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Considerations About Sample-Size Sensitivity of
a Family of Edited Nearest-Neighbor Rules

Francesc J. Ferri, Jesús V. Albert, and Enrique Vidal

Abstract—The edited nearest neighbor classification rules constitute
a valid alternative to kkk-NN rules and other nonparametric classifiers.
Experimental results with synthetic and real data from various domains
and from different researchers and practitioners suggest that some editing
algorithms (especially, the optimal ones) are very sensitive to the total
number of prototypes considered. This paper investigates the possibility
of modifying optimal editing to cope with a broader range of practical
situations. Most previously introduced editing algorithms are presented in
a unified form and their different properties (and not just their asymptotic
behavior) are intuitively analyzed. The results show the relative limits in
the applicability of different editing algorithms.

Index Terms—Edited NN rule, nearest neighbors (NN), nonparametric
classification, prototype selection,

I. INTRODUCTION

The k-nearest neighbor (k-NN) classification rule consists of
finding the k nearest neighbors to each target point according to
a certain dissimilarity measure (not necessarily a distance) and
making a decision according to the (known) classification of these
k neighbors, usually by assigning the label of the most voted class
among these neighbors. A trivial case of this rule is whenk = 1, in
which each point is assigned to the same class as its NN.

Regardless of the measure used, the asymptotic classification error
of thek-NN rule (when the number of prototypes,n, tends to infinity)
tends to the Bayes error rate,R�, as k ! 1 and k=n ! 0.
If k = 1, the error is bounded by approximately2R� [1]. This
behavior in classification performance combines with the simple
and comparatively inexpensive training (in terms of computational
burden) which only requires gathering correctly classified prototypes,
to make a powerful classification technique capable of dealing with
arbitrarily complex problems, provided there is a large enough set of
prototypes available.

In spite of this quality in performance and training requirements,
the NN rules also exhibit some practical disadvantages. An obvious
drawback comes from the impossibility of having a sufficiently large
number of prototypes to achieve (near) optimal results in practice
because there is no way of fulfilling the requirements fork and
n at the same time. On the other hand, in the (fortunate) case of
having large sets of prototypes, it necessarily implies a significant
computational burden to find the (k)-nearest neighbor(s) and makes
the NN methods inapplicable for problems in which dissimilarity
calculation is a time-consuming procedure in itself. In order to
overcome these drawbacks, a number of different approaches have
already been proposed, e.g., fast searching algorithms [2], weighted
NN rules [3], optimal distance measures [4], and prototype selection
techniques [1].
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Fig. 1. Illustration of the optimal editing procedure.

Prototype selection techniques were first introduced by Hart [5]
more than two decades ago when he introduced theCondensing
algorithm. This algorithm obtains areduced and consistent(that
correctly classifies the original set) set of prototypes to be used
with the 1-NN rule without significantly degrading the corresponding
performance when using the original set. The Condensed NN rule
improves the efficiency of the resulting classifier but only constitutes
an approximation to the plain NN rule in terms of classification
performance. The problem of selecting a subset of prototypes from
a given input set in such a way that this subset leads to animproved
performance when used with the plain 1-NN rule is usually referred
to as Editing [1], [6].

The first work on Editing was that of Wilson [7], and many
others followed [8]–[10] leading to the work of Devijver and Kittler
who introduced the well-known Multiedit algorithm. The purpose of
Editing is two-fold: first, to remove possible outliers which strongly
degrade the performance of the NN rules, and second, to approximate
the Bayes-optimal performance (asymptotically exhibited by thek-
NN rule) by means of the simple 1-NN rule. Another good reason for
applying these techniques is the way it combines with the condensing
procedures. In the presence of outliers or with strong overlap among
classes, condensing often produces sets containing an arbitrarily large
number of “bad” prototypes, i.e., performance degrades and not much
reduction is achieved. Conversely, if the set of prototypes has been
previously edited, the number of condensed prototypes tends to be
drastically reduced and the final (expected) performance is usually
close to that of the edited rule and superior to the one with the
plain 1-NN rule. Thus, Editing constitutes a compulsory step prior
to applying any condensing procedure and, usually, both steps are
considered as a unified technique [1].

The general editing idea along with a generalized scheme is
presented in the following section. In further subsections, the classical
Editing algorithms are presented and the small-sample case is taken
into account. Also, appropriate modifications of the asymptotically
optimal editing procedures are considered from a practical point of
view. Section III includes experiments with both synthetic and real
data which were designed to study and compare the behavior of
different algorithms. The final section presents the main conclusions
drawn from the results obtained from the experiments and also
includes some comments about possible extensions to the work.

II. EDITED NEAREST NEIGHBOR RULES

The idea of Editing relies on the fact that one can optimally
eliminate outliers and possible overlap among classes from a given
set of prototypes, so that the training of the corresponding classifier
becomes easier in practice. According to Fig. 1, where the apparent

probability density functions of two classes (after and before editing)
are shown, the prototypes falling in the Bayes acceptance regions of
a different class need to be removed in order to obtain well clustered
clouds of prototypes that tightly define a decision boundary as close
to the optimal one as possible.

In the context of distance-based classifiers, this implies that, with
a sufficient number of prototypes, the straightforward 1-NN rule can
become as powerful as the optimal Bayes classifier if applied after
such an editing procedure [1].

One inherent problem comes from the fact that the Bayes ac-
ceptance regions can only be approximately obtained by using an
estimate of the true class label of each prototype in the original set.
Usually thek-NN rule or the Parzen estimate have been used in
this context for this purpose. Also, from a practical point of view, it
is not possible to remove only prototypes lying in wrong acceptance
regions without also removing some “correct” prototypes. In practice,
this leads to suboptimal results. Most editing algorithms constitute
different kinds of tradeoffs between removing too many (even correct)
prototypes and leaving some small overlap among classes. In the
latter case, Editing can also be applied in a repetitive way. These
approaches assume that the first (possibly suboptimal) edited set
can be further improved by iterating the very same procedure. In
some specific cases, this fact can be formally proved under certain
assumptions [1].

A. The Generalized Editing Scheme

The above approach to the prototype selection problem leads to a
generalized scheme that is valid for any classification rule, estimate,
and stopping criterion [11]

Generalized Editing Scheme

Let R be the initial set of prototypes: �; �; and �

are the classi�cation rule; error estimator ;

and stopping criterion; respectively

1: Using the (error-counting) estimator�;

obtain an estimate of the classification error

for the rule� trained with the setR: Let S

be the set of prototypes misclassified in this process.

2: Let R = R� S

3: if � then STOP, else go to 1.

Traditionally, different error-counting estimates have been used
for editing purposes, mainly, an adaptation of the Holdout estimate
and different realizations of the Crossvalidation estimate including
Leaving-one-out. These estimates are only used in this context to
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decide which prototypes need to be removed. The error-rate itself
is not used at all. As a consequence, other improved error-counting
estimates based on resampling as bootstrap and jackknife [12] are
not directly applicable according to the above generalized scheme
and will not be considered in this paper.

B. Editing Procedures Based on Internal Estimates

The first estimate used for editing purposes was the Leaving-one-
out [7]. In this work, a simple nonrepetitive editing algorithm was
proposed along with a theoretical analysis of the behavior of the
edited NN rule. This Editing procedure can be summarized as follows:

Wilson Editing Algorithm

Let R be the initial set of prototypes

1: Let S be the subset of prototypes,p; that are

misclassified using thek-NN rule with R� fpg:

2: ReturnR� S:

This technique brought about a number of different algorithms
which consisted of slight changes of the classification rule used [9],
[10]. Some of the results of the analysis carried out by Wilson were
disproved by Penrod and Wagner [8] who pointed out the difficulties
of obtaining an exact analysis of the Edited NN Rules. In their
work, Devijver and Kittler threw new light on this controversy and
the facts that make the analysis difficult were clearly identified and
an (optimal) way of circumventing the underlying problems was
proposed [1].

Taking into account that the prototypes in the initial set are
alternatively used as “test” (p) and “train” (R � fpg) prototypes,
it follows that statistical independence(as postulated in Wilson’s
analysis) cannot be assumed and this was the reason for obtaining
optimistically biased bounds [8]. To achieve this statistical indepen-
dence, the classification of prototypes can be performed in aHoldout
manner. This means that, ideally, “test” and “train” prototypes have
to be obtained independently and, moreover, their functions cannot
be interchanged. It can be proved that the corresponding Holdout
editing is asymptotically optimal in the Bayes sense [1].

Holdout editing could be implemented by randomly partitioning
the initial set of prototypes but, in this case, only “test” prototypes
could be edited. Instead, the concepts ofdiffusion (splitting the
set into several, more than 2, independent random samples) and
confusion (pooling the different results into a new set) are used
to effectively remove the undesirable statistical dependence and to
eliminate prototypes from each block using only two independent
blocks at the same time.

As using thek-NN rule with this “modified” Holdout was not of
practical use (due to the strong dependency on the parameterk), a
repetitive version, the Multiedit algorithm, was also proposed

Multiedit Algorithm

Let R be the initial set of prototypes

1: Let S = ; and randomly splitR into B blocks ;R1; � � � ;

RB ; where1 B > 2

2: For b = 1; � � � ; B do

Add to S the prototypes fromRb that are

misclassified using thek-NN rule with R(b+1)modB

1The settingB = 2 is not allowed because it constitutes a particular
case of cross validation in which test prototypes and train prototypes are
interchanged.

Fig. 2. Behavior of Holdout and Cross Validation estimates (as used in the
editing algorithms) with respect to the number of blocksB, in which the set
R is partitioned.

3: If S = R during the lastI iterations, STOP

4: Let R = S; go to 1:

In successive iterations, the Multiedited NN rule converges to
the optimal classifier when applied to infinite sets of prototypes.
Nevertheless, as noted by various researchers, in practice the editing
algorithms based on the Holdout estimate behave poorly when used
with finite sets of prototypes [11], [13]–[15].

C. Editing Finite Sets of Prototypes

Another family of algorithms based on theB-fold Crossvalidation
(CV) estimate [12] was proposed as a way of improving the behavior
of the Holdout-based editing in the finite sample size case [11].
The corresponding algorithm consists of a slight modification which
implies a larger effective number of prototypes used for estimation
purposes. Algorithmically, it can be expressed as follows:

CV Multiedit Algorithm

Let R be the initial set of prototypes

1: Let S = ; and randomly splitR into B blocks,

R1; � � � ; RB

2: For b = 1; � � � ; B do

Add to S the prototypes fromRb that are

misclassified using thek-NN rule with j 6=bRj

3: If S = R during the lastI iterations, STOP

4: Let R = S; go to 1:

Each iteration of this algorithm can be considered as a compromise
between Holdout and Wilson’s algorithm. In fact, the three estimates
involved can be considered as belonging to the same family in which
statistical independence and effective number of prototypes change
according to the values of the parameterB. From this point of view,
Cross Validation can be seen as a different realization of the ideal
Holdout that preserves the effective number of prototypes rather than
the statistical independence.

The behavior of the estimates used in editing algorithms can
be summarized as in Fig. 2. According to our experience, Cross
Validation appears to be a good tradeoff between a randomized
asymptotically optimal estimate (Holdout) and a deterministic esti-
mate that behaves well in practice (Leaving-one-out).

A summary of most of the editing algorithms already proposed
along with their corresponding settings for� and" in the generalized
scheme is shown in Table I. The only stopping criterion considered
corresponds to “I iterations without change.” The small illustrations
show how the initial set,R, is internally partitioned to estimate the
true classification of prototypes. The grey part of the small figures
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TABLE I
SETTINGS FOR DIFFERENT EDITING ALGORITHMS ACCORDING TO

THE GENERALIZED SCHEME. THE COMPUTATIONAL COST

PER ITERATION IS EXPRESSED INTERMS OFn = jRj

corresponds to the effective number of prototypes used as training.
The computational complexity of each of the methods depends on
this size as well as on the number of iterations for repeated editing
algorithms (see Fig. 2).

III. EXAMPLES AND EXPERIMENTS

Several experiments with both synthetic and real data were carried
out in order to study the behavior of some of the different editing
algorithms discussed above. In particular,no editing(1-NN), Wilson
Editing (W(k)), Repeated Holdout Editing(or Multiedit, M(B; I))
and Repeated Crossvalidation Editing(CV(B; I)), were considered.
In these methods,k is the number of neighbors for thek-NN rule,B
is the number of blocks in the partition andI is the required number
of iterations without change. The goal of these experiments was to
show the sensitivity to the number of prototypes for the different
editing algorithms, taking into account the intrinsic dimensionality or
problem complexity.

Each one of the following two synthetic-data experiments was
carried out as follows: a random sample of fixed size was generated
and the error rate for each editing technique was estimated for five
different random partitions of the sample into training and test sets.
This step was repeated several times (depending on the sample size)
with different random samples. The results reported correspond to
the average over all these repeated trials. Only one typical set of
parameters (B = 3; k = 7; I = 7) was considered for each editing
algorithm apart from the proposed modifications (B = 2, B = 8).
For the real-world data experiments considered, only one sample set
(presumably too small with respect to the underlying statistics) was
available. In this case, the editing algorithms were tested with several
different settings for the values of their parameters.

In order to obtain more reliable results, for editing algorithms
involving internal randomization, the results were computed by taking
the average over five trials with different seeds for the pseudorandom
generators used.

Synthetic data:First, a two-class problem in two dimension with
complex decision boundaries was considered. The problem consisted
of two embedded spirals given byx1(t) = 10t sin (t), y1(t) =
10t cos (t) for class 1, andx2(t) = �x1(t); y2(t) = �x1(t) for
class 2,t 2 [0; 10].

From this distribution, samples of 250, 500, 750, 1250, and 2500
points were drawn with additive bivariate Gaussian noise, given by
�11(t) = �22(t) = t+3:5. Experiments with these sets were repeated
30, 15, ten, six, and three times, respectively. The results are shown in
Fig. 3. For all editings based on the Holdout estimator, including our
two-fold CV-editing (which is equivalent to a “degenerate” Multiedit
with B = 2) a rapid increase in error-rate is observed as the sample
size gets smaller. This behavior is not exhibited by Wilson Editing

Fig. 3. Error rate of different editing algorithms for a two-spiral problem
with Gaussian noise.

Fig. 4. Error rate of different editing algorithms with respect to the 1-NN
rule and the Bayes classifier for a two-class Gaussian classification problem.
[Wilson (W), Holdout (H), Multiedit (M), and CV-Multiedit (CV)].

or by theB-fold CV-Editing, with B = 8, which seems to be the
best option (although the difference is not statistically significant).

Second, a set of seven two-class problems with dimensionality
ranging from two to eight and a fixed number of prototypes (2500
per class) was considered. The problem consisted of two multivariate
normal distributions with zero mean. The standard deviations in
all dimensions were one and two, respectively. For this particular
problem, the Bayes error can be computed exactly and is shown
along with the editing results.

The overlap between classes makes this problem difficult for
the editing algorithms. In fact, most of the prototypes of one of
the classes need to be discarded in order to obtain an optimal
edited set. A behavior close to the previous experiment can be
seen in Fig. 4. In this case, all the repetitive algorithms gave bad
results for high dimensionalities while the Wilson’s algorithm got
worse more slowly. There is not enough statistical evidence to say
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Fig. 5. Error rate of different editings for a multispeaker isolated word
recognition experiment consisting of ten different words.

which algorithm was better at low dimensionalities and none of
the algorithms considered were better than the plain 1-NN rule at
high dimensionalities. Nevertheless, what is absolutely clear from the
figure is the general tendency of the algorithms based on different
estimates to degenerate as the ratio of the sample size to intrinsic
dimensionality decreases. For example, in dimension 4, the results
from the methods based on Holdout and CV with different values of
B clearly follow a behavior that can be easily explained from the
behavior of the corresponding estimates shown in Fig. 2. It is also
worth noting that the worst algorithm from this point of view, the
Multiedit algorithm, is (marginally) the best at dimension 2.

Real Data: A set of 1000 isolated word utterances corresponding
to ten different Spanish letters was considered. The utterances were
spoken by ten different male and female speakers and consisted of
the words (given by their phonetic transcription) /ace/, /i/, /xota/,
/ka/, /ele/, /eme/, /ene/, /o/, /pe/, /ku/. In addition, another set of
900 isolated word utterances from the (most difficult) Spanish E-
set vocabulary, which was spoken by the same ten speakers, was
considered. This set consists of the words /efe/, /ele/, /e�e/, /eme/,
/ene/, /e�e/, /ere/, /ere/, and /ese/. Using standard parameterization
techniques similar to those used in Castroet al. [16], these utterances
were converted into variable-length strings of 11-dimensional vectors
of cepstral coefficients. The metric adopted to compare such represen-
tations was given by a conventional symmetric nonslope-constrained
Dynamic Time Warping procedure [17].

The results corresponding to the first set of utterances is shown in
Fig. 5. It can be observed that Repetitive Editing algorithms clearly
follow the behavior observed in previous synthetic experiments.
Multiedit obtains much worse results than its CV-based counterpart.
Moreover, the CV results are better for higher values ofB as expected
from Fig. 2. The results using Wilson’s editing exhibited a variable
behavior depending onk, but were never better than the best results
shown in Fig. 5.

The results corresponding to the second, more difficult set, are
shown in Fig. 6, which confirms the tendency exhibited in the
previous figure. In particular, Multiedit dramatically degrades with
B, and again the CV-Multiedit constitutes a “better” choice when
compared to the Multiedit algorithm. It is interesting to note that, in
this case,noneof the Repetitive algorithms led to better results than
the 1-NN rule. For this problem, the result with Wilson’s editing (not

Fig. 6. Error rate of different editings for a multispeaker isolated word
recognition experiment using the Spanish E-set.

shown here) exhibited a decrease in performance ask increased. The
Wilson editing withk = 3 gave the only result which was better
than the one obtained with the 1-NN rule. This suggests that the
set which was available for this particular experiment (900 points)
is not large enough for properly applying the currently available
editing techniques. The results obtained in both real data experiments
reproduce the same situation as with the previously shown synthetic
experiments.

If we compare the results obtained in the last two experiments
with those represented in Fig. 3, it is possible to observe a similarity
between the results obtained for small set sizes in Fig. 3 and the
ones obtained in the two real data experiments. The results obtained
in the second real-data experiment and the fact that it is possible
to obtain significantly better results [16] using different approaches
(involving different parameterization and preprocessing techniques)
with the same number of prototypessuggest that the edited NN rule
in such a situation could be further improved.

IV. CONCLUSIONS AND FURTHER EXTENSIONS

In this paper, Editing algorithms derived from the original work
of Wilson (and consequently based on internal estimation of the
misclassification rate) have been presented in a unified way. Optimal
properties of the editing algorithms have been considered and their
behavior under the small sample size assumption has been studied
and illustrated with both synthetic and real experiments.

There is enough empirical evidence to conclude that different
editing algorithms have differences in sensitivity to the number of
prototypes used or, in other words, to the ratio of the sample size
to intrinsic dimensionality. It is very important to be aware of
this behavior to properly apply the different algorithms in critical
situations.

In summary, our results clearly indicate that improved editing
techniques are required for the cases in which only small samples are
available which, in practice, are unfortunately too often the case. One
of the key facts is that the failure of the algorithms in the small sample
case mainly stems from the inability of different error-rate estimators
to achieve sufficiently reliable estimates with the data available. In
general, one can strongly relax (or even completely sacrifice) the
statistical independenceassumption (as in CV or Wilson’s editings),
so as to take themaximum advantage of the dataavailable in order to
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Fig. 7. CPU times in seconds (on a R5000-based workstation at 180 MHz)
corresponding to the different editing algorithms used when applied to the
two-spiral problem.

boost the reliability of the estimators; this generally gives improved
and more robust results.

From a practical standpoint, the computational burden that im-
proved estimates imply is worth the benefits in performance, espe-
cially taking into account that editing is usually applied off-line. In
Fig. 7, it can be seen that the quadratic behavior of the different
algorithms in the first synthetic experiment is modified only by a
constant which directly depends on the number of iterations (which
in turn depends on the complexity of the problem [1]) rather than
on the estimator used. It is worth pointing out that even though the
Leaving-one-out editing gives very good results in critical situations
with minimum computation loads, the potential benefits of obtaining
random edited sets instead of deterministic ones make the CV editings
interesting enough in practice. This must be considered together with
the fact that both Holdout and CV-based editing clearly improve the
Leaving-one-out version for large data sets.

Recent developments on editing attempt to improve the internal
estimate by applying the basic idea in a random way using genetic
algorithms [15], or by looking into alternatives for thek-NN rule
[13]. These ideas could be combined using alternative, specially-
adapted, error estimates to better tune the trade-off between the
error-estimation reliability versus statistical-independence.
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Comments on “Constraints on Belief Functions
Imposed by Fuzzy Random Variables”:

Some Technical Remarks on R̈omer/Kandel

C. Römer and A. Kandel

First, we would like to thank V. Kratschmer for his validation of
our results in the above paper1 regarding the belief measure by using
a topological approach. Though Assertions (1) and (3) are presented
in a weakened fashion, our results still remain valid, as he claims. It
is true that Assertion (2) has been proved by us only for Borel sets B,
which have at most countable components. We were not able to prove
the same result for Borel sets with uncountable components (such
as the irrational numbers, for example) using our line of reasoning.
We therefore applaud the proof presented by V. Kratschmer for the
more general Borel sets using an interesting use of some topological
properties induced by the Hansdorff metric defined on the space of
closed intervals of the real numbers. This certainly makes our original
approach to fuzzy data analysis combining fuzzy sets theory and
Dempster–Shafer even more useful.
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