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Abstract—This paper is focused on the problems of feature selection and

classification when classes are modeled by statistically independent features. We

show that, under the assumption of class-conditional independence, the class

separability measure of divergence is greatly simplified, becoming a sum of

unidimensional divergences, providing a feature selection criterion where no

exhaustive search is required. Since the hypothesis of independence is

infrequently met in practice, we also provide a framework making use of class-

conditional Independent Component Analyzers where this assumption can be held

on stronger grounds. Divergence and the Bayes decision scheme are adapted to

this class-conditional representation. An algorithm that integrates the proposed

representation, feature selection technique, and classifier is presented.

Experiments on artificial, benchmark, and real-world data illustrate our technique

and evaluate its performance.

Index Terms—Feature selection, divergence, independent component analysis,

naive Bayes.

æ

1 INTRODUCTION

IN the context of statistical pattern classification, the assumption of
class-conditional independence greatly simplifies estimation
through the marginalization of class-conditional densities. In this
paper, we explore the consequences of class-conditional indepen-
dence in the field of feature selection. It can be seen that the statistical
criterion of divergence [15] is greatly simplified under this premise.
Since class-conditional independence is not a frequently met
assumption in practice, we also make use of Independent Compo-
nent Analysis in order to obtain a (class-conditional) representation
where this hypothesis can be held on stronger grounds.

In Section 2, we expose the concepts of independence and
conditional independence, stressing the fact that the first does not
imply the latter. We then detail the effect of class-conditional
independence on the Bayesian classification scheme and on the
measure of divergence. The consequence of this marginalization on
the Bayesian decision scheme is well-known, resulting in the naive
Bayes classifier. Less known is the fact that marginalized densities
transform divergence into a sum of unidimensional divergence.
The selection of optimal features for this discriminability criterion
and, under these conditions, is a nonexhaustive procedure.

In practice, the most frequent situation is to encounter features
with high levels of dependence between one another, so direct use of
our proposed criterion or of the naive Bayes rule is unjustified and
might lead to large error rates. Section 3 introduces Independent
Component Analysis (ICA) and explains the way it can be
employed, through class-conditional representations, to force
independence on the random vector representing a certain class.
Under this representation and certain assumptions, independence is
met so both naive Bayes and the proposed feature selection criterion
can be used. Nevertheless, the nature of our representation requires
to adapt both approaches. Naive Bayes is adapted by making use of
the change of variables theorem and we observe that, by interpreting

divergence in terms of expected log-likelihood ratios, we can
formulate a class-conditional divergence-based feature selection
criterion. Finally, Section 3.4 presents the training and test
algorithms that integrate the proposed representation, feature
selection technique, and classifier. Several experiments were
performed showing the performance of our method. A first
experiment, over an artificial data set [21], shows that, when class-
conditional independence is present, divergence is a robust
approach that needs no a priori knowledge on class-distributions.
A second experiment is performed on the Letter Image Recognition
Data from the UCI Repository [2]. This experiment illustrates the
importance of the independence assumption when we use the
simplified version of divergence and apply a naive Bayes Classifier.
For this problem and classifier, our local approach achieves
maximum classification results for all possible feature subsets.
Finally, a third experiment was performed using a total of 40; 000
512-dimensional color histograms corresponding to 10 different
classes extracted from 948 images corresponding to the Corel
database [7]. In this experiment, we show how our method
outperforms other usual methods even for very low dimensions.

2 CONDITIONAL INDEPENDENCE

LetX and Y be random variables taking values in 
. And, let pðx; yÞ,
pðxÞ, pðyÞ, and pðxjyÞ be, respectively, the joint density of ðX;Y Þ, the
marginal densities of X and Y , and the conditional density of X
givenY ¼ y. We say thatX andY are independent pðx; yÞ ¼ pðxÞpðyÞ
or, equivalently, if pðxjyÞ ¼ pðxÞ [8]. It proves useful to understand
independence from the following statement derived from the last
equality: Two variables are independent when the value one
variable takes gives us no knowledge on the value of the other
variable. The definition of independence can be extended to the
multivariate case ðX1; . . . ; XNÞ as pðxxÞ ¼ pðx1Þ . . . pðxNÞ. Condi-
tional independence is defined as a natural extension of these
definitions through the incorporation of the conditional operator:
pðx; yjzÞ ¼ pðxjzÞpðyjzÞ and, equivalently, pðxjy; zÞ ¼ pðxjzÞ.

A frequent mistake is to think that global independence implies
conditional independence, Simpson’s paradox [20] probably being
the most well-known counterexample. The falseness of this
implication can also be visualized considering random variables
ðX;Y Þwith uniform distribution in the square 
 ¼ ½0; 1� � ½0; 1� and
Z, the random variable defined as 1 for the set fðx; yÞ 2 
; x > yg
and 0 otherwise. It is clear in this case that, given Z, knowledge on
the value of, for instance, X provides information on Y: It should be
greater or less than X, depending on the value of Z.

The case in which class-conditional independence is encoun-
tered has interesting consequences in the field of statistical pattern
classification. Given K classes in 
 ¼ fC1; . . .CKg and a set of
features represented by an N-dimensional random vector
xx ¼ ðx1; . . . ; xNÞ, the Maximum A Posteriori (MAP) and the
Maximum Likelihood (ML) solutions both make use of the class-
conditional densities pðxxjCkÞ. If equiprobable priors are considered
and these densities assumed independent, the Bayes rule provides
the ML solution commonly known as naive Bayes rule [10],

CNaive ¼ arg max
k¼1...K

YN
n¼1

P ðxnjCkÞ: ð1Þ

Thanks to the marginalization that takes place in the density
estimation, the naive Bayes classifier is simple, effective, and fast.
It has been applied with success in several pattern recognition
tasks [22], [17]. Its statistical nature implies interesting theoretic
and predictive properties and, if the conditional independence
assumption holds and the univariate densities are properly
estimated, no other classifier can outperform naive Bayes in terms
of misclassification probability.
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2.1 Divergence and Conditional Independence

The problem of feature selection for classification can be stated as,
given a set of features representing our data, select a subset such that
working with the reduced set proves advantageous for classifica-
tion. Goodness of a feature subset is measured through a criterion
usually based on class separability. In most of the cases, evaluation
of such criteria requires costly and completely new computations for
each possible subset, turning feature subset selection into a
combinatorial problem. Statistical class separability measures take
into account the distance among the conditional distributions. These
measures require an estimate of the conditional densities. Problems
with this estimation are overcome using parametric or semipara-
metric techniques. Standard feature selection criteria such as the
Bhattacharyya and Mahalanobis distances, Gaussian divergence, or
Fisher ratio take this approach [11]. Divergence, instead, makes no
prior assumption on the class-conditional densities. The drawback
derived from this lack of assumptions is the eventual inaccuracy of
the estimations, particularly in the presence of high dimensional
data. This problem is overcome if conditional independence can be
safely assumed. We will also see that this hypothesis allows the
selection of a feature subset of any size without the need for an
exhaustive search. Additionally, divergence has a straightforward
interpretation from both an information theoretic and a probabilistic
framework where it is directly related with the Bayes error [14].

A commonly used distance measure for (class-conditional)
densities, for its connection with information theory, is the
Kullback-Leibler distance [15],

KLðCi; CjÞ ¼
Z




pðxxjCiÞ log
pðxxjCiÞ
pðxxjCjÞ

dx; ð2Þ

where 1 � i; j � K. The asymmetry of Kullback-Leibler motivates
the symmetric measure of divergence, long ago used for feature
selection [18], defined as

Dij ¼ DðCi; CjÞ ¼ KLðCi; CjÞ þKLðCj; CiÞ: ð3Þ

Besides being symmetric, divergence is zero between a distribution
and itself, always positive and monotonic on the number of features.
A paradox arises directly from the property of monotonicity: If
including more features only increases class separability, why
should we decide to remove features in the first place? The fact that
the Bayesian classifier is also monotonic on the number of features
should only add confusion to this issue. As will be confirmed in the
experiments, unmet assumptions (independence) and errors in the
density estimation break this monotonicity, so subset selection is
justified, especially when considering the close relationship
between estimation error and dimensionality (curse of dimension-
ality). Equally important is the dramatic increase feature selection
can have in the speed of a pattern recognition system, at a very low
cost in classification accuracy.

When the condition of class-conditional independence is met, it
can be seen that divergence is additive on the features by
introducing the definition of conditional independence in (3),

Dij ¼
XN
n¼1

Dnij; ð4Þ

where Dnij indicates the marginal divergence for the nth feature.
For this particular case, the property of monotonicity is evident.
Also, unidimensional density estimation can be performed and the
computation of divergence for a feature subset S � f1; . . . ; Ng
(noted by DSij) is straightforward. We can also observe that

ðn1 =2 S; n2 =2 SÞ ^ ðDn1
ij � D

n2
ij Þ ) ðD

S[n1
ij � DS[n1

ij Þ: ð5Þ

This property of order suggests that, at least for the two class case,
the best feature subset is the one that contains the features with
maximum marginal divergence and, thus, provides a very simple
rule for feature selection without involving any search procedure:

Given a feature subset size, preserve only those features with

maximal marginal divergence.
Although divergence only provides a measure for the distance

between two classes there are several ways of extending it to the

multiclass case, providing an effective feature selection criterion.

The most common approach is taking the average over all class pairs

DnA ¼
2

KðK ÿ 1Þ
XK
i¼1

X
j>i

Dnij: ð6Þ

DnA represents the average divergence present in feature n. This

approach is simple and preserves the exposed property of order

for feature subsets. Average divergence can also be related to the

Bayes error [9], justifying this choice. In the experiments and

unless stated otherwise, the DA criterion was used.

3 A CLASS-CONDITIONAL REPRESENTATION

In the previous section, we have shown how conditional

independence, through the marginalization of the densities, can

simplify both Bayesian decision and feature subset selection when

the divergence criterion is used. In practice, this assumption is

rarely met. We have also mentioned that global independence does

not necessarily imply class-conditional independence. For the case

in which class-conditional independence is not true, we now

introduce a supervised representation where this assumption can

be held on stronger grounds.

3.1 Independent Component Analysis

The Independent Component Analysis (ICA) of an N-dimensional

random vector is the linear transform which minimizes the

statistical dependence between its components. This representa-

tion in terms of independence proves useful in an important

number of applications such as data analysis and compression,

blind source separation, blind deconvolution, denoising, etc. [1],

[16], [12]. The basic ICA model [12] can be expressed as

WWðxxÿ xxÞ ¼ ss; ð7Þ

where xx corresponds to the random vector representing our data,

xx its mean, ss is the random vector of independent components with

dimension M � N , and WW is called the filter or projection matrix.

This model is frequently presented in terms of AA, the pseudoin-

verse of WW , called the mixture matrix. Names are derived from the

original blind source separation application of ICA. If the

components of vector ss are independent, at most one is Gaussian

and its densities are not reduced to a point-like mass, it can be seen

that WW is completely determined [6]. Main drawbacks of ICA to be

taken into account in practice are its linear nature and the fact, a

large number of samples are required for robust estimation,

particularly for high-dimensional data.
In practice, the estimation of the filter matrix WW and, thus, the

independent components can be performed through the optimiza-

tion of several objective functions such as likelihood, kurtosis,

information flow, or mutual information. Though several algo-

rithms have been tested, the method employed in this article is the

one known as FastICA. This method attempts to maximize non-

Gaussianity through the search of maximum negentropy directions.

Negentropy, a normalized version of entropy, is a robust measure of

non-Gaussianity which can be accurately approximated through the

expectation of general nonquadratic functions. Optimization is

achieved through a gradient descent algorithm speeded up by an

approximative Newton iteration scheme. This method is explained

in [12] where it is also related with other ICA estimation approaches,

such as maximum likelihood estimation, mutual information

minimization or tensorial-based methods.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 10, OCTOBER 2003 1313



3.2 Class-Conditional Independent Component
Analysis (CC-ICA)

As mentioned, global feature independence is not sufficient for

conditional independence. In [3], a class-conditional ICA (CC-ICA)

model is introduced that, through class-conditional representa-

tions, ensures conditional independence. This scheme was success-

fully applied in the framework of classification for object

recognition. The basic CC-ICA model is estimated from the

training set for each class. If WWk and ssk are the projection matrix

and the independent components for class Ck with dimensions

Mk �N and Mk, respectively, then, from (7)

ssk ¼WWkðxxÿ xxkÞ; ð8Þ

where xx 2 Ck and xxk is the class mean, estimated from the training

set. Most ICA methods require, or at least advise, data whitening as

preprocessing. Since some simple denoising is also recommended,

dimensionality reduction and whitening through PCA is very

common practice as a preprocessing stage for ICA [4], [12], one of its

advantages being that, for whitened data, the unmixing matrix

should be orthogonal. In this case, WWk ¼ BBkDkDk
ÿ1=2EEk, where EEk is

theM �N PCA eigenvector matrix, DDk theM �M diagonal matrix

with the corresponding eigenvalues, and BBk the M �M ICA

projection (unmixing) matrix for the whitened data. In this case vv ¼
EEkðxxÿ xxkÞ are the principal components such that ss ¼ BBkDD

ÿ1=2
k vv.

Assuming the class-conditional representation actually provides

independent components, we have that the class-conditional

probability in transformed space, noted as pkðssÞ¼
def
pðsskÞ, can now

be expressed in terms of unidimensional densities,

pðvvjCkÞ ¼ �kpkðssÞ ¼ �k
YMk

m¼1

pkðsmÞ; ð9Þ

with �k a normalizing constant. Actually, from the change of

variables rule,

�k ¼ jdetðBBkDD
ÿ1=2
k Þj ¼ jdetðDDÿ1=2

k Þj ¼
Y
m

1ffiffiffiffiffiffi
�m
p ;

so this constant can be estimated together with the CC-ICA

models.
From now on we will say 
 is an ICA Space if all its class-

conditional distributions correspond to independent variables and

thus can be expressed as a product of unidimensional distributions.
If independence is not known in advance and a CC-ICA

representation is used then, by using whitened data, replacing (9)

in (1), and using log-likelihoods [3],

CNaive ¼ arg max
k¼1...K

XMk

m¼1

log pkðsmÞ þ logð�kÞ: ð10Þ

If a subset of features has been selected for class Ck, then the sum in

(10) is only performed on the corresponding features. In addition,

several ICA estimation algorithms, such as those based on a

maximum likelihood approach, already provide the class-condi-

tional marginal densities in the estimation [5], [19]. If this is not the

case for our choice of algorithm, the class-conditional marginal

densities pkðsmÞ can be estimated using classical density estimation

techniques such as Gaussian mixture models, Laplace mixture

models, or nonparametric kernel methods. It can be seen that

minimization of mutual information results in strongly non-

Gaussian distributions. This a priori knowledge can be used to

restrict possible densities to particular density families such as the

generalized Gaussian. Being unidimensional, estimation is fast and

straightforward.

3.3 Divergence for CC-ICA

If our features do not lie in an ICA space, through (8) we can have
K linear representations, each one providing class-conditional
independence. With this approach, the selection of a single feature
for the whole ICA space involves the selection of possibly distinct
single features belonging to different representations. Divergence
needs adapting to result useful in these class-conditional repre-
sentations. After some algebraic operations detailed in the
Appendix, we obtain the following expression for divergence,

Dij ¼
XMi

m¼1

Bmij þ
XMj

m¼1

Bmji ; ð11Þ

where Bmij can be approximated by

Bmij ÿ
� 1

#Ci

X
xx2Ci

log piðwwmTi ðxxÿ xxiÞÞ ÿ
1

#Cj

X
xx2Cj

log piðwwmTi ðxxÿ xxiÞÞ;

ð12Þ

with wwmi the vector indicating the mth row of WWi and xxi the class
mean. Notice that Bmij measures the separation of classes Ci and Cj
in the mth component of the representation learned for class Ci.
Given a feature subset size, divergence is maximized by preserving
for Ci, those features maximizing Bij and, for Cj, those maximizing
Bji. This will cause different feature subsets on each class-
conditional representation, meaning that, while certain features
might be appropriate for separating class Ci from class Cj in the ith

representation, possibly distinct features will separate class Cj
from class Ci in the jth representation.

Extension to the multiclass case can be performed in the same
fashion as with divergence, with one of the indexes fixed for the
representation. The average class-conditional divergence for
feature m in Ci is

fBmi gA ¼
1

K ÿ 1

XK
j¼1;j 6¼i

Bmij : ð13Þ

3.4 The Algorithm

Fig. 1 details the learning algorithm for the case in which a class-
conditional representation is chosen. If class-conditional indepen-
dence is assumed, then the algorithm is greatly simplified. Steps 2
and 3 can be skipped and divergence estimated from Step 6. In this
case, the divergence is once again symmetrical resulting in a single
set of discriminant features for all classes.

Fig. 2 illustrates the way classification is performed. Once
again, a previous assumption of class-conditional independence,
greatly simplifies the algorithm. In this case, projection is
unnecessary and only the marginal class-conditional densities
corresponding to the selected features are evaluated and employed
for computing the class-conditional probability.

4 EXPERIMENTS

A first experiment is performed on the artificial two-class example
Trunk used to illustrate the curse of dimensionality [21]. The two
classes have multivariate normal 20-dimensional distributions with
covariance given by the identity matrix and means �1 ¼
½1=

ffiffiffi
1
p

; 1=
ffiffiffi
2
p

; . . . ; 1=
ffiffiffi
2
p

0� ; �2 ¼ ÿ�1. In a recent survey on feature
selection [13], Jain and Zongker propose this example to investigate
the quality of certain feature subsets considering that the optimal
d-feature subset is known in advance: the first d features. They
propose a measure of average quality for the feature selection
criterion varying the number of training patterns per class and
averaging the results of five artificially generated data sets on every
possible d-feature subset. The maximum possible value for this
average quality is one, meaning that the 20 possible feature subsets
were the optimal subset for the five data sets.
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Notice that this data set is actually an ICA space: The class-
conditional densities are uncorrelated Gaussians, thus indepen-
dent. So, there is no need to transform the data. We use (3) to
compute the unidimensional divergence values. In Fig. 3, we
reproduce the results in [13] using the Mahalanobis distance
between means as a criterion and the optimal branch and bound
feature subset selection algorithm. We also plot the results of our
method, estimating the marginal densities with a 2-Gaussian
Mixture Model (no prior knowledge of the data assumed) and with
a Gaussian with unknown mean and deviation (Gaussian data
assumed). For the latter, divergence has a closed form [11]. From
Fig. 3, we observe divergence is a fairly robust criterion with
performance above Jain’s criterion. Gaussian Mixture Models do
not perform well when the number of samples is similar to the
dimensionality but soon recover, meaning that we can do without
the prior knowledge on the data distribution without seriously
affecting the results.

A second experiment is performed on the Letter Image
Recognition Data [2]. Each instance each of the 20; 000 images
within this database represents a capital typewritten letter in one
of 20 fonts. Each letter is represented using 16 integer valued
features corresponding to statistical moments and edge counts.
Training is done on the first 16; 000 instances and test on the final
4; 000. There are approximately 615 samples per class in the
training set. In this case, feature independence cannot be assumed.
Fig. 4 illustrates the results of the naive Bayes Classifier for
different representations and feature subsets. The divergence

feature selection criterion was used for ICA (a global ICA
representation), CC-ICA, and ORIG (the original representation),
while, for PCA, features were selected as ordered by the
representation. The results of quadratic classification (Gaussian
maximum likelihood) on PCA were also included as a reference.

We can observe in Fig. 4 the importance of the independence
assumption when using both naive Bayes and the divergence
criterium. The CC-ICA representation, by seeking this indepen-
dence, achieves much better results than all the other implementa-
tions. On this database, we also tried naive Bayes on 100; 000
random 8-feature combinations for each class, with the result that
no combination achieved our classification results (83.17 percent).

A third experiment was performed in order to illustrate the
performance of independent feature selection on high-dimensional
data. In this case local color histograms (dimension = 512) were
extracted from different representative regions of 948 images
belonging to the Corel Database [7]. The regions belong to
10 different classes corresponding to clouds, grass, ice, leaves,
rocky mountains, sand, sky, snow mountains, trees, and water. A
total of 40; 000 samples (histograms) were extracted, of which
30; 000 were used for training and the remaining for test. The
number of class samples was equal among both training and test
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Fig. 2. Algorithm for classifying sample xxTest using the scheme learned in Fig. 1.

Fig. 3. Quality of selected feature subsets as a function of the size of the training

data.

Fig. 1. Algorithm for learning class-conditional representations and discriminant.



sets. In all cases, the true class dimensionality was considerably
below 512: classes have very restricted color variation. So, the CC-
ICA was performed after PCA dimensionality reduction (preser-
ving 98:5 percent of the variance) and whitening. The final
dimensions for the class-conditional representations varied be-
tween 42 (ice) and 85 (leaves). Fig. 5 accounts for the results of the
same experiment performed on the Letter database: naive Bayes
classification under ICA, CC-ICA, PCA, and the original repre-
sentation and maximum likelihood on PCA (PCA-ML) as a
reference. As with the letter database, the CC-ICA scheme (10)
outperforms the global representations notoriously for a low
number of features. The performance of this method drops after 40
features, precisely the dimension of the least dimensional class.
The answer to why PCA outperforms ICA for naive Bayes has to
be found in the fact that independence does not imply conditional
independence and the consequence this has over our feature
selection criterion and the naive Bayes classifier. ORIG represents a
K-NN classification on the original data using a mean Bhattachar-
yya distance with forward search for feature selection. Notice that
PCA-ML drops to zero once the covariance matrix for a certain
class becomes rank-deficient.

Accuracy results in (5) are poor: below 70 percent in the best case.
This is due to the high confusion the class signatures (color). This is
the reason why the average match percentile (AMP) is frequently
used to evaluate the results of this type of experiment, where a rank
in the classification proves sufficient. The AMP for our best case
(31 features) is 92:64 percent.

5 CONCLUSIONS

Conditionally independent features greatly simplify pattern
classification and feature selection problems. For this last case,
the separability measure of divergence is reduced to a sum of
unidimensional divergences and the optimal feature subset of any
cardinality can be found without involving an exhaustive search.
Since conditional independence is not usually encountered on real-
world data sets, we provide a context, class-conditional indepen-
dent component analysis, where it can be assumed on stronger
grounds. Divergence is adapted to this context. Even though no
assumption is made on the classifier, the natural choice for our
situation is naive Bayes. This classifier is also adapted to our class-
conditional representation.

Three different experiments were performed. These experi-
ments illustrate the robustness and performance of the introduced

techniques on artificial, real-world benchmarked, and high-
dimensional data, as well as comparing the results with
alternative approaches.

The CC-ICA representation is still a linear approximation of a
(possibly) nonlinear problem, so actual independence is seldom
achieved and the assumptions made for our method are weakened.
Current research on nonlinear or overcomplete independent
component analysis could eventually provide a framework where
the exposed theory can be even more effectively put into practice.
Another major inconvenience of our approach is the fact that
independent component analysis learning requires a large number
of samples, particularly on high-dimensional data, and, in our case,
we need a large number of samples per class. When this condition is
not met, we cannot find trustable class conditional representations
nor make any assumption on the divergence.

A promising line of research arises when the maximum
likelihood rule is replaced by pairwise classifiers, which are
easily adapted to the CC-ICA situation and avoid using average
divergence.

APPENDIX

The expression for divergence under class-conditional representa-

tions can be derived from the following operations. Since the

Kullback-Leibler distance can be understood as the class-condi-

tional expectation of the log-likelihood ratio (expected density

overlap), (3) can be rewritten as in terms of conditional expectations

Dij ¼ Eiflog pðxxjCiÞ ÿ log pðxxjCjÞg þ Ejflog pðxxjCjÞ ÿ log pðxxjCiÞg:
ð14Þ

Rearranging the terms in this sum and replacing by (9), we have

Dij ¼ Ei

XMi

m¼1

log piðwwmi
T ðxxÿ xxiÞÞ þ logð�iÞ

( )

ÿ Ej

XMi

m¼1

log piðwwmi
T ðxxÿ xxiÞÞ þ logð�iÞ

( )

þ Ej

XMj

m¼1

log pjðwwmj
T ðxxÿ xxjÞÞ þ logð�jÞ

( )

ÿ Ei

XMj

m¼1

log pjðwwmj
T ðxxÿ xxjÞÞ þ logð�jÞ

( )
;

ð15Þ
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Fig. 4. Naive Bayes classifier performance on different representations and feature

selection criteria. The importance of the independence assumption on naive

Bayes performance is observed. Maximum likelihood on a PCA representation is

added as a reference.

Fig. 5. Accuracies for the Corel database histogram-based naive Bayes
classification.
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where wwmk is the mth row of the filter matrix learnt for class Ck and
xxk the estimated class mean. Normalization constants are canceled
(which, by the way, shows that divergence is invariant for
invertible linear transformations) and the sum can be taken out
of the expectation operators such that, if we define

Bmij ¼
�
Eiflog piðwwmi

T ðxxÿ xxiÞÞg ÿ Ejflog piðwwmi
T ðxxÿ xxiÞÞg

�
; ð16Þ

we have (11). Equation (12) is obtained by approximating with the
empirical expectation.
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Abstract—A new approach is proposed for computation of area and geometric

moments for a plane object with a spline curve boundary. The explicit formulae are

obtained for area and low order moment calculation. The complexity of calculation

depends on the moment order, spline degree, and the number of control points used

in spline representation. The formulae proposed use the advantage that the

sequence of spline control points is cyclic. It allowed us to reduce substantially the

number of summands in them. The formulae might be useful in different

applications where it is necessary to perform measurements for shapes with a

smooth boundary.

Index Terms—Area, moment, parametric curve, spline, explicit formulae.
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1 INTRODUCTION

IT is of interest for different applications to compute geometric
moments of plane or volumetric objects. Moments of zero order
define the object area and volume, respectively. The object centroid
is computed using first order moments and the orientation (we
mean axes of inertia)—from second order moments. It is well-
known that geometric moments and moment invariants are very
useful for recognition of objects and images [1], [2].

A geometric moment mpq of order pþ q for a plane object P is
defined as follows:

mpqðP Þ ¼
ZZ

P

xpyqdxdy: ð1Þ

The explicit formulae for moment computation of 2D polygonal
objects were derived in [3]. These formulae were extended in [4]
for 3D polyhedral objects and higher dimensional polytopes. Other
related results can be found in [5], [6], [7], [8], [9].

Recently, new results were obtained for 2D and 3D objects with
a boundary defined by parametric curves and surfaces [10], [11], [12],
[13], [14]. These results are due to the fact that some parametric
representations of a curve or a surface are allowed to compute
moments directly. The complexity of computation, in this case,
depends on the order of the curve/surface applied and the
moment order to be computed. The formulae for area computation
of objects bounded by Bézier and B-spline curves were proposed in
[14]. They are based on computation of the signed area of a sector
between the curve and the coordinate origin. A similar approach
was presented in [10] for computation of areas and volumes.
Computation of volume and moments for cubic patches was
discussed and evaluated in [11]. The results presented in [10], [11]
were further extended in [13]. For the case when the object is
bounded by a set of parametric B-spline surfaces the authors
represent the moment formulae as multilinear forms of control
points coordinates with some coefficients. These coefficients are
integrals of B-spline basis functions. It is shown in [12] that
moment computation is equivalent to applying a multidimensional
filter on the curve coefficients followed by computing a scalar
product. The authors discuss the properties and computation of
filter kernel and present several examples for spline curves.
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