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Another Move Toward the Minimum Consistent Subset: A
Tabu Search Approach to the Condensed Nearest Neighbor

Rule

Vicente Cerverón and Francesc J. Ferri

Abstract—This paper presents a new approach to the selection of proto-
types for the nearest neighbor rule which aims at obtaining an optimal or
close-to-optimal solution. The problem is stated as a constrained optimiza-
tion problem using the concept of consistency. In this context, the proposed
method uses tabu search in the space of all possible subsets. Comparative
experiments have been carried out using both synthetic and real data in
which the algorithm has demonstrated its superiority over alternative ap-
proaches. The results obtained suggest that the tabu search condensing al-
gorithm offers a very good tradeoff between computational burden and the
optimality of the prototypes selected.

Index Terms—Multiple-prototype classifiers, nearest neighbors, proto-
type selection, tabu search.

I. INTRODUCTION

Among other nonparametric approaches, distance-based classifica-
tion rules are especially appealing both to researchers and practitioners
because of their interesting properties for performance and implemen-
tation issues. In particular, the (k-)nearest neighbor (NN) rules fre-
quently appear in the specialized literature either by themselves, or as
a common reference to compare the performance of other approaches.
This is due not only to their very good asymptotic behavior—even for
the plain NN (1-NN) rule—but also for the convenient trade-off be-
tween ease of implementation and performance in practical situations.

The only requirements of these rules are 1) a representative set of la-
beled samples or prototypes and 2) a procedure to identify thek closest
prototypes to an unknown sample. With these two requirements, the
most voted class among these neighbors is assigned to the sample. Nev-
ertheless, these requirements may give rise to some drawbacks. Even
though it is usually easy to obtain a convenient and representative set of
prototypes, sometimes these sets may contain erroneous or noisy pro-
totypes that may produce a decrease in performance. Furthermore,rep-
resentativeoften implies large, and consequently, the search for neigh-
bors becomes a computationally expensive task.

Many approaches have been suggested to overcome these drawbacks
of the NN rules. Among these approaches, prototype selection (PS)
techniques aim at obtaining a convenient set of prototypes from an
initially given set in such a way that the plain 1-NN rule using these
selected (and usually reduced) set of prototypes gives classification re-
sults which are good enough. To date, different approaches to PS have
been proposed and have been named differently by different authors. A
distinction is usually made [1] betweeneditingandcondensingtech-
niques. The main goal of editing techniques is to improve the perfor-
mance of the resulting classifier by discarding outliers and cleansing
the overlap among classes. The main goal of condensing techniques
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is to reduce the number of prototypes. There are also approaches that
share in some way the aims of editing and condensing [2], [3].

In the framework of condensing, it is convenient to consider methods
in which the resulting set is constructed or adapted from the initial one.
This is referred to as prototypereplacement[4], [5] instead of prototype
selectionto emphasize the fact that resulting prototypes do not neces-
sarily coincide with any prototype in the initial set. Prototypes obtained
using both approaches are then referred to as R-prototypes and S-pro-
totypes, respectively.

Regardless of the way prototypes are obtained, the criterion for
guiding the reduction of prototypes (trade-off between size reduction
and performance) must be decided. Most of the approaches proposed
share the concept ofconsistency[6]. A resulting set of prototypes
is said to be consistent with an initial set if it can classify all initial
prototypes using the 1-NN rule with no errors. If PS is considered as
a training process which uses the initial set of prototypes, consistency
can be related to a training result (a set) which produces a zero
resubstitutionerror rate.

This work is focused on developing a new method for obtaining
consistent sets of S-prototypes. To do this, we face a hard combina-
torial problem for which a lot of heuristic and approximate algorithmic
solutions have already been proposed. This paper is organized as fol-
lows. In Section II, several existing approaches to PS are included and
their main properties are put forward. In Section III, the proposed con-
densing method is introduced. The comparative experimentation car-
ried out using the proposed method is shown in Section IV along with
the corresponding discussion. Section V includes some final remarks.

II. CONSISTENCY-BASED PROTOTYPESELECTION

A. Condensing Algorithm

Prototype selection techniques were first introduced by Hart [6] who
presented thecondensingalgorithm to obtainreducedandconsistent
sets of prototypes to be used with the 1-NN rule without significantly
degrading its performance. In short, this plain condensing algorithm
proceeds by repeatedly selecting prototypes whenever they cannot be
correctly classified by the currently selected set. The whole process
loops until there are no changes in a complete pass through the initially
given set. This straightforward algorithm usually converges in three
or four iterations leading to a reduced set which clearly improves the
efficiency of the resulting classifier. The resulting condensed NN rule
can be seen as an approximation to the plain 1-NN rule (using all the
prototypes) in terms of classification performance. The final size and
composition of the final condensed set may strongly depend on the
order in which the initial set is processed.

Hart left some open questions about this algorithm and, in partic-
ular, about the accuracy of the resulting classifier. There is no theoret-
ical evidence about how the consistency of the condensed set relates to
the generalization abilities of the corresponding classifier. In fact, even
if an optimally orpurecondensed set (in the sense of preserving even
the sameclassification boundaries) is obtained, it may have an arbi-
trarily poor performance when applied to independent samples (exactly
as with the 1-NN rule). It is worth mentioning that this may happen re-
gardless of the representativity and size of the initial set of prototypes
if overlapping among classes is large. This is the reason why some au-
thors assume that condensing should always be applied to previously
edited or overlapping-free sets [1].
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B. Heuristic Improvements to Plain Condensing

Once consistency has been adopted as the criterion to guarantee
the final performance, most proposed approaches aim at obtaining a
consistent subset which is as reduced as possible. Regardless of the
quality that consistency implies, the obtainment of theminimal consis-
tent subsetis a challenging combinatorial problem in itself [7], [8].

One initial idea that has been exploited by different approaches (ei-
ther in an explicit or implicit way) is the fact that Hart’s condensing
retains less prototypes if the ones near the classification boundaries
are taken into account first. Among other approaches, the MNV-based
condensing [9] uses the so-called mutual neighborhood value (MNV)
to pre-order the prototypes according to their closeness to the classifi-
cation boundaries. Basically, the MNV of a prototype,p, is computed
as follows. Letq be its nearest prototype from a different class—also
referred to asnearest unlike neighbor(NUN) [8]—and then compute
thek-neighborhood ofq for a value ofk which is large enough. Ifp is
the ith neighbor ofq, then the MNV ofp is 1 + i. By its nature, the
MNV condensing algorithm leads to a good reduced set in the sense
that it preserves the original classification boundaries by retaining only
prototypes which are very close to them. Unfortunately, both the final
size and the boundary quality are far from optimal and may arbitrarily
vary depending on the particular set and the degree of overlapping.

The approach introduced by Dasarathy [8] uses the concept of NUN
and a particular measure of prototype representativity based upon the
number of samples each prototype is able to classify correctly. At each
iteration, every prototype casts a vote for any prototype of the same
class which is closer than its NUN. The more votes a prototype receives,
the higher its representativity. Prototypes are then selected according to
this ranking until consistency is achieved. The algorithm starts with the
whole set and iterates while the selected subset size decreases. In this
way, it generally obtains high quality subsets with lower cardinality
than the previous approaches regardless of the initial ordering of pro-
totypes.

C. Randomized Optimization Applied to the PS Problem

Although the algorithm of Dasarathy was named minimal consis-
tent set (MCS), no proof of this was given. In fact, experimentation has
shown that this is not the case [5]. As many other combinatorial prob-
lems, the MCS problem would require (implicit or explicit) exhaustive
search to obtain optimal solutions in the general case. This has driven
some researchers to envisage the problem of PS as a combinatorial op-
timization problem and to use general techniques that are known to
perform well in similar situations. In particular, random search (RS)
and genetic algorithms (GAs) have already been proposed to solve this
problem [5]. As the problem can be seen as a multiobjective optimiza-
tion problem (minimizing the subset size and minimizing the number
of classification errors), a composite fitness function can be adopted
to carry out both minimizations. The proposed fitness function for the
problem seen as a maximization problem is [5]

f(s) = acc(S)� �jSj (1)

where
S corresponding subset of prototypes;
acc(S) accuracy or ratio of correct classified prototypes in the

whole set;
� positive weighting factor.

The corresponding search algorithm can be forced to obtain subsets of
a given sizeT by using the alternative fitness function

f(s) = acc(S)� �(jSj � T )2: (2)

The results reported suggest that GAs compete well with other
heuristics. Even the RS approach, which was implemented in [5]
using the GA with the genetic operators disabled, outperformed other
previously proposed algorithms.

A random restarting Hart approach has also been recently proposed
[10]. Hart’s algorithm is conveniently (and efficiently) used in this ap-
proach to constrain (only to consistent subsets) a kind of random search
using the same equations (1) and (2).

III. A LTERNATIVE APPROACH TOCONDENSINGBASED ON TABU

SEARCH

Tabu search (TS) [11] can be regarded as a master strategy that
guides and modifies other heuristics to produce solutions beyond
those that are normally generated in a quest for local optimality. The
emphasis on guidance distinguishes TS from other metaheuristics
based on a variety of concepts such as GAs and simulated annealing.
All these techniques perform a kind of “intelligent search” over the
solution space which attempts to avoid local minima on the way to a
globally optimal solution.

In the particular case of TS, this search is done in a very efficient
and straightforward way. TS has already been successfully applied to
other hard combinatorial problems in pattern recognition [12]. Also, a
first attempt to apply TS to PS was included in a previous work [10].

Tabu search can be viewed as a way of traveling across a partic-
ular solution space and visiting different solutions following a certain
neighborhood definition while discouraging some particular ways of
exploring this neighborhood. Neighbor solutions are identified with the
concept of move which refers to a slight modification of a given solu-
tion to obtain another one. Some moves (or, in fact, move attributes)
are declared tabu (or undesirable) during a given number of iterations
(tabu tenure). TS evaluates all possible moves from a given solution and
proceeds to the best one. Tabu moves cannot be considered unless they
satisfy anaspiration criterionwhich usually consists of improving the
best solution at that point (improved-bestaspiration criterion). The use
of appropriate neighborhoods leads to a convenient way of searching
the space while the use of meaningful tabus prevents the algorithm from
being trapped in local minima. A generic description of TS is as fol-
lows:

Generic Tabu Search
Input: a solution space, an objective

function, a set of possible moves, a
tabu tenure, an aspiration criterion, a
termination criterion, and an initial-
ization procedure.

Output: a (close to) optimal solution.
Method: obtain an initial solution and

repeat the following steps until the
termination criterion is satisfied.

1) Evaluate all neighbor solutions.
2) Select the best neighbor solution

without considering tabu ones unless
they satisfy the aspiration criterion.

3) Declare tabu the attributes of the move
that have led to the selected solution
for a specified number of iterations
(tabu tenure).

4) Update the best overall solution if the
selected one is better.

In the proposed particularization of TS, all possible prototype sub-
sets constitute the solution space. Possible moves from a particular
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subset consist of adding or deleting each one of then initial prototypes.
The attribute used for declaring tabu moves is the prototype which is
added or deleted. The improved-best aspiration criterion is used. The
objective functions considered are the same as in the GA approach [(1)
and (2)].

Additional parameter values and options common to other TS im-
plementations have to be set. In particular, the way of initializing the
search may strongly affect the final performance of the algorithm. Two
different initializations have been considered in this work:condensed
andconstructive. In the first one, Hart’s algorithm is applied once to
obtain a first subset. In the second one, the initial consistent subset is
obtained by applying TS with sample deletion disabled starting from a
randomly picked prototype from each class.

In contrast to other PS approaches, the proposed TS algorithm (as RS
and GA) offers the possibility of obtaining good subsets of prototypes
which are not necessarily consistent. By storing the best slightly incon-
sistent sets during the search process, the algorithm can identify good
subsets of prototypes adding flexibility to this PS approach. Also, the
search for the MCS can be substituted by the search for the best subset
of a given size [by using (2)] which allows the algorithm to obtain good
prototype sets with a certain level of inconsistency.

In our implementation, ties are randomly broken, which in practice
implies that our algorithm is a randomized approach regardless of the
initialization used (as RS and GA). Also, as TS always performsmoves
from one solution to a neighbor one, subset evaluation is implemented
in a more efficient way by incrementally maintaining some information
(the NN of each sample).

IV. EXPERIMENTAL RESULTS

A number of experiments were conducted to assess the abilities of
the proposed condensing algorithm. A large number of different set-
tings for the different parameters were tried and the following one was
selected:� = 0:002 in the objective functions, a tabu tenure equal to
10% of the initial set size, and 200 iterations without improvement as
a stopping criterion (which, in our experiments, roughly corresponds
to 500 iterations). Small variations on these parameters led to approxi-
mately the same results. From our results, the condensed initialization
led to faster convergence while the constructive one took more time
but managed to improve the solution slightly further. In other words,
constructive initialization resulted in a more expensive search but with
more chances of arriving at a better solution. The results shown in this
section correspond to TS using constructive initialization unless other-
wise specified.

Other algorithms were also considered for comparison purposes. In
particular, Hart and MNV condensings, MCS algorithm, and restarting
Hart [10], along with GA and RS approaches [5]. Special care was
taken to allow roughly the same time spent to find a solution in the
algorithms in which this was possible (GA, RS, and restarting Hart).
As a general result, the TS always outperformed any other approach in
all our experiments.

A. Synthetic Database

To illustrate the behavior of the algorithm introduced in comparison
with the classical ones, some experiments using the synthetic problem
proposed by Hart [6] were carried out. Random sets of 482 integer-
valued two-dimensional (2-D) vectors were generated (with uniform
probability) and then labeled according to the two disjoint support sets
that are shown in Fig. 1 as shadowed areas (class 1) and unshadowed
areas (class 2). A total of ten different random subsets were considered.

The Hart’s condensing, its MNV extension, and the MCS algorithm
were considered for this first experiment along with the random

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Decision boundaries induced by different subsets of prototypes. (a)
Original set. (b) Hart’s condensing. (c) MNV-based condensing. (d) Dasarathy’s
MCS. (e) restarting Hart. (f) tabu search condensing.

restarting Hart procedure and TS condensing with constructive
initialization. One of the 482-prototype sets considered along with
the corresponding classification boundary induced by the 1-NN
rule is shown in Fig. 1(a). The boundaries resulting after applying
the five algorithms considered are shown in Figs.1(b)–(f). It can
be observed that the subset in Fig. 1(b) is the only one that clearly
contains redundant prototypes (in the sense of their contribution to
the actual 1-NN boundary). On the other hand, it is worth noting that
the MNV-based condensing really selects prototypes which are (very)
close to the (ideal) boundaries, and more importantly, this fact does
not necessarily imply a better result in terms of the final size or the
decision boundaries obtained.

The last three algorithms led to subsets exhibiting roughly the same
properties (relatively smooth boundaries, with prototypes in arbitrary
locations with regard to the decision boundaries). The key difference
was the final size of the subsets. Both restarting Hart and TS condensing
algorithms obtained fewer prototypes than the MCS algorithm. In the
case of TS condensing, the number of prototypes selected, 16, was
much smaller than any other result and, moreover, the corresponding
1-NN boundary was very close to the optimal result.

A slight modification of the previous synthetic experiment was
also considered. Sets of 500real valued vectors were randomly
drawn using the same procedure as in the integer-valued case. In this
way, a number of ties are avoided and the corresponding underlying
classification problem, although (essentially) disjoint [6], looks more
realistic. The corresponding average sizes that were obtained when
applying the algorithms over ten different random sets for each version
of the problem is shown in Fig. 2 along with the corresponding
standard deviations and the minimal size.
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(a)

(b)

Fig. 2. Minimum and average number of prototypes with standard deviations
obtained by different algorithms on (a) integer-valued and (b) real-valued
versions of Hart’s problem.

The differences among different approaches were reduced in the
real-valued version of this experiment. This is due to the fact that as
prototypes appear at arbitrary locations there is less chance ofoptimal
solutions among the original random samples. Nevertheless, the pro-
posed method was still better by a significant difference.

B. Iris Database

The second experiment dealt with real (instead of synthetic) data.
One of the goals was to compare the above approaches to genetic al-
gorithms for prototype selection. As particular implementations of GA
may differ and their fine tuning may be done differently, we decided
not to implement the GA approach but rather to use the recently pub-
lished results using the Iris database [5].

The Iris problem consists of three classes of 50 four-dimensional
(4-D) vectors each, corresponding to three subspecies of iris flowers
[13]. This problem has often been used for benchmarking and, in par-
ticular, it has been considered for prototype selection algorithms [5],
[8], .

To obtain more reliable results given the random nature of the algo-
rithms proposed, 30 different runs using different random seeds were
carried out for random restarting Hart and TS using both condensed
and constructive initializations. The (deterministic) algorithms MCS
and MNV-ordered condensing were also considered in this experiment.
The minimum and average sizes obtained are shown in Fig. 3.

As in the previous experiment, it can be seen that there was a substan-
tial difference in the results between the proposed algorithm (and the
GA approach) and the other algorithms considered. Besides its random-
ness, the relatively small variance obtained (this parameter for the GA

Fig. 3. Minimum and average number of prototypes with standard deviations
obtained by different algorithms on the Iris database.

TABLE I
RESULTS OBTAINED WITH THE IMPLEMENTED ALGORITHMS ON THE

IRIS DATABASE WITH THE TABLE SHOWING THE NUMBER OF TIMES A

CARDINALITY WAS OBTAINED IN 30 INDEPENDENTRUNS ALONG WITH THE

CORRESPONDINGAVERAGE AND STANDARD DEVIATION

TABLE II
TWO TEN-PROTOTYPECONSISTENTSUBSETSCORRESPONDING TO THE

FOUR-DIMENSIONAL IRIS DATABASE OBTAINED WITH TABU SEARCH WITH

CONDENSED ANDCONSTRUCTIVEINITIALIZATIONS , RESPECTIVELY

was not available) suggests that the algorithms robustly achieve close
to optimal results. The TS approach was the only one that managed
to obtain ten-prototype consistent subsets. In particular, when using
the constructive initialization, the chances of obtaining a ten-prototype
subset were about 40%. Table I summarizes the results obtained clas-
sified by the cardinality of the subsets.

From the 12 subsets of cardinality ten obtained by TS with construc-
tive initialization, only eight were different. The ten-prototype subset
obtained with the condensed initialization was also different from the
other 12 subsets. Table II shows this subset along with the most fre-
quently obtained subset using constructive initialization.

A similar set of runs was carried out using (2) and storing all good
solutions to a certain level of inconsistency. Fig. 4 graphically sum-
marizes the best results (subset sizes) obtained with all the algorithms
considered for different levels of inconsistency (number of classifica-
tion errors in the original set). It is worth mentioning that the results
obtained with TS consistently improved the ones previously published
in the literature using the Iris database. With two errors, the GA, RS,
and TS approaches managed to obtain the same result, but with 1 or 0
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Fig. 4. Subset sizes and number of classification errors in the original
prototype set using the different condensing methods considered in the Iris
problem.

(a)

(b)

Fig. 5. Subset size versus time spent (in a Pentium II-based workstation at 300
MHz for (a) real-valued version of Hart’s problem and (b) Iris database.

(consistent) errors, the results obtained with TS are, to our knowledge,
the best to date.

The computation needed by TS and, especially by the restarting Hart
procedure, is greater than for the other algorithms implemented. This
is the price for obtaining the best solutions. If obtaining a very close
to optimal solution is not important, both proposed algorithms can be
speeded up by early stopping. The way in which these algorithms im-
prove the current solution is shown in Fig. 5 for a particular run on data
from both experiments. It can be seen that both algorithms improved
the result of the MCS algorithm (the best from the ones implemented)
in the first iterations using about the same time for the Iris problem and
twice the time for Hart’s problem. From that point on, the algorithms
needed relatively much more time to improve the current solution. In
the case of TS, it was observed that a very good solution was always
obtained in the first iterations. This suggests that by using a conserva-
tive termination criterion, this algorithm could compete both in perfor-
mance and efficiency against most alternative approaches including the
GA. Fig. 6 shows the average times necessary for arriving to different
cardinalities using the Iris database. The figure shows that restarting
Hart and TS with condensed initialization arrived at the same solution
as the MCS algorithm in similar time and kept improving the solution
faster than TS with constructive initialization. Nevertheless, the con-

Fig. 6. Average cpu times to arrive at different subset sizes for the algorithms
proposed on the Iris problem.

structive initialization is able to obtain better solutions much earlier
and much more likely (see also Table I).

It is possible to approximately compare our algorithms (and TS in
particular) to the GA approach using the Iris database in terms of com-
putational burden. From the results reported [5], between 5000 and
10 000 subset evaluations are needed to obtain a 12-prototype set with
the GA. Our TS needed about 70 000 subset evaluations to arrive at the
(until now) optimal ten-prototype set (and about 50 000 to obtain 12
prototypes). Taking into account that TS almost always evaluates sub-
sets of very low cardinality while the GA needs to start with sets of
about 80% the total size [5], the computation needed by both methods
for these problems must be similar.

V. CONCLUDING REMARKS AND FURTHER WORK

An attempt to apply TS to a hard combinatorial optimization problem
such as the MCS has been presented. According to the comparative
experiments carried out, well-adapted metaheuristics can lead to a good
trade-off for solving this problem. TS seems to be a very appealing
alternative because of its flexibility and its efficiency in the search for
global optima.

We believe that TS as implemented here, adapts to this problem in
such a way that it can obtain a very good solution in reasonable time.
At this point, provided there is enough time, there is a great probability
that the search for the (global) minimum consistent subset will be suc-
cessful.

In this paper, a straightforward implementation of TS has been used.
Many specific modifications and improvements have been left for fu-
ture work. As an immediate challenge, an exhaustive empirical compar-
ison between TS and GAs (simulated annealing could possibly be con-
sidered as well) should be done using a set of databases which covers a
range of practical situations (overlapping levels, dimensionalities, ini-
tial sizes, etc.).
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An Elastic Contour Matching Model for Tropical Cyclone
Pattern Recognition

Raymond S. T. Lee and James N. K. Liu

Abstract—In this paper, an elastic graph dynamic link model (EGDLM)
based on elastic contour matching is proposed to automate the Dvorak tech-
nique for tropical cyclone (TC) pattern interpretation from satellite images.
This method integrates traditional dynamic link architecture (DLA) for
neural dynamics and the active contour model (ACM) for contour extrac-
tion of TC patterns. Using satellite pictures provided by National Oceanic
and Atmospheric Administration (NOAA), 120 tropical cyclone cases that
appeared in the period from 1990 to 1998 were extracted for the study. An
overall correct rate for TC classification was found to be above 95%. For
hurricanes with distinct “eye” formation, the model reported a deviation
within 3 km from the “actual eye” location, which was obtained from the
aircraft measurement of minimum surface pressure by reconnaissance.

Compared with the classical DLA model, the proposed model has simpli-
fied the feature representation, the network initialization, and the training
process. This leads to a tremendous improvement of recognition perfor-
mance by more than 1000 times.

Index Terms—Active contour model (ACM), elastic graph dynamic link
model, elastic graph matching, satellite images, tropical cyclone pattern
recognition.

I. INTRODUCTION

In the past half century, satellite technologies have been extensively
applied in various fields, ranging from the military operations to the
search and discovery of natural resources. One of the most important
applications of satellite interpretation technology is the identification
of tropical cyclones (TC)—including hurricanes and typhoons—which
with their remarkable spiral shape and central eye, are the most crit-
ical meteorological phenomenon to affect our daily lives. Extensive
research has been conducted to estimate the movement and intensity
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of tropical cyclones from satellite images. One of the most widely ac-
cepted techniques is the Dvorak technique [5], [6], which assigns a
wind intensity value (called the TC number) based on the size, shape,
and vorticity of the dense cloud shield adjacent to the center of the
storm.

Owing to the high variation of cloud patterns and lack of efficient
scene analysis techniques for the isolation and extraction of cloud sys-
tems from satellite pictures, the TC pattern matching jobs in Dvorak
analysis are so far all done by subjective human justification. There is
no successful alternative technique to support pattern recognition au-
tomatically in Dvorak analysis [20], let alone with the automatic iden-
tification for the position of the “eye” in hurricanes and typhoons [19].

In this paper, an elastic graph dynamic link model (EGDLM) is used
to provide an automated pattern matching solution in Dvorak analysis.
Based on the extension of dynamic link architecture (DLA) as a neural
framework and its integration with the active contour model (ACM)
[3], [9], [19] for the contour extraction of TC patterns, the sophisticated
pattern-matching problem is simplified into an elastic graph matching
problem of TC contour patterns.

Section II provides a brief discussion of the Dvorak technique for
tropical cyclone identification. Section III provides an overview of
DLA, the preliminary study on TC recognition and the major limita-
tions. Section IV gives an overview of the framework of the EGDLM.
In the implementation process, 120 cases of tropical cyclones during
the period from 1990 to 1998 are chosen for system testing. Various
test plans are done for system verification; these will be presented
in Section V. The paper will conclude with a brief discussion on the
overall performance in the final section.

II. TC IDENTIFICATION USING DVORAK TECHNIQUE

During recent decades, the most important technique for the identi-
fication and classification of TC from satellite pictures is the Dvorak
technique [5], [6]. Based on Dvorak’s theory, each tropical cyclone
goes through a life cycle that may be classified into one of several types
by its appearance in visible images. Fig. 1 shows the “templates” used
in the Dvorak technique.

In addition to classifying the storm, Dvorak’s technique can be used
to determine TC strength from the satellite images using “T-numbers”
(T1–T8) as reference. By comparison with aircraft-observed wind in-
tensity, the Dvorak technique has a rms. error of approximately 6 ms-1
in tropical cyclone intensity.

In 1984, Dvorak [7] introduced a variant of the above technique,
called the enhanced infrared EIR technique, which uses specially en-
hanced infrared images instead of visible ones. This, of course, enables
wind intensity to be estimated at night.

Nowadays, the Dvorak technique is still the worldwide-agreed stan-
dard for the determination of TC intensity. However, due to the high
variation of TC patterns, the visible and enhanced infrared Dvorak tech-
niques are subjective, requiring professional training to be done effec-
tively for good wind estimates.

III. D YNAMIC LINK ARCHITECTURE—AN OVERVIEW

A. Introduction

The main idea of DLA was first proposed by von der Malsburg in
1981 as a neuroscience model, namely the “Correlation Theory of the
Brain Function” [16], which had been consolidated into a complete
neural network framework, namely DLA, in the later years [1], [17].

In short, the DLA model for pattern recognition can be interpreted
as the process of elastic graph matching between the memory patterns

1083–4419/01$10.00 © 2001 IEEE


