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Abstract

A neural network model that can learn higher order correlations within the input data without suffering from the combinatorial explosion

problem is introduced. The number of parameters scales as ~M £ N, where ~M is the number such that no higher order network with less than ~M

higher order terms can implement the same input data set and N is the dimensionality of the input vectors. In order to have better general-

ization, the model was designed to realize a supervised learning such that after learning, output for any input vector is the same as the output

of a higher order network that implements the same input data set using ~M number of higher order terms. Unlike the case in product units, the

local minima problem does not pose itself as a severe problem in the model. Simulation results for some problems are presented and

the results are compared with the results of a multilayer feedforward network. It is observed that the model can generalize better than the

multilayer feedforward network. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Studies by various authors including Durbin and Rumel-

hart (1989); Giles and Maxwell (1987); Mel (1990); Person-

naz, Guyon and Dreyfus (1987); Redding, Kowalczyk and

Downs (1993) and Taylor and Coombes (1993) suggest that

higher order networks can be more powerful and are biolo-

gically more plausible with respect to the more traditional

multilayer networks, and higher order associative memories

have a memory storage capacity signi®cantly better than the

capacity of the Hop®eld model (Abbot & Arian, 1987; Baldi

& Venkatesh, 1987; Burshtein, 1998; Gardner, 1987; Lee et

al., 1986; Peretto & Niez, 1986; Psaltis & Park, 1986).

These architectures make explicit use of nonlinear interac-

tions between input variables in the form of higher order

units. Higher order units are capable of implementing

functions f : { 2 1; 1}N ! R by means of the ®nite expan-

sion

f�x� �
X
a

sama�x�; x [ { 2 1; 1}N
; sa [ R �1�

where

ma�x� �
YN
j�1

x
aj

j ; a � a1¼aN [ {0; 1}N �2�

are called monomials. The expansion runs over all reali-

zations of binary strings a and, therefore, contains 2N

higher order terms (weighted monomials). Usually, but

not necessarily, the value in Eq. (1) is passed through

the signum function and, consequently, the output of a

higher order unit is {21, 1}. Then, a higher order network

consisting of P higher order units can implement any

function f : { 2 1; 1}N ! { 2 1; 1}P
: Due to the combina-

torial explosion of the number of higher order terms in the

dimensionality of the inputs, being able to learn a set of

higher order terms relevant to the implementation of a

speci®c logical function is important. For example,

detecting the monomial with a j� 1; j� 1, ¼, N, in Eq.

(2) is all needed for the implementation of the parity

problem.

If it is known a priori that the problem to be implemented

possesses a given set of invariances like in the translation,

rotation, and scale invariant pattern recognition problems,

those invariances can be encoded, thus eliminating all

higher order terms which are incompatible with the invar-

iances (Giles & Maxwell, 1987; Perantonis & Lisboa, 1992;

Spirkovska & Reid, 1993). In general, however, higher

order networks should be capable of learning a set of higher

order terms required for the implementation of a speci®c

logical function. This is due to the fact that, even though

the number of higher order terms increases exponentially

with the size of inputs, usually only a small number of those

terms are needed to implement a certain logical function.
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Besides, the VC dimension of higher order networks has

been computed as the number of higher order terms that

the network employs (Young & Downs, 1993). That is to

say, a higher order network that implements the training

data set using the minimum number of monomials possible

is expected to give a learning curve with a more rapidly

rising correct classi®cation rate than the learning curve of

any other higher order network that employs a greater

number of monomials. Thus, for better generalization, as

well as for less storage space, the problem to be solved, in

supervised learning, is how to ®nd a minimal set of mono-

mials without suffering from the combinatorial explosion of

the number of higher order terms in the input dimensional-

ity. Here, what is meant by a minimal set of monomials is

that a set of monomials that, with an appropriate set of

values of weights, can implement the training data set

such that no set of monomials with less number of mono-

mials than the number of monomials in a minimal set can

implement the same training data set. The problem has been

a major bottleneck for higher order networks. Note that

having a minimal set with a small number of monomials

does not solve the combinatorial explosion problem in

higher order networks. This is due to the fact that, since

the nonzero weights are not known in advance, the higher

order network still has to cope with 2N weight parameters.

Networks that use product units (Durbin & Rumelhart,

1989) or product terms (GuÈler & SËahin, 1994) are, in prin-

ciple, capable of learning a set of monomials that imple-

ments the training data set without suffering from the

combinatorial explosion problem. Those approaches use

an implicit representation of higher order terms and expect

the network to learn the monomials as well as the associated

weight values. In the former, monomials are speci®ed

through a cosine activation function and, in the latter,

each input component is coupled with an additive coef®-

cient and then their product is taken. However, problems

are encountered when using the backpropagation algorithm

to train networks containing product units or product terms.

In the case of product units, using a cosine activation func-

tion often leads to numerical problems, and nonglobal

minima, whereas with sigmoids the problem is not so severe

(Lapedes & Farber, 1987; Leerink, Giles, Horne & Jabri,

1995). A similar problem, due to the product form of the

adjustable weights, also arises for the networks containing

product terms. Another fundamental dif®culty with product

units is that using a unit with a cosine activation function

makes that unit's VC dimension in®nite (Brady, 1990). That

is to say, product units will generalize very poorly unless the

weight parameters are allowed to take only a certain ®nite

number of possible values such as 0 and 1, but it is very

dif®cult to force adjustable parameters to certain discrete

values in a gradient descent learning algorithm without

seriously suffering from the local minima problem.

Models, as in Fahner and Eckmiller (1994) and Redding et

al. (1993), that make direct use of expansion (1) and, yet,

avoid the combinatorial explosion of the terms have been

proposed. These models are based on ®nding one set

among a large number of relevant sets of monomials that

implement the training data set. Here, what is meant by a

relevant set of monomials is that if one element from the set

is removed, the remaining set of monomials cannot imple-

ment the same training data set with any choice of the weight

values. Note that the number of relevant sets will be very

large when the number of patterns in the training data set is

signi®cantly less than 2N, and only one, or few of the relevant

sets will be a minimal set. For a simple example, take, in

N� 2, the training patterns (1, 1)! 1, (21, 21)! 1, and

(21, 1)! 2 1. There are two relevant sets of monomials as

{x1x2} and {1, x1, x2} of which, only the ®rst one is a minimal

set. Therefore, these models have the shortcoming of ending

up with a relevant set containing much larger number of

monomials than the number of monomials in a minimal

set. In addition, as the number of patterns in the training

data set becomes relatively larger, the number of relevant

sets decreases and, consequently, computational cost of ®nd-

ing a relevant set becomes extremely expensive.

In this paper, we introduce a neural network model that

tries to implement the training data set by learning a minimal

set and does this without suffering from the combinatorial

explosion of the number of parameters in the input dimen-

sionality. The idea is similar to the idea behind the product

units that a single unit which represents a single higher order

term, but learns which one to represent. However, the repre-

sentation we use is entirely different than the representation

of product units. Product units can be thought of as formal

neurons with a cosine activation function. In the representa-

tion we propose, there is no such single activation function,

but rather there is a superposition of some functions. The
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Nomenclature

S SummationQ
Product

R Set of real numbers

u:u Absolute value

sgn(.) The signum function

tanh(.) Hyperbolic tangent function

Dtanh(.) Derivative of tanh(.) with respect to its

argument

x Input vector with the bipolar components

{21, 1}

xi ith component of the input vector x
p A training vector

pi ith component of the input vector p
dp Target output for the training vector p
P Training set

N Dimensionality of the input vectors

M Number of hidden nodes in the network

Dp Weight adjustment value for the training

vector p



reason behind that representation is to enable learning a mini-

mal set without severely suffering from the local minima

problem. A learning algorithm that forces ®nding a minimal

set rather than a relevant set is designed.

In Section 2, the theory behind the representation that

forms the basics of the model is introduced. In Section 3,

the structure of the model is introduced. In that section, the

model is also presented as a network. In Section 4, a gradi-

ent descent learning algorithm for supervised learning by

the model is derived. In Section 5, simulation results are

presented. Generalization of the model is also compared

with the generalization of the multilayer feedforward

network. Finally, in Section 6, discussion and conclusions

are given.

2. Theory of the model

In this section, we introduce a theorem that forms the

basics of the model.

Theorem 2.1. Let A(x) be de®ned by

A�x� � g
X1 1

l�2 1
�21�ulue2uB�x�22lu

; �3�

g [ R; x [ { 2 1; 1}N

and

B�x� � 1

2

XN
i�1

�vi 1 1�xi 2
1

2
�v 1 1� �4�

where v i (i� 1, ¼, N) [ {21, 1}, v [ {21, 1}, and u.u
denotes the absolute value. Then, there is an equivalence

between A(x) and the higher order terms in expansion (1).

That is, any higher order term can be implemented by A(x)

with an appropriate choice of values of parameters g, v i

(i� 1, ¼, N), and v; and that, for a given set of values of

the parameters, no more than one higher order term is imple-

mented by A(x).

Proof. Assume that the higher order term to be implemen-

ted is sxk1
xk2

¼xkr
where let r be a positive even integer. Let

v i� 1 for i� k1, k2, ¼, kr, and v i�21 otherwise. Also, let

v�21. Then, B�x� � xk1
1 xk2

1 ¼ 1 xkr
: Since r is even,

there exists an integer l* such that B(x)� 2l*. Then, making

the substitution j� l 2 l* in Eq. (3) gives

A�x� � g
X1 1

j�2 1
�21�uj1lp ue22uju �5�

where l* is a function of x. Splitting the in®nite sum in Eq.

(5) into three parts; one with j� 0, one with the negative j

values, and one with the positive j values; and, then, making

use of the absolute values gives

A�x� � g �21� lpj j 1 2 2e22�1 2 e22�
X1 1

n�0

e24n

 !
�6�

Then, substitution of the value of the in®nite sum in Eq. (6)

results in

A�x� � g�21� lpj j�1 2 2e22�1 2 e22�=�1 2 e24�� �7�
The higher order term sxk1

xk2
¼xkr

has the value 2s or s

depending on the given x. After setting g appropriately,

A(x) will also have that value. Consider the transformation

xkt
! 2xkt

in x for a choice of t. The transformation results

in B(x)� 2(l* 2 1) or B(x)� 2(l* 1 1), that is l*! l* 2 1

or l*! l* 1 1, if 1 # t # r; and results in B(x)� 2l*, with

no change in l*, if t $ r. Consequently, A(x) transforms as

A(x) ! 2 A(x) if 1 # t # r; and A(x) ! A(x) if t $ r. The

higher order term sxk1
xk2

¼xkr
also transforms in the same

way. Hence, A(x), with the given set of parameter values,

and the higher order term sxk1
xk2

¼xkr
, with an even r, are

equivalent. In the case of r is being odd, setting v� 1,

instead of v�21, and following the same steps also results

in Eq. (7). Implementation of the constant higher order term

s is straightforward: simply by setting v i�21, i� 1, ¼, N,

and v�21. Thus, any higher order term can be implemen-

ted by A(x) with an appropriate choice of values of the

parameters g, v i(i� 1, ¼, N), and v. This completes the

®rst part of the proof. In the case of having an even number

of v i� 1s and v� 1 in B(x), after some algebra, we obtain

A(x)� 0. Similarly, also in the case of having an odd

number of v i�21s and v�21 in B(x), one obtains

A(x)� 0. This completes the proof.

It is important that, for a given set of values of the para-

meters, A(x) cannot implement more than one higher order

term. We will make use of this property of A(x) in order to

force the model to ®nd a minimal set rather than a relevant

set.

3. Structure of the model

We introduce the model for the implementation of the

functions f :{21, 1}N! {21, 1}. Extension to the case of

f :{21, 1}N! {21, 1}P is straightforward. The structure is

based on Eqs. (3) and (4). Since A(x) can implement any, but

only one, higher order term, the model incorporates some M

number of those A(x)s, which we label as Am(x) (m� 1, ¼,

M), where M is not to be smaller than the minimal number of

higher order terms essential for the implementation of the

training data set in consideration. Correspondingly, there

are M number of B(x)s labelled as Bm(x) (m� 1, ¼, M).

Consequently, the adjustable parameters v i (i� 1, ¼, N)

and v in Eq. (4) will also have the associated index m. These

parameters, however, need to be converted into reals; so that

they can be updated gradually in a learning algorithm. We
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do this by making use of the tanh function:

Bm�x� � 1

2

XN
i�1

ktanh�gvi
m�1 1

� �
xi 2

1

2
�ktanh�gvm�1 1�

�8�
where v i

m and vm are now reals. k and g are constant para-

meters. k is to be assigned a value slightly greater than 1.

The reason for the inclusion of k is that there shall be no

need for the tanh(.)s to saturate to the limiting values 21

and 11. g simply speci®es the steepness of the tanh(.)s.

Am(x) (m� 1, ¼, M) are de®ned as follows:

Am�x� �
Xz�x�

l�q�x�
�21� lj jtanh guul

mu
� �

e2uBm�x�22lu �9�

Unlike the sum in A(x), in Eq. (3), the sum is now a ®nite

sum so that Am(x) can be computed in ®nite time. The lower

bound q(x) and the upper bound z(x) are functions of the

input vector x, set as follows:

q�x� is the smallest integer not less than
2n2�x�2 5

2

z�x� is the largest integer not more than
n1�x�1 4

2

where n1(x) and n2(x) denote the number of 11s and the

number of 21s in the input vector x, respectively. q(x) and

z(x) are decided by ignoring those terms with

uB�x�2 2lu $ 4

in the in®nite sum in Eq. (3). After observing that the mini-

mum and the maximum possible values for Bm(x), in case of

uktanh�:�u � 1; are 2n2 (x) 2 1 and n1(x), respectively; the

above values for q(x) and z(x) are easily concluded.

The adjustable parameters u l
m introduced in Am(x) in Eq.

(9) are, in principle, not needed. They are, however, intro-

duced in connection with the local minima problem. The

idea is that, in a gradient descent learning algorithm, they

shall initially be set to values around 0 and, as the learning

takes place, let them bubble up gradually as they become

necessary. Therefore, one expects the learning to take place

without much of a problem of getting stuck in a local mini-

mum. We have observed throughout the simulations that

this is in fact the case and the presence of those adjustable

parameters helps in the avoidance of the local minima

problem. The indices in u l
m have the ranges m� 1, ¼, M,

and l� li, ¼, lf where

li is the smallest integer not less than
2N 2 5

2

lf is the largest integer not more than
N 1 4

2

Note that, li and lf correspond to the minimum possible value

of q(x) and the maximum possible value of z(x), for any x,

respectively.

The output of the model, denoted by O(x) for the input

vector x, is

O�x� � sgn
XM
m�1

gmAm�x�
 !

�10�

where sgn denotes the signum function and gm (m� 1, ¼,

M) are some adjustable parameters. Note that, even though

the parameter g is a part of A(x) in Eq. (3), gm are not

included in Am(x) in Eq. (9). This is just for convenience

and will serve better for the rest of the paper.

The model can be visualized as a network with the archi-

tecture as given in Fig. 1. The network consists of N input

nodes, M hidden nodes, and a single output node. The adjus-

table parameters v i
m and gm are connection weights; v i

m is

the connection weight from the ith input node to the mth

hidden node, and gm is the connection weight from the mth

hidden node to the output node. Adjustable parameters vm

and the adjustable vectors um are adjustable internal para-

meters for the mth hidden node. The mth hidden node

computes Am(x) as its output. The output node is a formal

neuron; it simply computes the weighted sum of the outputs

from the hidden nodes and passes it through the signum

function.

The complexity of the network topology is of the order

M £ N. That is, the number of parameters in the model

linearly increases with the number of higher order terms

that the network is expected to implement, and, also, line-

arly increases with the dimensionality of the inputs. There is

no problem of combinatorial explosion of terms or para-

meters in the input dimensionality.

No continuously oscillating functions such as the cosine

function have been used in the model and, therefore, a

severe suffering from the local minima problem is not

expected (Lapedes & Farber, 1987); it is a known fact that

neural networks that employ nonmonotonic transfer func-

tions are more dif®cult to train than networks that use mono-

tonic transfer functions, because the former can be expected

to have more local minima.

M. GuÈler / Neural Networks 14 (2001) 495±504498
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4. Learning algorithm

In supervised learning, normally, a cost function is

described and minimized through the gradient descent tech-

nique. We employ this technique here using the following

cost function

E � E1 1 E2 �11�
where E1 enables learning the training data set while E2

performs weight elimination. E1 is given by

E1 � 1

2

X
p[P

�dp 2 tanh�bS1�p��2�dp 2 S1�p��2 �12�

where b is a constant. P is the training set consisting of the

patterns (p, dp), where p is a training vector with the asso-

ciated target output value dp. S1(p) is the weighted sum of

the outputs from the hidden nodes as given by

S1�p� �
XM
m�1

gmAm�p� �13�

In E1, the use of tanh(.) is due to the fact that the output of

the network is {11, 21} and that tanh(.) is a differentiable

function that approximates the signum function. Even

though the second quadratic term in Eq. (12) is not essential,

it is, however, included just to give a chance to change to the

adjustable parameters even after a possible incorrect satura-

tion of the tanh(bS1(p)); note that the derivative of tanh(x) is

negligible when uxu is large. However, this is a minor point

and the second quadratic term can be ignored in principle

without any problem.

The reason for having E2 in Eq. (11) is to perform weight

elimination (Weigend, Rumelhart & Huberman, 1990) on

the g weights connecting the hidden nodes to the output

node. Thus, E2 is given by

E2 � 1

2
l
XM
m�1

�gm=g
p�2

1 1 �gm=g
p�2 �14�

where l is a regularization parameter and g* is a weight

normalization factor. E2 forces the network to make use of

the minimal number of hidden nodes. Note that we apply the

weight elimination only on the g weights and not on the

other adjustable parameters. The reason for this should be

clear from Theorem 2.1. In the theorem, it was not only

proven that any higher order term can be implemented by

A(x), but it was also proven that A(x) cannot implement

more than one higher order term for a given set of adjustable

parameter values. Thus, the weight elimination on the g
weights forces the network to implement the training data

using the minimal number of Am(x)s and, therefore, using

the minimum number of monomials possible. That is why

A(x) was designed such that it could not implement more

than one higher order term for a given set of adjustable

parameter values. Note that, even though the weight elim-

ination process is not guaranteed to ®nd a minimal solution,

it increases the chance of the result being a minimal or

nearly minimal solution.

The weight adjustments that minimize the cost function E

in the gradient descent technique, for the training vector p,

are given as follows:

Dpgm � hS2�p�Am�p�2
hl

gp

gm=g
p

�1 1 �gm=g
p�2�2 �15�

Dpvm � 2Cm�p�Dtanh�guml � �16�

Dpvi
m � Cm�p�Dtanh�gvi

m�pi �17�

Dpul
m �

8>>>>><>>>>>:

hgS2�p�gm�21�ulusgn�ul
m�Dtanh�guml �e2uBm�p�22lu

;

0;

for z�p� # l # q�p�
otherwise

�18�
where h is the learning rate. In these equations the ranges of

the indices are as follows; i� 1, ¼, N; m� 1, ¼, M; and

l� li, ¼, lf. Dtanh(x) denotes the derivative of tanh(x) with

respect to the argument x. S2(p) and Cm(p) denote the

expressions

S2�p� � �dp 2 tanh�bS1�p���dp 2 S1lp���b�dp

2 S1�p��Dtanh�bS1�p��1 �dp 2 tanh�bS1�p����
�19�

and

Cm�p� � 2
1

2
hkgS2�p�gm

Xz�p�
l�q�p�

�21�ulutanh guul
mu

� �
sgn�Bm

�p�2 2l�e2uBm�p�22lu

�20�
respectively.

5. Simulations

In this section, we simulate the model and test its perfor-

mance on some problems. The parameters in the model are

set to the following values: h � 0.001, l � 0.005, k � 1.2,

g � 3.0, b � 3.0, and g*� 1.0. The backpropagation algo-

rithm in on-line training mode using the weight adjustments

in Eqs. (15)± (18) is applied for training the network. All the

adjustable parameters are initially set to some randomly

selected values within the domain [20.1, 0.1].

In order to study the effect of an increase in N, we have

taken the problem described by the higher order term

x1x2x3x4x5, and studied N versus the minimum number of

hidden nodes M necessary for the model to learn the problem.

Through the observations for N� 10, 15, 20, 25 values, we

have found that the minimum number of hidden nodes is
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dependent on the initial values of the adjustable parameters

and the number of training patterns, but there was no clear

dependence on the value of N. For example, we have

observed cases that where N� 15, M� 1 hidden node was

suf®cient and, on the other hand, for N� 10, M� 4 hidden

nodes were necessary. Throughout 24 different runs, the

necessary number of hidde nodes varied between M� 1

and M� 8. The extra hidden nodes, were, however, disabled

through the learning process as a consequence of the weight

elimination. Even though theoretically M� 1 hidden node is

suf®cient for this problem, the need for up to eight hidden

nodes should not come as a surprise; similarly, in multilayer

networks, it is a well known fact that, usually, a network

topology larger than the theoretical minimal is necessary

for the avoidance of the local minima.

We have compared the model's performance to generalize

with the performance of the standard multilayer feedforward

network with a single hidden layer. The nodes in the multi-

layer network are formal neurons with the logistic activation

function. The multilayer network is trained using the back-

propagation algorithm, where, in addition to the usual quad-

ratic cost function, a second cost that performs weight

elimination is also included. The problems for which we

present simulation results on generalization are in N� 20

dimensions. There are six problems de®ned as follows:

² Problem 1: This is the full parity problem de®ned byQ20
j�1xj.

² Problem 2: This is a partial parity problem de®ned byQ15
j�1xj. Note that the input dimension is still N� 20, but

the input channels x16, x17, x18, x19, x20 have no effect on the

target output. The reason for testing this problem was to

see the model's ability in detecting the redundant input

channels.

² Problem 3: This is a problem described by ®ve higher

order terms as follows: sgn(1 1
Q2

j�1xj 1
Q3

j�1xj 1

Q19
j�1xj 1

Q20
j�1xj). The reason for testing this problem

was to see how the model behaves when low order

and high order terms are present in the underlying

function simultaneously.

² Problem 4: This is a problem described by the higher

order terms as follows: sgn(1 1
Q2

j�1xj 1
Q3

j�1xj 1Q4
j�1xj 1

Q 5
j�1xj) 1

Q 17
j�1xj 1

Q 18
j�1xj 1

Q 19
j�1xj 1Q 20

j�1xj). The reason for testing this problem was to see

the effect of an increase in the number of terms in the

underlying function.

² Problem 5: This is the left-right-shift problem in N� 20

dimensions. This problem is described as follows: in a

vector, the sequence of the second 10 bits is essentially a

repetition of the ®rst 10 bits, but cyclically shifted for

one place either to the left or to the right. The target

output is either 11 or 21 depending on the left or

right shift. The four vectors (1, 1, 1, 1, ¼), (21, 21,

21, 21, ¼), (1, 21, 1, 21, ¼), and (21, 1, 21, 1, ¼)

are excluded from the set of input vectors since the left

shift and the right shift operations give the same result

for those strings. The reason for testing this problem was

to see how the model performs for a low order problem.

Note that the left-right-shift problem is a second order

problem, that is, it is implemented by means of the

second order higher order terms.

² Problem 6: In this problem, the input vector set is essen-

tially the same as the input vector set of Problem 5, but it

is constructed as follows: if, in a vector, the ®rst six bits

contain an even (odd) number of 21s and the second 10

bits is obtained by the left (right) shift of the ®rst 10 bits

then the target output is 11, otherwise the target output

is 21. The reason for testing this problem was to see the

effect of the increase in the order of the problem.

Generalization results for these problems are given in

Figs. 2±7. Each ®gure is a plot of number of training
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Fig. 2. Generalization for Problem 1 de®ned by the full parity function
Q20

j�1xj in N� 20 dimensions. Performance of the model is compared with the

performance of the multilayer feedforward network (mlffn).



patterns versus correct classi®cation rate on the test set,

where model and mlffn denote the model and the multi-

layer feedforward network, respectively. The error bars

shown for each point were obtained from four runs,

where, each run corresponds to different initial values of

the adjustable parameters. The vectors in the training set

and the test set were selected randomly. The training set

and the test set were taken as two disjoint sets; a pattern

that is included in the training set was not allowed to be

included also in the test set. The test set contained 10,000

patterns for Problems 1±4. For Problems 5 and 6, the

number of well-de®ned patterns is 2040; the test set

contained all those well-de®ned patterns that are not

included in the training set. The number of hidden

nodes in the model was set to M� 30. For the multilayer

network, on the other hand, a large number of hidden

nodes were essential for some cases, hence, the number

of hidden nodes incorporated in the multilayer network

was larger in some simulations than others.

We observe in all Problems, except in Problem 5, that the

classi®cation rate of the model rises more rapidly than the

classi®cation rate of the multilayer network as the number

of training patterns is increased. As the model approaches

100% classi®cation rate, the multilayer network is still at

low classi®cation rates. In Problem 5, on the other hand, the

multilayer network performs better than the model. We

interpret the results as follows. The formal neurons that

build up the multilayer network are linear separators,

hence, the multilayer network is biased towards learning

the training data set by means of the low order terms in
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Fig. 4. Generalization for Problem 3 de®ned by the function sgn(1 1
Q 2

j�1xj 1
Q 3

j�1xj 1
Q 19

j�1xj 1
Q 20

j�1xj) in N� 20 dimensions. Performance of the model

is compared with the performance of the multilayer feedforward network (mlffn).

Fig. 3. Generalization for Problem 2 de®ned by the partial parity function
Q15

j�1xj in N� 20 dimensions. Performance of the model is compared with the

performance of the multilayer feedforward network (mlffn).



Eq. (1). On the other hand, the introduced model has no bias

in favour of any term in Eq. (1). Consequently, the multi-

layer network performed better than the model for Problem

5 since it is a second order problem. For the other problems,

on the other hand, the model performed better since those

problems included some terms with order greater than two

(up to order six in Problem 6, order ®fteen in Problem 2, and

up to order twenty in the other problems).

As seen in Fig. 2 and also in Fig. 3, learning hard

problems such as the parity problem is extremely easy for

the model. On the other hand, hard problems are hard to

learn for product units; learning parity problem even at low

dimensions, e.g. N� 6, simply does not work (Durbin &

Rumelhart, 1989). This is due to the fact that, as we have

foreseen, the local minima problem is not a severe problem

for the model and also that the model is designed to realize

learning using a minimal set; which is not the case for the

product units.

Comparing Figs. 2 and 3, we observe that the model

requires a greater number of training patterns in learning

Problem 2 than the number of patterns in learning Problem

1. That is, to discover the redundant input channels did cost

some extra number of training patterns. Problem 3 which

contains terms at the highest order as well as the terms at the

lowest order has been learned successfully as seen in Fig. 4.

Learning Problem 3 required more patterns than learning

Problem 2 and, in turn, learning Problem 4 required more

patterns than learning Problem 3. This is what we expect

since the number of terms that form Problem 3 is larger than

the number of terms that forms Problem 2 and, in turn, the
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Fig. 6. Generalization for Problem 5 which is the left-right-shift problem in N� 20 dimensions. Performance of the model is compared with the performance

of the multilayer feedforward network (mlffn).

Fig. 5. Generalization for Problem 4 de®ned by the function sgn(1 1
Q 2

j�1xj 1
Q 3

j�1xj 1
Q 4

j�1xj 1
Q 5

j�1xj 1
Q 17

j�1xj 1
Q 18

j�1xj 1
Q 19

j�1xj 1
Q 20

j�1xj) in

N� 20 dimensions. Performance of the model is compared with the performance of the multilayer feedforward network (mlffn).



number of terms that form Problem 4 is larger than the

number of terms that forms Problem 3.

Due to the weight elimination process, the result the

model gives to a problem should be insensitive to

the value of M provided that M is large enough so that the

training data set can be learned. In order to test this, we give

the generalization result for Problem 3 using M� 15 and

M� 30 values in Fig. 8. As expected, the model's general-

ization is not sensitive to the exact value of M.

6. Discussion and conclusions

In this paper, we have introduced a model that can

learn higher order correlations within the input data

without suffering from the combinatorial explosion

problem. This was made possible through an implicit

representation of the higher order terms. The number

of parameters scales as ~M £ N, where ~M is the mini-

mum number of higher order terms possible that can

implement the input data set. The model was especially

designed to realize a learning such that, after learning,

the model's output for any input vector is the same as

the output of a higher order network implementing the

same input data set using ~M number of higher order

terms. The reason for such a design was that higher

order networks that incorporate smaller number of

terms have smaller VC dimension and, therefore, gener-

alize better (Young & Downs, 1993). Another signi®-

cant point concerning the model is that, as supported by
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Fig. 8. Generalization by the model for Problem 3 using M� 15 and M� 30 hidden nodes.

Fig. 7. Generalization for Problem 6 constructed as follows in N� 20 dimensions: if, in a vector, the ®rst six bits contain an even (odd) number of 21s and the

second 10 bits is obtained by the left (right) shift of the ®rst 10 bits then the target output is 11, otherwise the target output is 21. Only those patterns that are

well de®ned in the left-right-shift problem are allowed. Performance of the model is compared with the performance of the multilayer feedforward network

(mlffn).



the simulations, the local minima problem does not pose

itself as a severe problem.

As demonstrated by the simulations, the model is a prac-

tical model in the sense that implementation of all patterns

in the training set is always achieved by the learning algo-

rithm simply, if necessary, by setting M to a value greater

than ~M. Also that, if not a minimal set, a nearly minimal set

will always be learned in practice. Of course, we cannot

guarantee that a minimal set will always be learned since,

in theory, the local minima problem is always with us even

though it is not severe.

Even though the multilayer feedforward networks are

universal function approximators, they are biased towards

linear separability since the formal neurons are linear

separators. The introduced model, on the other hand, is

not biased towards low order or high order higher order

terms. That is way the model gave better generalization

results than the multilayer feedforward network, in the

simulations, except when the problem incorporates only

the low order terms. The objective of the model was just

this; being able to learn higher order correlations without

a priori knowledge of the order of terms or invariances.

It is not unreasonable to conclude that the introduced

model has an intrinsic property of learning higher order

correlations.
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