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Abstract

In supervised learning variable selection is used to find a subset of the available inputs that
accurately predict the output. This paper shows that some of the variables that variable selection
discards can beneficially be used as extra outputs for inductive transfer. Using discarded input vari-
ables as extra outputs forces the model to learn mappings from the variables that were selected as
inputs to these extra outputs. Inductive transfer makes what is learned by these mappings available
to the model that is being trained on the main output, often resulting in improved performance on
that main output.

We present three synthetic problems (two regression problems and one classification problem)
where performance improves if some variables discarded by variable selection are used as extra
outputs. We then apply variable selection to two real problems (DNA splice-junction and pneumo-
nia risk prediction) and demonstrate the same effect: using some of the discarded input variables as
extra outputs yields somewhat better performance on both of these problems than can be achieved
by variable selection alone. This new approach enhances the benefit of variable selection by al-
lowing the learner to benefit from variables that would otherwise have been discarded by variable
selection, but without suffering the loss in performance that occurs when these variables are used
as inputs.

Keywords: multitask learning, output variable selection, inductive transfer

1. Introduction

The goal of supervised learning is to learn functions that map inputs to outputs. In high-dimensional
problems with finite training data, using all available variables as inputs usually is suboptimal. Most
algorithms learn better given a carefully selected subset of variables to use as inputs (Caruana and
Freitag, 1994, John et al., 1994, Koller and Sahami, 1996). If variable selection is used to find the
subset of variables to use as inputs, what should be done with the variables not selected? Usually,
variables not selected as inputs are discarded. Instead of discarding variables not selected by variable
selection for use as inputs, can we benefit from the information they contain some other way?

There are ways to incorporate information in learning other than through the model’s inputs. For
example, in supervised learning it is possible to add information to learning through the model’s
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outputs. Methods for doing this include hints (Abu-Mostafa, 1989), tangent-prop (Simard et al.,
1992), EBNN (Thrun and Mitchell, 1994), and multitask learning (Caruana, 1997a). In unsuper-
vised learning, de Sa’s minimizing disagreement algorithm (de Sa, 1994, de Sa and Ballard, 1998)
and Becker’s IMAX (Becker and Hinton, 1989) use features arising from another modality to derive
an output to help the other modality learn.

In this paper we concentrate on the multitask learning (MTL) method of giving extra information
through the model’s outputs. In multitask learning, extra outputs are trained in parallel with the main
task output(s) while using a shared representation. For example, in a backprop net (Rumelhart et al.,
1986), multitask learning is implemented by having extra outputs share a common hidden layer in
the network with the main task output(s). This sharing promotes inductive transfer: the hidden
layer representations learned for the extra outputs are available to the main task output(s) and often
improve performance on the main task. MTL in backprop nets is well documented (Suddarth and
Holden, 1991, Abu-Mostafa, 1989, Baxter, 1995, Caruana, 1995, Dietterich et al., 1995, Ghosn and
Bengio, 1997, Caruana, 1997a,b).

MTL often is used to benefit from information available in the training set that can not be used
as inputs because it will not be available for future test cases (Caruana, 1996). For example, in
medicine, it may take several days to get back the results of some lab tests, but a decision must
be made about how to start treating the patient before those test results will be available. The lab
test results are available for the patients in thetraining set, but will not be available when making
predictions for new patients. Variables such as these can’t be used as standard inputs because they
will be missing when making predictions. Instead of ignoring them, MTL gets the inductive transfer
benefit from them by using them as extra outputs (Baluja and Pomerleau, 1995, Caruana, 1995).

The good results from MTL led us to ask: If variables that can’t be used as inputs (e.g., because
they will be missing) are useful as extra outputs, might some of the inputs that variable selection dis-
cards also be useful as extra outputs? In this paper we show preliminary results to this question. In
supervised back-propagation learning, there are problems where variables thatharm performance as
inputscanimprove performance as outputs. This demonstration is first made on problems carefully
engineered to demonstrate this effect. For these problems variable selection is not needed because
we know which variables might be more useful as extra outputs than as inputs.

We then show results from two real problems where inputs discarded by variable selection pro-
vide additional benefit when used as extra outputs. We show that the DNA splice-junction domain
contains variables that yield somewhat better recognition accuracy when used as extra outputs than
when used as inputs (where they are in fact harmful). We use the variable selection method devel-
oped by Koller and Sahami (1996) to select which variables to use as inputs. They showed naive
bayes and C4.5 achieve better accuracy using just the selected variables as inputs than using all the
variables as inputs. We show a similar result for backprop nets. We then show that it is better to use
some of the variables not used as inputs as extra outputs instead of ignoring them. Best performance
is achieved by moving some of the input variables to the output side of the net. We show stronger
results on a pneumonia risk prediction problem. On that problem variable selection improves the
performance of a backprop net compared to a net trained using all of the available inputs. But a net
that uses some of the discarded variables as extra outputs performs even better.

The performance improvements obtained on the real problems from using discarded input vari-
ables as extra outputs are modest. In some domains (e.g., medicine), these modest improvements
may be worthwhile. In other domains, they may not be worth the extra effort currently required to
select which extra outputs to use from the discarded inputs. We suspect that significantly stronger
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benefit might be achieved if we are able to develop variable selection methods that efficiently select
both inputs and extra outputs at the same time, and are currently working to develop such meth-
ods. The results in this paper should be viewed more as a proof of concept, than as the final word
in this area. One reason why we are excited by this research despite the modest performance im-
provements is that we suspect many real world problems will benefit from a similar combination of
variable selection and multitask learning.

MTL originally was formulated to take advantage of variables available in the training data,
but not available in the test data. Variable selection is important for most practical, data-limited,
machine learning problems where it is beneficial to reduce the search space. In this paper we
combine these two ideas. If training data is limited and it is necessary to reduce the search space
by restricting the number of input variables, it is not necessary to ignore the variables not selected
as inputs. Using them as extra outputs, as in MTL, is one way to benefit from them without paying
the penalty of increasing the dimensionality of the search space. The main difference between this
use of MTL and the original applications of MTL is that in this case we could use the variables as
inputs but choose to use them as extra outputs instead in order to improve performance.

MTL is a form of inductive transfer that is applicable to any learning method that can share
part of what is learned between multiple tasks. See Section 5 for a brief discussion of how variable
selection and MTL could be used with other learning methods such as k-nearest neighbor (kNN)
and Support Vector Machines (SVMs). In this paper we demonstrate the combination of variable
selection and MTL with the backpropagation1 algorithm (Rumelhart et al., 1986). In backprop nets,
it is a hidden layer shared by the outputs on the net that allows inductive transfer to occur between
the outputs.

This paper uses the following terms: The Main Task is the output to be learned. Anything that
improves performance on the Main Task is good. Selected Inputs are the variables provided as inputs
in all experiments. Extra Inputs are the extra variables (selected from the discarded variables) when
used as inputs. Extra Outputs are the same extra variables (from the discarded variables) when they
are used as outputs (instead of as inputs). STD is standard backpropagation using the Selected Inputs
as inputs and only the Main Task as outputs. This is the standard way of doing backpropagation
learning after variable selection. STD+IN uses the Extra Variables as Extra Inputs to learn the Main
Task. STD+OUT uses the Extra Variables, but as Extra Outputs learned in parallel with the Main
Task, using just the Selected Inputs as inputs.

2. Synthetic Problems

In this section we show, by using constructed problems, why variables used as extra outputs can
be more useful than those same variables used as extra inputs. In this section variable selection is
largely trivial.

2.1 Poorly Correlated Variables

This section presents a simple synthetic problem where using a variable as an extra output is better
than using that same variable as an extra input. We present this problem first because it is easy to
see why the variable is not useful as an input, but is useful as an extra output.

1. In what follows, we will use interchangeably the terms backpropagation and backprop.
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Consider the following function:

F1(A,B) = SIGMOID(A+B), SIGMOID(x) = 1/(1+e(−x))

Now consider the STD net shown in Figure 1a with 20 inputs, 16 hidden units (fewer input and
hidden units are shown in the figure for clarity), and one output. We use backpropagation on this
net to Learn the functionF1(·).

Data is generated by randomly sampling values A and B uniformly from the interval [-5,5], and
then computing the SIGMOID of their sum. The network input receives a binary coded version of
A and B. The range [-5,5] is discretized into 210 bins and the binary encoding of the resulting bin
number is used as the input coding. The first 10 input units receive this coding for A and the second
10 that for B. The target output for the 20 bit encoding of A and B is the unary real (unencoded)
value F1(A,B).
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Figure 1: Three Neural Net Architectures for Learning F1.

Backpropagation is done with per-epoch updating and early stopping. For each trial, we generate
new random training, halt, and test sets. Training sets contain 50 patterns. This is enough data to
get good performance, but not so much that there is not room for improvement. We use large
halt and test sets — 1000 cases each — to minimize the effect of sampling error in the measured
performances. Larger halt and test sets yield nearly identical results. We use this methodology for
all the experiments on synthetic problems.

Table 1 shows the mean performance of 50 trials of STD Net 1a with backpropagation and early
stopping.

Network Trials Mean RMSE Significance

STD 50 0.0648 -
STD+IN 50 0.0647 ns

STD+OUT 50 0.0631 0.013*

Table 1: Mean Test Set Root-Mean-Squared-Error on F1.

Now consider the similar function:

F2(A,B) = SIGMOID(A−B).

Suppose, in addition to the 10-bit binary codings for A and B, you are given the unencoded value
F2(A,B) as an extra input variable. Will this extra variable help you learn theF1(·) function better?
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Probably not. A+B and A-B do not correlate for random A and B. The correlation coefficient of
A+B to A-B for our training sets is typically less than 0.01. Because of this, knowing the value of
F2(A,B) does not tell you much about the target value F1(A,B) (and vice-versa).

The fact that F1(A,B) does not correlate well with F2(A,B) hurts backprop’s ability to learn to
use F2(A,B) to predict F1(A,B). The net in Figure 1b has 21 inputs — 20 for the binary code for A
and B, and an extra input for F2(A,B). The 2nd line in Table 1 shows the performance of STD+IN
for the same training, halting, and test sets used by STD; the only difference is that there is an extra
input variable in the data sets for STD+IN. A t-test shows that the performance of STD+IN is not
significantly different from that of STD even with 50 trials — the extra information contained in the
variable F2(A,B) does not help backpropagation learnF1(·) when used as an extra input.

If using F2(A,B) as an extra input does not help backpropagation learnF1(·), should we ignore
F2(·) altogether? No. FunctionsF1(·) andF2(·) are strongly related. They both need to learn to
compute the same subvariables, A and B from the binary coded inputs. If, instead of using F2(A,B)
as an extra input, it is used as an extra output that must be learned via backpropagation, it will bias
the shared hidden layer to learn A and B better, and this will help the net better learn to predict
F1(·).

Figure 1c shows a net with 20 inputs for A and B, and 2 outputs, one for F1(A,B) and one for
F2(A,B). The performance of this net is evaluated only on the output F1(A,B), but backpropagation
is done on both outputs. The 3rd line in Table 1 shows the mean performance of 50 trials of this
multitask net onF1(·). Early stopping is done by examining only the performance at the output
for F1(·). Using F2(A,B) as an extra output on a net also learningF1(·) significantly improves
performance onF1(·). Using the extra variable as an extra output is better than using it as an extra
input. By using F2(A,B) as an output we make use of more than just the individual output values
F2(A,B) but can extract information about the function mapping F2(·) itself. This is a key difference
between using variables as inputs and outputs.

The increased performance of STD+OUT over STD and STD+IN is not due to STD+OUT
restricting the capacity available in the net for the main task F1. All three nets — STD, STD+IN,
STD+OUT — perform better when givenmore than 16 hidden units. In fact, if we double the
number of hidden units in the STD+OUT net to 32, the larger STD+OUT net does even better (We
report the results for the 16 hidden unit STD net to be fair to STD and STD+IN).

2.2 Noisy Variables

This section presents two problems where the extra variables are more useful as inputs if the noise
added to them is small, but which become more useful as outputs as the noise increases. Because the
extra variables are ideal variables for these problems, this demonstrates that the effect observed in
the previous section does not depend on the extra variables being contrived so that their correlation
with the main task is low – variables with high correlation can still be more useful as outputs if they
are noisy.

Once again, consider the main task from the previous section:

F1(A,B) = SIGMOID(A+B).

Now consider these extra variables:

EF(A) = A+SCALE∗Noise, EF(B) = B+SCALE∗Noise
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Noise is independent uniformly sampled noise on [-1,1]. If the noise scale is not too large,
EF(A) and EF(B) are excellent input variables for learningF1(·) because the network no longer
needs to learn to decode the binary input representation. However, as the noise scale increases,
EF(A) and EF(B) become less useful and it is better for the net to learnF1(·) from the binary inputs
for A and B.

As before, we consider using the extra variables as either extra inputs or as extra outputs. The
goal is to learnF1(·) from random training sets of size 50, and the halt and test sets have 1000
patterns. Here we use nets with 256 hidden units, because preliminary experiments showed 256
hidden units to be the smallest net that performs near optimally on this problem.
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Figure 2: STD, STD+IN, and STD+OUT on F1 (left) and F3 (right). Error bars are± one standard
error.

Figure 2 (left) plots the average performance of 20 trials of STD+IN and STD+OUT as the noise
scale is varied from 0.0 to 10.0. The performance of STD, which does not use EF(A) and EF(B),
is shown as a horizontal line; it is independent of the noise scale. Let’s first examine the results
of STD+IN which uses EF(A) and EF(B) as extra inputs. As expected, when the noise is small,
using EF(A) and EF(B) as extra inputs improves performance considerably. As the noise increases,
however, this improvement decreases. Eventually, there is so much noise in EF(A) and EF(B) that
they no longer help the net if used as inputs. And, if the noise increases further, using EF(A) and
EF(B) as extra inputs actually hurts. Finally, as the noise gets very large, performance asymptotes
back towards the baseline. This is because when the noise is very large the net learns to ignore the
extra variables altogether.

The results of using EF(A) and EF(B) as extra outputs are quite different. When the noise is
low, the extra outputs do not help as much as the extra inputs. As the noise increases, however, the
benefit from the extra outputs decreases more slowly than with the extra inputs. Because of this, at
some point the extra outputs help more than the extra inputs. Furthermore, as the noise increases,
the extra outputs never hurt performance the way the extra inputs did.

Why does noise cause STD+IN to perform worse than STD? With a finite training sample,
correlations between noisy inputs and the main task cause the network to use the noisy inputs. To
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the extent that the main task is a function of the noisy inputs, it must pass the noise in these to the
output. This causes the output to be noisy. Also, as the net comes to depend on the noisy inputs, it
depends less on the noise-free binary inputs. In other words, if the noisy inputs explain away some
of the training samples, fewer training samples are left to encourage learning to decode the binary
inputs.

Why does noise not hurt STD+OUT as much as it hurts STD+IN? As an output, the net is
learning the mapping from the regular inputs to EF(A) and EF(B). Early in training, the net learns
to interpolate through the noise and thus learns smooth functions for EF(A) and EF(B) that have
reasonable fidelity to the true mapping. This makes learning less sensitive to the noise added to
these variables.

2.2.1 ANOTHER PROBLEM

F1(·) is only mildly nonlinear because the interval that A and B are defined on does not often go
far into the tails of the SIGMOID. Do the results with noisy variables depend on this smoothness?
To check this, we modifiedF1(·) to make it much more nonlinear. Consider this function:

F3(A,B) = SIGMOID(EXPAND(SIGMOID(A)−−SIGMOID(B)))

where EXPAND scales the inputs from (SIGMOID(A)–SIGMOID(B)) to the range [-12.5,12.5],
and A and B are drawn from [-12.5,12.5].F3(·) is significantly more nonlinear thanF1(·) because
the expanded ranges of A and B, and expanding the difference to [-12.5,12.5] before passing it
through another sigmoid, cause much of the data to fall in the tails of either one of the first layer
sigmoids or the final sigmoid.

Consider these extra variables:

EF(A) = SIGMOID(A)+SCALE∗Noise

EF(B) = SIGMOID(B)+SCALE∗Noise

where Noise is sampled as before. Figure 2 (right) shows the results of using extra variables
EF(A) and EF(B) as extra inputs and as extra outputs. The trend is similar to that in Figure 2 (left)
but the benefit of STD+OUT is even larger at low noise. Note that the data for both figures are
generated using different seeds, for the left figure we used steepest descent and Mitre’s Aspirin
simulator, for the right figure we used conjugate gradient and Toronto’s Xerion simulator, and F1
and F3 do not behave as similarly as their definitions might suggest. The similarity between the
two graphs is due to the ubiquity of the phenomena, not to details of the test functions or how the
experiments were run.

2.3 A Classification Problem

This section presents a problem that combines variable correlation from Section 2.1 with variable
noise from Section 2.2 into one problem. Consider the 1-D classification problem shown in Fig-
ure 3 of separating two Gaussian distributions with means 0, and 1, and standard deviations of 1.
This problem is simple if the 1-D input is coded as a single, continuous input. However, we can
make it harder by embedding the 1-D input non-linearly in a higher dimensional space. Consider
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encoding the input values defined on [0.0,15.0] using an interpolated 4-D Gray code(GC) (National
Institute of Standards and Technology); integer values are mapped to a 4-D binary Gray code and
intervening non-integers are mapped linearly to intervening 4-D vectors between the binary Gray
codes for the bounding integers. As the Gray code flips only one bit between neighboring inte-
gers this involves simply interpolating along the 1 dimension that changes. Thus 3.4 is encoded
as.4(GC(4)−GC(3))+GC(3). The classification problem now involves two parts – decoding the
Gray code input representation and determining the classification threshold.

c)b)a)

Figure 3: Two Overlapped Gaussian Classes (left), and An Extra Variable (y-axis) Correlated Dif-
ferent Amounts (a: no correlation (ρ = 0), b: moderate correlation, c: (ρ = 1) perfect
correlation) with the Unencoded Version of the Regular Input (x-axis).

The extra variable we use is a 1-D value correlated (with correlationρ) with the unencoded
regular input. For original unencoded input X, the second dimension is drawn from a Gaussian
distribution with meanρ×(X− .5) and standard deviation

√
(1−ρ2). Examples of the distributions

of the unencoded original dimension and the extra variable for various correlations are shown in
Figure 3 a,b,and c.

Consider the extreme cases in Figure 3. Atρ = 1, the extra variable is exactly an unencoded
version of the regular input. A STD+IN net using this variable as an extra input could ignore the
encoded inputs and solve the problem using this variable alone. For few training patterns (relative
to the complexity of the encoding), the improvement in performance would be significant. An
STD+OUT net using this extra variable as an extra output would have its hidden layer biased towards
representations that decode the Gray code, which is also useful to the main classification task. At
the other extreme (ρ = 0), we expect nets using the extra variable to learn no better than one using
just the regular inputs because there is no useful information provided by the uncorrelated extra
variable. The interesting case is between the two extremes. We can imagine a situation where as an
output, the extra variable helps STD+OUT by guiding it to decode the Gray code. STD+IN though
is only helped where the correlation is high enough for the extra variable to be more predictive than
the solution the net learns from the regular inputs.

The class output unit uses a sigmoid transfer function and cross-entropy error measure (Bishop,
1995). When used as an extra output, the output unit for the correlated variable uses a linear transfer
function and squared error measure. Figure 4 shows the average performance of 50 trials of STD,
STD+IN, and STD+OUT as a function ofρ. As in the previous section, STD+IN is much more
sensitive to changes in the extra variable than STD+OUT, so that byρ = 0.75 the curves cross and
for values ofρ less than 0.75, the dimension is actually more useful as an output dimension than an
extra input.
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Figure 4: STD, STD+IN, and STD+OUT vs.ρ on the Classification Problem. Error bars are± one
standard error. We could not find the raw data for STD+IN and STD+OUT withρ = 0 so
did not construct error bars, but expect that they are comparable to the rest.

2.4 Discussion of Synthetic Problems

The synthetic problems show that the benefit of using a variable as an extra output is different from
the benefit of using that variable as an input. As an input, the net has access to the values on the
training and test cases, however, as an output, the net is biased to learn a mapping from the other
inputs in the training set.

The problems we used to show that some input variables help more as extra outputs are the
simplest ones we could devise. One might worry that these effects only happen on simple, or
contrived, problems. This is not the case. In Sections 3 and 4 we show similar effects on two real
problems. Moreover, these findings explain a result we noted previously, but did not understand,
when applying multitask learning to pneumonia risk prediction (Caruana et al., 1996). There, we
had the choice of using lab tests that would be unavailable on future patients as extra outputs, or
using poor — i.e., noisy — predictions for them as extra inputs. Using the lab tests as extra outputs
worked much better, in part because there is no noise in these variables when used as extra outputs
because we could use the real values in the training set, not predicted values. If one compares the
zero noise points for STD+OUT with the high noise points for STD+IN in the graphs in Section
2.2, it is easy to see why STD+OUT could perform much better.

In order for extra outputs to be more useful than the extra inputs, there must be enough in-
formation in the regular inputs to learn the problem. You can’t move all the inputs to the output.
Fortunately, in many real world domains there is considerable redundancy in the input variables.

In the next two sections we show two real problems that benefit from using some of the variables
that variable selection discards as extra outputs instead. The algorithm we use is shown below in
Figure 5.

1253



CARUANA AND DE SA

• Select variables for input – call these INPUTS

• Select variables for extra outputs from remaining variables – call these EXTRA OUTPUTS

• Using a regularization method, train an STD+OUT network with #INPUTS input units, a
large number of hidden units, the original outputs plus the EXTRA OUTPUTS as output
units

Figure 5: A simple algorithm for combining variable selection and multitask learning.

3. DNA Splice-Junction Problem

DNA contains coded information that is used by cells to construct proteins. In the process of build-
ing a message RNA template to use as a scaffold on which to build a protein, large sections of the
original DNA coding are ignored. The coded sequences that are used are known as “exons”, while
the ignored sequences are known as “introns”. The nature of the boundaries between exons and
introns, known as “splice junctions”, is a subject of active research.

The DNA Splice-Junction Problem we use is from the UCI machine learning repository (No-
ordewier et al., 1991). For each case in the database there is a sequence of 60 nucleotides. The goal
is to predict if the center of the nucleotide sequence codes for an exon-to-intron boundary (EI), an
intron-to-exon boundary (IE), or neither. 25% of the cases are EI boundaries, 25% are IE bound-
aries, and 50% are neither EI or IE boundaries. For compatibility, we use the nucleotide coding
scheme used by Koller and Sahami, which codes each of the 60 nucleotides using 3 bits. This yields
180 boolean attributes that can be used as inputs. Typical performance on this problem is 92-94%
accuracy when trained on training sets containing 1000-2000 cases.

3.1 Variable Selection

In real-world problems often there are many irrelevant and redundant variables. Because many
learning algorithms have difficulty coping with large numbers of redundant and irrelevant variables,
performance often improves when the learning method is given only the subset of variables most
useful for the learning task. Variable selection selects from the available variables which ones to
use as inputs for learning.

For the DNA problem we use the variable selection method developed by Koller and Sahami
(1996). It uses information theoretic measures of variable importance to select the variables most
likely to be useful as inputs. The theoretical motivation behind the algorithm is to remove attributes
which have Markov blankets in the remaining attributes with respect to the prediction task. If an at-
tribute has a Markov blanket in the other attributes, this attribute provides no additional information
and the class decision is independent of the value of this attribute conditioned on the values of the
other attributes in the blanket. Koller and Sahami found in simulations with different size Markov
blankets (parameterized by K), that for many problems (including the DNA problem), they did as
well with K=0, as with K=1 or 2. In this case (K=0) the algorithm simplifies to simply looking at
each feature independently and ordering the features according to the mutual information between
the variable and the output. We use the Koller-Sahami variable selection algorithm with K=0 in our
experiments.
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The Koller-Sahami algorithm is a greedy variable selector. The preferred way of using it is
backward-elimination. Start with all variables in the set, and remove attributes one-at-a-time, at
each step removing the attribute that provides the least information for the class.

0

50

100

150

200

250

0 10 20 30 40 50 60

N
uc

le
ot

id
e 

R
an

k 
(lo

w
 r

an
k 

=
 g

oo
d 

fe
at

ur
e)

Nucleotide Position

Figure 6: The Order the DNA Features are Selected by Koller-Sahami Variable Selection (More
important features are selected first and thus have lower rank).

Figure 6 shows the relative importance of each nucleotide position on the DNA string. The
middle of the figure is the position at which we are predicting IE, EI, or Neither. The vertical axis
is the sum of the ranks given to the three variables corresponding to each nucleotide, by variable
selection. Low ranks suggest that a variable is important and should be used as an input. High ranks
indicate variables that contribute little information. The rank sums range from 6 to a maximum of
537 because the rank of each variable ranges from 1 to 180. Note that variable selection for learning
was done by looking at each variable individually, not by looking at the nucleotide sums. We show
the graph of nucleotide sums because it is much easier to interpret from a biological point of view.
Two interesting aspects of this graph are that the most important nucleotides are found near the
center of the DNA string, and that nucleotide importance for this task is not symmetric about the
center of the DNA string.

3.2 Experiments

We’ve run three experiments with DNA Splice-Junction. In the first, we determine what size net
performs best. In the second, we determine if using some variables discarded by variable selection
as extra outputs improves performance. In the third experiment, we perform the control of using
the inputs as the extra outputs. All our experiments use backprop nets composed of sigmoid units.
We train the nets using conjugate gradient and use an independent halt set to determine when to
stop training. The performance of the net is then measured on an independent test set not used for
training or early stopping. The dataset contains 2000 cases. We randomly split this set into train,
halt, and test sets containing 667, 666, and 667 cases, respectively. We repeatedly sample the dataset
this way to generate multiple trials.

Our coding for the main splice-junction task uses three outputs, one for IE, one for EI, and one
for neither. We use a normalized cross-entropy loss function for the outputs for the main task. The
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classification of the net prediction is done by finding which of the three outputs has the highest
activation. When boolean attributes are used as extra outputs, we use a non-normalized cross-
entropy loss function to train them.

3.2.1 EXPERIMENT 1: PERFORMANCE VS. NET SIZE

The purpose of this experiment is to determine what net size yields best performance. We tried nets
containing 5, 20, 80, 320, and 1280 hidden units. The nets have 3 outputs that code for the main
task.
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Figure 7: Cross-Entropy (left) and Accuracy (right) of Different Size Nets With All 180 Inputs and
30 Selected Inputs. Error bars are 95% confidence intervals.

Figure 7 (left) shows the test set cross-entropy error for nets of different sizes trained with all
180 input variables, and trained with the 30 input variables selected by the Koller-Sahami variable
selector (these are the same 30 variables Koller and Sahami (1996) selected for this problem). Figure
7 (right) shows the prediction accuracy of the nets. Each point is the average of 12 trials; the vertical
bars are 95% confidence intervals.

Better performance is achieved with 80, 320, or 1280 hidden units. Also, performance is sig-
nificantly better for nets that use only 30 selected variables as inputs as compared to nets that use
all 180 variables as inputs. We conclude from this experiment that the optimal net size is about 320
hidden units, and that training nets with the 30 variables selected with the Koller-Sahami variable
selector yields better performance than using all 180 inputs. Because we use the same data to select
the optimal network size that is used in later experiments, there may be overfitting. This optimiza-
tion is done only for the STD nets, not for the new STD+OUT method, so any overfitting biases the
results in favor of the standard method.

3.2.2 EXPERIMENT 2: UNUSED VARIABLES AS EXTRA OUTPUTS

In the previous experiment, the 150 variablesnot selected for use as inputs were thrown away. In
this section we use some of the variables not used as inputs as extra outputs for multitask learning.
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Because the Koller-Sahami variable selector is a greedy algorithm that removes attributes one-
at-a-time and is told how many variables to remove, it can be used to order the attributes. We ran
Koller-Sahami and had it remove all 180 attributes in the DNA problem. As above, we use the last
30 attributes removed as inputs. Rather than ignore the remaining 150 attributes, we use thenext30
attributes as extra outputs for multitask learning. These are the next attributes of the remaining 150
that the variable selector considers most useful when used as inputs.

The multitask net has 30 inputs, 3 outputs for the main task, and an additional 30 outputs for
30 attributes not selected for use as inputs. The multitask net has 800 hidden units (instead of 320)
because it is learning many more tasks. We have not attempted to find the optimal number of hidden
units for the multitask net, and suspect it would perform better with more than 800 hidden units.

Table 2 shows the cross-entropy and accuracy for four nets. ALLINPUTS has 320 hidden units
and uses all 180 inputs. This is a traditional net trained without variable selection. STD also has
320 hidden units, but uses only the 30 variables selected by variable selection as inputs. STD+OUT
is the MTL net. It has 800 hidden units and uses the same 30 inputs as STD. STD+OUT, however,
also uses the next best 30 attributes as extra outputs. These are attributes ignored by STD. STD+IN
has 320 hidden units and uses as inputs both the 30 attributes used by STD as inputs, and the 30
attributes used by STD+OUT as extra outputs. STD+IN uses all attributes used by STD+OUT, but
STD+IN uses them as inputs. It has no extra outputs.

Net Inputs XtraOutputs CrossEntropy StdErr Accuracy

ALL INPUTS 180 0 0.257 0.006 90.98%
STD 30 0 0.180 0.009 94.16%

STD+OUT 30 30 0.167 0.006 94.32%
STD+IN 60 0 0.187 0.006 93.66%

Table 2: Cross-Entropy and Accuracy of Different Combinations of Inputs and Outputs. STD+OUT
is the MTL Net that Uses Some Variables as Extra Outputs.

ALL INPUTS is clearly the worst performer. Using all 180 attributes as inputs is not the best
thing to do. Using only the 30 variables selected by Koller-Sahami as inputs (STD) yields signifi-
cantly better performance. STD+OUT, however, performs somewhat better. It is best to use some
of the variables not used as inputs as extra outputs instead of ignoring them. STD+IN, which uses
all variables used by STD+OUTas inputs,does not perform as well as STD+OUT (nor even as
well as STD).2 In DNA splice-junction it is better to use some of the variables as extra outputs than
as inputs. Moreover, in this domain the Koller-Sahami variable selector with K=0 is an effective
way of selecting which variables to use as inputs and which variables are candidates for use as extra
outputs.

2. Although there is overlap between the 95% confidence intervals for STD and STD+OUT, paired t-tests indicate that
the difference between STD+OUT and STD is significant atp = 0.05 (much of the variance results from different
trials, so the paired test is stronger). Replications currently in progress show that the improvement from these 30
extra outputs is weakly significant, and that further improvement is available by more carefully selecting which extra
outputs to use. In all of our experiments, STD+OUT consistently outperforms STD.

1257



CARUANA AND DE SA

3.2.3 CONTROL CONDITION: USED VARIABLES AS EXTRA OUTPUTS

The question arises, is the benefit from using extra outputs, simply due to extra constraints imposed
by reconstructing the inputs or due to extracting information from the discarded features? To answer
this question, we ran new simulations comparing the STD+OUT network of 30 inputs (and next best
30 inputs as extra outputs) with a network we call STD+AUTOENCODING that has the same 30
inputs and reuses those 30 inputs as its extra outputs (the rest of the variables are discarded).3 The
architecture of the STD+OUT and STD+AUTOENCODING networks are identical.

The results are shown below. Note that these experiments were run using a slightly different
version of the neural net simulator, and new random selection of training, validation and test sets. All
experiments within the table have identical data splits and training conditions, but these are different
from those in the table above. Because much of the variance is due to the training/test/valid splits,
and we are looking for small effects, it is best to compare results only within a table. The results
indicate that the benefit from using extra outputs is not due to simply constraining the network to
reconstruct the inputs.

Net Inputs Xtra Cross StdErr Accuracy
Outputs Entropy

STD 30 0 .177 .005 94.3%
STD+OUT 30 30 .166 .004 94.5%

STD+AUTOENCODING 30 30 .187 .009 94.3%

Table 3: Cross-Entropy and Accuracy of Different Combinations of Inputs and Outputs.
STD+OUT is the MTL Net that Uses Some (non-Input) Variables as Extra Outputs.
STD+AUTOENCODING is the MTL Net that Uses the Inputs as Extra Outputs.

4. Pneumonia Risk-Prediction Problem

The DNA splice-junction problem used in the previous section was downloaded from the UCI Ma-
chine Learning Repository. It is a real problem, but has been somewhat pre-processed for machine
learning applications – the data submitted to the UCI Repository was selected to have equal class
membership and to have a modest number of input variables, all of which are at least partially
relevant to the prediction problem.

The pneumonia problem we experiment with in this section is a real problem that uses real,
unsanitized data collected from patients in hospitals in Pennsylvania from 1987-1992. All patients
in this database have been diagnosed with pneumonia. The goal is not todiagnosepneumonia, but
to predict the risk of a dire outcome for patients with pneumonia. Adire outcomeis the occurrence
of a serious event such as heart failure, admission to a hospital’s critical care unit, need to use a
lung machine, or death. This database was used before in a study comparing the performance of
many different machine learning methods (Cooper et al., 1997). In this study, backprop nets were
the most effective learning method examined.

The pneumonia dataset contains 192 inputs variables. These variables include patient attributes
such as patient age and gender; presence of diabetes, hypertension, asthma, or pregnancy; body tem-

3. Thanks to the editors of this issue for suggesting this experiment.
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perature and blood pressure; cough type, wheezing, airway blockage; chest X-Ray findings, blood
and urine chemistries. The goal is to predict if the patient experiences a dire outcome. Roughly
8% of the patients in the database experience a dire outcome. The performance criterion for this
problem is the area under the ROC curve (Provost et al., 1998) for the risk prediction task. The
nets are trained with squared error, but early stopping is done using the ROC area measured for the
validation set.

4.1 Variable Selection

Variable selection was done using a kernel regression variable selector that does forward selection.
The method starts with no variables selected. At each iteration select from the unused variables the
one that when added to the previously selected input features yields the best 5-fold cross-validation
performance on risk prediction. Eventually, all variables are added to the set, creating an ordering
on the variables.

Kernel regression forward selection was used instead of the Koller-Sahami method because
many of the variables in the pneumonia problem are continuous and our implementation of Koller-
Sahami works only with discrete variables. Forward selection was not done using backprop nets
because they are too expensive for forward selection with this many variables, and because their
instability makes forward selection more difficult. Kernel regression is far more efficient and is very
stable.

We used kernel regression (KR) instead of k-nearest neighbor (KNN) because kernel regression
performed somewhat better than k-nearest neighbor on this problem. We suspect similar results
would be obtained with either KNN or KR. For kernel regression we used a Gaussian kernel that
gives equal weight to the selected features. Each feature was scaled to unit variance prior to doing
variable selection to normalize the relative importance of the features in the kernel. The kernel width
was selected by leave-one-out cross-validation using all available features as inputs. No attempt was
made to re-optimize this kernel width as the number of selected features changed.

Although variable selection was done using kernel regression, neural nets perform significantly
better on this problem than any of the k-nearest neighbor methods we tried, so we use backprop
nets for our experiments. Preliminary experiments determined that 8-16 hidden units was a good
size for backprop nets trained using all 192 input variables, and 64 hidden units was a good size for
backprop nets using multitask learning on multiple outputs.

4.2 Experiments

Figure 8 shows the performance of a backprop net trained on the pneumonia problem using different
combinations of inputs and extra outputs. The performance measure is ROC Area. Larger ROC Area
(up in the figure) represents better performance. An ROC Area of 1.0 indicates perfect prediction.
An ROC Area of 0.5 indicates random prediction. The performance in the figure is the ROC Area
measured on an independent test set after early stopping is used to halt training of the net. Each
point is the average of ten trials. 95% confidence intervals are shown for each point.

The point labeled “ALL INPUTS” in Figure 8 is the ROC performance when all 192 variables
are used as inputs to the backprop net. This is the performance before any variable selection has
been done and when the only outputs of the network are those for the main risk prediction task. The
other points on this curve show the ROC performance after variable selection. Variable selection is
done by using the first N variables in the ordering found by the kernel regression variable selector
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as inputs to the backprop net. None of the points on this curve use any of the variables as extra
outputs: variables that are not used as inputs are discarded.

Best performance without any extra outputs occurs at the point labeled “STD” when 50 of the
192 variables are used as inputs and the remaining 142 variables are discarded. The performance at
this point is 0.03 units larger than the ROC performance when all 192 variables are used as inputs.
This is a substantial increase in ROC area and is medically significant. Performance reduces when
fewer than 50 or more than 50 variables are used as inputs. Interestingly, performance with only 10
selected variables is better than performance with all 192 variables.

The point labeled “STD+OUT” is the performance obtained if the first 50 variables are used as
inputs, and thenext50 variables are used as extra outputs for multitask learning. This performance
is better than the performance observed for any combination of input variables alone. This suggests
that although the variables ordered 51-100 by the variable selection method are harmful when used
as inputs in addition to variables 1-50, there is information in these variables that can beneficially
be extracted by multitask learning if these variables are used as extra outputs. For comparison,
the point labeled “STD+IN” shows the performance that results from using all variables 1-50 and
51-100 as inputs without any extra outputs. The performance of STD+OUT is considerably better
than that of STD+IN, showing that there is a substantial difference between using variables 51-100
as extra outputs instead of as extra inputs. (Although it is not shown in the figure, using variables
ordered 1-50 as inputs and the remaining 142 variables as extra outputs does not perform as well
as STD+OUT or STD. This suggests that some of the variables do not provide information that is
beneficial when used either as inputs or as outputs when variables 1-50 are being used as inputs.)

In summary, the results with a real, unsanitized pneumonia risk problem indicate that there is
information in variables that variable selection would discard that multitask learning can exploit if
these variables are used as extra outputs. Using some of the variables that would be discarded as
extra outputs yields performance that can not be achieved with variable selection alone.

5. Conclusions and Discussion

We have shown two real problems where variable selection improves performance by eliminating
input variables, and where performance is further enhanced by using some of the discarded variables
as extra outputs. These variables improve performance when used as extra outputs, even though they
hurt performance when used as additional inputs. This shows that the benefit of using a variable as
an extra output is different from the benefit of using that variable as an input. As an input, the net
has access to the variable’s values on the training and test cases. As an output, however, the net is
instead biased to learn a mapping from the other input variables to that output. What is learned for
this mapping can be useful even when the value of the variable as anadditional input is harmful.

We demonstrated the benefits of using discarded input variables as extra outputs using backprop
nets. MTL is effective with other learning methods and similar results should occur when applying
variable selection to other machine learning algorithms. For example, we have had excellent results
using MTL to learn distance metrics for case-based methods such as k-nearest neighbor and kernel
regression (Caruana, 1997b). The learned distance metric is shared between the main task and the
extra tasks so that the distance metric performs well on all tasks. We suspect using discarded features
as extra tasks for k-nearest neighbor would yield larger improvements than those demonstrated in
this paper because MTL appeared to be more effective with k-nearest neighbor than with backprop
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Figure 8: Results from Experiments on the Pneumonia Risk-Prediction Problem. The error bars
are 95% confidence intervals. A paired t-test shows that the difference between STD and
STD+OUT is significant at p=0.05.

nets. We present results with backprop nets, however, because preliminary experiments showed that
backprop nets outperformed k-nearest neighbor by a significant margin on these two problems.

Recent work also suggests that MTL is effective with Support Vector Machines (Jebara, 2002).
Our own experience with SVMs indicates that SVMs benefit from feature selection as much as
other learning methods, so we suspect using discarded features as extra outputs may also work with
SVMs. When using MTL with SVMs the kernel and the regularization parameters would be shared
between the main task and the extra tasks (Cortes and Vapnik, 1995).

One might think that there should be a relationship between causality and which variables should
be used as inputs or outputs on a backprop net. We suspect that this is not true for the problems we
are studying. Most supervised learning methods are not faithful to the causal arrow. For example,
it is common to use supervised learning to diagnose disease by predicting disease (the output) from
symptoms (the inputs), despite the fact that the symptoms causally follow from disease. The models
we are training learn associations between variables, not causal relations, thus we do not anticipate
that causality would help us determine which variables should be used as inputs or outputs, or that
one could deduce causal direction from an optimal selection of inputs and outputs.

The Koller-Sahami variable selector and the kernel regression variable selector do not automat-
ically determine how many variables to use as inputs, they only define an ordering of the input
variables. We use cross validation to find the appropriate number of inputs. We do not know which
of the variables not used as inputs should be used as extra outputs. The results in this paper are based
on a very simple output selection procedure summarized in Figure 5: use the ”next best” variables
from the input ordering as extra outputs. This almost certainly is suboptimal. We were surprised
that even this crude extra output selection method yielded improvements on the two problems on
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which it was tested. We currently are working on an algorithm foroutput selectionthat would se-
lect extra outputs analogous to how inputs are selected by variable selection. We expect improved
results with better, principled output selection algorithms.

Selecting the extra outputsafter selecting the input variables may also be suboptimal. It is
possible that the best network should have fewer input variables than variable selection alone would
select, so that some of the variables of marginal utility when used as inputs can be used as extra
outputs instead. Similarly, it is possible that some of the inputs variable selection discards would be
effective as inputs once one has added other extra outputs to the model. Ultimately, what is needed
is an inputandoutput selection method that simultaneously selects which variables should be used
as inputs, as extra outputs, and discarded. This is a difficult optimization problem and it is not yet
clear how best to approach it.

Still another avenue to explore is whether some variables are best used asboth inputs and as
outputs. The synthetic problems clearly showed that some variables help when used either as an
input, or as an output. We are currently working on several techniques to allow some variables to
be used as both inputs and outputs at the same time, and thus reap both benefits.

The experiments with the three synthetic problems clearly demonstrate that the benefit from
using variables as inputs or as extra outputs is different. The experiments with the two real problems
suggest that similar effects arise on real problems. The performance improvements observed on the
real problems, however, are modest. They provide a proof of concept, but are not strong enough for
us to recommend using this approach except in domains where small performance improvements
are significant. We believe that the benefits will strengthen considerably if we can devise effective
procedures for selecting both inputs and extra outputs. We suspect that many real-world problems
would benefit from a combination of input and output variable selection and multitask learning if
we are able to devise better selection methods.
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