. (Table 4). The S6 addend loses relevance when pH and T are at minimum 
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values (Table 4). On observing the base addends of yEnd, these are similar to the base addends of Lag 

which shows that the salt is the most influential element in both. 

The estimations errors found in PUNN are in general significantly inferior to those found in 

the other two models. Table 5 shows the SEP, RMSE Bf and Af found in the best model for each 

variable. It is important to mention that the experimental design carried out with CDC was originally 

meant for the treatment with RS that later was applied to MLP models and, in this study, to PUNN 

models. This design entails a series of disadvantages.  The low error must be accompanied by a model 

that is not too complex and that has a good generalization capacity. New data in the same conditions 

(internal validation) and, later, data in different conditions but always within the range of the design 

(external validation) was compared to the estimations. This estimation should also be contrasted with 

other authors’ data but in our knowledge there is no Leuconostoc mesenteroides model published to 

compare with. 

SEPG, Bf and Af values obtained for the three kinetic parameters by the best model of PUNN, 

RS and MLP models (Table 5) during the process of internal validation (generalization) were 

compared. 

The model with least SEPG was PUNN (5.59% SEPG) for lag. The number of connections or 

equation parameters of this model (18) was smaller than MLP (22) although in this aspect RS wins 

with only 8 equation parameters. In this case, based on internal validation, as RS SEPG (6.58) is just 

above PUNN error, we consider that for this kinetic parameter the RS model would be the best one.  

For Gr a wide difference between SEPG is observed: PUNN (2.91%), MLP (3.77) and RS 

(9.91). In this case, although the PUNN model is more complex (17 parameters) versus RS (8) but 

simpler than MLP (19), the first one could be the model chosen due to its considerably   lower error of 

prediction. 

For yEnd the best SEPG was obtained by PUNN (12.22%).   Although it is considerably more 

complex (25 parameters) than MLP (13) or RS (10), the differences in error estimation could 

compensate this.  

These first draft conclusions must be corroborated by the analysis of what happens in the 

external validation. 
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Furthermore, in all cases Bf and Af were close to unity, which indicates a good fit between the 

observations and predictions, as was also the case for RS and MLP. For the parameter Gr, Bf must be 

greater than 1, because in the case of spoilage microorganisms, this indicates that the model creates 

accurate shelf life predictions, since it will estimate beforehand any sensorial alterations in the 

product. In this study the Gr parameter had a very good Af value (1.03), within the range of 

acceptability criteria described by Ross and others (2000) who considered an Af value to be acceptable 

with an increase of up to 0.15 (15%) for each variable included in the model. Therefore, in our study, 

with four variables, (temperature, pH, concentration of salt and nitrites) we should expect Af values of 

up to 1.6. 

Comparison with other authors’ studies was impossible since no model of Leuconostoc 

mesenteroides has been achieved. Scientific literature contains few references to the internal 

validation of predictive models of other bacteria, and the results found were very similar to those 

determined in our own study. This is the case for the research carried out by Hervás and others 

(2001), who obtained SEP values of around 9% for Gr in an Artificial Neural Network for Salmonella 

spp., and García-Gimeno and others (2002), who observed values of between 11-17% for Gr and Lag 

in Lactobacillus plantarum. 

All of this demonstrates that the model has good generalisation ability when it comes to 

accurately estimating the growth response of L. mesenteroides.  

For external validation, comparison with other authors’ studies would be advisable but was 

impossible in this case since no model of Leuconostoc mesenteroides has been achieved.   Thus the 

model estimation was validated against a new data set in different conditions but within the range of 

the model. SEPG values obtained by PUNN were lower for Lag and GR but higher for yEnd than 

MLP.(Table 5).  

In all cases Bf and Af were close to unity, which indicates a good fit between the observations 

and predictions for the three models. During the process of external validation of the predictive 

models, several authors have accepted Bf values of between 0.75-1.25 as being acceptable for spoilage 

microorganisms (Dalgaard, 2000). According to these criteria, each one of the models elaborated can 

be considered suitable to describe the growth of L. mesenteroides.  
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For the parameter Gr, the Bf is below 1 which means that the models underestimated this 

parameter, although the Af value indicates an acceptable estimation error (<1.60). Other studies 

describe values for bias and accuracy factors similar to those obtained in our study. Lebert and others 

(2000) observed good fit when they applied mathematical validation to models that estimate 

generation time (inverse of the maximum growth rate) for Pseudomonas spp. (Bf= 0.82- 1.16 and Af= 

1.13- 1.24). In a different study on the same microorganism, values were produced that were similar 

to the predictions for these parameters, Bf= 0.84 and Af= 1.23 (Neumeyer and others 1997b). Another 

study undertaken by Valík and Pieckovä (2001) with spoilage moulds, produced values very close to 

unity, Bf=1.01 and Af=1.07, showing the goodness of fit and the accuracy of the RS model elaborated. 

Arinder and Borch (1999) observed similar values for these factors, Bf= 1.02 and Af= 1.36, for the 

growth rate of Pseudomonas spp. 

 

Lag, models also underestimate their value since Bf is higher than 1, meaning that it predicts 

higher times of adaptations of the microorganism than observed. Af values indicate acceptable values, 

all below the criteria. The prediction of the lag-time poses more problems for our models than the 

other parameters, since it depends on several factors, such as the physiological stage and size of the 

inoculum and previous growth conditions (Robinson and others 1998; Ross and others 2000). Other 

authors for example García-Gimeno and others (2003) conducted a study using E. coli O157:H7, and 

obtained accurate estimations using an MLP model (Bf=0.95 and Af=1.24). For Staphylococcus 

aureus, Zurera-Cosano and others (2004) observed values of Bf=0.87-1.54 and Af=1.52-2.22 using a 

Surface Response model in aerobic and anaerobic conditions. The values obtained in our study are 

within the range described by other authors and, in fact, are even better since they are closer to unity. 

The kinetic parameter yEnd is not often modelled in predictive microbiology, and is included 

in only a few models, such as those developed by McCann and others (2003) and Nauta and others 

(2003). In our study, we obtained values close to unity for Bf, although they did slightly underestimate 

the growth response of L. mesenteroides. The yEnd parameter has a poorer generalisation SEP for 

PUNN, the MLP being the model with the best SEPG, Bf and Af.  
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When choosing a predictive model, it is not only important to bear in mind estimation errors, 

but also the complexity of the model (number of connections or coefficients), which is another 

decisive factor in the comparison of the models developed, even though in other publications this 

information is not specified (Lou and Nakai 2001).  

Several authors highlight that MLP models produce better estimations of kinetic parameters 

than other models such as the RS (Hajmeer and others 1997; Hervás and others 2001; Lou and Nakai 

2001; García-Gimeno and others 2002; 2003). The studies conducted by García-Gimeno and others 

(2002; 2003) on L. plantarum and E. coli O157:H7 respectively, the MLP models were chosen instead 

of RS models based on the lower SEP, despite the fact that the MLP models had a greater degree of 

complexity. Hajmeer and others (1997) reported on an MLP for Shigella flexneri with lower error 

values (4% to 12% mean absolute relative error) but with a considerable degree of complexity (142 

parameters). Some researchers do not agree with the use of MLPs to predict growth parameters, due 

to their complexity. However, thanks to genetic algorithm pruning, MLPs have been shown to be even 

simpler than regression in certain cases (Hervás and others 2001; García-Gimeno and others 2002). 

In our study, PUNN and MLP models were more complex than the RS models, especially in 

the case of the parameter Gr, but described lower SEPG. In several publications, MLP models have 

been chosen over others despite the fact that these models are more complex, because they produce 

fewer errors in prediction values (Hajmeer and others 1997; García-Gimeno and others 2002; 2003). 

The possibility of describing the development of spoilage bacteria in foods by predictive 

microbiology, and relating the spoilage of the product to a certain level of microorganisms would 

allow us to estimate the shelf life of different products. Of course, the model should include 

microorganism behaviour data throughout the general shelf life of that type of product to estimate 

realistic shelf life duration of any one of the products. The more accurate the models are, the more 

accurate our predictions will be, and this is an advantage for their practical application.  

We have defined neuronal net models of potential base, PUNN and of sigmoidal base MLP,  

as models that employ the same methodology to approximate functions of a continuous type, where 

the problem is obtaining the optimum number of base functions that best adjust to a specified 

function, as well as the coefficients of these models.  To do this we have used algorithms of evolutive 
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computation in order to optimize the search for the best designs and coefficients of neuronal net 

models. The analysis of growth predictions under experimental conditions showed that the MLP and 

the PUNN satisfactorily represent the experimental data, although the best models are obtained with 

the PUNN models which are much easier to interpret than the MLP ones.   And here rests our treatise 

on the balance between the complexity of the model and the greater accuracy of the estimations. 

With this work we have pretend to propose  a new approach to neural nets estimations for its 

application on predictive microbiology, searching for models with easier interpretation and that has 

the advantage of having a great ability to fit the boundaries of the range of the input factors. We 

consider that still there is a lot left to do but PUNN could be very valuable instrument for 

mathematical modeling.  
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Appendix 

Exactly, the exponents jiw  of the function, which represent the weights of the connections 

between an input and hidden nodes, are modified as follows: 

pjkittwtw jiji ≤≤≤≤+=+ 1,1,)()()1( 1ξ   (4) 

where ))()(,0( 11 fTtN αξ ∈ represents a normally distributed one-dimensional random 

variable with mean 0 and variance )()(1 fTtα . The coefficients jβ  of the function f  representing 

the weights of the connections between a hidden node and the output node, are modified as follows: 

  pjttt jj ≤≤+=+ 1,)()()1( 2ξββ    (5) 

where ))()(,0( 22 fTtN αξ ∈ represents, in a similar way, a normally distributed one-

dimensional random variable with mean 0 and variance )()(2 fTtα  

It should be pointed out that the modification of the exponents is different so that coefficients, 

that is )()( 21 tt αα << , are adaptively changed in every generation by some predefined rule 

In essence the functions )(1 tα  and )(2 tα  define the mutation strength in each case and 

specifically, they are defined by: 
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 (6) 

where )(sA  represents the fitness of the best individual in the generation s-th and the 

parameters β  and r are fixed, user-defined parameters. 

Taking into account that a generation is defined as successful if the best individual of the 

population is better than the best individual of the previous generation, if many successful generations 

are observed, this indicates that the best solutions are residing in a better region in the search space. In 

this case, we increase the mutation strength in the hope of finding ever better solutions closer to the 
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optimum solution. If the fitness of the best individual is constant in different generations, we decrease 

the mutation strength. In the other cases the mutation strength is constant. 

When the mutations are realized, the fitness of the individual is recalculated and the usual 

simulated annealing criterion is applied. Being A∆  the difference in the fitness function before and 

after the random step: 

 If 0A∆ ≥  the step is accepted 

 If 0A∆ <  then the step is accepted with a probability 

   ⎟
⎠
⎞

⎜
⎝
⎛−=

T
AAP ∆∆ exp)(      (7) 

whereT  is the current temperature. 
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Table 1. Average of observed (OBS) and estimated growth rate (Gr, h-1), Lag time (Lag, h) and maximum population density (yEnd, 

OD) by Product Unit Neural Networks (PUNN) of Leuconostoc mesenteroides for model development. 

    Gr (h-1) Lag (h) yEnd (OD) 

T 

(ºC)  

pH NaCl 

(%) 

NaNO2 

(ppm) 
OBS PUNN  OBS PUNN  OBS PUNN  

10.5 6.5 3.25 100 0.106 0.102  16.919 16.583  0.382 0.354  
14 6 1.75 50 0.161 0.164  7.535 7.087  0.706 0.733  
14 6 1.75 150 0.149 0.160  7.855 8.428  0.286 0.308  
14 6 4.75 50 0.139 0.130  12.446 13.802  0.297 0.313  
14 6 4.75 150 0.120 0.123  21.743 20.868  0.094 0.083  
14 7 1.75 50 0.180 0.181  6.571 6.631  0.978 0.930  
14 7 1.75 150 0.168 0.177  7.854 7.603  0.487 0.451  
14 7 4.75 50 0.142 0.140  12.817 10.929  0.617 0.636  
14 7 4.75 150 0.130 0.133  11.168 11.220  0.305 0.317  

17.5 5.5 3.25 100 0.103 0.102  12.914 10.543  0.544 0.451  
17.5 7.5 3.25 100 0.169 0.164  6.122 5.479  0.824 0.832  
17.5 6.5 3.25 0 0.191 0.201  5.335 5.361  1.028 0.932  
17.5 6.5 3.25 200 0.157 0.161  9.419 9.273  0.233 0.220  

17.5* 6.5 3.25 100 0.172 0.172  6.475 6.663  0.548 0.576  
17.5* 6.5 3.25 100 0.172 0.172  6.602 6.663  0.529 0.576  
17.5* 6.5 3.25 100 0.170 0.172  6.356 6.663  0.539 0.576  
17.5* 6.5 3.25 100 0.176 0.172  6.498 6.663  0.537 0.576  
17.5* 6.5 3.25 100 0.178 0.172  6.679 6.663  0.536 0.576  
17.5* 6.5 3.25 100 0.167 0.172  6.063 6.663  0.542 0.242  
17.5 6.5 6.25 100 0.141 0.142  14.864 6.663  0.269 0.644  
17.5 6.5 0.25 100 0.363 0.352  3.589 6.663  0.632 0.794  

21 6 1.75 50 0.336 0.338  3.793 14.720  0.783 0.334  
21 6 1.75 150 0.312 0.317  4.259 3.670  0.366 0.397  
21 6 4.75 50 0.323 0.309  9.088 3.863  0.371 0.120  
21 6 4.75 150 0.269 0.274  12.648 4.598  0.129 0.955  
21 7 1.75 50 0.363 0.360  3.630 8.641  1.049 0.634  
21 7 1.75 150 0.337 0.339  4.272 13.122  0.634 0.716  
21 7 4.75 50 0.313 0.323  5.880 3.419  0.696 0.373  
21 7 4.75 150 0.296 0.288  5.301 3.864  0.367 0.504  

24.5 6.5 3.25 100 0.409 0.411  3.658 5.924  0.480 0.354  
             

*: center point conditions;  
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Table 2. Parametric Values Used by the Evolutionary Algorithm for Product Unit Neural Networks for the estimation of 

Leuconostoc mesenteroides 

Population  parameters  Structural mutation  parameters: 

interval, [∆m , ∆M]  

 Parametric mutation 

parameters of Eq. (16) 

size, NP 1000  add nodes [1, 2]   α1(0) 1 

maximum number of hidden nodes, p 8  delete nodes [1, 2]   α2(0) 5 

number of independent variables, k 4  add connections [1, 6]   β 0.5 

exponent interval, [-M, M]  [0, 3]  delete connections [1, 6]   r 10 

coefficient interval, [0, L]  [-5, 5]        
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Table 3. Average of observed (OBS) and estimated growth rate (Gr, h-1), Lag time (Lag, h) and maximum population 

density (yEnd, OD) by Product Unit Neural Networks (PUNN) of Leuconostoc mesenteroides for external validation 

in anaerobic conditions 

    Gr (h-1) Lag (h) yEnd (OD) 

T (ºC) pH NaCl 

(%) 

NaNO2 

(ppm) 
OBS 

PUNN 
 OBS PUNN  OBS PUNN  

10.5 6.5 3.25 50 0.112 0.102  11.01 14.65  0.562 0.508  
10.5 6.5 3.25 100 0.106 0.102  15.06 16.58  0.385 0.354  

14 7 1.75 0 0.214 0.187  3.53 6.43  1.154 1.025  
14 7 4.75 0 0.149 0.150  14.36 10.02  0.979 0.748  

17.5 6 1.75 50 0.274 0.241  3.24 5.14  0.853 0.760  
17.5 6 3.25 50 0.157 0.166  3.66 6.78  0.768 0.570  
17.5 6.5 0.25 50 0.374 0.355  2.42 3.64  0.993 0.763  
17.5 6.5 1.75 50 0.305 0.257  4.06 4.86  0.912 0.904  
17.5 6.5 1.75 100 0.297 0.250  4.41 5.14  0.529 0.684  
17.5 6.5 3.25 50 0.175 0.181  5.93 6.10  0.890 0.804  

21 6 1.75 0 0.369 0.367  3.11 3.61  1.128 0.862  
21 6 3.25 50 0.332 0.213  5.24 5.00  0.540 0.622  

24.5 6 1.75 150 0.402 0.438  4.08 3.55  0.343 0.360  
24.5 6.5 3.25 50 0.416 0.439  2.66 3.25  0.763 0.878  
24.5 6.5 3.25 150 0.389 0.393  3.56 4.04  0.382 0.440  
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Table 4.-  Rules derived from the best PUNN models 

IF THEN 

T ≤ 14ºC, and/or NaCl ≤ 1.75 Gr*= S1+S3 

pH≤ 5.5 Gr*=S1+S2+S3+S5 

NaNO2=0  LnLag*= S1+S3+S4+S5 

NaCl=0.25  LnLag *= S1+S3 

NaCl=0.25 LnyEnd*= S1+S3+S4+S5+S6 

pH=5.5 o LnyEnd *=  S2+S3+S4 

NaNO2=0 LnyEnd *= S2+S3+S5+S6 
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Table 5.- Standard errors of prediction (%SEPG), Bias (Bf) and Accuracy factors (Af) for the best models of PUNN, RSa, and MLPb 

for the lag-time (Lag), growth rate (Gr), and maximum population density (yEnd) of Leuconostoc mesenteroides.  

       PUNN      RS      MLP   

    RMSE SEP BF AF   RMSE SEP BF AF   RMSE SEP BF AF 

Lag-time Model 0.0934 4.34 1.00 1.04  0.120 6.02 1.02 1.1  0.109 5.51 0.98 1.09 

(h) Internal 

validation 

0.1201 5.59 0.99 1.03  0.120 6.58 1.01 1.09  0.134 6.55 0.97 1.11 

 External  

validation 

0.3156 20.14 1.14 1.19  0.1321 35.08 1.17 1.33  0.5110 32.61 1.18 1.31 

Growth 
Rate 

Model 0.0073 3.04 1.01 1.04  0.022 10.48 1.00 1.09  0.009 4.13 1.00 1.04 

(h-1) Internal  

validation 

0.0062 2.91 1.00 1.03  0.0239 9.91 0.98 1.11  0.009 3.77 1.00 1.04 

 External  

validation 

0.0390 14.37 0.94 1.10  0.0415 15.31 0.95 1.12  0.0423 15.59 0.94 1.14 

Maximum  Model 0..0616 11.57 0.99 1.10  0.087 16.35 0.98 1.14  0.078 14.60 0.99 1.12 

population 

density 

Internal  

validation 

0.0668 12.22 0.94 1.11  0.0892 16.31 0.95 1.13  0.107 14.15 0.94 1.13 

(OD) External  

validation 

0.1416 18.99 0.94 1.17  0.1418 19.02 0.90 1.19  0.1104 14.80 0.99 1.13 

RSa : data taken from Zurera-Cosano and others (2005)  

MLPb: data taken from García-Gimeno and others (2005) 
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Table 6.- Statistical Comparison (p-values) for Levene and student´s t- tests of the generalization ability (SEPG) and number 

of connections for MLP and PUNN for lag-time (Lag), growth rate (Gr) and maximum density population (yEnd) 

 

%SEPG  Number of connections MLP 

versus 

 PUNN 
Levene test t-test  Levene test t-test 

Lag (h) 0.000 0.118  0.000 0.000 

Gr (h-1) 0.009 0.753  0.000 0.178 

yEnd (OD) 0.073 0.023  0.000 0.000 
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Figure 1. Representation of Neural Network based on Product Units Model. 
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