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This work proposes the application of Multi-Objective Genetic Algorithms to obtain
Fuzzy Rule-Based Systems with a better trade-off between interpretability and accuracy
in linguistic fuzzy modelling problems. To do that, we present a new post-processing
method that by considering selection of rules together with tuning of membership func-
tions gets solutions only in the Pareto zone with the highest accuracy, i.e., containing
solutions with the least number of possible rules but still presenting high accuracy. This
method is based on the well-known SPEA2 algorithm, applying appropriate genetic ope-
rators and including some modifications to concentrate the search in the desired Pareto
zone.
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1. Introduction

One of the aims in focusing the research in the Linguistic Fuzzy Modelling area in

recent years is the trade-off between interpretability and accuracy.1 Of course, the

ideal thing would be to satisfy both criteria to a high degree, but since they are

contradictory issues generally it is not possible.
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A widely-used approach to improve the accuracy of linguistic Fuzzy Rule-Based

Systems (FRBSs) is the tuning of Membership Functions (MFs),1–10 which refines

a previous definition of the Data Base (DB) once the rule base has been obtained.

Although tuning usually improves the system performance, sometimes a large num-

ber of rules is used to reach an acceptable degree of accuracy. In this case, some

works1, 5 consider the selection of rules together with the tuning of MFs but only

considering performance criteria.

In this contribution, we focus on this problem by using Genetic Algorithms as a

tool for evolving the MFs parameters and rule base size and by coding all of them

(rules and parameters) in the same chromosome. Since the problem presents multi-

objective nature we could consider the use of Multi-Objective Genetic Algorithms

(MOGAs)11–15 to obtain a set of solutions with different degrees of accuracy and

number of rules by using both characteristics as objectives.

Although there are some works in the literature using MOGAs to improve the

difficult trade-off between interpretability and accuracy of FRBSs,16–25 practically

all these works were applied to classification problems trying to obtain the com-

plete Pareto (set of non-dominated solutions with different trade-off) by selecting

or learning the set of rules better representing the example data, i.e., improving

the system classification ability and decreasing the system complexity but not con-

sidering learning or tuning of the fuzzy system parameters (which involves another

type of Pareto front, a more complicated search space and therefore needs different

considerations respect to the works in the existing literature).

In this way, our main interest is to design an appropriate MOGA for this type

of problem due to the fact that standard MOGAs can present some problems. As

said, MOGAs are generally based on obtaining a set of non-dominated solutions.

However, in this case, there are solutions that are not interesting although they are

in the Pareto frontier. For example, non-dominated solutions with a small number

of rules and high error are not interesting since they have not the desired trade-off

between accuracy and interpretability. Furthermore, the existence of these kinds of

solutions favours the selection of solutions with very different number of rules and

accuracy to apply the crossover operator, which gives results with poor accuracy

(the tuning parameters would be very different and the crossover would not have

any sense except for exploring new combinations of rules).

In our proposal, we concentrate the search in the Pareto zone with still accu-

rate solutions trying to obtain the least number of possible rules. To do that, we

propose a modification of the well-known SPEA226 (Strength Pareto Evolutionary

Algorithm 2) that considering the rule selection together with the tuning of MFs

concentrates the search in the Pareto zone having accurate solutions with the least

number of possible rules, the Accuracy-Oriented SPEA2 (SPEA2ACC). Besides, we

have performed the same modification and experiments with NSGA-II27 (Nondom-

inated Sorting Genetic Algorithm II), showing that this approach is not the most

adequate for this problem.

This paper is arranged as follows. First, a brief summary of different proposals
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to improve the balance between interpretability and accuracy is presented, spe-

cially taking into account those considering MOGAs for this purpose. In section 3,

we present a study of the estimated Pareto frontier for this problem (tuning and

rule selection). SPEA2ACC algorithm is introduced in Section 4 together with the

modifications proposed on SPEA2 and the genetic operators considered. Section 5

shows an experimental study of the proposed methods in a real-world problem.

Finally, Section 6 gives some conclusions.

2. Interpretability-Accuracy Trade-off of FRBSs

Fuzzy Modelling (FM) usually comes with two contradictory requirements to the

obtained model: the interpretability, capability to express the behaviour of the real

system in an understandable way, and the accuracy, capability to faithfully repre-

sent the real system. Since they are contradictory issues, more priority has generally

been given to one of them (defined by the problem nature), leaving the other one

in the background. Two FM approaches arise depending on the main objective to

be considered:

• Linguistic FM, mainly developed by means of linguistic (or Mamdani)

FRBSs,28, 29 which is focused on the interpretability.

• Precise FM, mainly developed by means of Takagi-Sugeno FRBSs,30 which

is focused on the accuracy.

Regardless of the approach, a common scheme has been considered to attain the

desired balance between interpretability and accuracy (Figure 1 graphically shows

this operation mode):

(1) Firstly, the main objective (interpretability or accuracy) is tackled defining a

specific model structure to be used, thus setting the FM approach.

Interpretability
improvement

Linguistic Fuzzy Modelling

Precise Fuzzy Modelling

Accuracy
improvement

(interpretability as main objective)

(accuracy as main objective)

Trade-off

Fig. 1. Improvements of interpretability and accuracy in fuzzy modelling.
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(2) Then, the modelling components (the model structure and/or the modelling

process) are improved by means of different mechanisms to compensate for

the initial difference between both requirements. Thus, accuracy improvements

are proposed in linguistic FM at the cost of part of the interpretability whilst

interpretability improvements are proposed in precise FM at the cost of part

of the accuracy.

Actually, the interpretability-accuracy trade-off is a very important branch of

research nowadays.1, 31 Focusing on Linguistic FM with improved accuracy1 (still

nearer of the interpretability) we can find many examples in the existing litera-

ture. This approach has been performed by learning/tuning the MFs by defining

their parameters or shapes,2–10 their types (triangular, trapezoidal, etc.),32 or their

context (defining the whole semantics),5, 33, 34 learning the granularity (number of

linguistic terms) of the fuzzy partitions,33, 35 or extending the model structure by

using linguistic modifiers,5, 36, 37 weights (importance factors for each rule),2, 38–40

or hierarchical architectures (mixing rules with different granularities),38, 42 among

others. The main problem of these approaches is that although the system accu-

racy can be greatly improved (e.g., with a simple tuning of MFs), the original

interpretability of the linguistic models is lost to some degree giving way to more

complex systems or less interpretable rule structures.

Additionally, although rule base reduction5, 41, 42 and input variable selec-

tion43, 44 processes improve the interpretability, they can also help to improve the

accuracy when redundancy and inconsistency criteria are considered (but usually

these improvements are not very significant).

Within the framework of linguistic FM (without improved accuracy), a new

and most recent possibility is the use of Multi-Objective Evolutionary Algorithms

(MOEAs)11–15 to improve the difficult trade-off between interpretability and accu-

racy of FRBSs, considering different performance and interpretability measures as

objectives.16–25 Since this problem presents a multi-objective nature the use of these

kinds of algorithms to obtain a set of solutions with different degrees of accuracy and

interpretability is an interesting way to work. All of the works in this recent topic

only consider quantitative measures of the system complexity (number of rules,

number of characteristics in the antecedents, etc.) in order to improve the inter-

pretability of such systems, rarely considering qualitative measures. Furthermore,

we can point out that practically all these methods were applied to classification

problems for rule selection or rule learning, without considering learning or tuning

the MFs or more flexible rule representations, i.e., performing Linguistic FM with

improved interpretability to obtain a set of solutions with different trade-offs but

nearer the interpretability than the accuracy.

In this way, our main aim in this contribution will be to attain the desired

balance by maintaining the improved accuracy that a tuning of MFs could give but

trying to obtain more compact models by using MOGAs if it is possible, i.e., to

obtain simpler and still accurate linguistic fuzzy models by also considering a tuning
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of the system parameters. This way to work represents a more complex search

space and therefore needs a deeper analysis of the Pareto frontier and different

considerations respect to the MOGAs in the existing literature.

3. Interpretability-Accuracy Pareto Frontier by Selecting Rules

and Tuning Membership Functions

In this section, we present a study of the kinds of solutions we could find in the opti-

mal Pareto frontier when the system error and the number of rules (both considered

as objectives) are optimized by tuning the MFs and selecting the most promising

rules. In this way, we can obtain an approximation of the optimal Pareto that can

help to determine the desired Pareto zone.

Tuning of MFs usually needs an initial model with large number of rules to get

an appropriate level of accuracy. Generally, to obtain a good number of initial rules,

methods ensuring covering levels higher than needed are used. In this way, we could

obtain rules that being needed at first could be unnecessary once the tuning is ap-

plied or rules that could impede the tuning of the remaining ones in order to obtain

the global optimum in terms of the accuracy (better configuration of rules to get

the minimum error after tuning of the parameters). Thus, we can find the follow-

ing types of rules respect to this global optimum in the complete set of rules: Bad

Rules (erroneous or conflicting rules) that degrade the system performance (rules

that are not included in the most accurate final solution); Redundant or Irrelevant

Rules that do not significantly improve the system performance; Complementary

Rules that complement some others slightly improving the system performance;

and Important Rules that should not be removed to obtain a reasonable system

performance. Obviously, this is a simplification of the problem by only considering

in principle the most accurate solution in order to have an idea of the shape of the

optimum Pareto. On the other hand, to determine those types of rules in advance

is impossible since it directly depends on each concrete configuration of rules and

still more on the optimal configuration of the MF parameters for each rule config-

uration. Therefore, this is impossible to establish any criteria that could be used in

the search process.

However, by taking into account the possible existence of these kinds of rules,

different rule configurations and different tuning parameters, we can estimate the

following zones in the space of the objectives:

• Zone with Bad Rules, which contains solutions with bad rules. In this zone,

the Pareto front does not exist given that removing these kinds of rules would

improve the accuracy and these solutions would be dominated by others.

• Zone with Redundant or Irrelevant Rules, which is comprised of solutions with-

out bad rules but still maintaining redundant or irrelevant rules. By deleting

these kinds of rules the accuracy would be practically the same.

• Zone with Complementary Rules, comprised of solutions without any bad

or redundant rule. By removing these rules the accuracy would be slightly

decreased.
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• Zone with Important Rules, which contains solutions only comprised of essential

rules. By removing these kinds of rules the accuracy is really affected.

In Figure 2, we can find an approximation of the optimal Pareto in the problem

of tuning and rule selection with the double objective of simplicity and accuracy.

This figure shows the different zones in the space of the objectives together with the

desired Pareto zone to find solutions with good trade-off. This zone corresponds to

the zone of complementary rules, i.e., we would like to delete all the possible rules

but without seriously affecting the accuracy of the model finally obtained.

+

+ -
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RULES 0
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Bad 
Rules

Redundant
Rules

Complementary
Rules

Important
Rules

Desired pareto zone
Optimal pareto frontier

Fig. 2. Estimation of the pareto frontier considering rule selection and tuning of parameters.

Taking into account what we previously exposed, the MOGA should not obtain

all the Pareto front since it is difficult to obtain accurate solutions by favouring the

crossing of solutions with very different rule configurations (those in the Pareto),

which try to obtain the optimum by learning very different parameters for the MFs.

In the next section, we present a modification of SPEA226 with the main aim of

guiding the search towards the desired zone.

4. A Proposal to Evolve Accuracy-Oriented Pareto Sets: the

SPEA2ACC Algorithm

This section presents a new algorithm to get solutions with high accuracy and

the least possible number of rules by performing rule selection together with a

tuning of the MF parameters. In this way, since this algorithm is based on the well
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known SPEA226 we firstly introduce the basis of this algorithm. Then we describe

the changes for guiding the search towards the desired Pareto zone and the main

components needed to apply this algorithm to this specific problem: the coding

scheme and the genetic operators.

4.1. SPEA2 Basis

The SPEA2 algorithm26 (Strength Pareto Evolutionary Algorithm 2 for multi-

objetive optimization) is one of the most used techniques for solving problems with

multi-objective nature. This algorithm was designed to overcome the problems of

its predecessor, the SPEA algorithm.15 In contrast with SPEA, SPEA2: (1) incor-

porates a fine-grained fitness assignment strategy which takes into account for each

individual the number of individuals that it dominates and the number of indivi-

duals by which it is dominated; (2) uses the nearest neighbour density estimation

technique which guides the search more efficiently; (3) has an enhanced archive

truncation method which guarantees the preservation of boundary solutions. Next,

we briefly describe the complete SPEA2 algorithm.

SPEA2 uses a fixed population and archive size. The population forms the

current base of possible solutions, while the archive contains the current solutions.

The archive is constructed and updated by copying all non-dominated individuals in

both archive and population into a temporary archive. If the size of this temporary

archive differs from the desired archive size, individuals are either removed or added

as necessary. Individuals are added by selecting the best dominated individuals,

while the removal process uses a heuristic clustering routine in the objective space.

The motivation for this is that one would like to try to ensure that the archive

contents represent distinct parts of the objective space.

The fitness assignment strategy takes into account both dominating and domi-

nated solutions for each individual. Let Pt and P t denote the population and the

archive respectively, each individual i in Pt + P t is assigned a strength value S(i),

the number of solutions it dominates,

S(i) =‖ {j | j ∈ Pt + P t ∧ i � j} ‖ (1)

where ‖ · ‖ represents the cardinality of a set, + stands for multiset union and

the symbol � corresponds to the Pareto dominance relation. Based on the value of

S(i), a raw fitness value, R(i), is given to the individual i,

R(i) =
∑

j∈Pt+P t, j�i

S(j) (2)

It is important to notice that fitness is to be minimized here, i.e., R(i) = 0

corresponds to a nondominated individual, while a high R(i) value means that i is

dominated by many individuals (which in turn dominate many other individuals).

This scheme is illustrated in Figure 3. The final fitness value is assigned by adding a
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Fig. 3. The raw SPEA2 fitness values for a maximization problem with two objectives f1 and
f2.

density value. The density function value, D(i), is estimated in the objective space,

D(i) =
1

δk
i + 2

(3)

where δk
i denotes the k-th nearest distance for the ith individual among Pt and P t

in objective space. k is usually set as
√

N + N truncated to an integer, where N

is the population size and N the archive size. Finally, the fitness value for the i-th

individual is calculated as,

F (i) = R(i) + D(i) (4)

From the definition above, a better solution will be assigned a smaller fitness

value. Finally, when selecting individuals for participating in the next generation

all candidates are selected from the archive using a binary tournament selection

scheme.

According to the descriptions of the authors in,26 the outline of the SPEA2

algorithm is:

Input: N (population size),

N (external population size),

T (maximum number of generations).

Output: A (non-dominated set).

(1) Generate an initial population P0 and create the empty external population

P 0 = ∅.
(2) Calculate fitness values of individuals in Pt and P t.
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(3) Copy all non-dominated individuals in Pt ∪ P t to P t+1. If |P t+1| > N apply

truncation operator. If |P t+1| < N fill with dominated in Pt ∪ P t.
(4) If t ≥ T , return A and stop.
(5) Perform binary tournament selection with replacement on P t+1 in order to fill

the mating pool.
(6) Apply recombination and mutation operators to the mating pool and set Pt+1

to the resulting population. Go to step 2 with t = t + 1.

4.2. The SPEA2ACC algorithm

In the following, the main aspects and components needed to design the proposed

algorithm are explained. They are:

• Modifications Applied on SPEA2 to guide the search.

• Coding scheme and initial gene pool.

• Objectives considered for chromosome evaluation.

• Crossover and mutation operators.

4.2.1. Modifications applied on SPEA2

In order to focus the search on the desired Pareto zone, high accuracy with least

possible number of rules, we propose two main changes on the SPEA2 algorithm

with the aim of giving more selective pressure to those solutions that have a high

accuracy. The proposed changes are described next:

• A restarting operator is applied exactly at the mid of the algorithm, by main-

taining the most accurate individual as the sole individual in the external po-

pulation (P t+1 with size 1) and obtaining the remaining individuals in the

population (Pt+1) with the same rule configuration of the best individual and

tuning parameters generated at random within the corresponding variation in-

tervals. This operation is performed in step 4 then returning to step 2 with

t = t+1. In this way, we concentrate the search only in the desired pareto zone

(similar solutions in a zone with high accuracy).

• In each stage of the algorithm (before and after restarting), the number of

solutions in the external population (P t+1) considered to form the mating pool

is progressively reduced, by focusing only on those with the best accuracy. To do

that, the solutions are sorted from the best to the worst (considering accuracy

as sorting criterion) and the number of solutions considered for selection is

reduced progressively from 100% at the beginning to 50% at the end of each

stage.

Besides, we have to highlight that the way to create the solutions of the initial

population for the part of rule selection is a very important factor. Usually, a Genetic

Algorithm generates the initial population totally at random (random selection

of the initial rules). However, in this case, to get solutions with a high accuracy
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we should not lose rules that could present a positive cooperation once their MF

parameters have been evolved. The best way to do this is to start with solutions

selecting all the possible rules which favours a progressive extraction of bad rules

(those that do not improve with the tuning of parameters), only by means of the

mutation at the beginning and then by means of the crossover.

4.2.2. Coding scheme and initial gene pool

A double coding scheme for both rule selection (CS) and tuning (CT ) is used:

Cp = Cp
SCp

T

• For the CS part, the coding scheme consists of binary-coded strings with size

m (with m being the number of initial rules). Depending on whether a rule is

selected or not, values ‘1’ or ‘0’ are respectively assigned to the corresponding

gene.

Cp
S = (cS1, . . . , cSm) | cSi ∈ {0, 1} .

• For the CT part, a real coding is considered, being mi the number of labels of

each of the n variables comprising the DB.

Ci = (ai
1, b

i
1, c

i
1, . . . , a

i
mi , bi

mi , ci
mi), i = 1, . . . , n ,

Cp
T = C1C2 . . . Cn .

The initial population is obtained in the following way:

(1) For the CT part the initial DB is included as first individual. The remaining in-

dividuals are generated at random within the corresponding variation intervals.

Such intervals are calculated from the initial DB. For each MF Cj
i = (aj , bj , cj),

the variation intervals are calculated in the following way:

[I l
aj , Ir

aj ] = [aj − (bj − aj)/2, aj + (bj − aj)/2] (5)

[I l
bj , Ir

bj ] = [bj − (bj − aj)/2, bj + (cj − bj)/2] (6)

[I l
cj , Ir

cj ] = [cj − (cj − bj)/2, cj + (cj − bj)/2] (7)

(2) For the CS part all genes take value ‘1’ in all the individuals of the initial

population in order to favour a progressive extraction of the worst rules.

4.2.3. Objectives

Two objectives are minimized to get the desired trade-off: the number of rules

(interpretability) and the Mean Squared Error (accuracy),

MSE =
1

2 · |E|

|E|
∑

l=1

(F (xl) − yl)2,
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with |E| being the size of a data set E, F (xl) being the output obtained from the

FRBS decoded from the mentioned chromosome when the l-th example is consi-

dered and yl being the known desired output. The fuzzy inference system conside-

red to obtain F (xl) is the centre of gravity weighted by the matching strategy as

defuzzification operator and the minimum t-norm as implication and conjunctive

operators.

4.2.4. Crossover and mutation operators

The crossover operator depends on the chromosome part where it is applied:

• In the CT part, the BLX-0.545 crossover is used. This operator is based on the

the concept of environments (the offspring are generated around one parent).

These kinds of operators present a good cooperation when they are introduced

within evolutionary models forcing the convergence by pressure on the offspring.

Figure 4 depicts the behaviour of this operator, which allow the offspring genes

to be around a wide zone determined by both parent genes.

Fig. 4. Scheme of the behaviour of the BLX-α operator.

The BLX is described as follows. Let us assume that X = (x1 · · ·xn) and

Y = (y1 · · · yn), (xi, yi ∈ [ai, bi] ⊂ <, i = 1 · · ·n), are two real-coded chromo-

somes that are going to be crossed. The BLX operator (with α = 0.5) generates

one descendent Z = (z1, · · · , zg) where zi is a randomly (uniformly) chosen num-

ber from the interval [li, ui], with li = max{ai, cmin−I}, ui = min{bi, cmax+I},

cmin = min{xi, yi}, cmax = max{xi, yi} and I = (cmax − cmin) · α.

• In the CS part, the HUX46 crossover is used. The HUX crossover exactly inter-

changes the mid of the alleles that are different in the parents (the genes to be

crossed are randomly selected among those that are different in the parents).

This operator ensures the maximum distance of the offspring to their parents

(exploration). Figure 5 depicts the behaviour of this operator.

Finally, four offspring are generated by combining the two from the CS part

with the two from the CT part (the two with the best accuracy are considered to

be included in the population). The mutation operator changes a gene value at

random in the CS and CT parts (one in each part) with probability Pm.
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0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1
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Fig. 5. Scheme of the behaviour of the HUX operator.

Table 1. Methods considered for comparison.

Ref. Méthod Description

47 WM Wang & Mendel algorithm
5 WM+T Tuning of Parameters
5 WM+S Rule Selection
5 WM+TS Tuning and Rule Selection

26 SPEA2 SPEA2 Algorithm
— SPEA2ACC Accuracy-Oriented SPEA2
27 NSGAII NSGA-II algorithm
— NSGAIIACC Accuracy-Oriented NSGA-II

5. Experiments

To evaluate the usefulness of the method proposed, SPEA2ACC, we have consid-

ered a real-world problem49 with 4 input variables that consists of estimating the

maintenance costs of medium voltage lines in a town. The methods considered for

the experiments are briefly described in Table 1. WM47 method is considered to

obtain the initial rule base to be tuned. T and S methods perform the tuning of

parameters and rule selection respectively. TS indicates tuning together with rule

selection in the same algorithm. All of them consider the accuracy of the model as

the sole objective. The remaining are MOGAs with and without the proposed mod-

ifications (all of them perform rule selection with tuning of parameters considering

two objectives, accuracy and number of rules). However, we have to highlight that

all of them consider the same population initialization, i.e., they start considering

all the candidate rules for the initial individuals in order to see better the influence

of the changes applied on the original SPEA2.

The linguistic partitions are comprised by five linguistic terms with triangular

shape. The values of the input parameters considered by all the MOGAs studied are

presented as follows: population size of 200, external population size of 61 (in the

case of SPEA2 and SPEA2ACC), 50,000 evaluations and 0.2 as mutation probability

per chromosome.

5.1. Problem description

In Spain, electrical industries do not charge the energy bill directly to the final

user, but they share the ownership of an enterprise (called R.E.E., Red Eléctrica
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Table 2. Electrical problem characteristics.

Input variable X1: Sum of the lengths of all streets in the town
Input variable X2: Total area of the town
Input variable X3: Area that is occupied by buildings
Input variable X4: Energy supply to the town
Output variable Y : Maintenance costs of the medium voltage lines
Number of examples: 1,059

Domain of X1: [0, 11]
Domain of X2: [0.15, 8.55]
Domain of X3: [1.64, 142.5]
Domain of X4: [1, 165]
Range of Y : [0, 8546.03]

Española) which gets all payments and then distributes them according to some

complex criteria (amount of power generation of every company, number of cus-

tomers, etc.).

In the last years, some of these companies have asked for the rules to be revised.

One of the proposed modifications involved a redistribution of the maintenance

costs of the network. To compute the maintenance costs of town medium voltage

lines, there is a need to know which would be the total line length if the installation

made had been the optimal one. Clearly, it is impossible to obtain this value by

directly measuring it, since the medium voltage lines existing in a town have been

installed incrementally, according to its own electrical needs in each moment.

For this reason, the consideration of models becomes useful to compute the

maintenance costs of the medium voltage electrical network in a town.48, 49 These

estimations allow electrical companies to justify their expenses. Moreover, the model

must be able to explain how a specific value is computed to a certain town. Our

objective will be to relate the maintenance costs of the medium voltage lines with

the following four variables: sum of the lengths of all streets in the town, total area

of the town, area that is occupied by buildings, and energy supply to the town. We

will deal with estimations of minimum maintenance costs based on a model of the

optimal electrical network for a town in a sample of 1,059 towns. Table 2 presents

a summary of the main characteristics of the problem.

To develop the different experiments, we consider a 5-folder cross-validation

model, i.e., 5 random partitions of data each with 20% (4 of them with 211 examples

and one of them with 212 examples)a, and the combination of 4 of them (80%) as

training and the remaining one as test. For each one of the 5 data partitions,

the tuning methods have been run 6 times, showing for each problem the average

results of a total of 30 runs. In the case of methods with multi-objective approach,

the averaged values are calculated considering the most accurate solution from

each Pareto obtained. In this way, the multi-objective algorithms can be compared

aThese data sets are available at: http://decsai.ugr.es/∼casillas/fmlib/.
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Table 3. Results obtained by the studied methods.

Method #R MSEtra σtra t-test MSEtst σtst t-test

WM 65 57605 2841 + 57934 4733 +

WM+T 65 18602 1211 + 22666 3386 +

WM+S 40.8 41086 1322 + 59942 4931 +

WM+TS 41.9 14987 391 + 18973 3772 +

NSGAII 41.0 14488 965 + 18419 3054 +

NSGAIIACC 48.1 16321 1636 + 20423 3138 +

SPEA2 33 13272 1265 + 17533 3226 +

SPEA2ACC 34.5 11081 1186 * 14161 2191 *

with several single objective based methods. This way to work differs from the

previous works in the specialized literature, in which one or several Pareto fronts

are presented and an expert should then select one solution. Our main aim following

this approach is to compare the same algorithm by only considering an accuracy

objective (WM+TS) with the most accurate solution found by the multi-objective

ones in order to see if the Pareto fronts obtained are not only wide but also optimal

(similar solutions to that obtained by WM+TS should be included in the final

Pareto).

5.2. Results and analysis

The results obtained by the analyzed methods are shown in Table 3, where #R

stands for the number of rules, MSEtra and MSEtst respectively for the average

error obtained over the training and test data, σ for the standard deviation and

t-test for the results of applying a test t-student (with 95 percent confidence) in

order to ascertain whether differences in the performance of the proposed approach

are significant when compared with that of the other algorithms in the table. The

interpretation of this column is:

? represents the best average result.

+ means that the best result has better performance than that of the correspon-

ding row.

Analysing the results showed in Table 3 we can highlight the following facts:

• SPEA2ACC gets an important reduction of the mean square error respect to

that obtained by the classic methods and NSGA-II. Furthermore, this algorithm

improves the results obtained by SPEA2 with only 1.5 more rules.

• The models obtained by SPEA2ACC seem to show very good trade-off between

interpretability and accuracy.
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Fig. 7. Pareto fronts of NSGAII and NSGAIIacc.

• NSGAII and NSGAIIACC present a not so good performance in this particu-

lar problem because of the crowding operator which makes very difficult to

concentrate the search in the desired Pareto zone.

Moreover, notice the large search space that involves this problem. There are

some initial rules that should be removed since they do not cooperate in a good

way with the remaining ones. Even in the case of only considering an accuracy-

based objective (WM+TS), the large search space that supposes the tuning of

parameters makes very difficult to remove these kinds of rules since bad rules are

tuned together with the remaining ones searching for their best cooperation. The

use of a multi-objective approach favours a better selection of the ideal number of

rules, preserving some rule configurations until the rule parameters are evolved to

dominate solutions including bad rules.

In Figures 6 and 7, we can see the Pareto evolution for each algorithm. In

figure 6, we can observe that SPEA2ACC mainly explores in the mid part of the

evolution (before applying the restarting operator) in order to finally focusing on

a specific zone of the Pareto. After restarting, the Pareto is extended in order to

continue concentrating the search on the Pareto zone presenting solutions with less

number of rules but still accurate.
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In the remaining methods, Figures 6 and 7, we can see as the Pareto moves

along without having a big extension, which does not allow to obtain very good

results even in the case of NSGA-II.

6. Conclusions

Taking into account the results showed in the previous section, we can conclude that

the models obtained by the proposed method present a better trade-off between

interpretability and accuracy than the remaining ones. By searching for a good

configuration of rules (only removing rules with little importance) and by tuning the

parameter for a small set of rules, the proposed algorithm has obtained models even

with a better accuracy than those obtained by methods only guided by measures of

accuracy. In this way, the results obtained have shown that the use of MOEAs can

represent a way to obtain even more accurate and simpler linguistic models than

those obtained by only considering performance measures.

On the other hand, the proposed algorithm (SPEA2ACC) could be of interest in

problems that, although presenting a multi-objective nature, need as solution not

all the Pareto frontier but only a specific area of it.
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38. R. Alcalá, J. R. Cano, O. Cordón, F. Herrera, P. Villar and I. Zwir, Linguistic mod-

eling with hierarchical systems of weighted linguistic rules, International Journal of

Approximate Reasoning 32:2-3 (2003) 187–215.
39. J. S. Cho and D. J. Park, Novel fuzzy logic control based on weighting of partially

inconsistent rules using neural network, Journal of Intelligent and Fuzzy Systems 8

(2000) 99–110.
40. N. R. Pal and K. Pal, Handling of inconsistent rules with an extended model of fuzzy

reasoning, Journal of Intelligent and Fuzzy Systems 7 (1999) 55–73.
41. T. P. Hong and C. Y. Lee, Effect of merging order on performance of fuzzy induction,

Intelligent Data Analysis 3:2 (1999) 139–151.
42. H. Ishibuchi, K. Nozaki, N. Yamamoto and H. Tanaka, Selecting fuzzy if-then rules for

classification problems using genetic algorithms, IEEE Transactions on Fuzzy Systems

3:3 (1995) 260–270.
43. T. P. Hong and J. B. Chen, Finding relevant attributes and membership functions,

Fuzzy Sets and Systems 103:3 (1999) 389–404.
44. H. M. Lee, C. M. Chen, J. M. Chen and Y. L. Jou, An efficient fuzzy classifier with

feature selection based on fuzzy entropy, IEEE Transactions on Systems, Man, and



September 12, 2007 15:53 WSPC/118-IJUFKS 00486

A Multi-Objective Genetic Algorithm for Tuning and Rule Selection 557

Cybernetics — Part B: Cybernetics 31:3 (2001) 426–432.
45. L. J. Eshelman and J. D. Schaffer, Real-coded genetic algorithms and interval-

schemata, Foundations of Genetic Algorithms 2 (1993) 187–202.
46. L. J. Eshelman, The CHC adaptive search algorithm: How to have safe search when

engaging in nontraditional genetic recombination, Foundations of Genetic Algorithms

1 (1991) 265–283.
47. L. X. Wang and J. M. Mendel, Generating fuzzy rules by learning from examples,

IEEE Trans. on Systems, Man, and Cybernetics 22:6 (1992) 1414–1427.
48. O. Cordón, F. Herrera and L. Sánchez, Computing the Spanish Medium Electrical

Line Maintenance Costs by means of Evolution-Based Learning Processes, Proc. Inter-

national Conference on Industrial & Engineering Applications of Artificial Intelligence

& Expert Systems, Castellón, Spain, 1998, 478–486.
49. O. Cordón, F. Herrera and L. Sánchez, Solving electrical distribution problems using

hybrid evolutionary data analysis techniques, Applied Intelligence 10 (1999) 5–24.


