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Abstract. Nowadays we find more and more applications for data mining techniques in e-learning and 
web-based adaptive educational systems. The useful information discovered can be used directly by the 
teacher or author of the course in order to improve instructional/learning performance. This can, however, 
imply a lot of work for the teacher who can greatly benefit from the help of educational recommender 
systems for doing this task. In this paper we propose a system oriented to find, share and suggest the most 
appropriate modifications to improve the effectiveness of the course. We describe an iterative 
methodology to develop and carry out the maintenance of web-based courses to which we have added a 
specific data mining step. We apply association rule mining to discover interesting information through 
students’ usage data in the form of IF-THEN recommendation rules. We have also used a collaborative 
recommender system to share and score the recommendation rules obtained by teachers with similar 
profiles along with other experts in education. Finally, we have carried out experiments with several real 
groups of students using a web-based adaptive course. The results obtained demonstrate that the proposed 
architecture constitutes a good starting point to future investigations in order to generalize the results over 
many course contents.  
 
Keywords: association rule mining, recommender systems, e-learning, web-based adaptive education, 
courseware design 
 
1. Introduction 
 
Recently, the huge increase in Internet accessibility has made the concept of online education or e-
learning a reality (Itmazi, 2005). This is a form of computer-aided instruction that virtually does not 
depend on the need for a specific location or any special hardware platform (Brusilovsky, 2003). Public 
and private schools are increasingly providing their students with e-learning systems that are also called 
Learning Management System (LMS). LMSs are software tools designed to manage user learning 
interventions that offer an extensive range of complementary functionality. Some examples of 
commercial LMSs are WebCT, Virtual-U, and TopClass, although open source systems such as Moodle, 
ATutor and ILIAS are gradually becoming more widespread (Itmazi, 2005). Although LMSs provide 
useful tools for computer-supported collaborative learning (such as forums, chat rooms, discussion groups 
and e-mail), most of them show their contents and educational material to all students in the same way. At 
the same time students are also completely free to choose their own learning pathway through the course, 
which is not necessarily the most effective one taking into account their previous knowledge or needs.  

One possible solution for this problem is the use of Adaptive and Intelligent Web-Based Educational 
Systems (AIWBES) (Brusilovsky, 2003), which combine the techniques of adaptive systems (Brusilovsky 
et al., 2007; De Bra and Calvi, 1998). These systems build a model for the objectives, preferences and 
knowledge of an individual user in order to adapt the system to his or her learning needs by means of 
Artificial Intelligence (AI) techniques from intelligent systems (Brusilovsky et al., 1996; Heift, and 
Nicholson, 2001) such as machine learning and data mining (DM). Data mining is part of the process of 



 
 

Knowledge Discovery in Databases (KDD) and is understood to be the non-trivial extraction of 
previously unknown and potentially useful, valid and comprehensible information from a large volume of 
data (Klösgen and Zytkow, 2002). Hence, certain activities traditionally carried out by the teacher, such 
as training and monitoring students and diagnosing their limitations, can now be performed by the system. 

Many of the systems mentioned above use data mining techniques in order to personalise the output 
data obtained, avoiding information overload and recommending items required by the current user based 
on previous interactions of other users with similar profiles (Costaguta, 2006). There are different 
recommendation strategies for user requirements (Zanker and Jessenitschnig, 2009) such as knowledge- 
and utility-based methods, collaborative filtering, association rule mining as well as hybrid variants. 
Recommendation systems can assist the natural process of relying on friends, classmates, lecturers, and 
other sources to make choices for learning (Lu, 2004). In the educational setting, these recommendation 
systems can be classified into two types according to their target users (Romero and Ventura, 2006). The 
first is student-oriented (Gaudioso et al., 2003; Zaiane, 2002) in order to suggest good learning 
experiences for the students according to their preferences, needs and level of knowledge, and the second 
is teacher-oriented (Chen and Wasson, 2002; Romero et al., 2003) to help teachers and/or authors of e-
learning systems to improve the performance and functions of these systems based on student data.  

The application of data mining in e-learning, particularly the teacher-centred approach aimed at 
improving courses, involves a series of hurdles that need to be overcome (Romero and Ventura, 2006). 
Data mining tools are normally designed more for power and flexibility than for simplicity. Most of the 
current data mining tools are too complex for educators to use and their features do not cover the scope of 
what an educator might require (Romero et al., 2008). On one hand, there is a wide variety of e-learning 
and web-based adaptive courses that can apply data mining which is influenced by three key aspects: first 
of all, the field of knowledge covered by the course; secondly, the course level (university, secondary or 
primary school level, special education or any other kind of course); and finally, the level of difficulty of 
the course, that is, if it is a basic or beginner, intermediate, advanced or an expert’s course. On the other 
hand, the wide range of results that can be obtained, depending on these factors, means that it can be 
fairly tricky to find therein general repeatable patterns which can be applied to any type of course. 
Furthermore, educational data sets are normally small (Hamalainen and Vinni, 2006) if we compare them 
to databases used in other data mining fields, such as e-commerce applications, that involve thousands of 
clients. So, applying data mining with specific filtering parameters can cause problems for association 
rule discovery in small databases (Zhang and Zhang, 2002) where the initial information is insufficient to 
construct a model that will infer future behaviour.  

In this paper we propose a recommender system that uses data mining techniques to provide feedback 
to courseware authors. The paper is organized as follows: Section 2 describes some previous research 
related to our proposal while Sections 3 and 4 describe the architecture of the system and its 
implementation. Experimental tests to prove the validity of the system are described in section 5. Finally, 
section 6 outlines conclusions and further research. 

 
2. Related Works 
 

There are many models or techniques have been used in data mining. In the following subsections, we 
describe some of the techniques and work most directly related to our proposal. 
 
2.1. Association rule mining 
 

One of the most commonly used data mining techniques in the above-mentioned systems is association 
rule discovery (Agrawal et al., 1996). Association rules are one of the most popular ways of representing 
discovered knowledge and describe a close correlation between frequent items in a database. An X ⇒ Y 
type association rule expresses a close correlation between items (attribute-value) in a database. There are 



 
 

many association rule discovery algorithms (Zheng et al., 2001) but Apriori is the first and foremost 
among them (Agrawal et al., 1996).   

Most association rule mining algorithms require the user to set at least two thresholds, one of minimum 
support and the other of minimum confidence. The support S of a rule is defined as the probability that an 
entry has of satisfying both X and Y. Confidence is defined as the probability  an entry has of satisfying Y 
when it satisfies X. Therefore the aim is to find all the association rules that satisfy certain minimum 
support and confidence restrictions, with parameters specified by the user. Therefore, the user must 
possess a certain amount of expertise in order to find the right support and confidence settings to obtain 
the best rules.  

One possible solution to this problem can be to use an algorithm with less and/or more intuitive 
parameters. For example, the Weka (Weka, 2007) package implements an Apriori-type algorithm that 
partially solves this problem. This algorithm iteratively reduces minimum support, by a delta factor 
support (∆s) introduced by the user, until a minimum support is reached or a maximum number of rules 
(NR) has been discovered. However, it needs some other parameters, such as lower and upper bound 
support and minimum confidence.  

Often, the user can assume that the resulting association rules provide information about the process 
that generated the database, and that they will be valid in the future, too. However, confidence in training 
data is only an estimate of the rules’ accuracy in the future, and since the space of association rules is 
searched to maximize confidence, the estimate is optimistically biased. A really important improvement 
to the Apriori algorithm for use in educational environments is the Predictive Apriori (Scheffer, 2005) 
because it does not require the user to specify any of these parameters (either the minimum support 
threshold or confidence values).The algorithm aims to find the N best association rules, where N is a 
fixed number. This setting is more appropriate in many situations because these thresholds may not be 
easy to specify and a teacher may not be satisfied with either an empty or an outrageously large set of 
rules. The only parameter entered by the teacher is the number of rules to be discovered, which is a more 
intuitive parameter. The Predictive Apriori (PA) algorithm strikes an appropriate balance between support 
and confidence to maximize the probability of accurately predicting the dataset. In order to achieve this, 
the PA algorithm, using the Bayesian method, proposes a solution that quantifies the expected predictive 
accuracy (E(c| ĉ, s) of an association rule [x ⇒ y] with given confidence ĉ and the support of the rule’s 
body (the left hand side of the rule) of s. This parameter thus quantifies just how strongly the confidence 
of a rule has to be corrected given the support of that rule, and it depends on the prior π(c) which is the 
histogram of accuracies of all association rules over the given items for the given database. The PA 
algorithm is displayed in Table I. 

We can estimate π(c) by drawing many hypotheses at random under uniform distribution, measuring 
their confidence, and recording the resulting histogram. However, there are many more long rules than 
there are short ones (the number of distinct item sets grows exponentially in the length). If we drew rules 
at random, we would almost never get to see short rules; our estimate of π(c) for short rules would be 
poor. In order to avoid this problem, the author of PA algorithm (Scheffer, 2005) proposed to run a loop 
over the length of the rule and, given that length, draw a fixed number of rules. He determines the items 
and the split into body and head by drawing at random (Step 2).  

We have now drawn equally many rules for each size while the uniform distribution requires us to 
prefer long rules. There are   I  item sets of size i over k database items, and given i items, there are 2i −1 
distinct association rules (each item can be located on the left or right hand side of the rule but the right 
hand side must be nonempty). Hence, the following equation gives the probability that exactly i items 
occur in a rule which is drawn at random under uniform distribution from the space of all association 
rules over k items.  
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Therefore, the author of PA estimates the prior over all association rules (Step 3) in a way that accounts 

for the number of rules with a specific length that exist by weighting each prior for rule length i by the 
probability of a rule length of i. This can be seen as a Markov Chain Monte Carlo style correction to the 
prior. Then, the PA generates the frequent item sets, pruning the hypothesis space by dynamically 
adjusting the minimum support threshold, generating association rules, and removing redundant 
association rules interleave. 

 
Table I. Algorithm Predictive Apriori: discovery of n most predictive association rules 

 
Input:  n (desired number of association rules), database with items a1,…,ak           
 
1)    Let τ = 1;   // initial support 
2)   For i = 1 to k Do: Draw a fix number of association rules [x→y]. Measure 

their confidence (provided s(x) > 0). Let πi(c) be the distribution of 
confidences. 

3)    For all c, Let 
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4)    Let X0 = {Ø}; X1 = {{a1},…,{ak}} be all item sets with one single element. 
5)     For i = 1 to k-1 While (i=1 or Xi-1 ≠ Ø) 
                (a)   If  i > 1 Then determine the sets of candidate item sets of length i 
                        as Xi = {x U x’ | x, x’ ∈  Xi-1, | x U x’| = i}. Eliminate double 

occurrences of item sets in Xi  
 
                (b)  Run a database pass and determine the support of the generated 

items sets. Eliminate item sets with support less than τ from Xi. 
 
                (c)   For all x ∈  Xi Call best = GenRule(x)*; 
 
                (d)  If best has been changed, Then Increase τ to be the smallest 

number such that E(c|1,τ) > E(c(best[n])|ĉ(best[n]),s(best[n])).If  
τ > database size Then Exit. 

 
                 (e)  If τ has been increased in the last step, Then eliminate all item sets 

from Xi which have support below τ. 
 
6)       Output best[1], best[2]… best[n], the list of the n best association rules. 
 
*GenRule(x): find the best rules with body x efficiently  

 
Association rule mining algorithms normally discover a huge quantity of rules and do not guarantee 

that all the rules found are relevant. Therefore, they must be evaluated in order to find the best rules for a 
specific problem. Traditionally, the use of objective measures has been suggested (Tan and Kumar, 2000), 
such as support and confidence, mentioned previously, as well as other measures such as Laplace, chi-
square statistics, correlation coefficients, entropy gain, interest, conviction, etc. These measures can be 



 
 

used to rank the rules obtained so that the user can select those with the highest values for the most 
appropriate measures. On the other hand, subjective measures are becoming increasingly important 
(Silberschatz and Tuzhilin, 1996). These measures are based on subjective factors controlled by the user. 
Most subjective approaches involve user participation in order to express which rules are of the most 
interest for clarifying and updating previous knowledge.   

An Interestingness Analysis System (IAS) was proposed by (Liu et al., 2000). IAS compares the newly 
discovered rules to the user's current knowledge about the area of interest. Using their own specification 
language, they indicate their level of knowledge about the matter in question through relationships 
between the fields or items in the database. Let U be the set of user’s specifications representing his 
knowledge space, and A be the set of newly found association rules. This algorithm implements a pruning 
technique to remove redundant or insignificant rules by ranking and classifying them into four categories:  
Conforming rules: A discovered rule Ai ∈ A conforms to a piece of user’s knowledge Uj ∈ U if both the 

conditional and consequent parts of Ai match those of Uj ∈ U well. They use conformij to denote the 
degree of the conforming match. 

Unexpected consequent rules: A discovered rule Ai ∈ A has unexpected consequents with respect to a Uj 

∈ U if the conditional part of Ai matches that of Uj well although the consequent part does not. They 
use unexpConseqij to denote the degree of unexpected consequent match. 

Unexpected condition rules: A newly found rule Ai ∈ A has unexpected conditions with respect to a Uj  

∈ U if the consequent part of Ai does matches that of Uj well while the conditional part does not. 
They use unexpCondij to denote the degree of unexpected condition match. 

Both-side unexpected rules: A discovered rule Ai ∈ A is unexpected on both-side with respect to a Uj 

∈ U if neither the conditional nor the consequent parts of rule Ai match those of Uj well. They use 
bsUnexpij to denote the degree of both-side unexpected match. 

The values for conformij, unexpConseqij, unexpCondij, and bsUnexpij are between 0 and 1. The value “1” 
represents a complete match, either a completely conforming or a completely unexpected match, and the 
value “0” represents no match. The user can indicate his knowledge about the matter in question through 
relationships among the fields or items in the database. After the newly found rules have been analyzed, 
IAS displays different types of rules that are potentially interesting to the user. IAS shows the essential 
aspects of the rules in such a way that it can take advantage of human visual capabilities to enable the user 
to identify the truly helpful rules easily and quickly. These essential aspects are: 

1. Types of potentially interesting rules: Different types of pertinent rules should be separated 
because they give the user different kinds of pertinent knowledge. 

2. Degrees of interestingness (“match” values): Rules should be grouped according to their degrees 
of interestingness. This enables the user to focus his/her attention on the most unexpected (or 
conforming) rules first and to decide whether to view these rules as being less interesting. 

3. Items of interest: showing preferably the items of interest in a rule can be better than seeing the 
whole rule.  

  
2.2. Collaborative recommender systems 
 

In general, frequent item sets are useful for revealing association rules in large databases.  However, 
when working with separate, relatively small databases, it is essential to learn how to use experience, 
common sense and models created by other users who have already worked with these databases in the 
past  (Klösgen and Zytkow, 2002). There are pro-active methods that use tools to support collaborative 
work: this multidisciplinary development normally involves experts from different areas of knowledge 
such as: knowledge engineers in charge of modelling knowledge; knowledge database developers who 
construct, organise, annotate and maintain these databases; and teams of validating experts who validate 
elements of knowledge before they are entered into the contents repository. Collaborative Recommender 
Systems (Mobasher, 2006) are based on opinions provided by experts, through explicit or implicit voting 



 
 

systems. The main goal is to suggest better solutions based on overall experience. They are based on 
social networking, so they are also vulnerable to social attacks (Mehta and Nedjl, 2009). 

Recommendation techniques for personalization can be classified in different ways (Mobasher, 2006) 
based on data sources themselves as well as on the use made of this data. The Collaborative Filtering 
System (CFS), also referred to as social filtering, depends on a product database as well as on 
demographic data and potential consumer evaluations of certain products that have not yet been put to 
trial. This is perhaps the most familiar, widespread and fully developed of all recommendation techniques 
(Burke, 2000a).  The main idea of CFS revolves around computerising the “word of mouth” process that 
people use to recommend products or services to one another. If users need to choose between various 
options they have no experience about, they are likely to trust the opinions of those who do have 
experience. The Knowledge Based System (KBS), on the other hand, aims to suggest objects based on 
inferences about the user's preferences and needs. Unlike other techniques, it has prior functional 
knowledge about how a particular item can satisfy a user's needs and therefore can make reasoned 
judgements about the relationship between this need and a possible recommendation.  The user profile 
can be any knowledge structure that supports this inference.  In the case of Google, this would simply be 
the query entered by the user.  In other cases, it might be a more detailed representation of the user’s 
needs.  The Entree system (Burke, 2000b) uses Case-Based Reasoning (CBR) techniques to make 
recommendations based on knowledge. 

Recommender Systems (RS) are currently applied to many web based sectors, for example, in e-
commerce in order to offer personalised client services (Zan et al., 2004), in webpage search engines in 
order to avoid information overload (Eliassi-Rad and Shavlik, 2003), and in digital libraries in order to 
help users find desirable books or articles (Geyer-Schulz, 2003). Another recent field of application for 
the currently booming RS is e-learning (Rosta and Brusilovsky, 2006; Tang and McCalla, 2005) which 
uses different recommendation techniques in order to suggest online learning activities or optimum 
browsing pathways to students, based on their preferences, knowledge and the browsing history of other 
students with similar characteristics. 

There are several specific research projects on the application of recommender systems and association 
rule mining in e-learning systems. Wang (2002) developed a portfolio analysis tool based on associative 
material clusters and the sequences found therein. This knowledge allows educators to study dynamic 
browsing structures and to identify interesting or unexpected learning patterns. In order to achieve that, 
Wang discovers two types of relationships: association relations and sequence relations among 
documents. Minaei-Bidgoli et al., (2004) proposed mining contrast rules that are of interest for web-based 
educational systems. Contrast rules help to identify attributes that characterize patterns of performance 
disparity between different groups of students. Markellou et al., (2005) proposed an ontology-based 
framework and elaborate association rules, using the Apriori algorithm. The role of ontology is to 
determine which learning materials are the most suitable to recommend to the user. Zaïane and Luo 
(2001) proposed the discovery of useful patterns based on restrictions in order to help educators evaluate 
students’ activities in web courses. Li and Zaïane (2004) also used recommender agents for e-learning 
systems which use association rule mining to reveal associations between user actions and URLs. The 
agent recommends online learning activities or shortcuts on a course web-site based on a learner’s access 
history. Lu (2004) used association fuzzy rules in a personalized e-learning material recommender 
system. He uses fuzzy matching rules to discover associations between a student’s requirements and a list 
of learning materials. Romero et al., (2003, 2004) proposed the use of grammar-based genetic 
programming with multi-objective optimization techniques to provide feedback to courseware authors. 
They discover interesting association rules in students’ usage information. Merceron and Yacef (2004) 
used association rule and symbolic data analysis as well as traditional SQL queries in order to mine 
student data captured from a web-based tutoring tool. Their goal is to find mistakes that often occur 
together. Freyberger et al. (2004) use association rules to guide a search for the best fitting transfer model 



 
 

of student learning in intelligent tutoring systems. The association rules determine the operation that 
needs to be performed on the transfer model to predict a student’s possibility of success. Finally, 
Srivastava et al., (2000) used clustering and association rule mining to extract usage knowledge for the 
purpose of web personalization. This personalization system can also be used to adapt courses to each 
student’s needs. 

 
3. Architecture of the system 
 
In order to tackle the problems discussed in the introduction section, we are going to propose a 
collaborative recommender system applied to education. The objective is to help teachers to continually 
improve and maintain adaptive and non-adaptive e-learning courses. We have used a hybrid recommender 
system based on CFS and KBS in order to add a feedback stage in two ways.  First of all, collaborative 
filtering will help to discover pertinent relationships among different teachers with similar profiles, each 
working with their own databases. These similarities or useful relationships will be available to other 
teachers to assess in terms of applicability and relevance. Secondly, the knowledge database will be 
strengthened with experiences that, due to their significance, satisfy the needs of many teachers and 
therefore can give rise to increasingly effective recommendations. 
 

 
Figure 1. Main phases of CIECoF architecture.   

 
The main phases used in the CIECoF (Continuous improvement of e-learning course framework) 

architecture are (Figure 1): 
- Association rules mining. This phase aims to find association rules on the data set generated as the 

students complete the course. Once the data has been pre-processed, it is used as input of the 
Predictive Apriori algorithm, the nucleus of this phase. Also, the teacher could select specific data 
and attributes in order to restrict the search domain. The output of this module (rules found) is then 
analyzed by the subjective analysis module.  

- Subjective analysis: This phase uses a subjective rule evaluation measure (section 3.2) to determine 
the interestingness of the rules found by association rule mining. It also applies the IAS algorithm to 
classify the rules in expected or unexpected comparing them with the rules stored in the knowledge 
base. 

- Knowledge base creation: This phase combines collaborative filtering techniques with knowledge 
based techniques to create and to manage the rules repository. The information in the knowledge base 
is stored in form of tuples (rule-problem-recommendation-relevance) which are classified according 
to a specific course profile. In order to avoid the cold start issue of collaborative filtering systems, the 
experts propose the first tuples of the repository and also vote for those tuples proposed by other 
experts. On the other hand, the teachers could discover new tuples that must be validated by the 
experts before being inserted in the repository and also votes for the others tuples. 

- Recommendations: The expected rules found by the phase 2 joined to the more intuitive tuples 
format mentioned in phase 3, are then used in this last phase to show the teacher, in most of the cases 
non expert in data mining, possible solutions to some problems detected in the course. The teacher 
analyzes the recommendation and he determines if it is relevant or not.  



 
 

The system is based on client-server architecture with N clients, which applies an association rule 
mining algorithm locally on students’ data using an online course. In the server application are included 
two modules. The first is a web application server so the experts can manage a knowledge base (KB) and 
can add, delete or edit tuples, as well as being able to vote on the contributions made by other experts in 
the team. The second module is a web service, which allows the server to share the updated KB with the 
client in PMML format (Data Mining Group, 2006). PMML (Predictive Model Markup Language) is an 
XML-based language that enables the definition and sharing of predictive models between applications, 
establishing a vendor-independent means of defining these models, so that problems with proprietary 
applications and compatibility issues can be circumvented. So, once the updated version of the KB has 
been downloaded from the server, the client can apply the mining algorithm offline. Client application is 
part of the iterative methodology (García et al., 2006) that teachers use to develop courses. It is capable of 
detecting possible problems in the design and content of an e-learning course by adding a feedback or 
maintenance stage to the course.  

 

 
Figure 2. CIECoF client-server architecture.  

 
As we can see in Figure 2, there are several stages in this methodology: 1) the initial construction of a 

course; 2) the completion of the course by the students, during which usage information is transparently 
compiled and stored in a database; 3) the ongoing improvement stage, which coincides with client 
application. This last stage contains the core of the rule mining algorithm used (section 3.1). The 
algorithm together with the KB classifies the rules found as being either expected (if they coincide with 
the KB), or unexpected (if they do not). If teachers apply a recommendation to the course, they are also 
implicitly voting on its usefulness in the server knowledge database. Unexpected tuples are ranked 
according to the IAS algorithm and teachers can tag any that are found interesting. The experts then 
analyse these unexpectedly ‘interesting’ tuples and can choose to include them in the KB. 

 
3.1. Association rule mining algorithm 
 
We have implemented an association rule mining algorithm oriented to education which is based on the 
following algorithms: 1) Predictive Apriori for association rule discovery without parameters; and 2) IAS 
for subjective analysis and classification of unexpected rules by comparing them to a previously defined 
knowledge database on the field. The algorithm also includes a new weight-based interestingness 
measurements presented in the section 3.2, to recommend to the teacher any rules according to:  



 
 

a) Other teachers with a similar profile have found useful. The teacher profile is represented as a 
three-dimensional vector related with the following characteristic of his/her course: Topic (the 
area of knowledge, e.g. Computer Science or Biology); Level (level of the course, e.g. 
Universitary, High School, Elementary or Special Education); and Difficulty (the difficulty of the 
course, e.g., Low or High). We use static classification to compare teachers, so similar profile 
refers to an exact coincidence between one profile and other. 

b) A team of validating experts has voted for in terms of interest or validity.  
The algorithm implemented is especially useful in collaborative recommender systems, which can take 

advantage of the synergies offered by the network, in order to produce recommendations that are 
increasingly useful and precise. 

The main algorithm is interactive and iterative (see Table II). In each iteration, the teacher runs the 
mining algorithm in order to find the rules that will act as a basis for recommendations; this can be done 
as often as necessary.   

Table II. Main algorithm. 
 

Input: Topic, Level, Difficulty: teacher profile; 
            N: number of rules to discover; 

1) Iters = 0; 
2) KB = Get_Rules_fromServer( Topic, Level, Difficulty); 
3) While (teacher doesn’t stop) do 
4)     Re, Rne = Rules_Mining_Algorithm(N, KB, Iters); 
                  where Reiters ≠ Reiters+1, Rneiters ≠ Rneiters+1  

5)     For each i-rule in Re do 
6)          Teacher_Vote_Recommendation(Rei) 
7)      End 
8)      For each i-rule in Rne do 
9)          If (Interesting(Rnei)) then 
10)               Add_to_KnowledgeBase(Rnei); 
11)          End if 
12)      End 
13)      Iters ++; 
14)   End while 
15)   End all   

 
In step 1) the variable Iters, which counts the number of iterations, is initialised at zero; in step 2) the 

teacher downloads the knowledge base (KB) from the server corresponding to his/her course profile; in 
step 3) the main loop starts and all its instructions will be executed until the teacher decides to stop it. 
Step 4) calls up the rule mining algorithm described in Table III, which returns the sets of 
recommendations (Re) and unexpected rules (Rne) discovered where Re and Rne are different from one 
iteration to another. From steps 5) to 7), the teacher votes on whether the recommendation has been useful 
or not, and in steps 8) to 12), he/she evaluates unexpected rules to determine whether or not they are 
useful; unexpected rules might be added to the knowledge base (KB), subject to prior validation by the 
experts. Finally, in step 13), the Iters variable is incremented. 

The rule mining algorithm implement is described as follows (see Table III). Let accRi (i=1,2,…n) be  
the predictive accuracy of Ri; R the set of rules discovered by the current teacher, Re the set of expected 
rules, and Rne the set of unexpected rules, then R = Re ∪ Rne; KB is the set of rules that makes up the 



 
 

knowledge database concerning this field.  
In step 1), the GenRules function reveals the association rules; this function is provided with the desired 

number of rules and calls on the PA algorithm.  
In step 2), the rule found is classified as being expected if it syntactically matches rule in the current 

knowledge database, that is, if it has both the same antecedent and consequent. The rule is classified as 
unexpected if it does not. From steps 3) to 5), for each rule Ri ∈ Re, the new weight-based interestingness 
measurement WAcc is calculated (see section 3.2).  

Table III. Rule Mining Algorithm 
 

Input: N: number of rules to discover;Iters:number of iterations 
            KB: knowledge base; 
Ouput: Re: recommendations set; Rne: unexpected rules; 

1) R, accR = GenRules (N, Iters);       // Call to Predictive Apriori 
2) Re, Rne = Classify(R); 
3) For each i-rule in Re do 
4)      iRWAcc =  CalculateWeightedAccuracy (Ri); 
5) End 
6) For each i-rule in Rne do 
7)      For each j-rule in KB do 
8)          conformij, unexpConseqij, unexCondij, bsUnexpij = IAS( ); 
9)      End 
10)  End 
11)  Order all the rules in Re from largest to smaller Wacc 
12)  Output the set Re as the set of recommendations 
13)  Ouput the unexpected rules Rne according to IAS 
14)  End all 

 
From steps 6) to 10) the IAS algorithm is used to calculate the degree to which each unexpected rule 

Rne coincides with the rules stored in the knowledge base (KB). In our system, all the unexpected rules 
are ordered as follows: a) the conformed rules that are the basis  of recommendations to the professor; b) 
unexpected both-sided rules whose antecedent and consequence have never been mentioned in our 
knowledge base; c) the unexpected consequent rules that show us those rules found to be contrary to our 
existing knowledge; and d) the unexpected condition rules show us that there are other conditions outside 
of our specified knowledge range that could be pertinent and conducive to learning. 
In step 11), the set Re is ordered from highest to lowest based on the previously calculated WAcc. Step 
12) displays all the recommendations corresponding to each of the previously ordered rules. Finally, in 
step 13), the teacher is given the chance to view the set of unexpected rules in order to assess which 
candidates are feasible and desirable for our knowledge database. 
 
3.2. Weight-based rule evaluation measure 
 
In order to help teachers make decisions about which rules to apply, the rules must be ordered in terms of 
interest. Therefore, a measurement of this interestingness must be established based on the weights 
reflected by the following parameters:  

1) Rule’s accuracy calculated by the Predictive Apriori algorithm. 



 
 

2) How useful this rule has been to other teachers based on their votes. 
3) How interesting the rule is according to a team of experts, also using a voting system.  
Let U1, U2…, Um, be m different teachers with different data-sources, Si the set of expected association 

rules found by Ui (i=1,2,…m), S = {S1, S2,…, Sm}; and let E1, E2…, Ek, be k different experts. According 
to Good’s definition of weight (Good I., 1950), the voting for rule R in S can be used to assign the weight 
WR  to R. In practice, teachers are more interested in applying rules that have received greater support, or 
more votes, from other teachers.  

Let R = {R1, R2…, Rn} represent all the rules in S, then the weight of Ri can be defined as: 
 
      

   (1)  
  

    
where i=1,2,…,n and NumVotesTeachers(Ri) is the number of teachers that have voted for rule Ri in S.  

By applying the same reasoning to the experts’ votes: 
 
 
                                                      (2) 
 
 

where i=1,2,…,n and NumVotesExperts(Ri) is the number of experts that have voted for rule Ri in R. 
Therefore, the weight of rule Ri can be expressed as a weighted measurement of the votes registered by 

the teachers and experts, so that: 
 

eRiuRRi CWexpertsCWteachersW i ∗+∗=  :  Cu+Ce = 1     (3) 
 

where Cu and Ce are the weighted coefficients representing the opinions of the teachers and experts 
respectively. 

Once the weight of each rule has been calculated, an interestingness measurement can be devised, 
which we shall call weighted accuracy (WAcc) which includes the first factor mentioned at the start of this 
section: the predictive accuracy of the rule according to the PA algorithm. 

We can define iRWAcc  for rule Ri as:  
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where WRi is the weight of the rule according to equation (3), and accRij are the predictive accuracy 
results returned by the PA algorithm for each teacher that has voted for the rule Ri. 

Next, we describe an example of how all the previously described equations are applied when three 
experts and three teachers evaluate the tuples or rules. Let U1, U2, U3 designate three different teachers 
who vote (the rule was useful or not) on a set of rules in S = {S1, S2, S3}: 

S1 is a set of useful association rules obtained by teacher U1: 
A Λ C → D; acc = 0.85 
A → B; acc = 0.70 
B Λ C → E; acc = 0.75 

S2 is a set of useful association rules obtained by teacher U2: 
B → C; acc = 0.88 
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A → B; acc = 0.76 
B Λ C → E; acc = 0.71 

S3 is a set of useful association rules obtained by teacher U3: 
A Λ C → D; acc = 0.82 
A → B; acc = 0.72 

There are a total of four rules in S: 
R1: A Λ C → D 
R2: A → B 
R3: B Λ C  → E 
R4: B → C 

Starting from the above rules we can see that there are two teachers that vote/support for rule R1, three 
teachers that votes for rule R2, two teachers in favour of rule R3 and one teacher that votes for the rule R4. 
Thus the weight of Ri can be calculated as follows: 

 
WteachersR1 = 2 / (2 +3 +2 +1) = 0.25 WteachersR3 = 2 / (2 +3 +2 +1) = 0.25 
WteachersR2 = 3 / (2 +3 +2 +1) = 0.38 WteachersR4 = 1 / (2 +3 +2 +1) = 0.13 

 
After normalizing between 0 and 1, the weights of the teachers are assigned as follows: 
 

WteachersR1 = 0.66 WteachersR3 = 0.66 
WteachersR2 = 1.00 WteachersR4 = 0.34 

 
Experts vote in a similar way but in an explicit way. For example, in Table IV, we can see the votes of 

three experts for each of the four previous rules. They assign each rule a value from 1 to 5, where 1 
represents the lowest value and 5 the highest. 

 
Table IV. Example of experts’ voting. 

Rule Expert 1 Expert 2 Expert 3 Total 
R1 3 3 4 10 
R2 5 5 5 15 
R3 4 3 3 10 
R4 2 3 2 7 

 Total Votes: 42 
 

WexpertsR1 = 10/42 = 0.24 WexpertsR3 = 10/42 = 0.24 
WexpertsR2 = 15/42 = 0.36 WexpertsR4 = 7/42 = 0.17 

 
After normalizing between 0 and 1, the experts’ weights are assigned as follows: 
 

WexpertsR1 = 0.67 WexpertsR3 = 0.67 
WexpertsR2 = 1.00 WexpertsR4 = 0.47 

 
If we fix the values of Ct  = Ce = 0.5, then we calculate WRi values as: 

 
WR1 = 0.67; WR2 = 1.00;  WR3 = 0.67;  WR4 = 0.41; 

 
As we have seen, rule R2 has the highest voting and the highest weight; and R4 has the lowest voting and 
the lowest weight. Once the weight of each rule has been calculated, then we calculate the weighted 
accuracy (WAcc) of each rule as: 
 



 
 

WAccR1 = 0.67 * (0.85 + 0.00 + 0.82)/3 = 0.37 
WAccR2 = 1.00 * (0.70 + 0.76 + 0.72)/3 = 0.73 
WAccR3 = 0.67 * (0.75 + 0.71 + 0.00)/3 = 0.33 
WAccR4 = 0.41 * (0.00 + 0.88 + 0.00)/3 = 0.12 

 
After we apply the accuracy corrections to WRi we can see that the rule R2 is still the most exact; and R4 
the least exact. 

 
4. Implementation of the system 
 
We have implemented a hybrid recommender system based on KBS and CFS in order to avoid the cold-
start issue which is presented when the CFS is installed for the first time and we don't have data of any 
user's votes. Recommendations are made based on the knowledge database created and managed on the 
server according to different teacher profiles. Furthermore, collaborative filtering is used as a 
complementary approach, which filters and organises recommendation priority depending on the votes 
registered by experts and teachers with similar profiles. The experts explicitly vote for tuples by 
indicating degrees of preference on a form in the web application; however, the teachers vote implicitly to 
side-step one of the main problems for CFS (how to encourage teachers to vote or evaluate). In this case, 
if teachers apply one of the recommendations to their course, they are implicitly voting to apply this tuple. 

 Our system has both a client and a server application that we have implemented in Java language 
because of their multi-platform characteristics and which will now be described in more detail. 

 
4.1. Client application 
 
The main feature of the client application is its specialization in educational environments. To achieve   
this, we have used domain specific attributes, filters and restrictions for the rules, and the student’s usage 
dataset from the e-learning course. The interface for client application has four basic panels: 

- Pre-processing. Before applying a data mining algorithm, the data have to be pre-processed in order 
to adapt them to our data model. First, the teacher has to select the origin of the data to be mined (see 
Figure 3). We have two different formats available for input data: 1) the Moodle relational database, 
for teachers that work with Moodle as well as the INDESAHC authoring tool (De Castro et al., 
2004), so all our attributes are used directly; or 2) a Weka (Weka, 2007) ARFF text file, for teachers 
that use other LMSs and, therefore, other attributes. When the data have been selected, the 
application shows the teacher only the numerical attributes (see section 5.1) in order to transform 
them into discreet variables. The objective is to make the rules discovered easier to understand and 
also to significantly reduce the mining algorithm’s running time. We have used three possible 
nominal values: LOW, MEDIUM and HIGH. 

 



 
 

 
Figure 3. Pre-process panel.  

 
- Configuration parameters. The teacher has to set up the parameters and restriction that he/she 

wants the association rule mining algorithm to use (Figure 4): the maximum number of rules to be 
discovered, maximum number of antecedent and consequent elements or items in the rule, the 
specific attributes that do or do not have to appear in the rule antecedent or consequent. In order to 
restrict the search field, we have also added a few parameters related with the analysis depth. Firstly, 
the teacher must select the level to carry out the analysis: course, unit, lesson and others tables such 
as course-unit, course-lesson, course-exercise, course-forum, unit-exercise, unit-lesson, lesson-
exercise among others. Then, the teacher must select a particular course, unit or lesson in order to do 
rule mining only with the specified data at the specified level. 

 



 
 

 
Figure 4. Parameters configuration panel. 

 
- Rules Repository. The rules repository (see Figure 5) is the knowledge database upon which the 

subjective analysis of the discovered rules is based. Since a specific rule and/or specific 
recommendation that has been discovered in one course does not necessarily have to be valid or 
applicable to another different course, so we classify the rules in the repository according to the 
teacher profile: Topic, Level and Difficulty. Before running the algorithm, the teacher downloads the 
current knowledge database from the server (button Get rules set from server), according to his/her 
course profile. The personalisation of the tuples returned by the server is based on these three 
filtering parameters, along with the type of course to be analysed. So, the teacher only downloads 
tuples that match each profile. The information provided by the system for each tuple of the 
repository is: the rule itself (antecedent and consequent), the problem detected by the rule and an 
associated recommendation for its solution. In order to identify each tuple, additional information is 
also included, such as the name of the author, the date and evaluation of the rule. The rules 
repository is created on the server (section 4.2), based on the educational considerations of experts 
and the experience garnered from other similar e-learning courses. 

 



 
 

 
Figure 5. Rules repository panel. 

 
- Results. Finally, after downloading the rule repository and configuring the application parameters or 

using default values, the teacher executes the association rule algorithm. Then, client application 
shows the results obtained in a table (see Figure 6), with the following fields: rule, problem, 
recommendation, score and apply button. There are two types of recommendations:  

1) Active, if it implies a direct modification of the course content or structure. Active 
recommendations can be linked to: modifications in the formulation of the questions or the practical 
exercises/tasks assigned to the students; changes in previously assigned parameters such as course 
duration or the level of lesson difficulty; or the elimination of a resource such as a forum or a chat 
room. For example, we can see in Figure 6 that the exercise wording had a writing error (20 cm 
instead of 2 cm) and then the teacher has corrected it and also has added some more information.  

2) Passive, if they detect a more general problem and point the teacher towards more specific 
recommendations. 

For active recommendations, by clicking the Apply button, the teacher will be shown the area of 
the course that the recommendation refers to (see Figure 6) so that he/she can carry out the 
modification, change, elimination, etc. Each time a teacher applies an active recommendation, he/she 
is implicitly voting for that tuple. 

 



 
 

 
Figure 6. Results panel. 

 
4.2. Server application 
 

On the server side, we have implemented a web application (see Figure 7) to manage the knowledge 
database or repository. In order to access absolutely all the editing options for the repository, a basic 
profile was created, which is the profile of the experts in the educational domain. These experts have 
permission to introduce new tuples into the rule repository and vote for existing ones. Based on the votes 
registered by experts, the Wexperts parameter is calculated. Implicit votes are also stored, which are 
registered by clients in their local analyses; based on these votes, Wteachers is calculated. 

In order to allow information exchange (tuples) between client and server, we have developed a web 
service. It keeps the current repository updated in a PMML file. Each time that a client application 
updates its repository, the parameters used in the algorithm described in section 3.1 are recalculated and 
the tuples are reordered in the repository, taking into account the WAcc accuracy parameter. 
 



 
 

 
Figure 7. Server application interface.   

 
Both experts and teachers participate in the creation of the knowledge base. Initially the knowledge 

base was empty and experts proposed tuples. Let’s see how experts and teachers vote. 
On one hand, each expert, using the server application, voted for each tuple in the repository, according 

to the approaches specified in Figure 8. Expert evaluation has been divided into two groups of evaluation 
criteria or approaches: A1 (expert evaluation) and A2 (expert decision), with three options or questions 
each. Be making W1, W2 the weights assigned by the system administrator to the two groups of options A1 
and A2, we can calculate the total score of a tuple according to: 

2211 ** AWAWpertNumVotesEx +=   
where Ā1 and Ā2  are the average score given by experts to each option in the group. In our experiment the 
we have fixed values of W1 = W2 = 0.5, due to we consider the two groups of evaluation criteria have the 
same importance. The NumVotesExpert values are between 0 and 100 and they are distributed, depending 
of the vote, in the following way: Very Low option (20 points) , Low (40 points), Normal (60 points), 
High (80 puntos), and Very High (100 points).  

On the other hand, as we have said previously, teachers vote implicitly; that is, if teachers apply one of 
the recommendations to their course, they are automatically voting for its applicability to this tuple: 

NumVotesTeacher = 100 * TeacherVote 
where TeacherVote is a binary variable with values of true (1) or false (0) according to whether the 
teacher votes for the rule or not. Once we have calculated the NumVotesExpert which is used in equation 
(1) and NumVotesTeachers used in equation (2), we can calculate the WR (equation 3). In this case, we 



 
 

have fixed the values of Ct = Ce = 0.5, granting the same importance or weight to the vote of the teachers 
and of the experts. Finally, the score of each rule (see Figure 7) is obtained by multiplying the WAcc 
values by 100 in order to show them in the range 0 and 100 instead of 0 and 1. 
 

 
Figure 8. Form used by to the expert for evaluating tuples.  

 
5. Experimental Results 
 
In order to test our system, we have carried out some experiments on an educational dataset. We have 
used real data gathered from students in a pilot experiment , called “Cordobesas Enredadas” and carried 
out in Cordoba (Spain) in 2004-2005, with respect to the technological literacy of women in rural 
settings,. In this project, 7 adaptive web-based courses were developed based on subjects included in the 
ECDL (European Computer Driving Licence) and Open Office, the free-distribution office package. The 
courses were developed using INDESAHC (De Castro et al., 2004), an authoring tool to create adaptive 
hypermedia courses compatible with Moodle. In our experiment, three experts in the Computer Sciences 
and Artificial Intelligence area in Cordoba University, Spain have also participated and were responsible 
for proposing the initial tuples in the repository. And there have also been two other teachers involved 
from the same area (the authors of the courses themselves), so the teacher profile is thus fixed at: 
Computer Science (Topic), Universitary (Level), and Basic (Difficulty).  
 
5.1. INDESAHC data 

 
The definition of the course syllabus in INDESAHC is based on a hierarchical domain model in which 

a course is composed of teaching units divided into lessons, each of which containing a series of concepts 
explained or assessed through scenarios or web pages (see Figure 9). An adaptation model was also 
included in order to adapt all the contents to each student’s level of knowledge. The specific adaptive 
techniques that we have used are adaptive link hiding and annotation (De Bra and Calvi, 1998). We have 



 
 

classified all the contents of the course into different levels of difficulty (3 levels in this case). Thus, the 
system adapts the contents of the course (difficulty level) depending on each student’s current level of 
knowledge. 

 

 
Figure 9. INDESAHC domain model. 

 
Table V shows, on one hand, attributes related to adaptive hypermedia courses which have been added 

to the Moodle database as new tables. On the other hand, we can see attributes related to teaching 
resources such as forums, chat rooms, questionnaires and tasks, which have been also introduced from the 
INDESAHC interface. 

Table V. Attributes used in association rules mining process. 
Level Attribute Description 

c_time Time taken by the student to complete the course 
c_score Average final score for the course 
c_attempts Number of attempts before passing the course 
c_quiz_attempt Total number of attempts in the quiz 
c_quiz_time Total time taken in the quiz 
c_quiz_score Score obtained in the quiz 
c_chat_messages Number of messages sent in the chat room 
c_assignment_score Score in the assignment  
c_forum_read Number of messages read in the forum 
c_forum_post Number of messages posted in the forum 

Course 

c-doc_view If the document or web link has been viewed 
u_lessons Number of lessons in a unit 
u_time Time taken by the student to complete the learning unit 
u_initial_score Student’s score in the unit pre-test 
u_final_score Student’s final score on completing the unit 
u_attempts Number of attempts before passing the unit 
u_forum_read Number of messages read in the forum 
u_forum_post Number of messages posted in the forum 
u_assignment_score Score in the assignment 

Unit 

u_doc_view If the document or web link has been viewed 
l_concepts Number of concepts in the lesson 
l_time Time taken by the student to complete the lesson Lesson 
l_diffic_level Level of difficulty of the lesson as defined by the teacher 
e_time Time taken by the student to complete the exercise 

Exercise e_score Score obtained in the exercise 
 

5.2. Data pre-processing 
 
Data pre-processing of LMS is a little simpler due to Moodle, and most LMS employ user authentication 
(password protection) in which logs have entries identified by users, since users have to log-in (Romero et 
al., 2008). In this way, sessions are already identified since users may also have to log-out and this 



 
 

eliminates the need for typical user and session identification tasks. So, the data gathered by an LMS may 
require less cleaning and pre-processing than data collected by other web-based systems. Although the 
amount of work required in data preparation is less, we have carried out two main pre-processing tasks:   

- Data selection. It is necessary to decide which courses can be most benefited by mining. From the 7 
courses available, we have selected the “Word Processing” one since it has the greatest number of 
activities and resources. 

- Data cleaning. We have carried out cleaning for two main reasons. First, it was discovered that very 
high values were often recorded for attribute time because the student had left the computer without 
first exiting the exercise, concept or section. In order to correct this, any times that exceeded a 
maximum established value were considered noisy data, and this maximum value was assigned to 
any apparently erroneous data. Secondly, it was discovered that some students had not completed all 
the course activities. Whenever possible, the students were contacted and asked to complete the 
course so that their information could be used. When this was not possible, the information regarding 
these students was discarded.  

- Data discretization. The transformation into discreet variables can be seen as a categorisation of 
attributes that takes a small set of values. The basic idea involves partitioning the values of 
continuous attributes within a small list of intervals. Our process of discretization used three possible 
nominal values: LOW, MEDIUM and HIGH. And we have used three partition methods (Liu et al., 
2002): equal width method, score type method and a manual method (where the teacher sets the 
limits of the categories manually). 

- Data Integration. Normally, in a data mining problem, a single dataset must first be established if 
there are data that come from different sources. In this case, we have data from two sources: 1) the 
tables that stored student monitoring data in the specific attributes of INDESAHC; and 2) the tables 
used by Moodle, which stored the other information about the course such as forums, chat rooms and 
tasks. Using these data, a temporary database was created where rule mining was applied.  

- Data Filtering. Before applying the rule mining algorithm, the teacher could also restrict the search 
domain by specifying the level of granularity of the analysis, for example, at a subject, lesson or 
exercise level. The resulting temporary table in this case would, therefore, only contain attributes and 
transactions from students with respect to the level selected. The system could also find interesting 
relationships between attributes from different tables, for example if the teacher selected a course-
subject or subject-exercises, the temporary table created would contain attributes and transactions 
from more than one table. 

 
5.3. Comparing the performance of association rule mining algorithms 
 

In order to select the association rule mining algorithm for our CIECoF system, we have performed 
some tests with the course usage data found in students’ tables such as: students_courses, students_units, 
students_lessons, students_exercises, students_forums, students_quiz, students_task, among others. In 
Figure 10 we show the results obtained when comparing the support/confidence measure obtained by 
several runs of the Apriori and the Predictive Apriori algorithms using the data from the students’ 
interaction with the first exercise in the query table courses_exercises, which contains 90 transactions 
with the following attributes: c_time, c_score, e_time, e_score. Figure 10a shows the initial execution for 
Apriori (Weka implementation), varying parameters. Figure 10b shows Predictive Apriori results, varying 
the number of rules (NR) to be discovered. In this case, starting from the second run (20 best solutions), 
the support ranges of the rules found are more uniform, varying from 0.08 to 0.7.  

 



 
 

 
Figure 10. Results of running the Apriori and Predictive Apriori algorithms on the query table courses_exercises. 

By comparing these results obtained in Figure 10, some conclusions can be reached, which were found 
also in other tests and are described here. 1) The performance of Apriori depends heavily upon the choice 
of minimum support and confidence: we cannot be sure that a professor who is not an expert in data 
mining will obtain the best rules when assigning default values to input parameters. 2) The first execution 
of the PA algorithm obtains rules that, regardless of a low degree of support, present a high degree of 
confidence. As the first execution of the Apriori algorithm does not obtain these rules, the Apriori had to 
be run several times, varying its input parameters to obtain similar results to the PA. 3) The PA also 
discovers rules with low support and high confidence, which are not found by the Apriori. These specific 
rules are very interesting in education because they detect small groups of students who differ from the 
average (students with some type of problem). In fact, when teachers find these types of rules, they can 
identify those students in order to give them more personalised attention. Hence, for all the 
abovementioned reasons, we have used the PA as the basic rule algorithm in our CIECoF system. 

 
5.4. Analysis of the recommendation effectiveness 
 
In order to verify the effectiveness of the changes made by the teachers in the course, based on the 
recommendations suggested by the system, it is important to bear two points of view in mind: 1) the 
teacher’s perspective, in terms of the percentage of apparently corrected problems, based on initial 
recommendations, that reappear in successive courses with different groups of students; and 2) the 
perspective of the students with respect to how the removal of those problems based on the 
recommendations influences their final score. Two hypotheses can initially be drawn from these aspects. 
Firstly, if the changes made by the teacher are 100% effective, then these problems should not be detected 
again in subsequent groups of students doing a course that has already been updated by applying the 
corrections. And secondly, if these problems do not happen again, then students’ scores should improve. 

We have implemented an iterative methodology to improve the course gradually with use (see Figure 
11). Using the recommendations obtained from the usage data of different groups of students, successive 
corrections to the course improve it step by step. In order to calculate the effectiveness of these 
recommendations (EfecRec1,i), we use equation 4 where TotalNew1 represents the total number of 
recommendations found when the usage data of the first group of students were analysed, which led to 
changes in the structure or content of the course. TotalRep1,i is the total number of recommendations that 
are repeated in consecutive runs of the same course, always applying the corrections  with each different 
group of students. Thus, the effectiveness of the changes made can be calculated, based on the 
recommendations proposed in the initial stage (the first course run) with respect to stage i (i=2,3...N), 



 
 

which corresponds to subsequent runs, as follows: 
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On the other hand, we can also evaluate the effectiveness of the corrections made following the 

recommendations in terms of the students. To do so, we compare the final marks obtained by students 
(average score and standard deviation) in a subsequent improved version of the same courses. We have 
used three different groups of 45 students who completed the course in the way indicated in Figure 11. In 
order to eliminate the influence of some external factors which might alter the results of the research, such 
as previous computing knowledge, average age of the group and level of education,  the composition of 
the two groups was forced to fit the following requirements: 1) students with no prior knowledge of 
computers, which was relatively easy since the courses were aimed at computer literacy in rural settings; 
2) the average age of the group had to be very similar; 3) the level of education was similar and above 
intermediate. 

 

 
Figure 11. Iterative methodology for improving the course. 

 
In Table VI we show the effectiveness percentages of recommendations (column referenced as 

EfectRec) according to (4), as well as the percentages of relevant recommendations found in consecutive 
improvements to the course (column referenced as Relevants). All the changes made in different versions 
were attributed to the recommendations and therefore no modification was based on initiatives coming 
from the teachers themselves.  

 
Table VI. Results from the teacher’s point of view when applying our system consecutively to data from the three 
groups of students.  TotalRec refers to the total recommendations provided by the system. TotalNew refers to the 

total recommendations provided by the system which the teacher considered useful and applicable. TotalRep refers 
to initial recommendations that, even though applied by the teacher, reappeared in the same tuples in consecutive 

runs of the course. 
Group TotalRec TotalNew TotalRep TotalRelevant Relevants 

(%) 
EfectRec 

(%) 
1 50 21 - 21 42,0 - 

2 50 5 6 11 22,0 71,4 

3 50 5 3 8 16,0 85,7 

 



 
 

In table VII we compare the students’ marks in order to determine the effectiveness of 
recommendations from the students’ point of view. 

 
Table  VII. Results from the point of view of the student. The mark refers to the final average scores and standard 

deviation of each group. P-value 1-2 and 1-3 show the p-values using t-Student’s test comparing group 1 to group 2, 
group 1 to group 3 and group 2 to group 3. 

Group Mark p-value 1-2 p-value 1-3 p-value 2-3 

1 6,55 ± 0,30    

  < 0,0001   

2 6,95 ± 0,56  < 0,0001  

    > 0,05 

3 7,10 ± 0,42    

 
We have reached several conclusions when analysing the results of Tables VI and VII:  
1) As we foresaw in the initial hypothesis, the effectiveness percentage veers towards 100% with 

subsequent improved versions of the course.  
2) Not only did the effectiveness percentage increase, but there was also a corresponding decrease in 

the total number of recommendations associated with the problems detected. This is an indication 
that the course went on improving. 

3) When the marks achieved by the three different groups of students were compared (p-values), the 
slight improvement observed is a further indication of the effectiveness of the system. Mainly if we 
compare the different modified versions of the course with the original course (group 1 vs. 2 and 3).  
Also, we can see that there aren’t significant differences between the next consecutives 
modifications (group 2 vs. 3). Therefore, the first modification in the course (more relevant rules 
discovered) affects more in the effectiveness of the system than the following ones (less relevant 
rules discovered). 

4) The percentages of relevant recommendation get lower throughout the different versions of the 
courses, so the proportion of change in course content also decreases. 

5) New problems are detected with each new group of students. One possible reason might be the 
different prerequisite skills among students. 

6) Some problems reoccurred throughout several improvements. These problems could be due to some 
of the changes made in course design, which were actually quite subjective, i.e. a change in the 
classification of lesson difficulty or of the estimated duration of a subject. 

 
5.5. Interpretation of discovered rules 

 
The teacher or course author has a crucial role in our methodology because he/she can also guide the 

search of rules by imposing some subjective restrictions (see Figure 5). To do so, the teacher uses his own 
knowledge and experience in education. For example, he/she can decide to use data about one specific 
unit, lesson or even of the whole course, and whether or not to use data only about times, score or 
participation to construct rule antecedents and consequents. 

It is important to point out that the comprehensibility and interestingness of rules are subjective 
concepts that are difficult to quantify effectively. Due to this, we have used constraint-based mining (Han 
et al., 1999), in which the teacher provides constraints that guide the search. We use three types of 
constraints: 

1. Data constraints: the teacher can specify the relevant data set for the mining task. 
2. Rule constraints: the teacher can select specific constraints for the rules to be mined. 
3. Interestingness constraints: the teacher can specify the values or ranges of a measure interesting for 



 
 

himself. 
 As we have mentioned previously, our objective is to show a group of useful rules to the teacher, so 

that he/she can make decisions about which changes would improve the performance of the course. From 
a semantic point of view, our resulting rules match the following pattern: 

 IF Time|Score|Participation AND ... THEN Time|Score|Participation 
Where Time, Score and Participation are thereby generic attributes referring to: the reading time for 

course, units, lessons and exercises (HIGH, MEDIUM and LOW values); information on students’ scores 
in the test and activities questions (HIGH, MEDIUM and LOW values); and lastly, participation refers to 
how the students have used the collaborative resources such as forum and chat (HIGH, MEDIUM and 
LOW values). Based on the rules discovered, the teacher can decide which of the relationships expressed 
are desirable or undesirable, and whether or not to apply the recommendation in order to strengthen or 
weaken the relationship (namely changing or modifying the contents, structure and adaptation of the 
course, etc.). 

The relationships that are shown in discovered rules can refer to the course, units, lessons, or scenarios 
of concepts (namely instructional and activity pages related to concepts). Next, we describe some 
examples of the general patterns found in rules of interest offering the teacher useful information about 
how to improve a course. We also describe some of their possible interpretations. It is important to 
highlight that a single rule can have several interpretations. Therefore the system will always show all the 
recommendations related to a detected problem, and it is the teacher him/herself who actually decides 
what recommendations to use. We should also mention that all the following examples always correspond 
to rules with a high degree of support, that is, they are confirmed by most of the students. 

 IF ExerciseTime = HIGH THEN ExerciseScore = LOW 
This pattern indicates that the students have spent a long time doing the exercise although the final 

score has been low. Two possible interpretations of this pattern are:   
1) The wording of this exercise could be incorrect or ambiguous, giving place to several 

interpretations. In this case the teacher can correct the exercise’s wording or eliminate it altogether 
if necessary.  

2) The exercise is quite difficult and for this reason the students spend relatively more time than on 
other exercises, resulting in a lower score. In this case, the teacher will determine if the exercise is 
in accordance or not with the difficulty level of the lesson.  

3) The students were weak on prerequisite skills. In this case, the teacher should consult other 
recommendations of higher level such as the level obtained in the unit pre-test, in order to confirm 
that interpretation. From here on, we will present only those interpretations that could be difficult 
to detect and represent a possible problem to be corrected. 

An example of this type of rule is:  
 IF (e_time [25] = HIGH) THEN (e_score[25] = LOW), supp. = 0.91, accur. = 0.82 
This rule means that if students took a long time to complete exercise number 25, then they got a low 

score in this exercise. This rule can indicate that there is a problem with this specific exercise, which was 
part of the: “application use” subject; “first steps with the word processor” lesson; and “renaming and 
saving a document” concept. The exercise was an INDESAHC interactive video scenario in which the 
student had to simulate the necessary steps for completing an activity using the mouse. In this specific 
case, the question was confirmed to be ambiguous and interpretable in several ways, so the wording was 
changed.  Other rules with a similar pattern were also found in multiple-choice or linking type questions. 

 IF UnitForumParticipation = LOW THEN UniFinalScore = HIGH 
This pattern indicates that there was not much participation in the unit forum although the students 

obtained a high final score for the unit in question. Three possible interpretations of this pattern are: 
1) The forum is not necessary for this unit, so the teacher can eliminate it. 
2) There are problems concerning the tutors responsible for forum maintenance, so the teacher 



 
 

should analyze the causes of these problems in detail. 
3) Strong students are more autonomous while weaker students are more inclined to use and consult 

the forum. 
An example of this type of rule is: 
 IF (u_forum_read [2] = LOW) AND (u_forum_post [2] = LOW)  
 THEN (u_final_score [1] = HIGH), supp. = 0.85, accur. = 0.83 
This rule shows that if students send or read few messages in forum 2 (unit 1), then they get a high 

score for this unit.  This rule shows that the forum may not be necessary or that there were problems with 
it. This type of rule raises the issue about whether the forum is really necessary at certain levels of the 
domain hierarchy. In fact, the forum was removed in this case. 

There are also patterns which did not provide any useful information for problem detection or that only 
provided the teacher with obvious information. For example: 

 IF AssignmentScore = HIGH THEN UnitScore = HIGH,  
This relationship indicates that if students obtain a good score in the assignment, then they also obtain a 

good score in the unit. An example of this type of discovered rules is the following: 
 IF (u_assignment_score [9] = HIGH)  
 THEN (u_final_score[3] = HIGH), supp. = 0.75, accur.= 0.72 

This rule shows that if the score of assignment 9 is high, then the final score obtained in unit 3 is high. 
This rule is totally logical for the teacher and it does not contribute any new information about how to 
improve the course. 

There are patterns that can generate recommendations of a passive type. For example: 
 IF UnitFinalScore = LOW THEN CourseScore = MEDIUM or HIGH 
This pattern indicates that if students obtain a low score in a specific unit, then they obtain a medium or 

high final score in the course. This rule can generate a passive type of recommendation because it could 
indicate the possibly of problems in the unit and that other more specific recommendations should be 
consulted at unit level. An example of this type of discovered rule is: 

 IF (u_final_score [1] = LOW) THEN (c_score = MEDIUM), supp. = 0.80, accur.= 0.88 
This rule shows that if the score of unit 1 is low, then the final score of the course is average. This rule 

detects a possible problem with unit 1 but in order to detect more specific problems, the teacher must 
consult other tuples. 

Lastly, we show an example of an unexpected rule:  
 IF (l_concepts[13] = LOW AND l_diffic_level[13] = LOW  
 THEN (l_time [13] = HIGH), supp. = 0.6, accur. = 0.85  

This rule shows that if the number of concepts included in the lesson is LOW and the level of difficulty 
assigned to that lesson is LOW, then the time taken to complete the lesson is HIGH. The fact that students 
have spent a long time completing a lesson that supposedly is not very difficult and contains few new 
concepts could indicate that the level of difficulty has been incorrectly classified. In fact, in this case, the 
course designer decided that the level of difficulty for this lesson should be changed to MEDIUM. 
 
6. Conclusions and Future Work 
 

This paper describes a recommender system that uses interactive iterative association rule mining and 
collaborative filtering in order to help the teacher maintain and continuously improve e-learning courses. 
The system enables the locally obtained rules to be shared by other teachers and experts with a similar 
profile. It uses a weight-based evaluation measurement to rank the rules discovered, taking into account 
the opinion of both experts and teachers to produce more effective recommendations.  

We have carried out several experiments using data from real students in order to test our system. First, 
we compared the classical Apriori algorithm to the Predictive Apriori algorithm. We show that the 
Predictive Apriori resulted in a better performance than the Apriori and required fewer parameters, 



 
 

making it more intuitive for a non-expert in data mining. Then, we carried out other experiments to 
evaluate the performance of the system from the points of view of both teacher and student. The results 
demonstrated our starting hypotheses: fewer problems are detected in subsequent improved versions of 
the courses and the students’ final marks improve as the teacher corrects problems. Finally, the general 
opinion of both teachers and experts has been very positive. They have demonstrated a high degree of 
motivation and have especially liked the novelty of using students’ data to improve e-learning courses, to 
be able to apply modifications to courses directly from the system and have the possibility of working and 
sharing information with other teachers and educational experts. However, experts have indicated that the 
creation of the repository or knowledge database is a hard task.  

For future work, we aim to carry out a more detailed study involving more students, more groups and 
more experts and teachers from other areas (unrelated to computer science) in order to obtain a more 
heterogeneous teacher's profile. This will allow the study of other interesting questions such as: Is it 
possible that different teachers in different areas might coincide in their evaluation of patterns?; What is 
the behavior of experts and teachers as they progress through a course?; Can tuples that are found to be 
valid and useful in one course later be applied to another course with a different profile?; How many false 
positives are generated (i.e. rules the system generates that are rejected by the user)?. These aspects could 
lead to a validation that would focus solely on a detailed analysis of the changes made and whether the 
process is efficient and likely to be complementary to non guided course content revision. Finally, we also 
want to strongly emphasise the collaborative measures of the approach analysing the relevance ratio of 
expert and teacher votes (Ct and Ce) and how much work can be facilitated for experts. 
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