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Correspondence

Another Move Toward the Minimum Consistent Subset: A s to reduce the number of prototypes. There are also approaches that
Tabu Search Approach to the Condensed Nearest Neighbor share in some way the aims of editing and condensing [2], [3].

Rule In the framework of condensing, it is convenient to consider methods
in which the resulting set is constructed or adapted from the initial one.
Vicente Cerveron and Francesc J. Ferri This is referred to as prototypeplacemenfd], [5] instead of prototype

selectionto emphasize the fact that resulting prototypes do not neces-
sarily coincide with any prototype in the initial set. Prototypes obtained

Abstract—This paper presents a new approach to the selection of proto- using both approaches are then referred to as R-prototypes and S-pro-
types for the nearest neighbor rule which aims at obtaining an optimal or totypes, respectively

close-to-optimal solution. The problem is stated as a constrained optimiza- . .
tion problem using the concept of consistency. In this context, the proposed ~ Regardless of the way prototypes are obtained, the criterion for
method uses tabu search in the space of all possible subsets. Comparativeguiding the reduction of prototypes (trade-off between size reduction
experiments have been carried out using both synthetic and real data in and performance) must be decided. Most of the approaches proposed

which the algorithm has demonstrated its superiority over alternative ap- . .
proaches. The results obtained suggest that the tabu search condensing al—,Share the concept ajonsistency6]. A resulting set of prototypes

gorithm offers a very good tradeoff between computational burden and the IS Said to be consistent with an initial set if it can classify all initial

optimality of the prototypes selected. prototypes using the 1-NN rule with no errors. If PS is considered as
Index Terms—Multiple-prototype classifiers, nearest neighbors, proto- atraining process WhICh.U.SGS the initial set of prgtotypes, consistency
type selection, tabu search. can be related to a training result (a set) which produces a zero

resubstitutiorerror rate.
This work is focused on developing a new method for obtaining
|. INTRODUCTION consistent sets of S-prototypes. To do this, we face a hard combina-

Among other nonparametric approaches, distance-based classifi@4@! Problem for which a lot of heuristic and approximate algorithmic
tion rules are especially appealing both to researchers and practitioig§tions have already been proposed. This paper is organized as fol-
because of their interesting properties for performance and implem&HYS- In Section I, several existing approaches to PS are included and
tation issues. In particular, thé-{)nearest neighbor (NN) rules fre- t€ir main properties are put forward. In Section Ill, the proposed con-
quently appear in the specialized literature either by themselves, od§85ing method is introduced. The comparative experimentation car-
a common reference to compare the performance of other approacf&d, 0ut using the proposed method is shown in Section IV along with
This is due not only to their very good asymptotic behavior—even t4pe corresponding discussion. Section V includes some final remarks.
the plain NN (1-NN) rule—but also for the convenient trade-off be-
tween ease of implementation and performance in practical situations.

The only requirements of these rules are 1) a representative set of la-
beled samples or prototypes and 2) a procedure to identify thesest A. Condensing Algorithm

prototypes to an unknown samp!e. With_these_ two requirements, thq:rototype selection techniques were first introduced by Hart [6] who
most voted class amopg these nelghbprs ',S assigned to the sample. fSented theondensinglgorithm to obtairreducedand consistent
ertheless, these requirements may give rise to some drawbacks. EY88 of yrototypes to be used with the 1-NN rule without significantly
thoughiitis usually_easy to obtain aconvemen'g and representatlvg seﬂi@érading its performance. In short, this plain condensing algorithm
prototypes, sometimes these sets may contain erroneous or noisy BFBE:eeds by repeatedly selecting prototypes whenever they cannot be
totypes that may produce a decrease in performance. Furthemeire, ..oty classified by the currently selected set. The whole process

resentativeoften implies Iarge, and consequently, the search for ne'gf&'ops until there are no changes in a complete pass through the initially
bors becomes a computationally expensive task. given set. This straightforward algorithm usually converges in three

Many approaches have been suggested to overcome these drawbgiCks  iterations leading to a reduced set which clearly improves the

of the NN rules. Among these approaches, prototype selection (%%}ciency of the resulting classifier. The resulting condensed NN rule

techniques aim at obtaining a convenient set of prototypes from @y, pe seen as an approximation to the plain 1-NN rule (using all the
initially given set in such a way that the plain 1-NN rule using thesg, i, nes) in terms of classification performance. The final size and
selected (and usually reduced) set of prototypes gives classmcatlon({sr-nposmon of the final condensed set may strongly depend on the
sults which are good enough. To date, different approaches to PS have. i which the initial set is processed

b_ee_n pFOF’QSed and have been named diﬁerently by differgnt authors. Aot left some open questions about this algorithm and, in partic-
distinction is usually made [1] betweenliting andcondensingech- ular, about the accuracy of the resulting classifier. There is no theoret-

niques. The main goal of editing techniques is to improve the perfag,| o\igence about how the consistency of the condensed set relates to
mance of the resulting classifier by discarding outliers and cleansigg, yenerajization abilities of the corresponding classifier. In fact, even

the overlap among classes. The main goal of condensing technqu%% optimally orpure condensed set (in the sense of preserving even

the sameclassification boundaries) is obtained, it may have an arbi-
Manuscript received May 10, 1999; revised February 3, 2001. This wottarily poor performance when applied to independent samples (exactly
was supported in part by Spanish Projects TIC98677-C02-02, 1FD97-23% with the 1-NN rule). It is worth mentioning that this may happen re-
GV98-14-124, and TIC2000-1703-C03-03. This paper was recommended dyid|ess of the representativity and size of the initial set of prototypes
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B. Heuristic Improvements to Plain Condensing The results reported suggest that GAs compete well with other

I1]1[%llg}ristics. Even the RS approach, which was implemented in [5]

the final performance, most proposed approaches aim at obtainin sgwg the GA with the gen_etic operators disabled, outperformed other

consistent subset which is as reduced as possible. Regardless o {ﬁglously proposepl algorithms.

quality that consistency implies, the obtainment ofrtiaimal consis- A rand(?m re“?‘”‘“g Hart approach has als'o' been recenFIy p.roposed

tent subseis a challenging combinatorial problem in itself [7], [8]. [10]. Hart's algorthm IS convenlgntly (and efﬂmentl_y) used in this ap-
One initial idea that has been exploited by different approaches (gr_oach to constrain (only to consistent subsets) a kind of random search

ther in an explicit or implicit way) is the fact that Hart's condensinéjSIng the same equations (1) and (2).

retains less prototypes if the ones near the classification boundaries

are taken into account first. Among other approaches, the MNV-based!!- ALTERNATIVE APPROACH TOCONDENSING BASED ON TABU
condensing [9] uses the so-called mutual neighborhood value (MNV) SEARCH

to pre-order the prototypes according to their closeness to the classifitabu search (TS) [11] can be regarded as a master strategy that
cation boundaries. Basically, the MNV of a prototypeis computed guides and modifies other heuristics to produce solutions beyond
as follows. Letg be its nearest prototype from a different class—alsghose that are normally generated in a quest for local optimality. The
referred to asearest unlike neighbiNUN) [8]—and then compute emphasis on guidance distinguishes TS from other metaheuristics
the k-neighborhood of; for a value ofk: which is large enough. i is  pased on a variety of concepts such as GAs and simulated annealing.
the ith neighbor ofg, then the MNV ofp is 1 + i. By its nature, the Al these techniques perform a kind of “intelligent search” over the
MNV condensing algorithm leads to a good reduced set in the seRgfution space which attempts to avoid local minima on the way to a
that it preserves the original classification boundaries by retaining ofjibbally optimal solution.
prototypes which are very close to them. Unfortunately, both the final|n the particular case of TS, this search is done in a very efficient
size and the boundary quality are far from optimal and may arbitrarijhd straightforward way. TS has already been successfully applied to
vary depending on the particular set and the degree of overlapping.other hard combinatorial problems in pattern recognition [12]. Also, a
The approach introduced by Dasarathy [8] uses the concept of NNt attempt to apply TS to PS was included in a previous work [10].
and a particular measure of prototype representativity based upon th¢apu search can be viewed as a way of traveling across a partic-
number of samples each prototype is able to classify correctly. At ea@@r solution space and visiting different solutions following a certain
iteration, every prototype casts a vote for any prototype of the samgighborhood definition while discouraging some particular ways of
class whichis closer than its NUN. The more votes a prototype receivggploring this neighborhood. Neighbor solutions are identified with the
the higher its representativity. Prototypes are then selected accordingdficept of move which refers to a slight modification of a given solu-
this ranking until ConSiStency is achieved. The algorithm starts with t}ﬁ@n to obtain another one. Some moves (Or, in fact, move at’[ributes)
whole set and iterates while the selected subset size decreases. |na“@$jec|ared tabu (or undesirab|e) during a given number of iterations
way, it generally obtains high quality subsets with lower cardinalititabu tenure). TS evaluates all possible moves from a given solution and
than the previous approaches regardless of the initial ordering of poceeds to the best one. Tabu moves cannot be considered unless they

Once consistency has been adopted as the criterion to guara

totypes. satisfy anaspiration criterionwhich usually consists of improving the
best solution at that poininiproved-besaspiration criterion). The use
C. Randomized Optimization Applied to the PS Problem of appropriate neighborhoods leads to a convenient way of searching

he space while the use of meaningful tabus prevents the algorithm from

Although the algorithm of Dasarathy was named minimal consi Sing trapped in local minima. A generic description of TS is as fol-

tent set (MCS), no proof of this was given. In fact, experimentation h
shown that this is not the case [5]. As many other combinatorial pro WS

lems, the MCS problem would require (implicit or explicit) exhaustive

search to obtain optimal solutions in the general case. This has drifegneric Tabu Search

some researchers to envisage the problem of PS as a combinatorial8gut: ~ a solution space, an objective
timization problem and to use general techniques that are known tofunction, a set of possible moves, a
perform well in similar situations. In particular, random search (RS) tabu tenure, an aspiration criterion, a
and genetic algorithms (GAs) have already been proposed to solve thié€rmination criterion, and an initial-
problem [5]. As the problem can be seen as a multiobjective optimiza-ization procedure.

tion problem (minimizing the subset size and minimizing the numb&Putput:  a (close to) optimal solution.
of classification errors), a composite fitness function can be adoptdéethod: obtain an initial solution and
to carry out both minimizations. The proposed fitness function for the repeat the following steps until the

problem seen as a maximization problem is [5] termination criterion is satisfied.
1) Evaluate all neighbor solutions.

2) Select the best neighbor solution

f(s) = acds) — al5| @ without considering tabu ones unless
they satisfy the aspiration criterion.
where _ 3) Declare tabu the attributes of the move
S corresponding subset of prototypes; that have led to the selected solution
acq5) accuracy or ratio of correct classified prototypes in the for a specified number of iterations
whole set; (tabu tenure).
a positive weighting factor. 4) Update the best overall solution if the

The corresponding search algorithm can be forced to obtain subsets cselected one is better.
a given sizél" by using the alternative fithess function

In the proposed particularization of TS, all possible prototype sub-
f(s) =acdS) — a(|S| — T)°. (2) sets constitute the solution space. Possible moves from a particular
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subset consist of adding or deleting each one ofithnétial prototypes.
The attribute used for declaring tabu moves is the prototype which is
added or deleted. The improved-best aspiration criterion is used. The”
objective functions considered are the same as in the GA approach [(1 =
and (2)]. :
Additional parameter values and options common to other TS im-
plementations have to be set. In particular, the way of initializing the
search may strongly affect the final performance of the algorithm. Two
different initializations have been considered in this wadndensed
andconstructive In the first one, Hart's algorithm is applied once to )
obtain a first subset. In the second one, the initial consistent subset i<« o B i -’_:,:
obtained by applying TS with sample deletion disabled starting froma _ "*-‘*"'E d = e
randomly picked prototype from each class. T e N fem
In contrast to other PS approaches, the proposed TS algorithm (as R{* AT : ™ . i g
and GA) offers the possibility of obtaining good subsets of prototypes . RIS | . e
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which are not necessarily consistent. By storing the best slightly incon-
sistent sets during the search process, the algorithm can identify gooc
subsets of prototypes adding flexibility to this PS approach. Also,the *, , . v oo v v o s = W
search for the MCS can be substituted by the search for the best subset © (d)
of a given size [by using (2)] which allows the algorithm to obtain good

prototype sets with a certain level of inconsistency. ] n
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In our implementation, ties are randomly broken, which in practice _ ST i
implies that our algorithm is a randomized approach regardless of the g
initialization used (as RS and GA). Also, as TS always perfarmosges ; J . '
from one solution to a neighbor one, subset evaluation is implemented. Bty .
in a more efficient way by incrementally maintaining some information 2 _p_l .

(the NN of each sample).

(e)
Fig. 1. Decision boundaries induced by different subsets of prototypes. (a)
A number of experiments were conducted to assess the abilitiesQsiginal set. (b) Hart's condensing. (c) MNV-based condensing. (d) Dasarathy’s
the proposed condensing algorithm. A large number of different s&4CS- (€) restarting Hart. () tabu search condensing.
tings for the different parameters were tried and the following one was

selectediv = 0.002 in the objective functions, a tabu tenure equal t?estarting Hart procedure and TS condensing with constructive

10% of the initial set size, and 200 iterations without improvement tialization. One of the 482-prototype sets considered along with
a stopping criterion (which, in our experiments, roughly correspon e corresponding classification boundary induced by the 1-NN

to 500 iterations). Small variations on these parameters led to aPPrO¥iie is shown in Fig. 1(a). The boundaries resulting after applying
mately the same results. From our results, the condensed initializatm@ five algorithms considered are shown in Figs.1(b)—(f). It can
led to faster convergence while th_e cor_lstructive one took more tir'Bg observed that the subset in Fig. 1(b) is the only one that clearly
but mana_geq t_o_ Improve the soluyon slightly furthgr_ In other Wordffontains redundant prototypes (in the sense of their contribution to
constructive initialization resulted in a more expensive search but Wlﬁ[']e actual 1-NN boundary). On the other hand, it is worth noting that

more chances of arriving at a better solution. The results shown in this, \1\v-based condensing really selects prototypes which are (very)
section correspond to TS using constructive initialization unless oth%[-

; - ose to the (ideal) boundaries, and more importantly, this fact does
wise specnﬂed_. . . not necessarily imply a better result in terms of the final size or the
O_ther algorithms were also con_5|dered for comparison purpose_sdg}:ision boundaries obtained.
particular, Hart and MNV condensings, MCS algorithm, and restarting i o
Hart [10], along with GA and RS approaches [5]. Special care wasThe I'ast three.algorlthms led to sub;ets e>.(h|b|t|ng rough]y the.same
taken to allow roughly the same time spent to find a solution in t{g°Perties (relatively smooth boundaries, with prototypes in arbitrary
algorithms in which this was possible (GA, RS, and restarting Harg;catlons with regard to the decision boundaries). The key difference

As a general result, the TS always outperformed any other approac the final sizg of the subsets. Both restarting Hartand TS condensing
all our experiments. algorithms obtained fewer prototypes than the MCS algorithm. In the

case of TS condensing, the number of prototypes selected, 16, was
much smaller than any other result and, moreover, the corresponding
1-NN boundary was very close to the optimal result.

To illustrate the behavior of the algorithm introduced in comparison A slight modification of the previous synthetic experiment was
with the classical ones, some experiments using the synthetic problaiso considered. Sets of 50@al valued vectors were randomly
proposed by Hart [6] were carried out. Random sets of 482 integeirawn using the same procedure as in the integer-valued case. In this
valued two-dimensional (2-D) vectors were generated (with uniformay, a number of ties are avoided and the corresponding underlying
probability) and then labeled according to the two disjoint support setassification problem, although (essentially) disjoint [6], looks more
that are shown in Fig. 1 as shadowed areas (class 1) and unshadawatistic. The corresponding average sizes that were obtained when
areas (class 2). A total of ten different random subsets were considegeblying the algorithms over ten different random sets for each version

The Hart's condensing, its MNV extension, and the MCS algorithmf the problem is shown in Fig. 2 along with the corresponding
were considered for this first experiment along with the randostandard deviations and the minimal size.

IV. EXPERIMENTAL RESULTS

A. Synthetic Database
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B30 T Sat
] - TABLE |
i‘ . P 1 | RESULTS OBTAINED WITH THE IMPLEMENTED ALGORITHMS ON THE
‘i e " IRIS DATABASE WITH THE TABLE SHOWING THE NUMBER OF TIMES A
'] = J_ e CARDINALITY WAS OBTAINED IN 30 INDEPENDENTRUNS ALONG WITH THE
§ ooy =k £ | CORRESPONDINGAVERAGE AND STANDARD DEVIATION
[ N - ‘J_
8 T= 10 | 11 | 12 | 13 | >13 || Avg (stdev)
3 mn R. Hart 0| 3 | 23] 4 0 12.03 (0.24)
g TS (condensed) 1 3 19 7 0 12.07 (0.69)
. E ':i i TS (constructive) 12 | 12 4 2 0 10.87 (0.90)
wap 3 8| = :
2
(iFi] v . TABLE 1l
(b) TwoO TEN-PROTOTYPE CONSISTENT SUBSETS CORRESPONDING TO THE
FOUR-DIMENSIONAL |RIS DATABASE OBTAINED WITH TABU SEARCH WITH

Fig. 2. Minimum and average number of prototypes with standard deviations ~CONDENSED AND CONSTRUCTIVEINITIALIZATIONS , RESPECTIVELY
obtained by different algorithms on (a) integer-valued and (b) real-valued

versions of Hart's problem. class 1 class 2 class 3
46321402 | 67314414 | 6.0225.01.5
63254915 | 63274918
The differences among different approaches were reduced in the 2'8 g? g? %2 g‘? 3'2 gé i Z
real-valued version of this experiment. This is due to the fact that as T T 58275119
prototypes appear at arbitrary locations there is less charmgtiafal
solutions among the original random samples. Nevertheless, the pro- class 1 class 2 class 3
d method was still better by a significant difference 5.0331402 163254915 163295618
pose y asig : 6.02.9451.5 | 6.0225.01.5
6.0275116 | 6.32.74.91.8
B. Iris Database 67314715 | 63285115
5.82.7511.9

The second experiment dealt with real (instead of synthetic) data.
One of the goals was to compare the above approaches to genetic al-
gorithms for prototype selection. As particular implementations of G#as not available) suggests that the algorithms robustly achieve close
may differ and their fine tuning may be done differently, we decideb optimal results. The TS approach was the only one that managed
not to implement the GA approach but rather to use the recently pub-obtain ten-prototype consistent subsets. In particular, when using
lished results using the Iris database [5]. the constructive initialization, the chances of obtaining a ten-prototype

The lIris problem consists of three classes of 50 four-dimensiormlbset were about 40%. Table | summarizes the results obtained clas-
(4-D) vectors each, corresponding to three subspecies of iris flowsiied by the cardinality of the subsets.

[13]. This problem has often been used for benchmarking and, in par+rom the 12 subsets of cardinality ten obtained by TS with construc-
ticular, it has been considered for prototype selection algorithms [%ilye initialization, only eight were different. The ten-prototype subset
[8], - obtained with the condensed initialization was also different from the

To obtain more reliable results given the random nature of the algather 12 subsets. Table 1l shows this subset along with the most fre-
rithms proposed, 30 different runs using different random seeds wepgently obtained subset using constructive initialization.
carried out for random restarting Hart and TS using both condensed\ similar set of runs was carried out using (2) and storing all good
and constructive initializations. The (deterministic) algorithms MCSolutions to a certain level of inconsistency. Fig. 4 graphically sum-
and MNV-ordered condensing were also considered in this experimantrizes the best results (subset sizes) obtained with all the algorithms
The minimum and average sizes obtained are shown in Fig. 3. considered for different levels of inconsistency (number of classifica-

As inthe previous experiment, it can be seen that there was a substam errors in the original set). It is worth mentioning that the results
tial difference in the results between the proposed algorithm (and thistained with TS consistently improved the ones previously published
GA approach) and the other algorithms considered. Besides its randamthe literature using the Iris database. With two errors, the GA, RS,
ness, the relatively small variance obtained (this parameter for the @Ad TS approaches managed to obtain the same result, but with 1 or 0
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Fig. 4. Subset sizes and number of classification errors in the original 10 | N -
prototype set using the different condensing methods considered in the Iris
problem. s \ \ \
0.0 1.0 2.0 3.0
Time (secs)
55 Tabu Search (curent)
o i iehewidiros Fig. 6. Average cpu times to arrive at different subset sizes for the algorithms
s - Restarting Han proposed on the Iris problem.
o 90 )
%’5 ,l structive initialization is able to obtain better solutions much earlier
30 .
- ‘,i: ; and much more likely (see also Table I).
L » It is possible to approximately compare our algorithms (and TS in
15 - particular) to the GA approach using the Iris database in terms of com-
e putational burden. Frc_)m the results reported_ [5], between 5000 an_d
Time (secs) 10000 subset evaluations are needed to obtain a 12-prototype set with
(@ the GA. Our TS needed about 70 000 subset evaluations to arrive at the
(until now) optimal ten-prototype set (and about 50 000 to obtain 12
28 Tabu Search (current n .
" 5 Teb St s prototypes). Taking into account that TS almost always evaluates sub-
2 —— Restaning Han sets of very low cardinality while the GA needs to start with sets of
about 80% the total size [5], the computation needed by both methods
for these problems must be similar.
V. CONCLUDING REMARKS AND FURTHER WORK
An attemptto apply TS to a hard combinatorial optimization problem
T T — such as the MCS has been presented. According to the comparative
Tima (secs) experiments carried out, well-adapted metaheuristics can lead to a good
(b) trade-off for solving this problem. TS seems to be a very appealing

Fig.5. Subset size versus time spent (in a Pentium Il-based workstation at 8i@rnative because of its flexibility and its efficiency in the search for
MHz for (a) real-valued version of Hart’s problem and (b) Iris database. global optima.

We believe that TS as implemented here, adapts to this problem in
such a way that it can obtain a very good solution in reasonable time.
A this point, provided there is enough time, there is a great probability
chat the search for the (global) minimum consistent subset will be suc-

(consistent) errors, the results obtained with TS are, to our knowled
the best to date.
The computation needed by TS and, especially by the restarting

. . . ﬁégsful.
procedure, is greater than for the other algorithms implemented. T Sn this paper, a straightforward implementation of TS has been used.

is the price for obtaining the best solutions. If obtaining a very Cloﬁ\ﬁany specific modifications and improvements have been left for fu-
to optimal solution is not important, both proposed algorithms can tPS

ded ub b IV stooping. Th in which th loorith re work. As animmediate challenge, an exhaustive empirical compar-
speeded Up Dy early stopping. The way In which these algoninms I{,, petyveen TS and GAs (simulated annealing could possibly be con-
prove the current solution is shown in Fig. 5 for a particular run on daé

. . . ered as well) should be done using a set of databases which covers a
from both experiments. It can be seen that both algorlthms IMProve ge of practical situations (overlapping levels, dimensionalities, ini-
the result of the MCS algorithm (the best from the ones |mplementet | sizes, etc.)
in the first iterations using about the same time for the Iris problem an IR
twice the time for Hart's problem. From that point on, the algorithms
needed relatively much more time to improve the current solution. In
the case of TS, it was observed that a very good solution was always$t] P. A. r|]3)eVEiJ'Ve|f and deKfiftﬂe,\flys’agemt_ReﬁglFitliggz A Statistical Ap-
qbtalned. n t'he f|r§t It_eratlor_ls. Thls. suggests that by using a. ConservaIZ] 'KIJ'.r(IJ<aoChc;nenrjg;},ilg?ganilzast’ion éndr?sls‘i)eciaﬁilvé Mem&md ed. New
tive termination criterion, this algorithm could compete both in perfor- York: Springer-Verlag, 1988.
mance and efficiency against most alternative approaches including thgz] u. Lipowezky, “Selection of the optimal prototype subset for 1-NN clas-
GA. Fig. 6 shows the average times necessary for arriving to different  sification,” Pattern Recognit. Leftvol. 19, no. 10, pp. 907-918, 1998.
cardinalities using the Iris database. The figure shows that restarting4! J: C- Bezdeletal, “Multiple prototype classifier design/EEE Trans.

. o . . Syst., Man, Cybern. &ol. 28, pp. 67-79, Jan. 1998.
Hart and TS with condensed initialization arrived at the same solution 5] L. 1. Kunchevaand J. C. Bezdek, “Nearest prototype classification: Clus-

as the MCS a|gOI’Ithm |n Slml|al’ t|me and kept ImprOVIng the SO|UtI0n tering7 genetic a|gorithrns7 or random SeardEEE Trans. Syst_' Man'
faster than TS with constructive initialization. Nevertheless, the con- Cybern. G vol. 2, pp. 160-164, Jan. 1998.
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An Elastic Contour Matching Model for Tropical Cyclone
Pattern Recognition

Raymond S. T. Lee and James N. K. Liu

Abstract—in this paper, an elastic graph dynamic link model (EGDLM)
based on elastic contour matching is proposed to automate the Dvorak tech-
nique for tropical cyclone (TC) pattern interpretation from satellite images.
This method integrates traditional dynamic link architecture (DLA) for
neural dynamics and the active contour model (ACM) for contour extrac-
tion of TC patterns. Using satellite pictures provided by National Oceanic
and Atmospheric Administration (NOAA), 120 tropical cyclone cases that
appeared in the period from 1990 to 1998 were extracted for the study. An
overall correct rate for TC classification was found to be above 95%. For
hurricanes with distinct “eye” formation, the model reported a deviation
within 3 km from the “actual eye” location, which was obtained from the
aircraft measurement of minimum surface pressure by reconnaissance.

Compared with the classical DLA model, the proposed model has simpli-
fied the feature representation, the network initialization, and the training
process. This leads to a tremendous improvement of recognition perfor-
mance by more than 1000 times.

Index Terms—Active contour model (ACM), elastic graph dynamic link
model, elastic graph matching, satellite images, tropical cyclone pattern
recognition.
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of tropical cyclones from satellite images. One of the most widely ac-
cepted techniques is the Dvorak technique [5], [6], which assigns a
wind intensity value (called the TC number) based on the size, shape,
and vorticity of the dense cloud shield adjacent to the center of the
storm.

Owing to the high variation of cloud patterns and lack of efficient

K. Chidananda-Gowda and G. Krishna, “The condensed nearegtane analysis techniques for the isolation and extraction of cloud sys-

tems from satellite pictures, the TC pattern matching jobs in Dvorak
agalysis are so far all done by subjective human justification. There is
no successful alternative technique to support pattern recognition au-
tomatically in Dvorak analysis [20], let alone with the automatic iden-
tification for the position of the “eye” in hurricanes and typhoons [19].

" Inthis paper, an elastic graph dynamic link model (EGDLM) is used

R. A. Fisher, “The use of multiple measurements in taxonomic pro© provide an automated pattern matching solution in Dvorak analysis.

Based on the extension of dynamic link architecture (DLA) as a neural
framework and its integration with the active contour model (ACM)
[3],[9], [19] for the contour extraction of TC patterns, the sophisticated
pattern-matching problem is simplified into an elastic graph matching
problem of TC contour patterns.

Section Il provides a brief discussion of the Dvorak technique for
tropical cyclone identification. Section Ill provides an overview of
DLA, the preliminary study on TC recognition and the major limita-
tions. Section IV gives an overview of the framework of the EGDLM.
In the implementation process, 120 cases of tropical cyclones during
the period from 1990 to 1998 are chosen for system testing. Various
test plans are done for system verification; these will be presented
in Section V. The paper will conclude with a brief discussion on the
overall performance in the final section.

Il. TC IDENTIFICATION USING DVORAK TECHNIQUE

During recent decades, the most important technique for the identi-
fication and classification of TC from satellite pictures is the Dvorak
technique [5], [6]. Based on Dvorak’s theory, each tropical cyclone
goes through a life cycle that may be classified into one of several types
by its appearance in visible images. Fig. 1 shows the “templates” used
in the Dvorak technique.

In addition to classifying the storm, Dvorak’s technique can be used
to determine TC strength from the satellite images using “T-numbers”
(T1-T8) as reference. By comparison with aircraft-observed wind in-
tensity, the Dvorak technique has a rms. error of approximately 6 ms-1
in tropical cyclone intensity.

In 1984, Dvorak [7] introduced a variant of the above technique,
called the enhanced infrared EIR technique, which uses specially en-
hanced infrared images instead of visible ones. This, of course, enables

In the past half century, satellite technologies have been extensivi@gind intensity to be estimated at night.

applied in various fields, ranging from the military operations to the Nowadays, the Dvorak technique is still the worldwide-agreed stan-
search and discovery of natural resources. One of the most importgafd for the determination of TC intensity. However, due to the high

applications of satellite interpretation technology is the identificatiogariation of TC patterns, the visible and enhanced infrared Dvorak tech-
of tropical cyclones (TC)—including hurricanes and typhoons—whichiques are subjective, requiring professional training to be done effec-
with their remarkable spiral shape and central eye, are the most dfiifely for good wind estimates.

ical meteorological phenomenon to affect our daily lives. Extensive

research has been conducted to estimate the movement and intensity
Ill. DYNAMIC LINK ARCHITECTURE—AN OVERVIEW

A. Introduction
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