

An architecture for making recommendations to courseware authors
using association rule mining and collaborative filtering

E.García, C.Romero, S.Ventura, C.de Castro

{egsalcines, cromero, sventura, cdecastro}@uco.es
University of Córdoba,

Campus de Rabanales, Ctra Madrid-Cádiz Km 396,2
14071 Córdoba, Spain
Tel. (34) 957211020
Fax (34) 957211051

Abstract. Nowadays we find more and more applications for data mining techniques in e-learning and
web-based adaptive educational systems. The useful information discovered can be used directly by the
teacher or author of the course in order to improve instructional/learning performance. This can, however,
imply a lot of work for the teacher who can greatly benefit from the help of educational recommender
systems for doing this task. In this paper we propose a system oriented to find, share and suggest the most
appropriate modifications to improve the effectiveness of the course. We describe an iterative
methodology to develop and carry out the maintenance of web-based courses to which we have added a
specific data mining step. We apply association rule mining to discover interesting information through
students’ usage data in the form of IF-THEN recommendation rules. We have also used a collaborative
recommender system to share and score the recommendation rules obtained by teachers with similar
profiles along with other experts in education. Finally, we have carried out experiments with several real
groups of students using a web-based adaptive course. The results obtained demonstrate that the proposed
architecture constitutes a good starting point to future investigations in order to generalize the results over
many course contents.

Keywords: association rule mining, recommender systems, e-learning, web-based adaptive education,
courseware design

1. Introduction

Recently, the huge increase in Internet accessibility has made the concept of online education or e-
learning a reality (Itmazi, 2005). This is a form of computer-aided instruction that virtually does not
depend on the need for a specific location or any special hardware platform (Brusilovsky, 2003). Public
and private schools are increasingly providing their students with e-learning systems that are also called
Learning Management System (LMS). LMSs are software tools designed to manage user learning
interventions that offer an extensive range of complementary functionality. Some examples of
commercial LMSs are WebCT, Virtual-U, and TopClass, although open source systems such as Moodle,
ATutor and ILIAS are gradually becoming more widespread (Itmazi, 2005). Although LMSs provide
useful tools for computer-supported collaborative learning (such as forums, chat rooms, discussion groups
and e-mail), most of them show their contents and educational material to all students in the same way. At
the same time students are also completely free to choose their own learning pathway through the course,
which is not necessarily the most effective one taking into account their previous knowledge or needs.

One possible solution for this problem is the use of Adaptive and Intelligent Web-Based Educational
Systems (AIWBES) (Brusilovsky, 2003), which combine the techniques of adaptive systems (Brusilovsky
et al., 2007; De Bra and Calvi, 1998). These systems build a model for the objectives, preferences and
knowledge of an individual user in order to adapt the system to his or her learning needs by means of
Artificial Intelligence (AI) techniques from intelligent systems (Brusilovsky et al., 1996; Heift, and
Nicholson, 2001) such as machine learning and data mining (DM). Data mining is part of the process of

Knowledge Discovery in Databases (KDD) and is understood to be the non-trivial extraction of
previously unknown and potentially useful, valid and comprehensible information from a large volume of
data (Klösgen and Zytkow, 2002). Hence, certain activities traditionally carried out by the teacher, such
as training and monitoring students and diagnosing their limitations, can now be performed by the system.

Many of the systems mentioned above use data mining techniques in order to personalise the output
data obtained, avoiding information overload and recommending items required by the current user based
on previous interactions of other users with similar profiles (Costaguta, 2006). There are different
recommendation strategies for user requirements (Zanker and Jessenitschnig, 2009) such as knowledge-
and utility-based methods, collaborative filtering, association rule mining as well as hybrid variants.
Recommendation systems can assist the natural process of relying on friends, classmates, lecturers, and
other sources to make choices for learning (Lu, 2004). In the educational setting, these recommendation
systems can be classified into two types according to their target users (Romero and Ventura, 2006). The
first is student-oriented (Gaudioso et al., 2003; Zaiane, 2002) in order to suggest good learning
experiences for the students according to their preferences, needs and level of knowledge, and the second
is teacher-oriented (Chen and Wasson, 2002; Romero et al., 2003) to help teachers and/or authors of e-
learning systems to improve the performance and functions of these systems based on student data.

The application of data mining in e-learning, particularly the teacher-centred approach aimed at
improving courses, involves a series of hurdles that need to be overcome (Romero and Ventura, 2006).
Data mining tools are normally designed more for power and flexibility than for simplicity. Most of the
current data mining tools are too complex for educators to use and their features do not cover the scope of
what an educator might require (Romero et al., 2008). On one hand, there is a wide variety of e-learning
and web-based adaptive courses that can apply data mining which is influenced by three key aspects: first
of all, the field of knowledge covered by the course; secondly, the course level (university, secondary or
primary school level, special education or any other kind of course); and finally, the level of difficulty of
the course, that is, if it is a basic or beginner, intermediate, advanced or an expert’s course. On the other
hand, the wide range of results that can be obtained, depending on these factors, means that it can be
fairly tricky to find therein general repeatable patterns which can be applied to any type of course.
Furthermore, educational data sets are normally small (Hamalainen and Vinni, 2006) if we compare them
to databases used in other data mining fields, such as e-commerce applications, that involve thousands of
clients. So, applying data mining with specific filtering parameters can cause problems for association
rule discovery in small databases (Zhang and Zhang, 2002) where the initial information is insufficient to
construct a model that will infer future behaviour.

In this paper we propose a recommender system that uses data mining techniques to provide feedback
to courseware authors. The paper is organized as follows: Section 2 describes some previous research
related to our proposal while Sections 3 and 4 describe the architecture of the system and its
implementation. Experimental tests to prove the validity of the system are described in section 5. Finally,
section 6 outlines conclusions and further research.

2. Related Works

There are many models or techniques have been used in data mining. In the following subsections, we
describe some of the techniques and work most directly related to our proposal.

2.1. Association rule mining

One of the most commonly used data mining techniques in the above-mentioned systems is association
rule discovery (Agrawal et al., 1996). Association rules are one of the most popular ways of representing
discovered knowledge and describe a close correlation between frequent items in a database. An X ⇒ Y
type association rule expresses a close correlation between items (attribute-value) in a database. There are

many association rule discovery algorithms (Zheng et al., 2001) but Apriori is the first and foremost
among them (Agrawal et al., 1996).

Most association rule mining algorithms require the user to set at least two thresholds, one of minimum
support and the other of minimum confidence. The support S of a rule is defined as the probability that an
entry has of satisfying both X and Y. Confidence is defined as the probability an entry has of satisfying Y
when it satisfies X. Therefore the aim is to find all the association rules that satisfy certain minimum
support and confidence restrictions, with parameters specified by the user. Therefore, the user must
possess a certain amount of expertise in order to find the right support and confidence settings to obtain
the best rules.

One possible solution to this problem can be to use an algorithm with less and/or more intuitive
parameters. For example, the Weka (Weka, 2007) package implements an Apriori-type algorithm that
partially solves this problem. This algorithm iteratively reduces minimum support, by a delta factor
support (∆s) introduced by the user, until a minimum support is reached or a maximum number of rules
(NR) has been discovered. However, it needs some other parameters, such as lower and upper bound
support and minimum confidence.

Often, the user can assume that the resulting association rules provide information about the process
that generated the database, and that they will be valid in the future, too. However, confidence in training
data is only an estimate of the rules’ accuracy in the future, and since the space of association rules is
searched to maximize confidence, the estimate is optimistically biased. A really important improvement
to the Apriori algorithm for use in educational environments is the Predictive Apriori (Scheffer, 2005)
because it does not require the user to specify any of these parameters (either the minimum support
threshold or confidence values).The algorithm aims to find the N best association rules, where N is a
fixed number. This setting is more appropriate in many situations because these thresholds may not be
easy to specify and a teacher may not be satisfied with either an empty or an outrageously large set of
rules. The only parameter entered by the teacher is the number of rules to be discovered, which is a more
intuitive parameter. The Predictive Apriori (PA) algorithm strikes an appropriate balance between support
and confidence to maximize the probability of accurately predicting the dataset. In order to achieve this,
the PA algorithm, using the Bayesian method, proposes a solution that quantifies the expected predictive
accuracy (E(c| ĉ, s) of an association rule [x ⇒ y] with given confidence ĉ and the support of the rule’s
body (the left hand side of the rule) of s. This parameter thus quantifies just how strongly the confidence
of a rule has to be corrected given the support of that rule, and it depends on the prior π(c) which is the
histogram of accuracies of all association rules over the given items for the given database. The PA
algorithm is displayed in Table I.

We can estimate π(c) by drawing many hypotheses at random under uniform distribution, measuring
their confidence, and recording the resulting histogram. However, there are many more long rules than
there are short ones (the number of distinct item sets grows exponentially in the length). If we drew rules
at random, we would almost never get to see short rules; our estimate of π(c) for short rules would be
poor. In order to avoid this problem, the author of PA algorithm (Scheffer, 2005) proposed to run a loop
over the length of the rule and, given that length, draw a fixed number of rules. He determines the items
and the split into body and head by drawing at random (Step 2).

We have now drawn equally many rules for each size while the uniform distribution requires us to
prefer long rules. There are I item sets of size i over k database items, and given i items, there are 2i −1
distinct association rules (each item can be located on the left or right hand side of the rule but the right
hand side must be nonempty). Hence, the following equation gives the probability that exactly i items
occur in a rule which is drawn at random under uniform distribution from the space of all association
rules over k items.

()()
()()∑ =

−

−
= k

j
jk

j

ik
iitems] [iP
1

12
12

Therefore, the author of PA estimates the prior over all association rules (Step 3) in a way that accounts

for the number of rules with a specific length that exist by weighting each prior for rule length i by the
probability of a rule length of i. This can be seen as a Markov Chain Monte Carlo style correction to the
prior. Then, the PA generates the frequent item sets, pruning the hypothesis space by dynamically
adjusting the minimum support threshold, generating association rules, and removing redundant
association rules interleave.

Table I. Algorithm Predictive Apriori: discovery of n most predictive association rules

Input: n (desired number of association rules), database with items a1,…,ak

1) Let τ = 1; // initial support
2) For i = 1 to k Do: Draw a fix number of association rules [x→y]. Measure

their confidence (provided s(x) > 0). Let πi(c) be the distribution of
confidences.

3) For all c, Let
()()

()()∑
∑

=

=

−

−
= k

i
ik

i

k

i
ik

ii c
c

1

1

12

12)(
)(

π
π

4) Let X0 = {Ø}; X1 = {{a1},…,{ak}} be all item sets with one single element.
5) For i = 1 to k-1 While (i=1 or Xi-1 ≠ Ø)
 (a) If i > 1 Then determine the sets of candidate item sets of length i
 as Xi = {x U x’ | x, x’ ∈ Xi-1, | x U x’| = i}. Eliminate double

occurrences of item sets in Xi

 (b) Run a database pass and determine the support of the generated

items sets. Eliminate item sets with support less than τ from Xi.

 (c) For all x ∈ Xi Call best = GenRule(x)*;

 (d) If best has been changed, Then Increase τ to be the smallest

number such that E(c|1,τ) > E(c(best[n])|ĉ(best[n]),s(best[n])).If
τ > database size Then Exit.

 (e) If τ has been increased in the last step, Then eliminate all item sets

from Xi which have support below τ.

6) Output best[1], best[2]… best[n], the list of the n best association rules.

*GenRule(x): find the best rules with body x efficiently

Association rule mining algorithms normally discover a huge quantity of rules and do not guarantee

that all the rules found are relevant. Therefore, they must be evaluated in order to find the best rules for a
specific problem. Traditionally, the use of objective measures has been suggested (Tan and Kumar, 2000),
such as support and confidence, mentioned previously, as well as other measures such as Laplace, chi-
square statistics, correlation coefficients, entropy gain, interest, conviction, etc. These measures can be

used to rank the rules obtained so that the user can select those with the highest values for the most
appropriate measures. On the other hand, subjective measures are becoming increasingly important
(Silberschatz and Tuzhilin, 1996). These measures are based on subjective factors controlled by the user.
Most subjective approaches involve user participation in order to express which rules are of the most
interest for clarifying and updating previous knowledge.

An Interestingness Analysis System (IAS) was proposed by (Liu et al., 2000). IAS compares the newly
discovered rules to the user's current knowledge about the area of interest. Using their own specification
language, they indicate their level of knowledge about the matter in question through relationships
between the fields or items in the database. Let U be the set of user’s specifications representing his
knowledge space, and A be the set of newly found association rules. This algorithm implements a pruning
technique to remove redundant or insignificant rules by ranking and classifying them into four categories:
Conforming rules: A discovered rule Ai ∈ A conforms to a piece of user’s knowledge Uj ∈ U if both the

conditional and consequent parts of Ai match those of Uj ∈ U well. They use conformij to denote the
degree of the conforming match.

Unexpected consequent rules: A discovered rule Ai ∈ A has unexpected consequents with respect to a Uj

∈ U if the conditional part of Ai matches that of Uj well although the consequent part does not. They
use unexpConseqij to denote the degree of unexpected consequent match.

Unexpected condition rules: A newly found rule Ai ∈ A has unexpected conditions with respect to a Uj

∈ U if the consequent part of Ai does matches that of Uj well while the conditional part does not.
They use unexpCondij to denote the degree of unexpected condition match.

Both-side unexpected rules: A discovered rule Ai ∈ A is unexpected on both-side with respect to a Uj

∈ U if neither the conditional nor the consequent parts of rule Ai match those of Uj well. They use
bsUnexpij to denote the degree of both-side unexpected match.

The values for conformij, unexpConseqij, unexpCondij, and bsUnexpij are between 0 and 1. The value “1”
represents a complete match, either a completely conforming or a completely unexpected match, and the
value “0” represents no match. The user can indicate his knowledge about the matter in question through
relationships among the fields or items in the database. After the newly found rules have been analyzed,
IAS displays different types of rules that are potentially interesting to the user. IAS shows the essential
aspects of the rules in such a way that it can take advantage of human visual capabilities to enable the user
to identify the truly helpful rules easily and quickly. These essential aspects are:

1. Types of potentially interesting rules: Different types of pertinent rules should be separated
because they give the user different kinds of pertinent knowledge.

2. Degrees of interestingness (“match” values): Rules should be grouped according to their degrees
of interestingness. This enables the user to focus his/her attention on the most unexpected (or
conforming) rules first and to decide whether to view these rules as being less interesting.

3. Items of interest: showing preferably the items of interest in a rule can be better than seeing the
whole rule.

2.2. Collaborative recommender systems

In general, frequent item sets are useful for revealing association rules in large databases. However,
when working with separate, relatively small databases, it is essential to learn how to use experience,
common sense and models created by other users who have already worked with these databases in the
past (Klösgen and Zytkow, 2002). There are pro-active methods that use tools to support collaborative
work: this multidisciplinary development normally involves experts from different areas of knowledge
such as: knowledge engineers in charge of modelling knowledge; knowledge database developers who
construct, organise, annotate and maintain these databases; and teams of validating experts who validate
elements of knowledge before they are entered into the contents repository. Collaborative Recommender
Systems (Mobasher, 2006) are based on opinions provided by experts, through explicit or implicit voting

systems. The main goal is to suggest better solutions based on overall experience. They are based on
social networking, so they are also vulnerable to social attacks (Mehta and Nedjl, 2009).

Recommendation techniques for personalization can be classified in different ways (Mobasher, 2006)
based on data sources themselves as well as on the use made of this data. The Collaborative Filtering
System (CFS), also referred to as social filtering, depends on a product database as well as on
demographic data and potential consumer evaluations of certain products that have not yet been put to
trial. This is perhaps the most familiar, widespread and fully developed of all recommendation techniques
(Burke, 2000a). The main idea of CFS revolves around computerising the “word of mouth” process that
people use to recommend products or services to one another. If users need to choose between various
options they have no experience about, they are likely to trust the opinions of those who do have
experience. The Knowledge Based System (KBS), on the other hand, aims to suggest objects based on
inferences about the user's preferences and needs. Unlike other techniques, it has prior functional
knowledge about how a particular item can satisfy a user's needs and therefore can make reasoned
judgements about the relationship between this need and a possible recommendation. The user profile
can be any knowledge structure that supports this inference. In the case of Google, this would simply be
the query entered by the user. In other cases, it might be a more detailed representation of the user’s
needs. The Entree system (Burke, 2000b) uses Case-Based Reasoning (CBR) techniques to make
recommendations based on knowledge.

Recommender Systems (RS) are currently applied to many web based sectors, for example, in e-
commerce in order to offer personalised client services (Zan et al., 2004), in webpage search engines in
order to avoid information overload (Eliassi-Rad and Shavlik, 2003), and in digital libraries in order to
help users find desirable books or articles (Geyer-Schulz, 2003). Another recent field of application for
the currently booming RS is e-learning (Rosta and Brusilovsky, 2006; Tang and McCalla, 2005) which
uses different recommendation techniques in order to suggest online learning activities or optimum
browsing pathways to students, based on their preferences, knowledge and the browsing history of other
students with similar characteristics.

There are several specific research projects on the application of recommender systems and association
rule mining in e-learning systems. Wang (2002) developed a portfolio analysis tool based on associative
material clusters and the sequences found therein. This knowledge allows educators to study dynamic
browsing structures and to identify interesting or unexpected learning patterns. In order to achieve that,
Wang discovers two types of relationships: association relations and sequence relations among
documents. Minaei-Bidgoli et al., (2004) proposed mining contrast rules that are of interest for web-based
educational systems. Contrast rules help to identify attributes that characterize patterns of performance
disparity between different groups of students. Markellou et al., (2005) proposed an ontology-based
framework and elaborate association rules, using the Apriori algorithm. The role of ontology is to
determine which learning materials are the most suitable to recommend to the user. Zaïane and Luo
(2001) proposed the discovery of useful patterns based on restrictions in order to help educators evaluate
students’ activities in web courses. Li and Zaïane (2004) also used recommender agents for e-learning
systems which use association rule mining to reveal associations between user actions and URLs. The
agent recommends online learning activities or shortcuts on a course web-site based on a learner’s access
history. Lu (2004) used association fuzzy rules in a personalized e-learning material recommender
system. He uses fuzzy matching rules to discover associations between a student’s requirements and a list
of learning materials. Romero et al., (2003, 2004) proposed the use of grammar-based genetic
programming with multi-objective optimization techniques to provide feedback to courseware authors.
They discover interesting association rules in students’ usage information. Merceron and Yacef (2004)
used association rule and symbolic data analysis as well as traditional SQL queries in order to mine
student data captured from a web-based tutoring tool. Their goal is to find mistakes that often occur
together. Freyberger et al. (2004) use association rules to guide a search for the best fitting transfer model

of student learning in intelligent tutoring systems. The association rules determine the operation that
needs to be performed on the transfer model to predict a student’s possibility of success. Finally,
Srivastava et al., (2000) used clustering and association rule mining to extract usage knowledge for the
purpose of web personalization. This personalization system can also be used to adapt courses to each
student’s needs.

3. Architecture of the system

In order to tackle the problems discussed in the introduction section, we are going to propose a
collaborative recommender system applied to education. The objective is to help teachers to continually
improve and maintain adaptive and non-adaptive e-learning courses. We have used a hybrid recommender
system based on CFS and KBS in order to add a feedback stage in two ways. First of all, collaborative
filtering will help to discover pertinent relationships among different teachers with similar profiles, each
working with their own databases. These similarities or useful relationships will be available to other
teachers to assess in terms of applicability and relevance. Secondly, the knowledge database will be
strengthened with experiences that, due to their significance, satisfy the needs of many teachers and
therefore can give rise to increasingly effective recommendations.

Figure 1. Main phases of CIECoF architecture.

The main phases used in the CIECoF (Continuous improvement of e-learning course framework)

architecture are (Figure 1):
- Association rules mining. This phase aims to find association rules on the data set generated as the

students complete the course. Once the data has been pre-processed, it is used as input of the
Predictive Apriori algorithm, the nucleus of this phase. Also, the teacher could select specific data
and attributes in order to restrict the search domain. The output of this module (rules found) is then
analyzed by the subjective analysis module.

- Subjective analysis: This phase uses a subjective rule evaluation measure (section 3.2) to determine
the interestingness of the rules found by association rule mining. It also applies the IAS algorithm to
classify the rules in expected or unexpected comparing them with the rules stored in the knowledge
base.

- Knowledge base creation: This phase combines collaborative filtering techniques with knowledge
based techniques to create and to manage the rules repository. The information in the knowledge base
is stored in form of tuples (rule-problem-recommendation-relevance) which are classified according
to a specific course profile. In order to avoid the cold start issue of collaborative filtering systems, the
experts propose the first tuples of the repository and also vote for those tuples proposed by other
experts. On the other hand, the teachers could discover new tuples that must be validated by the
experts before being inserted in the repository and also votes for the others tuples.

- Recommendations: The expected rules found by the phase 2 joined to the more intuitive tuples
format mentioned in phase 3, are then used in this last phase to show the teacher, in most of the cases
non expert in data mining, possible solutions to some problems detected in the course. The teacher
analyzes the recommendation and he determines if it is relevant or not.

The system is based on client-server architecture with N clients, which applies an association rule
mining algorithm locally on students’ data using an online course. In the server application are included
two modules. The first is a web application server so the experts can manage a knowledge base (KB) and
can add, delete or edit tuples, as well as being able to vote on the contributions made by other experts in
the team. The second module is a web service, which allows the server to share the updated KB with the
client in PMML format (Data Mining Group, 2006). PMML (Predictive Model Markup Language) is an
XML-based language that enables the definition and sharing of predictive models between applications,
establishing a vendor-independent means of defining these models, so that problems with proprietary
applications and compatibility issues can be circumvented. So, once the updated version of the KB has
been downloaded from the server, the client can apply the mining algorithm offline. Client application is
part of the iterative methodology (García et al., 2006) that teachers use to develop courses. It is capable of
detecting possible problems in the design and content of an e-learning course by adding a feedback or
maintenance stage to the course.

Figure 2. CIECoF client-server architecture.

As we can see in Figure 2, there are several stages in this methodology: 1) the initial construction of a

course; 2) the completion of the course by the students, during which usage information is transparently
compiled and stored in a database; 3) the ongoing improvement stage, which coincides with client
application. This last stage contains the core of the rule mining algorithm used (section 3.1). The
algorithm together with the KB classifies the rules found as being either expected (if they coincide with
the KB), or unexpected (if they do not). If teachers apply a recommendation to the course, they are also
implicitly voting on its usefulness in the server knowledge database. Unexpected tuples are ranked
according to the IAS algorithm and teachers can tag any that are found interesting. The experts then
analyse these unexpectedly ‘interesting’ tuples and can choose to include them in the KB.

3.1. Association rule mining algorithm

We have implemented an association rule mining algorithm oriented to education which is based on the
following algorithms: 1) Predictive Apriori for association rule discovery without parameters; and 2) IAS
for subjective analysis and classification of unexpected rules by comparing them to a previously defined
knowledge database on the field. The algorithm also includes a new weight-based interestingness
measurements presented in the section 3.2, to recommend to the teacher any rules according to:

a) Other teachers with a similar profile have found useful. The teacher profile is represented as a
three-dimensional vector related with the following characteristic of his/her course: Topic (the
area of knowledge, e.g. Computer Science or Biology); Level (level of the course, e.g.
Universitary, High School, Elementary or Special Education); and Difficulty (the difficulty of the
course, e.g., Low or High). We use static classification to compare teachers, so similar profile
refers to an exact coincidence between one profile and other.

b) A team of validating experts has voted for in terms of interest or validity.
The algorithm implemented is especially useful in collaborative recommender systems, which can take

advantage of the synergies offered by the network, in order to produce recommendations that are
increasingly useful and precise.

The main algorithm is interactive and iterative (see Table II). In each iteration, the teacher runs the
mining algorithm in order to find the rules that will act as a basis for recommendations; this can be done
as often as necessary.

Table II. Main algorithm.

Input: Topic, Level, Difficulty: teacher profile;
 N: number of rules to discover;

1) Iters = 0;
2) KB = Get_Rules_fromServer(Topic, Level, Difficulty);
3) While (teacher doesn’t stop) do
4) Re, Rne = Rules_Mining_Algorithm(N, KB, Iters);
 where Reiters ≠ Reiters+1, Rneiters ≠ Rneiters+1

5) For each i-rule in Re do
6) Teacher_Vote_Recommendation(Rei)
7) End
8) For each i-rule in Rne do
9) If (Interesting(Rnei)) then
10) Add_to_KnowledgeBase(Rnei);
11) End if
12) End
13) Iters ++;
14) End while
15) End all

In step 1) the variable Iters, which counts the number of iterations, is initialised at zero; in step 2) the

teacher downloads the knowledge base (KB) from the server corresponding to his/her course profile; in
step 3) the main loop starts and all its instructions will be executed until the teacher decides to stop it.
Step 4) calls up the rule mining algorithm described in Table III, which returns the sets of
recommendations (Re) and unexpected rules (Rne) discovered where Re and Rne are different from one
iteration to another. From steps 5) to 7), the teacher votes on whether the recommendation has been useful
or not, and in steps 8) to 12), he/she evaluates unexpected rules to determine whether or not they are
useful; unexpected rules might be added to the knowledge base (KB), subject to prior validation by the
experts. Finally, in step 13), the Iters variable is incremented.

The rule mining algorithm implement is described as follows (see Table III). Let accRi (i=1,2,…n) be
the predictive accuracy of Ri; R the set of rules discovered by the current teacher, Re the set of expected
rules, and Rne the set of unexpected rules, then R = Re ∪ Rne; KB is the set of rules that makes up the

knowledge database concerning this field.
In step 1), the GenRules function reveals the association rules; this function is provided with the desired

number of rules and calls on the PA algorithm.
In step 2), the rule found is classified as being expected if it syntactically matches rule in the current

knowledge database, that is, if it has both the same antecedent and consequent. The rule is classified as
unexpected if it does not. From steps 3) to 5), for each rule Ri ∈ Re, the new weight-based interestingness
measurement WAcc is calculated (see section 3.2).

Table III. Rule Mining Algorithm

Input: N: number of rules to discover;Iters:number of iterations
 KB: knowledge base;
Ouput: Re: recommendations set; Rne: unexpected rules;

1) R, accR = GenRules (N, Iters); // Call to Predictive Apriori
2) Re, Rne = Classify(R);
3) For each i-rule in Re do
4) iRWAcc = CalculateWeightedAccuracy (Ri);
5) End
6) For each i-rule in Rne do
7) For each j-rule in KB do
8) conformij, unexpConseqij, unexCondij, bsUnexpij = IAS();
9) End
10) End
11) Order all the rules in Re from largest to smaller Wacc
12) Output the set Re as the set of recommendations
13) Ouput the unexpected rules Rne according to IAS
14) End all

From steps 6) to 10) the IAS algorithm is used to calculate the degree to which each unexpected rule

Rne coincides with the rules stored in the knowledge base (KB). In our system, all the unexpected rules
are ordered as follows: a) the conformed rules that are the basis of recommendations to the professor; b)
unexpected both-sided rules whose antecedent and consequence have never been mentioned in our
knowledge base; c) the unexpected consequent rules that show us those rules found to be contrary to our
existing knowledge; and d) the unexpected condition rules show us that there are other conditions outside
of our specified knowledge range that could be pertinent and conducive to learning.
In step 11), the set Re is ordered from highest to lowest based on the previously calculated WAcc. Step
12) displays all the recommendations corresponding to each of the previously ordered rules. Finally, in
step 13), the teacher is given the chance to view the set of unexpected rules in order to assess which
candidates are feasible and desirable for our knowledge database.

3.2. Weight-based rule evaluation measure

In order to help teachers make decisions about which rules to apply, the rules must be ordered in terms of
interest. Therefore, a measurement of this interestingness must be established based on the weights
reflected by the following parameters:

1) Rule’s accuracy calculated by the Predictive Apriori algorithm.

2) How useful this rule has been to other teachers based on their votes.
3) How interesting the rule is according to a team of experts, also using a voting system.
Let U1, U2…, Um, be m different teachers with different data-sources, Si the set of expected association

rules found by Ui (i=1,2,…m), S = {S1, S2,…, Sm}; and let E1, E2…, Ek, be k different experts. According
to Good’s definition of weight (Good I., 1950), the voting for rule R in S can be used to assign the weight
WR to R. In practice, teachers are more interested in applying rules that have received greater support, or
more votes, from other teachers.

Let R = {R1, R2…, Rn} represent all the rules in S, then the weight of Ri can be defined as:

 (1)

where i=1,2,…,n and NumVotesTeachers(Ri) is the number of teachers that have voted for rule Ri in S.

By applying the same reasoning to the experts’ votes:

 (2)

where i=1,2,…,n and NumVotesExperts(Ri) is the number of experts that have voted for rule Ri in R.
Therefore, the weight of rule Ri can be expressed as a weighted measurement of the votes registered by

the teachers and experts, so that:

eRiuRRi CWexpertsCWteachersW i ∗+∗= : Cu+Ce = 1 (3)

where Cu and Ce are the weighted coefficients representing the opinions of the teachers and experts
respectively.

Once the weight of each rule has been calculated, an interestingness measurement can be devised,
which we shall call weighted accuracy (WAcc) which includes the first factor mentioned at the start of this
section: the predictive accuracy of the rule according to the PA algorithm.

We can define iRWAcc for rule Ri as:

m

accR
WWAcc

m

j ji

ii RR
∑ =∗= 1

where WRi is the weight of the rule according to equation (3), and accRij are the predictive accuracy
results returned by the PA algorithm for each teacher that has voted for the rule Ri.

Next, we describe an example of how all the previously described equations are applied when three
experts and three teachers evaluate the tuples or rules. Let U1, U2, U3 designate three different teachers
who vote (the rule was useful or not) on a set of rules in S = {S1, S2, S3}:

S1 is a set of useful association rules obtained by teacher U1:
A Λ C → D; acc = 0.85
A → B; acc = 0.70
B Λ C → E; acc = 0.75

S2 is a set of useful association rules obtained by teacher U2:
B → C; acc = 0.88

∑ =

= k

j j

i

RpertsNumVotesEx

RpertsNumVotesEx
Wexperts Ri

1
)(

)(

∑ =

= m

j j

i

RachersNumVotesTe

RachersNumVotesTe
Wteachers Ri

1
)(

)(

A → B; acc = 0.76
B Λ C → E; acc = 0.71

S3 is a set of useful association rules obtained by teacher U3:
A Λ C → D; acc = 0.82
A → B; acc = 0.72

There are a total of four rules in S:
R1: A Λ C → D
R2: A → B
R3: B Λ C → E
R4: B → C

Starting from the above rules we can see that there are two teachers that vote/support for rule R1, three
teachers that votes for rule R2, two teachers in favour of rule R3 and one teacher that votes for the rule R4.
Thus the weight of Ri can be calculated as follows:

WteachersR1 = 2 / (2 +3 +2 +1) = 0.25 WteachersR3 = 2 / (2 +3 +2 +1) = 0.25
WteachersR2 = 3 / (2 +3 +2 +1) = 0.38 WteachersR4 = 1 / (2 +3 +2 +1) = 0.13

After normalizing between 0 and 1, the weights of the teachers are assigned as follows:

WteachersR1 = 0.66 WteachersR3 = 0.66
WteachersR2 = 1.00 WteachersR4 = 0.34

Experts vote in a similar way but in an explicit way. For example, in Table IV, we can see the votes of

three experts for each of the four previous rules. They assign each rule a value from 1 to 5, where 1
represents the lowest value and 5 the highest.

Table IV. Example of experts’ voting.

Rule Expert 1 Expert 2 Expert 3 Total
R1 3 3 4 10
R2 5 5 5 15
R3 4 3 3 10
R4 2 3 2 7

 Total Votes: 42

WexpertsR1 = 10/42 = 0.24 WexpertsR3 = 10/42 = 0.24
WexpertsR2 = 15/42 = 0.36 WexpertsR4 = 7/42 = 0.17

After normalizing between 0 and 1, the experts’ weights are assigned as follows:

WexpertsR1 = 0.67 WexpertsR3 = 0.67
WexpertsR2 = 1.00 WexpertsR4 = 0.47

If we fix the values of Ct = Ce = 0.5, then we calculate WRi values as:

WR1 = 0.67; WR2 = 1.00; WR3 = 0.67; WR4 = 0.41;

As we have seen, rule R2 has the highest voting and the highest weight; and R4 has the lowest voting and
the lowest weight. Once the weight of each rule has been calculated, then we calculate the weighted
accuracy (WAcc) of each rule as:

WAccR1 = 0.67 * (0.85 + 0.00 + 0.82)/3 = 0.37
WAccR2 = 1.00 * (0.70 + 0.76 + 0.72)/3 = 0.73
WAccR3 = 0.67 * (0.75 + 0.71 + 0.00)/3 = 0.33
WAccR4 = 0.41 * (0.00 + 0.88 + 0.00)/3 = 0.12

After we apply the accuracy corrections to WRi we can see that the rule R2 is still the most exact; and R4
the least exact.

4. Implementation of the system

We have implemented a hybrid recommender system based on KBS and CFS in order to avoid the cold-
start issue which is presented when the CFS is installed for the first time and we don't have data of any
user's votes. Recommendations are made based on the knowledge database created and managed on the
server according to different teacher profiles. Furthermore, collaborative filtering is used as a
complementary approach, which filters and organises recommendation priority depending on the votes
registered by experts and teachers with similar profiles. The experts explicitly vote for tuples by
indicating degrees of preference on a form in the web application; however, the teachers vote implicitly to
side-step one of the main problems for CFS (how to encourage teachers to vote or evaluate). In this case,
if teachers apply one of the recommendations to their course, they are implicitly voting to apply this tuple.

 Our system has both a client and a server application that we have implemented in Java language
because of their multi-platform characteristics and which will now be described in more detail.

4.1. Client application

The main feature of the client application is its specialization in educational environments. To achieve
this, we have used domain specific attributes, filters and restrictions for the rules, and the student’s usage
dataset from the e-learning course. The interface for client application has four basic panels:

- Pre-processing. Before applying a data mining algorithm, the data have to be pre-processed in order
to adapt them to our data model. First, the teacher has to select the origin of the data to be mined (see
Figure 3). We have two different formats available for input data: 1) the Moodle relational database,
for teachers that work with Moodle as well as the INDESAHC authoring tool (De Castro et al.,
2004), so all our attributes are used directly; or 2) a Weka (Weka, 2007) ARFF text file, for teachers
that use other LMSs and, therefore, other attributes. When the data have been selected, the
application shows the teacher only the numerical attributes (see section 5.1) in order to transform
them into discreet variables. The objective is to make the rules discovered easier to understand and
also to significantly reduce the mining algorithm’s running time. We have used three possible
nominal values: LOW, MEDIUM and HIGH.

Figure 3. Pre-process panel.

- Configuration parameters. The teacher has to set up the parameters and restriction that he/she

wants the association rule mining algorithm to use (Figure 4): the maximum number of rules to be
discovered, maximum number of antecedent and consequent elements or items in the rule, the
specific attributes that do or do not have to appear in the rule antecedent or consequent. In order to
restrict the search field, we have also added a few parameters related with the analysis depth. Firstly,
the teacher must select the level to carry out the analysis: course, unit, lesson and others tables such
as course-unit, course-lesson, course-exercise, course-forum, unit-exercise, unit-lesson, lesson-
exercise among others. Then, the teacher must select a particular course, unit or lesson in order to do
rule mining only with the specified data at the specified level.

Figure 4. Parameters configuration panel.

- Rules Repository. The rules repository (see Figure 5) is the knowledge database upon which the

subjective analysis of the discovered rules is based. Since a specific rule and/or specific
recommendation that has been discovered in one course does not necessarily have to be valid or
applicable to another different course, so we classify the rules in the repository according to the
teacher profile: Topic, Level and Difficulty. Before running the algorithm, the teacher downloads the
current knowledge database from the server (button Get rules set from server), according to his/her
course profile. The personalisation of the tuples returned by the server is based on these three
filtering parameters, along with the type of course to be analysed. So, the teacher only downloads
tuples that match each profile. The information provided by the system for each tuple of the
repository is: the rule itself (antecedent and consequent), the problem detected by the rule and an
associated recommendation for its solution. In order to identify each tuple, additional information is
also included, such as the name of the author, the date and evaluation of the rule. The rules
repository is created on the server (section 4.2), based on the educational considerations of experts
and the experience garnered from other similar e-learning courses.

Figure 5. Rules repository panel.

- Results. Finally, after downloading the rule repository and configuring the application parameters or

using default values, the teacher executes the association rule algorithm. Then, client application
shows the results obtained in a table (see Figure 6), with the following fields: rule, problem,
recommendation, score and apply button. There are two types of recommendations:

1) Active, if it implies a direct modification of the course content or structure. Active
recommendations can be linked to: modifications in the formulation of the questions or the practical
exercises/tasks assigned to the students; changes in previously assigned parameters such as course
duration or the level of lesson difficulty; or the elimination of a resource such as a forum or a chat
room. For example, we can see in Figure 6 that the exercise wording had a writing error (20 cm
instead of 2 cm) and then the teacher has corrected it and also has added some more information.

2) Passive, if they detect a more general problem and point the teacher towards more specific
recommendations.

For active recommendations, by clicking the Apply button, the teacher will be shown the area of
the course that the recommendation refers to (see Figure 6) so that he/she can carry out the
modification, change, elimination, etc. Each time a teacher applies an active recommendation, he/she
is implicitly voting for that tuple.

Figure 6. Results panel.

4.2. Server application

On the server side, we have implemented a web application (see Figure 7) to manage the knowledge
database or repository. In order to access absolutely all the editing options for the repository, a basic
profile was created, which is the profile of the experts in the educational domain. These experts have
permission to introduce new tuples into the rule repository and vote for existing ones. Based on the votes
registered by experts, the Wexperts parameter is calculated. Implicit votes are also stored, which are
registered by clients in their local analyses; based on these votes, Wteachers is calculated.

In order to allow information exchange (tuples) between client and server, we have developed a web
service. It keeps the current repository updated in a PMML file. Each time that a client application
updates its repository, the parameters used in the algorithm described in section 3.1 are recalculated and
the tuples are reordered in the repository, taking into account the WAcc accuracy parameter.

Figure 7. Server application interface.

Both experts and teachers participate in the creation of the knowledge base. Initially the knowledge

base was empty and experts proposed tuples. Let’s see how experts and teachers vote.
On one hand, each expert, using the server application, voted for each tuple in the repository, according

to the approaches specified in Figure 8. Expert evaluation has been divided into two groups of evaluation
criteria or approaches: A1 (expert evaluation) and A2 (expert decision), with three options or questions
each. Be making W1, W2 the weights assigned by the system administrator to the two groups of options A1
and A2, we can calculate the total score of a tuple according to:

2211 ** AWAWpertNumVotesEx +=
where Ā1 and Ā2 are the average score given by experts to each option in the group. In our experiment the
we have fixed values of W1 = W2 = 0.5, due to we consider the two groups of evaluation criteria have the
same importance. The NumVotesExpert values are between 0 and 100 and they are distributed, depending
of the vote, in the following way: Very Low option (20 points) , Low (40 points), Normal (60 points),
High (80 puntos), and Very High (100 points).

On the other hand, as we have said previously, teachers vote implicitly; that is, if teachers apply one of
the recommendations to their course, they are automatically voting for its applicability to this tuple:

NumVotesTeacher = 100 * TeacherVote
where TeacherVote is a binary variable with values of true (1) or false (0) according to whether the
teacher votes for the rule or not. Once we have calculated the NumVotesExpert which is used in equation
(1) and NumVotesTeachers used in equation (2), we can calculate the WR (equation 3). In this case, we

have fixed the values of Ct = Ce = 0.5, granting the same importance or weight to the vote of the teachers
and of the experts. Finally, the score of each rule (see Figure 7) is obtained by multiplying the WAcc
values by 100 in order to show them in the range 0 and 100 instead of 0 and 1.

Figure 8. Form used by to the expert for evaluating tuples.

5. Experimental Results

In order to test our system, we have carried out some experiments on an educational dataset. We have
used real data gathered from students in a pilot experiment , called “Cordobesas Enredadas” and carried
out in Cordoba (Spain) in 2004-2005, with respect to the technological literacy of women in rural
settings,. In this project, 7 adaptive web-based courses were developed based on subjects included in the
ECDL (European Computer Driving Licence) and Open Office, the free-distribution office package. The
courses were developed using INDESAHC (De Castro et al., 2004), an authoring tool to create adaptive
hypermedia courses compatible with Moodle. In our experiment, three experts in the Computer Sciences
and Artificial Intelligence area in Cordoba University, Spain have also participated and were responsible
for proposing the initial tuples in the repository. And there have also been two other teachers involved
from the same area (the authors of the courses themselves), so the teacher profile is thus fixed at:
Computer Science (Topic), Universitary (Level), and Basic (Difficulty).

5.1. INDESAHC data

The definition of the course syllabus in INDESAHC is based on a hierarchical domain model in which

a course is composed of teaching units divided into lessons, each of which containing a series of concepts
explained or assessed through scenarios or web pages (see Figure 9). An adaptation model was also
included in order to adapt all the contents to each student’s level of knowledge. The specific adaptive
techniques that we have used are adaptive link hiding and annotation (De Bra and Calvi, 1998). We have

classified all the contents of the course into different levels of difficulty (3 levels in this case). Thus, the
system adapts the contents of the course (difficulty level) depending on each student’s current level of
knowledge.

Figure 9. INDESAHC domain model.

Table V shows, on one hand, attributes related to adaptive hypermedia courses which have been added

to the Moodle database as new tables. On the other hand, we can see attributes related to teaching
resources such as forums, chat rooms, questionnaires and tasks, which have been also introduced from the
INDESAHC interface.

Table V. Attributes used in association rules mining process.
Level Attribute Description

c_time Time taken by the student to complete the course
c_score Average final score for the course
c_attempts Number of attempts before passing the course
c_quiz_attempt Total number of attempts in the quiz
c_quiz_time Total time taken in the quiz
c_quiz_score Score obtained in the quiz
c_chat_messages Number of messages sent in the chat room
c_assignment_score Score in the assignment
c_forum_read Number of messages read in the forum
c_forum_post Number of messages posted in the forum

Course

c-doc_view If the document or web link has been viewed
u_lessons Number of lessons in a unit
u_time Time taken by the student to complete the learning unit
u_initial_score Student’s score in the unit pre-test
u_final_score Student’s final score on completing the unit
u_attempts Number of attempts before passing the unit
u_forum_read Number of messages read in the forum
u_forum_post Number of messages posted in the forum
u_assignment_score Score in the assignment

Unit

u_doc_view If the document or web link has been viewed
l_concepts Number of concepts in the lesson
l_time Time taken by the student to complete the lesson Lesson
l_diffic_level Level of difficulty of the lesson as defined by the teacher
e_time Time taken by the student to complete the exercise

Exercise e_score Score obtained in the exercise

5.2. Data pre-processing

Data pre-processing of LMS is a little simpler due to Moodle, and most LMS employ user authentication
(password protection) in which logs have entries identified by users, since users have to log-in (Romero et
al., 2008). In this way, sessions are already identified since users may also have to log-out and this

eliminates the need for typical user and session identification tasks. So, the data gathered by an LMS may
require less cleaning and pre-processing than data collected by other web-based systems. Although the
amount of work required in data preparation is less, we have carried out two main pre-processing tasks:

- Data selection. It is necessary to decide which courses can be most benefited by mining. From the 7
courses available, we have selected the “Word Processing” one since it has the greatest number of
activities and resources.

- Data cleaning. We have carried out cleaning for two main reasons. First, it was discovered that very
high values were often recorded for attribute time because the student had left the computer without
first exiting the exercise, concept or section. In order to correct this, any times that exceeded a
maximum established value were considered noisy data, and this maximum value was assigned to
any apparently erroneous data. Secondly, it was discovered that some students had not completed all
the course activities. Whenever possible, the students were contacted and asked to complete the
course so that their information could be used. When this was not possible, the information regarding
these students was discarded.

- Data discretization. The transformation into discreet variables can be seen as a categorisation of
attributes that takes a small set of values. The basic idea involves partitioning the values of
continuous attributes within a small list of intervals. Our process of discretization used three possible
nominal values: LOW, MEDIUM and HIGH. And we have used three partition methods (Liu et al.,
2002): equal width method, score type method and a manual method (where the teacher sets the
limits of the categories manually).

- Data Integration. Normally, in a data mining problem, a single dataset must first be established if
there are data that come from different sources. In this case, we have data from two sources: 1) the
tables that stored student monitoring data in the specific attributes of INDESAHC; and 2) the tables
used by Moodle, which stored the other information about the course such as forums, chat rooms and
tasks. Using these data, a temporary database was created where rule mining was applied.

- Data Filtering. Before applying the rule mining algorithm, the teacher could also restrict the search
domain by specifying the level of granularity of the analysis, for example, at a subject, lesson or
exercise level. The resulting temporary table in this case would, therefore, only contain attributes and
transactions from students with respect to the level selected. The system could also find interesting
relationships between attributes from different tables, for example if the teacher selected a course-
subject or subject-exercises, the temporary table created would contain attributes and transactions
from more than one table.

5.3. Comparing the performance of association rule mining algorithms

In order to select the association rule mining algorithm for our CIECoF system, we have performed
some tests with the course usage data found in students’ tables such as: students_courses, students_units,
students_lessons, students_exercises, students_forums, students_quiz, students_task, among others. In
Figure 10 we show the results obtained when comparing the support/confidence measure obtained by
several runs of the Apriori and the Predictive Apriori algorithms using the data from the students’
interaction with the first exercise in the query table courses_exercises, which contains 90 transactions
with the following attributes: c_time, c_score, e_time, e_score. Figure 10a shows the initial execution for
Apriori (Weka implementation), varying parameters. Figure 10b shows Predictive Apriori results, varying
the number of rules (NR) to be discovered. In this case, starting from the second run (20 best solutions),
the support ranges of the rules found are more uniform, varying from 0.08 to 0.7.

Figure 10. Results of running the Apriori and Predictive Apriori algorithms on the query table courses_exercises.

By comparing these results obtained in Figure 10, some conclusions can be reached, which were found
also in other tests and are described here. 1) The performance of Apriori depends heavily upon the choice
of minimum support and confidence: we cannot be sure that a professor who is not an expert in data
mining will obtain the best rules when assigning default values to input parameters. 2) The first execution
of the PA algorithm obtains rules that, regardless of a low degree of support, present a high degree of
confidence. As the first execution of the Apriori algorithm does not obtain these rules, the Apriori had to
be run several times, varying its input parameters to obtain similar results to the PA. 3) The PA also
discovers rules with low support and high confidence, which are not found by the Apriori. These specific
rules are very interesting in education because they detect small groups of students who differ from the
average (students with some type of problem). In fact, when teachers find these types of rules, they can
identify those students in order to give them more personalised attention. Hence, for all the
abovementioned reasons, we have used the PA as the basic rule algorithm in our CIECoF system.

5.4. Analysis of the recommendation effectiveness

In order to verify the effectiveness of the changes made by the teachers in the course, based on the
recommendations suggested by the system, it is important to bear two points of view in mind: 1) the
teacher’s perspective, in terms of the percentage of apparently corrected problems, based on initial
recommendations, that reappear in successive courses with different groups of students; and 2) the
perspective of the students with respect to how the removal of those problems based on the
recommendations influences their final score. Two hypotheses can initially be drawn from these aspects.
Firstly, if the changes made by the teacher are 100% effective, then these problems should not be detected
again in subsequent groups of students doing a course that has already been updated by applying the
corrections. And secondly, if these problems do not happen again, then students’ scores should improve.

We have implemented an iterative methodology to improve the course gradually with use (see Figure
11). Using the recommendations obtained from the usage data of different groups of students, successive
corrections to the course improve it step by step. In order to calculate the effectiveness of these
recommendations (EfecRec1,i), we use equation 4 where TotalNew1 represents the total number of
recommendations found when the usage data of the first group of students were analysed, which led to
changes in the structure or content of the course. TotalRep1,i is the total number of recommendations that
are repeated in consecutive runs of the same course, always applying the corrections with each different
group of students. Thus, the effectiveness of the changes made can be calculated, based on the
recommendations proposed in the initial stage (the first course run) with respect to stage i (i=2,3...N),

which corresponds to subsequent runs, as follows:

1

,11
,1 TotalNew

TotalRepTotalNew
EfectRec i

i

−
= (4)

On the other hand, we can also evaluate the effectiveness of the corrections made following the

recommendations in terms of the students. To do so, we compare the final marks obtained by students
(average score and standard deviation) in a subsequent improved version of the same courses. We have
used three different groups of 45 students who completed the course in the way indicated in Figure 11. In
order to eliminate the influence of some external factors which might alter the results of the research, such
as previous computing knowledge, average age of the group and level of education, the composition of
the two groups was forced to fit the following requirements: 1) students with no prior knowledge of
computers, which was relatively easy since the courses were aimed at computer literacy in rural settings;
2) the average age of the group had to be very similar; 3) the level of education was similar and above
intermediate.

Figure 11. Iterative methodology for improving the course.

In Table VI we show the effectiveness percentages of recommendations (column referenced as

EfectRec) according to (4), as well as the percentages of relevant recommendations found in consecutive
improvements to the course (column referenced as Relevants). All the changes made in different versions
were attributed to the recommendations and therefore no modification was based on initiatives coming
from the teachers themselves.

Table VI. Results from the teacher’s point of view when applying our system consecutively to data from the three
groups of students. TotalRec refers to the total recommendations provided by the system. TotalNew refers to the

total recommendations provided by the system which the teacher considered useful and applicable. TotalRep refers
to initial recommendations that, even though applied by the teacher, reappeared in the same tuples in consecutive

runs of the course.
Group TotalRec TotalNew TotalRep TotalRelevant Relevants

(%)
EfectRec

(%)
1 50 21 - 21 42,0 -

2 50 5 6 11 22,0 71,4

3 50 5 3 8 16,0 85,7

In table VII we compare the students’ marks in order to determine the effectiveness of
recommendations from the students’ point of view.

Table VII. Results from the point of view of the student. The mark refers to the final average scores and standard

deviation of each group. P-value 1-2 and 1-3 show the p-values using t-Student’s test comparing group 1 to group 2,
group 1 to group 3 and group 2 to group 3.

Group Mark p-value 1-2 p-value 1-3 p-value 2-3

1 6,55 ± 0,30

 < 0,0001

2 6,95 ± 0,56 < 0,0001

 > 0,05

3 7,10 ± 0,42

We have reached several conclusions when analysing the results of Tables VI and VII:
1) As we foresaw in the initial hypothesis, the effectiveness percentage veers towards 100% with

subsequent improved versions of the course.
2) Not only did the effectiveness percentage increase, but there was also a corresponding decrease in

the total number of recommendations associated with the problems detected. This is an indication
that the course went on improving.

3) When the marks achieved by the three different groups of students were compared (p-values), the
slight improvement observed is a further indication of the effectiveness of the system. Mainly if we
compare the different modified versions of the course with the original course (group 1 vs. 2 and 3).
Also, we can see that there aren’t significant differences between the next consecutives
modifications (group 2 vs. 3). Therefore, the first modification in the course (more relevant rules
discovered) affects more in the effectiveness of the system than the following ones (less relevant
rules discovered).

4) The percentages of relevant recommendation get lower throughout the different versions of the
courses, so the proportion of change in course content also decreases.

5) New problems are detected with each new group of students. One possible reason might be the
different prerequisite skills among students.

6) Some problems reoccurred throughout several improvements. These problems could be due to some
of the changes made in course design, which were actually quite subjective, i.e. a change in the
classification of lesson difficulty or of the estimated duration of a subject.

5.5. Interpretation of discovered rules

The teacher or course author has a crucial role in our methodology because he/she can also guide the

search of rules by imposing some subjective restrictions (see Figure 5). To do so, the teacher uses his own
knowledge and experience in education. For example, he/she can decide to use data about one specific
unit, lesson or even of the whole course, and whether or not to use data only about times, score or
participation to construct rule antecedents and consequents.

It is important to point out that the comprehensibility and interestingness of rules are subjective
concepts that are difficult to quantify effectively. Due to this, we have used constraint-based mining (Han
et al., 1999), in which the teacher provides constraints that guide the search. We use three types of
constraints:

1. Data constraints: the teacher can specify the relevant data set for the mining task.
2. Rule constraints: the teacher can select specific constraints for the rules to be mined.
3. Interestingness constraints: the teacher can specify the values or ranges of a measure interesting for

himself.
 As we have mentioned previously, our objective is to show a group of useful rules to the teacher, so

that he/she can make decisions about which changes would improve the performance of the course. From
a semantic point of view, our resulting rules match the following pattern:

 IF Time|Score|Participation AND ... THEN Time|Score|Participation
Where Time, Score and Participation are thereby generic attributes referring to: the reading time for

course, units, lessons and exercises (HIGH, MEDIUM and LOW values); information on students’ scores
in the test and activities questions (HIGH, MEDIUM and LOW values); and lastly, participation refers to
how the students have used the collaborative resources such as forum and chat (HIGH, MEDIUM and
LOW values). Based on the rules discovered, the teacher can decide which of the relationships expressed
are desirable or undesirable, and whether or not to apply the recommendation in order to strengthen or
weaken the relationship (namely changing or modifying the contents, structure and adaptation of the
course, etc.).

The relationships that are shown in discovered rules can refer to the course, units, lessons, or scenarios
of concepts (namely instructional and activity pages related to concepts). Next, we describe some
examples of the general patterns found in rules of interest offering the teacher useful information about
how to improve a course. We also describe some of their possible interpretations. It is important to
highlight that a single rule can have several interpretations. Therefore the system will always show all the
recommendations related to a detected problem, and it is the teacher him/herself who actually decides
what recommendations to use. We should also mention that all the following examples always correspond
to rules with a high degree of support, that is, they are confirmed by most of the students.

 IF ExerciseTime = HIGH THEN ExerciseScore = LOW
This pattern indicates that the students have spent a long time doing the exercise although the final

score has been low. Two possible interpretations of this pattern are:
1) The wording of this exercise could be incorrect or ambiguous, giving place to several

interpretations. In this case the teacher can correct the exercise’s wording or eliminate it altogether
if necessary.

2) The exercise is quite difficult and for this reason the students spend relatively more time than on
other exercises, resulting in a lower score. In this case, the teacher will determine if the exercise is
in accordance or not with the difficulty level of the lesson.

3) The students were weak on prerequisite skills. In this case, the teacher should consult other
recommendations of higher level such as the level obtained in the unit pre-test, in order to confirm
that interpretation. From here on, we will present only those interpretations that could be difficult
to detect and represent a possible problem to be corrected.

An example of this type of rule is:
 IF (e_time [25] = HIGH) THEN (e_score[25] = LOW), supp. = 0.91, accur. = 0.82
This rule means that if students took a long time to complete exercise number 25, then they got a low

score in this exercise. This rule can indicate that there is a problem with this specific exercise, which was
part of the: “application use” subject; “first steps with the word processor” lesson; and “renaming and
saving a document” concept. The exercise was an INDESAHC interactive video scenario in which the
student had to simulate the necessary steps for completing an activity using the mouse. In this specific
case, the question was confirmed to be ambiguous and interpretable in several ways, so the wording was
changed. Other rules with a similar pattern were also found in multiple-choice or linking type questions.

 IF UnitForumParticipation = LOW THEN UniFinalScore = HIGH
This pattern indicates that there was not much participation in the unit forum although the students

obtained a high final score for the unit in question. Three possible interpretations of this pattern are:
1) The forum is not necessary for this unit, so the teacher can eliminate it.
2) There are problems concerning the tutors responsible for forum maintenance, so the teacher

should analyze the causes of these problems in detail.
3) Strong students are more autonomous while weaker students are more inclined to use and consult

the forum.
An example of this type of rule is:
 IF (u_forum_read [2] = LOW) AND (u_forum_post [2] = LOW)
 THEN (u_final_score [1] = HIGH), supp. = 0.85, accur. = 0.83
This rule shows that if students send or read few messages in forum 2 (unit 1), then they get a high

score for this unit. This rule shows that the forum may not be necessary or that there were problems with
it. This type of rule raises the issue about whether the forum is really necessary at certain levels of the
domain hierarchy. In fact, the forum was removed in this case.

There are also patterns which did not provide any useful information for problem detection or that only
provided the teacher with obvious information. For example:

 IF AssignmentScore = HIGH THEN UnitScore = HIGH,
This relationship indicates that if students obtain a good score in the assignment, then they also obtain a

good score in the unit. An example of this type of discovered rules is the following:
 IF (u_assignment_score [9] = HIGH)
 THEN (u_final_score[3] = HIGH), supp. = 0.75, accur.= 0.72

This rule shows that if the score of assignment 9 is high, then the final score obtained in unit 3 is high.
This rule is totally logical for the teacher and it does not contribute any new information about how to
improve the course.

There are patterns that can generate recommendations of a passive type. For example:
 IF UnitFinalScore = LOW THEN CourseScore = MEDIUM or HIGH
This pattern indicates that if students obtain a low score in a specific unit, then they obtain a medium or

high final score in the course. This rule can generate a passive type of recommendation because it could
indicate the possibly of problems in the unit and that other more specific recommendations should be
consulted at unit level. An example of this type of discovered rule is:

 IF (u_final_score [1] = LOW) THEN (c_score = MEDIUM), supp. = 0.80, accur.= 0.88
This rule shows that if the score of unit 1 is low, then the final score of the course is average. This rule

detects a possible problem with unit 1 but in order to detect more specific problems, the teacher must
consult other tuples.

Lastly, we show an example of an unexpected rule:
 IF (l_concepts[13] = LOW AND l_diffic_level[13] = LOW
 THEN (l_time [13] = HIGH), supp. = 0.6, accur. = 0.85

This rule shows that if the number of concepts included in the lesson is LOW and the level of difficulty
assigned to that lesson is LOW, then the time taken to complete the lesson is HIGH. The fact that students
have spent a long time completing a lesson that supposedly is not very difficult and contains few new
concepts could indicate that the level of difficulty has been incorrectly classified. In fact, in this case, the
course designer decided that the level of difficulty for this lesson should be changed to MEDIUM.

6. Conclusions and Future Work

This paper describes a recommender system that uses interactive iterative association rule mining and
collaborative filtering in order to help the teacher maintain and continuously improve e-learning courses.
The system enables the locally obtained rules to be shared by other teachers and experts with a similar
profile. It uses a weight-based evaluation measurement to rank the rules discovered, taking into account
the opinion of both experts and teachers to produce more effective recommendations.

We have carried out several experiments using data from real students in order to test our system. First,
we compared the classical Apriori algorithm to the Predictive Apriori algorithm. We show that the
Predictive Apriori resulted in a better performance than the Apriori and required fewer parameters,

making it more intuitive for a non-expert in data mining. Then, we carried out other experiments to
evaluate the performance of the system from the points of view of both teacher and student. The results
demonstrated our starting hypotheses: fewer problems are detected in subsequent improved versions of
the courses and the students’ final marks improve as the teacher corrects problems. Finally, the general
opinion of both teachers and experts has been very positive. They have demonstrated a high degree of
motivation and have especially liked the novelty of using students’ data to improve e-learning courses, to
be able to apply modifications to courses directly from the system and have the possibility of working and
sharing information with other teachers and educational experts. However, experts have indicated that the
creation of the repository or knowledge database is a hard task.

For future work, we aim to carry out a more detailed study involving more students, more groups and
more experts and teachers from other areas (unrelated to computer science) in order to obtain a more
heterogeneous teacher's profile. This will allow the study of other interesting questions such as: Is it
possible that different teachers in different areas might coincide in their evaluation of patterns?; What is
the behavior of experts and teachers as they progress through a course?; Can tuples that are found to be
valid and useful in one course later be applied to another course with a different profile?; How many false
positives are generated (i.e. rules the system generates that are rejected by the user)?. These aspects could
lead to a validation that would focus solely on a detailed analysis of the changes made and whether the
process is efficient and likely to be complementary to non guided course content revision. Finally, we also
want to strongly emphasise the collaborative measures of the approach analysing the relevance ratio of
expert and teacher votes (Ct and Ce) and how much work can be facilitated for experts.

Acknowledgement

The authors gratefully acknowledge the subsidy provided by the Spanish Department of Research under
TIN2005-08386-C05-03 Project and to the subsidy provide by the Provincial Government of Cordoba
under the project reference ECDL/DIPUCO/MEM/04-0001bis.

References

Agrawal, R., H. Mannila, R. Srikant, H. Toivonen and A. Verkamo: 1996, ‘Fast discovery of association

rules’. Advances in Knowledge Discovery and Data Mining, Menlo Park, CA: AAAI Press, pp. 307-
328.

Brusilovsky, P., A. Kobsa and W. Nejdl (eds.): 2007, ‘The Adaptive Web: Methods and Strategies of
Web Personalization’. Lecture Notes on Computer Science 4321. Heidelberg: Springer-Verlag.

Brusilovsky, P.: 2003, ‘Adaptive and Intelligent Web-based Educational Systems’. International Journal
of Artificial Intelligence in Education 13, 159-169.

Brusilovsky, P., E. Schwarz and G. Weber: 1996, ‘ELM-ART: An intelligent tutoring system on World
Wide Web’. Third International Conference on Intelligent Tutoring Systems, Montreal, Canada, pp.
261-269.

Burke, R.: 2000a, ‘Semantic ratings and heuristic similarity for collaborative filtering’. Seventeenth
National Conference on Artificial Intelligence, Austin, Texas, July 30th–August 3rd, pp. 1-7.

Burke, R.: 2000b, ‘Knowledge-based Recomendador Systems’. In A. Kent (ed.), Encyclopedia of Library
and Information Systems. Vol. 69, Supplement 32. New York: Marcel Dekker, pp. 1-23.

Chen, W. and B. Wasson: 2002, ‘Coordinating Collaborative Knowledge Building’. International
Conference Applied informatics, 25(1), Innsbruck, Austria, pp. 1-10.

Costaguta, R.: 2006, ‘Una Revisión de Desarrollos Inteligentes para Aprendizaje Colaborativo Soportado
por Computadora’. Revista Ingeniería Informática, Nº13, available at http://www.inf.udec.cl/revista.

Data Mining Group: 2006, ‘Predictive Model Markup Language (PMML), available at
http://www.dmg.org/pmml-v3-0.html’.

De Bra, P. and L. Calvi: 1998, ‘AHA! An open Adaptive Hipermedia Architecture’. New Review of
Hipermedia and Multimedia 4, 115-139.

De Castro, C., E. García, C. Romero and S. Ventura: 2004, ‘Herramienta autor INDESAHC para la
creación de cursos hipermedia adaptativos’. Revista latinoamericana de tecnología educativa 3, 349-
367.

Eliassi-Rad, T. and J. Shavlik: 2003, ‘A System for Building Intelligent Agents that Learn to Retrieve and
Extract Information’. International Journal of User Modeling and User-Adapted Interaction, special
issue User Modeling and Intelligent Agents, 13 (4), 35-88.

Freyberger, J., N. Heffernan and C. Ruiz: 2004, ‘Using association rules to guide a search for best fitting
transfer models of student learning’. Workshop on analyzing student–tutor interactions logs to improve
educational outcomes at ITS conference, Maceio, Brazil, pp. 1-4.

García, E. et al., C. Romero, S. Ventura and C. de Castro: 2006, ‘Using Rules Discovery for the
Continuous Improvement of e-Learning Courses’. 7th International Conference on Intelligent Data
Engineering and Automated Learning- IDEAL 2006, Burgos, Spain, LNCS 4224, pp. 887-895.

Gaudioso, E., O. Santos, A. Rodriguez, and J. Boticario: 2003, ‘A Proposal for Modeling a Collaborative
Task in a Web-Based Collaborative Learning Environment’. 9th. International Conference on User
Modeling, Johnston, PA, USA, pp. 70-80.

Geyer-Schulz, A.: 2003, ‘An Architecture for Behavior-Based Library Recomendador Systems’.
Information Technology and Libraries 22, 165-174.

Good, I.:1950, ‘Probability and the weighting of evidence’. London: Charles Griffin & Co.Ltd.
Hamalainen, W. and M. Vinni: 2006, ‘Comparison of machine learning methods for intelligent tutoring

systems’. The 8th International Conference in Intelligent Tutoring Systems, Jhongli, Taiwan, pp. 525–
534.

Heift, T. and D. Nicholson: 2001, ‘Web delivery of adaptive and interactive language tutoring’.
International Journal of Artificial Intelligence in Education 12, 310-324.

Itmazi, J.A.S.: 2005, ‘Sistema Flexible de gestión del e-learning para soportar el aprendizaje en las
universidades tradicionales y abiertas’. PhD Thesis, University of Granada, Spain.

Klösgen, W. and J.M. Zytkow: 2002, ‘Handbook of Data Mining and Knowledge Discovery’. Oxford
University Press.

Li, J. and O.R. Zaïane: 2004, ‘Combining usage, content, and structure data to improve web site
recommendation’. The 5th International conference on e-commerce and web technologies, Zaragoza,
Spain, Springer, LNCS 3182, pp. 305–315.

Liu, B., H. Wynne, C. Shu and M. Yiming: 2000, ‘Analyzing the Subjective Interestingness of
Association Rules’, IEEE Inteligent System 15(5), 47-55.

Liu, H., F. Hussain, C.L. Tan and M. Dash: 2002, ‘Discretization: An enabling technique’. Journal of
Data Mining and Knowledge Discovery, 6(4), 393-423.

Lu, J.:2004, ‘Personalized e-learning material recommender system’. International conference on
information technology for application, Harbin, China, pp. 374-379.

Markellou, P., I. Mousourouli., S. Spiros and A. Tsakalidis: 2005, ‘Using semantic web mining
technologies for personalized e-learning experiences’. Web-based education, Grindelwald,
Switzerland:, pp. 461–826.

Mehta, B. and W. Nejdl: 2009, ‘Unsupervised strategies for shilling detection and robust collaborative
filtering’. International Journal of User Modeling and User-Adapted Interaction, special issue Data
Mining for Personalization, (In press).

Merceron, A. and K. Yacef: 2004, ‘Mining student data captured from a web-based tutoring tool: Initial
exploration and results’. Journal of Interactive Learning Research 15(4), 319-346.

Minaei-Bidgoli, B., P. Tan and W. Punch: 2004, ‘Mining interesting contrast rules for a web-based
educational system’. The Twenty-First International conference on machine learning applications,
Alberta, Canada, pp. 1-8.

Mobasher, B.: 2006, ‘Data Mining for Web Personalization’. The Adaptive Web: Methods and Strategies

of Web Personalization. Lecture Notes in Computer Science 4321, Brusilovsky, P., Kobsa, A., Nejdl,
W. (eds.), Heidelberg: Springer-Verlag, pp. 90-135.

Romero, C., S. Ventura, P. de Bra and C. de Castro: 2003, ‘Discovering prediction rules in AHA!
Courses’. 9th International User Modeling Conference, Johnston, PA, USA, pp. 25-34.

Romero, C., S. Ventura and P. de Bra: 2004, ‘Knowledge discovery with genetic programming for
providing feedback to courseware author’. User Modeling and User-Adapted Interaction: The Journal
of Personalization Research 14(5), 425-464.

Romero, C. and S. Ventura: 2006, ‘Educational data mining: a survey from 1995 to 2005’. Expert Systems
with Applications 33(1), 135-146.

Romero, C., S. Ventura and E. Garcia: 2008, ‘Data mining in course management systems: Moodle case
study and tutorial’. Computers and Education, 51, 368-384.

Rosta, F. and P. Brusilovsky: 2006, ‘Social navigation support in a course recommendation system’.
Adaptive Hypermedia and Adaptive Web-Based Systems: 4th International Conference, AH 2006,
Dublin, Ireland, pp. 91-100.

Silberschatz, A. and A. Tuzhilin: 1996, ‘What makes pattterns interesting in Knoledge discovery
systems’. IEEE Trans. on Knowledge and Data Engineering 8(6), 970-974.

Skillicorn, D. B. and Y. Wang: 2001, ‘Parallel and sequential algorithms for data mining using inductive
logic’. Knowledge and Information Systems 3(4), 405-421.

Srivastava, J., B. Mobasher, and R. Cooley: 2000, ‘Automatic Personalization Based on Web Usage
Mining’. Communications of the Association of Computing Machinery, 43(8), 142-151.

Tan, P. and V. Kumar: 2000, ‘Interesting Measures for Association Patterns: A Perspectiva’. Technical
Report TR00-036, Department of Computer Science, Univ. of Minnnesota, USA.

Tang, T. and G. McCalla: 2005, ‘Smart Recommendation for an Evolving E-Learning System:
Architecture and Experiment’. International Journal on E-Learning, 4(1), 105-129.

Scheffer, T.: 2005, ‘Finding Association Rules That Trade Support Optimally against Confidence’.
Intelligent Data Analysis, 9(4), 381-395.

Wang, F.: 2002, ‘On using data-mining technology for browsing log file analysis in asynchronous
learning environment’. Conference on educational multimedia, hypermedia and telecommunication,
Denver, USA, pp. 2005-2006.

Weka: 2008, ‘Weka project available at http://www.cs.waikato.ac.nz/ml/weka/’.
Zaiane, O.: 2002, ‘Building a Recommender Agent for e-Learning Systems’. International Conference on

Computer in Education, Auckland, New Zealand, pp. 55-59.
Zaïane, O. and J. Luo: 2001, ‘Web usage mining for a better web-based learning environment’.

Conference on advanced technology for education, Banff, Alberta, pp. 60-64.
Zan, H.:2004, ‘A graph model for E-commerce Recomendador systems’. Journal of the American Society

of Information Science and Technology 55(3), 259-274.
Zanker, M. and M. Jessenitschnig: 2009, ‘Case-studies on explicit customer requirements in

recommender systems’. International Journal of User Modeling and User-Adapted Interaction, special
issue Data Mining for Personalization, (In press).

Zhang, C. and S. Zhang: 2002, ‘Association Rule Mining’. Berlin: Springer.
Zheng, Z., R. Kohavi and L. Mason: 2001, ‘Real world performance of association rules’. Sixth ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining 2(2), 86-98.

Author’s vitae

D. Enrique García Salcines is an Assistant Professor in the Computer Science Department of the Cordoba
University, Spain. His primary interests lie in the areas of data mining and recommender systems.
Nowadays, he is a Ph.D. candidate in Computer Science at Granada University. His paper summarizes the
current state of his thesis work on the field of educational data mining for e-learning improvement.

D. Cristóbal Romero Morales is an Assistant Professor in the Computer Science Department of the
Cordoba University, Spain. He received his Ph.D. in Computer Science from the University of Granada in
2003. His research interests lie in artificial intelligence and data mining in education. He has published
several papers about Educational Data Mining in international journals and conferences and he has co-
edited the book Data Mining in e-learning. He has served as PC member in several research EDM forums,
workshops and International Conferences.

D. Sebastián Ventura Soto is an Associate Professor in the Computer Science Department of the Cordoba
University, Spain. He received his Ph.D. in the Sciences from the Cordoba University in 1996. His
research interests lie in soft-computing, machine learning, data mining and its applications. He has
published several papers about Educational Data Mining in international journals and conferences and he
has co-edited the book Data Mining in e-learning. He has served as PC member in several research EDM
forums, workshops and International Conferences.

D. Carlos de Castro Lozano is an Associate Professor in the Computer Science Department of the
Cordoba University, Spain. He received his Ph. D. in the Sciences from the University of Cordoba in
1983. His research interests lie in e-learning methodologies, resources and accessibility.

