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An Efficient Nearest Neighbor Classifier

R. Frédéric and G. Serge

Summary. In order to build an efficient nearest neighbor classifier three objectives have to
be reached: achieve a high accuracy rate, minimize the set of prototypes to make the classifier
tractable even with large databases, and finally, reduce the set of features used to describe
the prototypes. Irrelevant or redundant features are likely to contribute more noise than useful
information.

These objectives are not independent. This chapter investigates a method based on a hy-
brid genetic algorithm combined with a local optimization procedure. Some concepts are intro-
duced to promote both diversity and elitism in the genetic population. The prototype selection
aims to remove noisy and superfluous prototypes and selects among the others only the most
critical ones. Moreover, the better the selection the faster the algorithm.

The interest of the method is demonstrated with synthetic and real chemometric data,
involving a large number of features. The performances are compared to those obtained with
well known algorithms.

Key words: Feature selection, Genetic algorithm, Hybrid algorithm, classification,
k nearest neighbors

6.1 Introduction

The k nearest neighbor algorithm is widely used in classification. Given a database
with training samples, whose class label is known, it consists in finding the k nearest
neighbors of a pattern in order to classify and assign the unknown pattern a label
which takes into account the labels of its neighbors. The neighborhood is defined by
a distance function in the input, or feature, space.

When choosing k = 1, the classification rule consists in assigning the unknown
pattern its nearest neighbor label. Compared to other well known classifiers, based
for example on radial basis function or back propagation neural networks, neighbor-
hood techniques remain very attractive thanks to their easy use. No assumption on
class shape is made and the training procedure is quite simple.
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In order to build an efficient nearest neighbor classifier three objectives have
to be reached: achieve a high accuracy rate, minimize the set of prototypes to dis-
card the noisy and superfluous ones and make the classifier tractable even with large
databases, and finally, reduce the set of features used to describe the prototypes.
Irrelevant or redundant features are likely to contribute more noise than useful infor-
mation.

One of these objectives is feature selection, a topic which, while remaining a
challenging issue, has been extensively researched [1-3]. The selection can be done
either by considering each feature independently, the filter approach [4], or by man-
aging a subset of the available features, as in wrapper approaches [5]. The feature
selection step is of prime importance as the distance function works in the feature
space. The neighborhood of a given pattern is highly dependent on this distance
function, i.e., the selected features.

Another objective is related to instance selection problems. These problems are
managed using editing and condensing techniques [6]: The goal is to select the most
critical patterns in order to make the classifier faster and more relevant. This ob-
jective is of prime concern when dealing with large databases as finding a pattern
neighborhood requires as many distance computations as there are items in the ref-
erence data set.

A prototype selection procedure combines editing [7] and condensing [8,9] tech-
niques. The former technique aims at cleaning the data by removing irrelevant pat-
terns while the latter’s goal is to find representatives. Both contribute to reducing
the set cardinality. Many methods have been proposed by different scientific com-
munities. The oldest, and probably most famous one, is the “condensed nearest
neighbor rule” presented by Hart [10]. More recently, Gates introduced the “reduced
nearest neighbor rule” [11] and Swonger proposed the “iterative condensation algo-
rithm” [12]. A survey of the available selecting methods can be found in [13]. The
DROP family methods [14] are the most popular within the pattern recognition com-
munity. They aim at discarding the noncritical instances. Starting from the original
set, it removes the instances step by step, in an ordered way. An item is removed if
at least the same number of its well-classified neighbors can be correctly classified
after the item’s removal. This process is decremental.

Feature selection and prototype reduction are not independent, as the result of
the classification depends on the neighborhood, which depends on the selected fea-
tures. The main approaches to deal simultaneously with this twofold objective are de-
tailed in Sect. 6.2. They are all based on genetic algorithms (GA). GA are one of the
best-known techniques for solving optimization problems. The tuning of the genetic
parameters, mutation and crossover rates, population sizes, is still an open research
field [15-17]. Many specific techniques have been used within selection problems.
Niching methods and particularly various sharing and crowding strategies [18] have
been developed to keep the population diverse under the constraint of the selection
pressure. They contribute to avoiding premature convergence.

Despite real progress in the GA field, recent literature advocates the use of hybrid
algorithms [19-22], as GA may fail in finding a good solution in high dimensional
systems. Hybrid algorithms, often called memetic algorithms [23, 24], combine GA
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with a local search procedure. A huge number of papers [25-28] has appeared in the
last 10 years, most of them dealing with quite small systems. Finding the balance
between accuracy and tractability is not easy.

In this chapter, a hybrid genetic approach is proposed to design a nearest neigh-
bor classifier. This approach proposes a specific hybrid procedure, based on a genetic
algorithm, adapted to the efficient nearest neighbor classifier design. The goal is to
provide the user with all the basic elements needed to easily implement an opera-
tional system suitable for medium databases (several hundred patterns described by
up to two hundred features) such as those found in the chemometric field. Section 6.2
summarizes the existing dual selection approaches. The hybrid genetic algorithm is
introduced in Sect. 6.3. Its application on several databases, as well as the compar-
ison with alternative methods, is carried out in Sect. 6.4. Finally, Sect. 6.5 reports
some concluding remarks.

6.2 Problem Statement

Let Z = zi,...,zp be a set of samples described by a set of features X = xp,...,xs.
Each item, z; € R’, is labeled, L = 1,...,I being the set of available labels. Given
Cinn a nearest neighbor classifier, the optimization problem consists in finding the
smallest subsets S1 C X and S2 C Z such that the classification accuracy of Cyy, over
Z is maximal.

The formulation is then the following, |.| standing for set cardinality:

Cinn(Z) is maximal
IS1] is minimal . 6.1)
S2] is minimal

As these objectives are conflicting ones, the optimization problem is usually
managed by heuristic approaches. Various techniques are involved such as quanti-
zation techniques or more recently the well known Tabu search algorithm [29]. They
rather focus on the classification objective by optimizing the prototype location. Most
of the methods dealing with the three objectives combine condensation techniques
and feature selection separately or are GA based.

The oldest, and undoubtedly the best-known studies, are those by Shalak [30] and
Kuncheva [31]. Shalak’s pioneering work addresses the problem in a partial way. The
fitness function manages only the classification accuracy, the number of prototypes,
|S2], being a priori given by the user. Dealing with well known (and quite easy to
manage) databases, he aims to show that only one prototype by class is needed to
obtain good classification results. Computation costs are thereby hugely reduced.
This approach is obviously limited to a small range of applications.

Kuncheva [31] proposed a complete approach, optimizing the sizes of both pro-
totype and feature sets. She applied a standard elitist GA well designed to perform in
a single step edition and selection by aggregating the objectives. Her work shows that
a good trade-off, high discrimination rate with a moderate number of features, can be
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reached in real-world applications. The results presented are better than all the others
obtained by procedures that manage feature selection and edition in different steps.

Recently Ho [32] and Chen [33] have proposed new derived approaches. The
first paper is mainly dedicated to the genetic part of the process: It proposes an
intelligent crossover (IGA) based on an orthogonal experimental design. This paper
shows this approach is likely to improve the results gained by existing GA-based and
non-GA-based classifiers in terms of classification accuracy and prototype number.
In Chen, the same genetic concept holds, but they propose a new multiobjective
management. Their claim is that an aggregative fitness function may not be suited
as it is difficult for practitioners to determine the appropriate weights. Instead of
aggregating the objectives in a single function, chromosome comparison is achieved
in the three spaces, using the well known Pareto strategy [34]. According to this
strategy, a chromosome is said to be better than another if it is strictly better in
at least one criteria and no worse, better or equivalent, in all the other objectives.
Then the chromosomes can be ordered and each of them can by characterized by its
position: How many chromosomes does it dominate and by how many other ones
is it dominated? This combination of intelligent crossover and multiobjective fitness
seems to yield quite good results. In Chen, the ones presented are better than those
gained by each of these approaches independently, either IGA or strength Pareto
evolutionary algorithm (SPEA).

To the best of our knowledge, no hybrid method has been applied to design
an efficient nearest neighbor classifier. Our proposal is hybrid. It is based on self-
controlled phases with dedicated objectives combining crowding and elitist strate-
gies. Elitism and pressure preservation are reinforced by a mechanism involving a
breaking process and an evolutionary memory. The genetic exploration is driven by
an aggregative fitness assignment strategy. The GA is hybridized via forward and
backward local procedures. The hybridization is structured in such a way that the
classifier tractability and efficiency are optimized. Some neighborhood concepts re-
lated to the prototype nature are also incorporated in the local procedures. By pro-
gressively filtering useless and noisy prototypes, they contribute to facilitating and
improving the natural selection of GA. Let us now go into detail.

6.3 The Hybrid Algorithm

The whole procedure comprises two distinct steps. The first one, which can be called
a preliminary phase, is a pure GA. The goal is to promote diversity within the chro-
mosome population in order to remove the unused features and to prepare the second
step, called the convergence phase. Then the objective is to find a set of possible
solutions. Instead of diversity, the internal mechanisms favor elitism and some lo-
cal tuning is combined with the GA. It should be noted that the transition between
the preliminary and the convergence phases is automatic. Furthermore, additional
neighborhood considerations are introduced to select critical prototypes and discard
superfluous or noisy ones. The first subsection goes into the GA details while the
second is dedicated to the hybrid component.
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6.3.1 The Genetic Algorithm

As the optimization procedure deals with two distinct spaces, the feature space and
the pattern space, both are managed by the GA. A chromosome represents the whole
solution. It is encoded as a string of bits, whose length is f + p, f being the number of
available features and p the number of patterns in the training set. In a chromosome a
1 for the ith feature or pattern stands for its selection, while a 0 means it is not taken
into account.

As the number of features is likely to be smaller than the number of patterns,
in order to speed up the procedure and to improve the exploration power of the
algorithm, the two spaces are managed independently at each iteration by the genetic
operators such as crossover and mutation. This means the whole chromosome is
the union of two distinct subchromosomes, the first one to encode the feature space
and the second one the pattern space. In each subchromosome a classical one-point
crossover is applied.

We superimpose some restrictions for a chromosome to represent a valid solu-
tion. The first one is obvious: the number of selected features is not zero, |S;| > 1.
Otherwise, no input space would be defined. The other condition aims at ensuring
that all the classes are managed by the system, whatever their cardinality. The num-
ber of prototypes of a given class has to be greater than a defined proportion. Without
this kind of constraint, bad results with small classes could be compensated by good
results with larger ones.

The initial chromosomes are not generated in a completely random way: The
number of active bits is limited for both spaces. The intervals are [a;p,a;p| and
[1,min(as, f)] (typical values are a; = 0.1, a, = 0.5, and a3 = 50).

The choice of the fitness function is of prime importance in a GA design. The
one we propose takes into account the three conflicting objectives: maximize the
classification results, and minimize both the number of features and prototypes.

It is, of course, defined for valid chromosomes only. Its analytical expression, to
maximize, is as follows

F = weCinn(Z) +wiks + wpiyp (6.2)

with we +wg +wp = 1. The weight values stand for the importance of the corre-
sponding objectives. In our case, wf ~ w) to mean that the reduction is of compara-
ble importance for feature and pattern spaces, and w. > wy to enhance the accuracy
objective.

Cinn(Z) is usually evaluated over the training set. It should be noted that the
combined use of a validation set, if available, is likely to improve the generalization
capability of the classifier. Note that this validation set is different from the test set
used to assess the final performance.

The A parameters, A¢ and Ap, have to be maximal for a small number of selected
features or patterns. We used

. { 1— f\in\ if |S1] < fax (6.3)

0 else
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_ 159 ;
/'Lp _ 1 Dimax if |SZ| < Pmax ) (6.4)
0 else
Let us underline the difference between our proposal and the one proposed in [31]
or [32]. In their function, the last two objectives are managed using a single term:

1S1] + |S2]
f+p

This compensation is likely to favor the pattern space as it is usually of higher
dimension. By the use of two separate terms, each of the spaces is really consid-
ered with the same care. This offers more flexibility. The other difference resides in
the normalization factor. Whereas Kuncheva used the number of available features
or patterns, we propose a new parameter, fmax for the feature space and ppax for the
pattern space. It is used to limit the range of variation of A: The user considers that
a solution which requires more than fi,x features is not very different from another
one which would use all the features. As an example, dealing with a classification
problem with a hundred features, fi.x could be set to 15. That means that a feature
space of dimension 5 is really better than one of dimension 15 or higher.

Preserving both elitism and diversity constitutes the main challenge for a GA.
Most methods such as determinist crowding (DC), restricted tournament selection
(RTS), and others [35,36] are continuously looking for a balance between elitism
and diversity in the current population. We propose to use two distinct populations
with different evolution rules and no direct interaction. The first one is called the
current population, popg, its evolution is managed using classical genetic schemes
(elitism, DC, RTS, etc.) The second one is called the archive population, pop,, it
acts as an evolutionary memory. It is a repository of good chromosome solutions
found during the evolution. At each generation, pop, is updated and may be used to
partially regenerate pop. if needed. The final pop, constitutes the output of the GA.

The current population needs to be reseeded when a diversity index drops below
a given threshold. The breaking mechanism is then used to produce major changes
in the current population by including chromosomes from the archive population or
applying a high mutation rate to refresh the chromosome.

The diversity index is based on the chromosomes similarities. Two chromosomes
are said to be similar if their hamming distance is less than a predefined threshold.
As a chromosome is the union of two subchromosomes, the hamming distances
are computed in the two different spaces. The similarity between the ith and jth
chromosomes is

. 1 if di (i, j) < ngand d (i, j) <
S(”’):{o anof) <mand ) <t (65)

where di (i, j) (respectively, d? (i, j)) stands for the hamming distance in the feature
(respectively, pattern) space, and ny (respectively, np) is a predefined threshold.
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The proportion of chromosomes similar to the ith one is given by

1 §
R@)= " X si), (6.6)

j=L.j#i

where s is the population size.
The breaking mechanism is active when there are a lot of similar chromosomes
within the population. The Ps(i) are thresholded to compute the diversity index:

DI= Y S(i)  whereS(i)=1if Py(i) > thyi, and O else. (6.7)

1 s
Szl

When the diversity index, DI, is too low, some of the chromosomes which have a
lot of similar ones in the population, some of the i ones for which S(i) = 1, are either
replaced by ones randomly chosen in the archive population or regenerated with a
high mutation probability.

The update of the archive population takes into account both elitism and diversity.
The decision to include a given chromosome in pop, is based on two criteria, the
first one is the fitness score. If there exists a chromosome in the archive population
with a much lower score than the candidate, it is replaced by the candidate. This is
the elitist side of the process. If the candidate score is slightly better than others, the
candidate replaces the chromosome with the most comparable structure, the one with
the closest hamming distance. Even if the candidate score is a little worse than that of
the archive population, it can be used to replace one of a set of similar chromosomes,
in order to increase the diversity level.

As previously stated the whole procedure is made up of two steps. For the pre-
liminary phase, whose main objective is to promote diversity, we have selected the
RTS genetic scheme for pop. evolution, the diversity level being controlled by the
breaking mechanism. There is no hybridization with local approaches within this
preliminary phase.

This stage automatically ends when there is a large enough number of good and
diverse chromosomes in the population. This condition can be formulated as follows.
Let 8’ be the set of chromosomes whose fitness score is greater than a threshold, and
Faiv (respectively, Pyiy) a diversity measure in the feature (respectively, pattern) space.
The fulfillment of the condition states that the three indexes, s’ = |S'|, Fgy and Pgy
have to be sufficiently high.

The diversity measure we use is

!

1 N 5
Fav= Y Y di(ij. (6.8)

/
§ =1 j=1,j#i

An analog definition stands for Pg;y. A cautious implementation also controls the end
of the first phase by the number of iterations.

At the end of this step, the most irrelevant features, i.e., those which are selected
with a low frequency, are discarded from the candidate set. This filter contributes
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to making the GA selection easier and particularly faster. The feature selection
task is not completed: the remaining features are likely to be redundant. The fi-
nal selection step is carried out using a local way. In this step, the convergence
phase, an elitist approach is preferred to select an accurate solution, diversity remain-
ing controlled by the archive population, and the GA is combined by local search
procedures.

6.3.2 Local Tuning

As previously stated, recent literature reports that GA are not easy to tune when
dealing with large systems. The objective of a GA is twofold: space exploration and
solution tuning. Reaching both of these objectives may prove difficult. The hybrid
part of the algorithm is devoted to helping the GA in the tuning phase. Thus, the GA
is in charge of the space exploration, it is likely to find a set of acceptable solutions,
and the local procedures aim at improving these solutions by an exhaustive search in
their neighborhood.

Of course, extensive search is time consuming, and local tuning has to be applied
carefully, only when the expected gain is higher than the cost.

The local tuning includes two different phases: an ascending and a descending
procedure.

The ascending phase aims at aggregating new elements, features or prototypes,
in a given chromosome while the goal of the descending phase is, on the contrary,
to remove features or prototypes from the chromosome description. Both procedures
are random free. They are based on the population yielded by the GA.

Let us first consider the ascending step. It can be applied to the feature or the
prototype space. Let S’ be the set of chromosomes whose fitness score is higher than a
given threshold, and S/1 C X (respectively, S’2 C Z) be the set of features (respectively,
prototypes) included in at least one chromosome (from S’) description.

The ascending procedure consists, for each chromosome in S’, in aggregating
each of the features in S} (respectively, each of the prototypes in S}) to the chromo-
some and selecting the ones that improve the classification results. The process is
repeated until no improvement is possible or a maximal number of ascending itera-
tions is reached.

It should be mentioned that the number of features and prototypes to be tested
is reasonably small as some features have been discarded by the first phase of the
GA, and among the others, only those which are currently part of one of the best
chromosomes are used. This remark highlights the complementary roles played by
the GA and the local approach. However, depending on the evolution stage, the
cardinalities of ] and S} may be important. In this case, in order to control the
ascending procedure computational cost, the number of features or prototypes tested
by the procedure is limited. The selected ones are randomly chosen in S} or S5. S’
may also be of high cardinality and contain redundancy. It is particularly true when
the current population is near a local convergence. Then, only a limited number of
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chromosomes are submitted to the ascending procedure. They are randomly chosen
inS'.

The descending phase is only applied to the S’ set. For each chromosome each
of the selected features (respectively, prototypes) is removed if its removal does not
affect the classification results while improving the fitness function.

In order to save time, ascending and descending procedures are carried out peri-
odically within the so called “convergence phase.”

Different strategies are likely to yield comparable results. In our implementation,
the convergence phase is organized as a sequence of the following operations:

1. A tuning phase including an ascending procedure followed by a descending one:
The preferred options aggregate new prototypes and remove features as the lower
the feature dimension space the better the interpretability. This complete mode
is quite expensive, it is run with a large period.

2. A tuning phase with a descending procedure in only one space: The feature and
prototype spaces are alternatively managed.

3. A pure GA.

The prototype selection is not only based on classification results, it also takes
into account the prototype status within the training set in order to avoid selecting
either noisy or superfluous prototypes and favor the selection of critical ones.

Although there is general agreement about the basic idea, the implementation of
each of these concepts remains an open topic. Many research teams have proposed
their own definition, and some of them include reasoning rules. We opt for a simple
and unambiguous definition.

A prototype is said to be noisy if none of its k nearest neighbors is of its class.
That means this prototype is not able to correctly classify any of its neighbors. The
value of k, k > 1, is set according to the class cardinality, the higher k the lower the
number of prototypes likely to be removed. On the other hand, a prototype is said to
be superfluous if all of its neighbors are of its class. That means its neighbors remain
well classified after its removal. The amount of filtering depends only on the number
of neighbors, k, no additional heuristic is needed.

These concepts, noisy or superfluous prototypes, are highly dependent on the
feature space and the distance in use. Thus, their implementation requires a spe-
cific management: A list of prototypes to be discarded is attached to a given feature
space. The identification of noisy or superfluous prototypes is carried out at the be-
ginning of the descending procedure. The prototypes part of the list are no longer
available, neither for the ascending procedure nor GA selection or chromosome
generation.

Note that GA may select superfluous prototypes as they improve classification
results. In this case the solution found can be considered as good but remains a
suboptimal one. The local approach aims, in this case, at increasing the convergence
speed toward an optimal solution.
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6.4 Results and Discussion

The proposed hybrid GA (HGA) as a nearest prototype classifier is now applied
to various synthetic and real world data sets. The results are compared with other
approaches.

6.4.1 The Data Used

To test the proposed method, seven data sets are used: five are available in repos-
itories [37] and some results are already known, the two others are from the
chemometric area.

The database characteristics are summarized in Table 6.1.

It is needless to introduce the Iris and the Wisconsin breast cancer data, they have
been widely used by many machine learning algorithms.

The Gaussian8D is a synthetic data set. It has been designed as a benchmark to
study classifier behavior when the classes overlap. The first class is represented by a
multivariate normal distribution with zero mean and standard deviation equal to 1 in
each dimension, for the second class the mean is also 0, but the standard deviation is
2 for each input variable.

The Satimage data, from ELENA a European Esprit project database, are gener-
ated from Landsat Multispectral scanner images. This set has previously been used
to design a nearest neighbor classifier [32].

The texture database is also from ELENA. It has been created in order to study the
texture discrimination capabilities of algorithms. The attributes are texture features
estimated in four directions (0°, 45°, 90°, and 135°) and taking into account the
spatial dependency of a given pixel with its two nearest neighbors.

As shown in Table 6.1, the chemometric databases are usually more difficult to
manage. The goal is to select a reduced but representative set of relevant compounds
from chemical databases in order to investigate how they can be used to design new
products.

The first chemometric database describes how product toxicity affects a kind of
fish (the fathead minnow). The product descriptors are parameters related to the 2-
D molecular structure. They are of different kinds: topological, electrotopological,
constitutional, physical, chemical, etc. The number of toxicity levels is 8.

The second one was extracted from the CIPSLINE database. The latter is com-
posed of more than 4,500 compounds coming from various medicinal and drug data

Table 6.1. Database characteristics
Iris Breast Gaussian8D Satimage Texture Chemol Chemo2

#items 150 699 1,000 1,028 989 566 1,294
# features 4 10 8 36 40 166 167
# classes 3 2 2 6 11 8 8
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reports, published between 1988 and 1999. The records include the molecular and
chemical structures, the pattern’s name and information about the sources. We used
the subset of this database relevant for eight anticancerous properties.

6.4.2 Comparison with Known Algorithms

Three basic genetic strategies are implemented: determinist crowding, elitism, and
RTS. They are combined with either an aggregative fitness function or a Pareto-based
evaluation [33].

The elitism strategy implementation is the one described in Kuncheva [31]: The
subset of children created after genetic operations compete with their parents. The
best of the whole set, parents and children, survive in the next generation.

Within the deterministic crowding [38] and RTS [39] frameworks the update of
the population also aims at maintaining diversity. The new chromosome has to be
better than the old one but additional mechanisms ensure that it is also similar to the
one to be replaced.

We also compare two fitness sharing strategies [40] combined with the RTS
approach. This technique penalizes the fitness function when the diversity among
the population becomes poor. To assess diversity, two measures are used leading to
two types of similarity. Genotype similarity uses the hamming distance while the
phenotype one is based on the Euclidean distance between the normalized space
dimension, whatever the selected features or prototypes. It only takes into account
|S1| and |S,|. For both strategies, a common triangular sharing function has been
considered. The width was 0.1 x (f + p) for the genotype similarity and 0.05 for the
phenotype one.

The multihill climbing algorithm [30] is also tested.

Finally, the ten selected algorithms are:

. DA: determinist crowding — aggregation

. DP: determinist crowding — Pareto

. EA: elitism strategy — aggregation

. EP: elitism strategy — Pareto

. RA: restricted tournament selection (RTS) — aggregation
. RP: RTS - Pareto

. RGA: RTS - fitness sharing genotype — aggregation

. RPA: RTS - fitness sharing phenotype — aggregation

. MHA: multihill climbing - aggregation

. HGA: hybrid GA

O O 0NN N W=

—

From each data set, ten training and test samples are randomly generated. The
training set is made up of about 80% of the data set, the remaining 20% being the
test set. For each of the ten samples, the training data are centered and normalized,
the computed coefficients are applied to the corresponding test set. Then for each of
the ten algorithms, a classifier is designed using the training data and its performance
is assessed over the test data.
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The same very common genetic parameters have been chosen whatever the
database, the main features are listed below:

— Initial population: random bit generation with prob(0) = 0.8 and prob(1) = 0.2
— Crossover probability: 0.5

— Mutation probability: 0.05

— Fitness function: we = 0.4, w, = wr = 0.3

— Constants used for A computation: fiax = min(30, f), pmax = 0.3p

— Number of generations: 300 for the first nine algorithms.

For the HGA, these specific parameters are used:

— Initial population: a; = 0.1, a» = 0.5, and a3 = 50

— Number of generations: 80

— Number of local search loops: min = 30, max = 50

— Fitness score threshold to apply local optimization: from 0.7 (two classes) to 0.5
(11 classes)

— Repartition of local procedures: 20% ascending/descending, 50% descending on
only one space, 30% pure GA

— Maximum number of chromosomes selected for the ascending procedures: 25

— Maximum number of ascending/descending iterations: 10/5

— Maximum number of prototypes/features tested: 30/30

— Diversity index: ny=1,n, =0.1p, ;= 0.75p

- Prototype selection: k; = min(4,0.5,/p;), p; being the number of patterns from
class i.

The fitness function of Pareto-based evaluation considers both dominated and
nondominated solutions as proposed in [33]. The score of a given chromomose, Y,
results from the difference of two terms: The number of chromosomes which are
dominated by Y and the number of chromosomes which dominate Y.

6.4.3 Main Results

For each database, each of the nine algorithms is compared with our HGA. The
comparison between two algorithms is achieved through their best chromosome.
When the HGA is better, the score of the experiment is 0.1, when the results are
equal the score is 0 and when the alternative algorithm is better, the score is —0.1.

The overall results are given in Table 6.2. For each of the alternative algorithms
the first row corresponds to the cumulative sum over the ten trials when the com-
parison is made in the Pareto space. In this case, the nondominated solution which
dominates the highest number of chromosomes in the final population has been se-
lected. It is quite easy to get “equal” results as in order to win, an algorithm has to be
better than the other for at least one of the three objectives and as good as the other
for the remaining ones. The second line compares the results using the aggregative
function.

These results highlight that the HGA gives better results than any of the other
algorithms as the score is always higher than 0. This is especially true when the
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Table 6.2. Overall results

Iris Breast Gaussian8D Satimage Texture Chemol Chemo?2

DA 0.7 (1).8 (1) (l).2 (1).9 (l).7 (1)
DP (1).8 (1).8 (1).1 (1).2 } (1).9 8.3
S R R
= PP oYL H B
S R R
L R
SO
SO A
MA i (1).5 (1).2 (1).1 (1).6 { (1)

comparison is done according to the aggregative function. In this case, most of scores
are close to 1.

Let us note that the final score may include compensation operations, e.g., a 0.4
score can be the result of 0.6 — 0.2 + 0, meaning the alternative algorithm has given
best results for two of the ten experiments, the hybrid algorithm won six times while
for the two remaining samples the results were comparable. This does not occur in
our case, as there is no negative contribution in any of the scores.

In Table 6.3, the best chromosomes yielded by each of the ten algorithms for
the same, randomly chosen, experiment are compared. The first row indicates the
number of selected features for each data set, the second row shows the number
of selected prototypes while the third row gives, for each algorithm, the classifier
accuracy assessed over the test set.

Note that the use of a Pareto-based fitness function does not improve the results
as can be seen for each of the tested algorithms (DP vs DA, etc.) The classification
rates are at most comparable but the number of prototypes and features are much
higher.

As expected, the simplest bases, Iris and breast cancer, are more or less equally
managed by all the systems, though it should be noted that the number of proto-
types selected by HGA for the breast cancer data is much smaller (7) than the one
corresponding to the other algorithms (from 31 to 110).

Concerning all the other, nontrivial, data sets, the space dimensionality, either the
feature or the pattern one, is significantly smaller using HGA for a comparable ac-
curacy. The main difference resides in the prototype selection for medium databases,
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Table 6.3. Detailed results for one experiment

Iris Breast Gaussian8D Satimage Texture Chemol Chemo2

1 2 2 3 4 22 37

DA 3 31 73 62 79 53 126
0.961 0.945 0.726 0.8 0.818  0.565 0.8

1 1 2 2 4 40 40

DpP 6 31 79 123 101 65 151
0947 09 0.718 0.726  0.816 0.501 0.786

1 1 2 3 4 16 36

EA 3 31 71 80 86 48 100
0.966 0.913 0.713 0.8 0.825 0.587 0.807

1 2 1 9 11 39 29

EP 7 110 151 180 186 93 197
0.946 0.89 0.59 0792 079 0456 0.688

1 1 2 3 4 9 41

RA 3 32 78 59 89 35 117
0.966 0.9 0.716 0.825 0.855 0.547 0.818

1 1 2 3 3 31 36

RP 3 37 80 91 91 51 120
0.966 0.9 0.712 0.793 0.786 0.538 0.782

1 1 2 2 4 28 41

RGA 7 38 80 96 88 56 122
0.964 0.901 0.712 0.754  0.83 0.56  0.793

1 1 2 3 3 23 42

RPA 5 37 171 70 100 60 117
0.965 0914  0.736 0.776  0.832  0.54 0.79

1 2 2 6 6 21 32

MA 15 110 149 149 143 93 90
0942 0912  0.654 0.811 0.746 0.555 0.713

1 1 2 2 3 2 3

HGA 3 7 11 11 28 26 34

0.966 0.935 0.778 0.812 0.879 0.649 0.731

such as Gaussian8D, Satimage, or texture. Considering large and difficult, data sets,
such the chemometric ones, the feature space is also notably reduced.

These differences between HGA and the other algorithms can be accounted for
the hybridization process, but we however think that the other mechanisms and con-
cepts incorporated in the GA itself play an important role.

For the Chemo?2 base, the HGA accuracy is not very good, this is due to the
standard weights used in the fitness function which favor space dimension as wg +
wp > We.

When dealing with this difficult base, the user wishing to design an accurate
classifier would prefer wg = wp = 0.25 and we = 0.5. Using this configuration the
results, for the same experiment, are as follows:

— Accuracy rate: 0.8
— Number of selected features: 7
— Number of prototypes: 37
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6.4.4 Complementary Results

Once achieved the comparison with well known algorithms, let us now try and as-
sess the efficiency of the additional procedures included in the proposed GA. Three
of them are studied: the hybrid component, the breaking mechanism, and the pro-
totype status (superfluous or noisy) identification. This lead to the following four
configurations:

1. VO: HGA without neither hybridization nor breaking process
2. V1: HGA without hybridization

3. V2: HGA without prototype status

4. V3: HGA

Two configurations do not include the hybrid component, the difference between
both being the breaking mechanism. The two remaining ones differ by the presence
of the prototype identification step.

This experiment is carried out with the ten samples of Chemo?2, the most difficult
data set. Common parameters are set for these trials. The aggregative weights
are we = 0.5, wy = wp = 0.25. The number of generations is set in order to ease
the comparison, instead of using the automatic transition between phases: 80 for
the preliminary phase and 220 for the convergence one. The initial population is
generated fusing the following parameters: a; = 0.02, a; = 0.2, and a3 = 30. The
hybrid specific parameters are: 10% ascending/descending, 40% descending on only
one space, 50% pure GA.

For one experiment Figs. 6.1 and 6.2 show the evolution of the average values for
classification rate and the number of selected prototypes of all the chromosomes in
the archive population, pops.

Table 6.4 shows the final overall results (mean and standard deviation) over the
10 runs.

The hybridization effect is clearly visible either from the classification or the
prototype selection point of view: The trend sharply changes after a small number
of iterations in the convergence phase. The influence of the prototype status identifi-
cation process is obvious in Fig. 6.2 when watching the difference between V2 and
V3 configurations. The complexity model is then reduced, this does not improve the
classifier generalization ability.

Comparing V0 and V1 configurations, we may conclude that the breaking mech-
anism is efficient. The improvement of the classification results (5% in average) may
be due to the diversity constraint managed by this breaking mechanism. With a small
size population only a part of the huge space is explored, and then this kind of mech-
anism seems to be relevant without any additional computation cost.

The results may vary from one experiment to another due to the random part
of the process. Even so, as shown in Table 6.4, the overall trend indicates that the
proposed additional mechanisms are suitable to improve the GA performance.
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Fig. 6.2. Number of selected prototypes evolution for one Chemo2 sample

Table 6.4. Compared ten run results with Chemo2

VO V1 V2 V3
Cinn(Z) 0.710 £ 0.028 0.730 £ 0.022 0.747 £ 0.029 0.742 + 0.024
IS1] 6.2+0.9 590+£12 6.0 £0.5 6.1 +0.6

|S2] 385+42 423+53 31.3£42 272+£29
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6.5 Conclusion

In order to build an efficient nearest neighbor classifier, three objectives are consid-
ered: Find the smallest subsets of features and prototypes that maximize the classi-
fication accuracy. As these objectives are not at all independent and are conflicting
ones, the optimization problem is usually managed by heuristic approaches. The pro-
cedure has to achieve a twofold task: A space exploration to find good solutions and
a fine tuning to converge to local optimal solutions.

Setting the parameters to ensure a trade-off between these two tasks within a
reasonable time is difficult. Exploratory strategies (crowding, sharing, etc.) require a
lot of resources to give a good solution in high dimensional problems, while elitism-
based strategy may ignore interesting parts of the space.

The hybrid algorithm proposed in this paper, aims at maintaining both qualities
of a genetic population, namely diversity and elitism. Diversity is partially ensured
by a breaking mechanism to regenerate the chromosomes while an evolutive memory
combined with a local search procedure handles the elitist part of the task.

The whole process is optimized by dividing the algorithm into two self-controlled
phases with dedicated objectives. The preliminary phase is pure GA. Based on a RTS
scheme, it focuses on exploration. The second phase, which includes local search, is
more elitist.

As proved by the results, this algorithm is likely to give satisfactory results within
a reasonable time when dealing with medium size data sets.

In order to manage larger databases, some improvements are needed to make the
method more tractable. The fitness function computation is expensive, requiring a lot
of distance calculations and sorting procedures. Further work should investigate how
clustering or space partitioning techniques [41-43] could help in time saving.
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