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Abstract

Patterns summarizing mutual associations between class decisions and attribute values in a pre-classified database,

provide insight into the significance of attributes and also useful classificatory knowledge. In this paper we have pro-

posed a conditional probability based, efficient method to extract the significant attributes from a database. Reducing

the feature set during pre-processing enhances the quality of knowledge extracted and also increases the speed of com-

putation. Our method supports easy visualization of classificatory knowledge. A likelihood-based classification algo-

rithm that uses this classificatory knowledge is also proposed. We have also shown how the classification

methodology can be used for cost-sensitive learning where both accuracy and precision of prediction are important.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Feature selection for classification is a well-re-

searched problem, aimed at reducing the dimensio-

nality and noise in data sets (Dash and Liu, 1997).
In this paper we propose a feature selection tech-

nique using conditional-probability-based signifi-

cance measures for features. Each feature is

assigned a significance value determined by its sep-

arability and capability to distinguish elements of
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different classes. Our significance computations

are motivated by the feature-value distance meas-

ures proposed in (Stanfill and Waltz, 1986) and

(Cost and Salzberg, 1993) for categorical features.

In (Cost and Salzberg, 1993) the frequency-based
distance measures are used to determine the

weights to be assigned for different exemplars

while implementing a weighted k-nearest neigh-

bour algorithm for classification (PEBLS). How-

ever, we do not compute inter-value distances for

features. Our scheme looks for mutual exclusion

of distribution of feature values in different classes.

The measure of frequency of a value in one class
and non-occurrence of the same value in other
ed.

mailto:amir_ahmed/sspl@ssplnet.org 
mailto:lipika@maths.iitd.ernet.in 


44 A. Ahmad, L. Dey / Pattern Recognition Letters 26 (2005) 43–56
classes simultaneously, is used to determine the

significance of a feature. The significance of the

value of a feature determines the contribution of

the feature towards classificatory decision.

In this paper, we have also presented a likeli-
hood-based classification algorithm which exploits

the class–attribute associations extracted for fea-

ture selection. We have shown how the feature

selection and the classification procedures can be

employed for designing cost-sensitive learning

schemes.
2. Related work

Feature selection is a mature area of research.

We will first present a brief overview of the differ-

ent approaches followed and then present the dis-

tinguishing features of our work in comparison to

the existing approaches.

2.1. Feature selection techniques—a brief survey

Blum and Langley (1997) classify the feature

selection techniques into three basic approaches.

In the first approach, known as the embedded ap-

proach, a basic induction method is used to add

or remove features from the concept description

in response to prediction errors on new instances.
Quinlan�s ID3 (Quinlan, 1986) and C4.5 (Quinlan,

1993), CART proposed in (Breiman et al., 1984),

are some of the most successful supervized learn-

ing algorithms. These algorithms use a greedy

search through the space of decision trees, at each

stage using an evaluation function to select the at-

tribute that has the best ability to discriminate

among the classes.
The second approach is known as the filtering

approach, in which, various subsets of features

are explored to find an optimal subset, which pre-

serves the classification knowledge. Michalski

(1980) proposed the AQ learning algorithm, which

uses positive and negative examples of a class

along with a user defined criterion function, to

identify a disjunctive feature set that can maximize
the positive events and minimize the negative

events. Narendra and Fukunaga (1977) presented

a Branch and Bound algorithm for finding the
optimal feature set that uses a top-down approach

with back-tracking. Pudil et al. proposed a set of

suboptimal algorithms called the floating search

methods (Pudil et al., 1994) that do not require

the fulfillment of monotonicity condition for fea-
ture selection criterion function. Somol et al. pro-

vides a modified and efficient branch and bound

algorithm for feature selection in (Somol et al.,

2000). Though computationally less expensive

than the Branch-and Bound algorithms, there ex-

ists no theoretical upper bound on the computa-

tional costs of the algorithms because of their

heuristic nature.
John et al. proposed another feature selection

framework (John et al., 1994), known as the wrap-

per technique. The wrapper methods evaluate alter-

native feature sets by running some induction

algorithm on the training data and using the esti-

mated accuracy of the resulting classifier as its

metric. The major disadvantage of the wrapper

methods is in the computational cost involved in
running the induction algorithm repeatedly for

each feature set considered.

A number of feature selection techniques based

on the evolutionary approaches have also been pro-

posed. Casillas et al. (2001) presents a genetic fea-

ture selection technique which is integrated into a

multi-stage genetic learning process to obtain a

Fuzzy Rule Based Classification system (FRBCS).
In the first phase of this method, a filtering ap-

proach is used to determine an optimal feature

subset for a specific classification problem using

class-separability measures. This feature subset

along with expert opinion is used to obtain the

adequate feature subset cardinality in the second

phase, which is used as the chromosome length.

Xiong (2002) proposed a hybrid approach to input
selection, which distinguishes itself from existing

filter and wrapper-based techniques, but utilizes

the advantages of both. This process uses case-

based reasoning to select candidate subsets of

features which are termed as ‘‘hypothesis’’. The

performance of case-based reasoning under a

hypothesis is estimated using training data on a

‘‘leave-one-out’’ procedure. The error estimate is
then combined with the subset of selected attri-

butes to provide an evaluation function for the

GA to find the optimal hypothesis. Kuncheva
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and Bezdek proposed a genetic algorithm for

simultaneous editing and feature selection to de-

sign 1-nn classifiers (Kuncheva and Bezdek,

1998). They had posed the problem as bi-criteria

combinatorial optimization problem having an
NP-hard search space. Ho et al. (2002) proposed

the design of an optimal nearest neighbor classifier

using intelligent genetic algorithm. Thawonmas

and Abe (1997) suggests a feature selection tech-

nique to eliminate irrelevant features, based on

analysis of class regions generated by a fuzzy clas-

sifier. The degree of overlaps in a class region is

used to define exception ratio, and the features
that have the lowest sum of exception ratios are

the relevant ones. Irrelevant features are elimi-

nated using a backward selection search technique.

Kira and Rendell proposed a different approach

to feature selection in (Kira and Rendell, 1992).

The RELIEF algorithm proposed by them assigns

a weight to each feature based on the ability of the

feature to distinguish among the classes and then
selects those features whose weights exceed a user

defined threshold, as relevant. The weight compu-

tation is based on the probability of the nearest

neighbors from two different classes having differ-

ent values for an attribute and the probability of

two nearest neighbors of the same class having

same value of the attribute. Higher the difference

between these two probabilities, more significant
is the attribute. Inherently, the measure is defined

for a two-class problem which can be extended

to handle multiple classes, by splitting the problem

into a series of two-class problems. Kononenko

suggests the use of k-nearest neighbours to in-

crease the reliability of the probability approxima-

tion (Kononenko, 1994). It also suggests how

RELIEF can be extended to work with multiple
sets more efficiently. Weighting schemes are easier

to implement and are preferred for their efficiency.

Learning to classify objects is inherently diffi-

cult problem for which several approaches like in-

stance-based learning or nearest neighbor-based

algorithms are used. However, the nearest neigh-

bor algorithms need some kind of distance meas-

ure. Cost and Salzberg (1993) emphasized on the
need to select appropriate metrics for symbolic val-

ues. Stanfill and Waltz (1986) proposed the Value

Difference Metric (VDM) which measures distance
between values of symbolic features. It takes into

account the overall similarity of classification of

all instances for each possible value of each fea-

ture. Based on this, Cost and Salzberg (1993) pro-

posed the Modified Value Distance Metric
(MVDM) which is symmetric, and satisfies all

the metric properties. They have shown that near-

est neighbour algorithms perform well even for

symbolic data using this metric. It is observed that

distance-values are similar if the pairs occur with

the same relative frequency for all classes.

2.2. Distinct aspects of the proposed work

It may be observed from the earlier discussion,

that the majority of the feature selection tech-

niques have not considered the problem of classifi-

cation as an integrated problem. ID3 and its

derivatives like C4.5 are exceptions to this ap-

proach. These are decision-tree-based supervised

learning systems. Another popular classification
algorithm that is used with a selected subset of fea-

tures is the k-nearest neighbour whose results de-

pend on the choice of the correct value of k.

PEBLS provides a means of learning the weights

for weighing these k neighbours appropriately, to

get good classification results.

As mentioned earlier, our work was motivated

by Cost and Salzberg (1993). It may be observed
that while most feature selection or weighing meth-

ods do consider the relative frequencies of a feature

value in different classes, the mutual exclusion of

occurrence of a value in different classes is not usu-

ally considered. Our proposed method for comput-

ing the significance measure of an attribute is based

on the rationale that a significant feature is likely to

have different values for different classes while this
may not be so for an insignificant feature. The

relative frequency of an attribute value across dif-

ferent classes gives a measure of the attribute

value-to-class and class-to-attribute value associa-

tions. We store these associations, and show how

they can form a part of classificatory knowledge.

This also provides a good visualization of the dis-

tinguishing characteristics of the different classes.
A unique aspect of the proposed approach is

the integration of the feature selection technique

to a classification algorithm. We have proposed a
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likelihood-based classification algorithm, which

uses the significance of a feature value for

classification decision making. We have obtained

very good results for a large number of data sets

including the high-dimensional ones like DNA
data sets.

Finally we have shown how the proposed tech-

nique can be employed for designing cost-sensitive

learning schemes. Cost sensitivity related to classi-

fication has generated a lot of interest in recent

times, since it is being increasingly realized that

different classes of errors should incur different

penalties for most of the real-world problems. If
the cost of an error is known a priori, it is possible

to build a cost matrix for the misclassification

model. Rather than making a series of weighted

classifiers, which is very expensive, appropriately

biased classification techniques can be evolved

based on this cost-matrix (Domingos, 1999). Our

likelihood-based classifier can be easily biased to

develop a cost-sensitive learning scheme.
The rest of the paper is organized as follows.

Section 3 describes the design principles of the pro-

posed algorithms to compute significance of fea-

tures and thereby, select the relevant features for

classification. Section 4 presents how we represent

the classificatory knowledge and the design of the

classification algorithm. In Section 5 we have pre-

sented performance evaluation measures obtained
on some well-known data sets.
3. Determining significance of symbolic

attributes—a probabilistic approach

In this paper we have proposed a feature selec-

tion technique, in which features are assigned sig-
nificance values based on the intuition that if an

attribute is significant, then there is a strong possi-

bility that elements with complementary sets of

values for this attribute will belong to complemen-

tary sets of classes. Alternatively, given that the

class decisions for two sets of elements are differ-

ent, it is expected that the significant attribute val-

ues for these two sets of elements should also be
different. We compute the significance of an attri-

bute as a two-way function of its association to

the class decision.
For each attribute Ai, we compute the overall

attribute-to-class association denoted by Æ(Ai).

Æ(Ai) captures the cumulative effect of all possible

values of Ai and their associations to class deci-

sions. Similarly, we take note of how an attribute�s
values change with a change in the class decision.

We capture this effect in a quantity Œ(Ai) for the

attribute Ai. This represents the class-to-attribute

association for attribute Ai. An attribute is really

significant if both attribute-to-class association

and class-to-attribute association for the attribute

are high. In the remaining part of this section,

we elaborate on the physical significance and com-
putational aspects of these two quantities.

3.1. Computing Æ() for all attributes

We start with the observation, that for a signifi-

cant attribute, a change in the attribute value

should cause a change in the class decision. Let U

be the collection of pre-classified data elements
and let A1,A2, . . .,Ag be the attributes which de-

scribe the elements of this data set. We assume that

the elements ofU are members ofm different classes

denoted by natural numbers 1,2, . . .,m. Let J repre-
sent the set of all class labels i.e. J = {1,2,3, . . .,m}.

To compute the overall association of Ai to the

different classes, let us assume that it can take k

different symbolic values. We use the notation Ar
i

to denote the rth attribute value of Ai. The nota-

tion A�r
i is used to denote a value of Ai which is

not equal to Ar
i . This is a short hand notation for

all values not equal to Ar
i , and can actually take

(k � 1) different values.

We introduce a set of notations which we will

use hereafter.

• Let w be a proper subset of J.
• Let P r

i ðwÞ denote the probability that elements

of U with ith attribute value equal to Ar
i belong

to classes contained in w. This can be computed

from U using frequency counts.

• Let P�r
i ð� wÞ denote the probability that ele-

ments not having the ith attribute value equal

to Ar
i (i.e. elements with ith attribute value equal

to anything other than Ar
i ) do not belong to

classes contained in w. This can also be com-

puted from U using frequency counts.
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Our first observation is that if an attribute value

is very significant, then both P r
i ðwÞ and P�r

i ð� wÞ
are high. This implies that objects with ith attri-
bute (Ai) value equal to Ar

i and those with A�r
i

classify to different groups of complementary

classes.

We term the quantity ðPr
i ðwÞ þ P�r

i ð� wÞÞ as the
separating power of Ar

i with respect to w. This quan-

tity reaches a maximum, when both the terms indi-

vidually reach their maxima. Since there are

(2m � 1) possible values of w, we associate with
each value Ar

i , the subset w
r
i , which yields the max-

imum value for the summation ðP r
i ðwÞ þ P�r

i ð� wÞÞ.

Definition 3.1.1. The subset w ¼ wr
i that maxi-

mizes the term ðPr
i ðwÞ þ P�r

i ð� wÞÞ is termed as

the support set for the value Ar
i .

Since wr
i yields the maximum value for the

above quantity, this subset can be said to have

the strongest association to the value Ar
i . We pre-

sent an efficient algorithm in Section 3.1.1 which

can find this maximizing set without actually con-

sidering all the (2m � 1) subsets.

Definition 3.1.2. Let #r
i ¼ ðPr

i ðwr
i Þ þ P�r

i ð� wr
i ÞÞ.

#r
i is defined as the discriminating power of an

attribute value Ar
i , where wr

i is the support set for
the value Ar

i .

An attribute will be significant if all it�s values

have high discriminating power. The following

properties establish some crucial properties of the
separating power of an attribute value.

Property 1. For any i, for any r and for any w,

0 6 Pr
i ðwÞ 6 1, and 0 6 P�r

i ð� wÞ 6 1.

Property 2. The value of the discriminating power

of an attribute value Ar
i lies between 1.0 and 2.0 i.e.

1:0 6 ðP r
i ðwr

i Þ þ P�r
i ð� wr

i Þ 6 2:0, where wr
i is the

support set for Ar
i .

Definition 3.1.3. The attribute-to-class association

of an attribute Ai, denoted by Æ(Ai), is a function
of the mean of the discriminating powers of all

possible values of an attribute Ai. For an attribute

Ai with k different attribute values, Æ(Ai)

lies between 0.0 and 1.0, and is computed as

follows:
�ðAiÞ ¼ 1=k
X

r¼1;2;...;k

#r
i

 !
� 1:0 ð3:1Þ

In the next section, we elaborate on how to ob-

tain the maximizing support set for an attribute

value efficiently. We also discuss how Æ(Ai) is cal-

culated thereof.

3.1.1. An incremental approach to finding the

support set for an attribute value

We will now present a linear incremental ap-

proach to finding the support set wr
i for an attri-

bute value Ar
i . Thus all possible subsets of w do

not have to be explored, to find the maximizing

subset. The incremental approach ensures that

one class is examined at most once for inclusion
into the support set. This is particularly significant,

since otherwise computation complexity would

grow exponentially with the number of classes in

the data set.

To compute P r
i ðwÞ for any w � J, we note that

Pr
i ðwÞ ¼

P
t2W ðP ðt j Ar

i ÞÞ, where P ðt j Ar
i Þ denotes

the conditional probability that an element be-

longs to class t given that the value for its ith attri-
bute is Ar

i . This is because an element can belong to

exactly one class contained in w. This can be di-

rectly computed for any given pre-classified data

set.

Computation of Pr
i ðwr

i Þ þ P�r
i ð� wr

i Þ where wr
i is

the support set, involves the following basic tasks:

Task 1. Finding the maximizing subset, wr
i .

Task 2. Computing P r
i ðwr

i Þ.
Task 3. Computing P�r

i ð� wr
i Þ.

Task 1. Finding wr
i : We use a linear incremental

algorithm to find the support set wr
i for each attri-

bute value Ar
i of attribute Ai. This is done through

algorithm FIND_SUPPORT_SET(Ar
i ) explained

next.

Algorithm. (FIND-SUPPORT-SET(Ar
i ))

(i) Initialize wr
i = NULL and #r

i ¼ 0:0.
(ii) For each class t

If Pðt j Ar
i Þ > P ðt j A�r

i Þ
then {add t to wr

i ;
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#r
i ¼ #r

i þ Pðt j Ar
i Þ;

}

else {add t to � wr
i ;

#r
i ¼ #r

i þ Pðt=A�r
i );}

End FIND_SUPPORT_SET

Thus, if the conditional probability of an ele-

ment belonging to class t is higher with a given at-
tribute value Ar

i , than with the values A�r
i , then t

will be included in wr
i , while it will be included in

(� wr
i ), if it is the other way round. Obviously,

no class can belong to both wr
i and (� wr

i ). Thus,

when all the classes t are taken care of, wr
i accumu-

lates those classes which occur more frequently in

association to the value Ar
i for Ai, while (� wr

i )

accumulates those classes which occur more fre-
quently in association with A�r

i . Theorem 1 given

in the Appendix A considers all possible alterna-

tives and proves that Algorithm FIND-SUP-

PORT-SET will indeed find the maximizing

support set correctly.

Task 2. Computing P r
i ðwr

i Þ: Let n denote the

total number of elements in the data set. For each

class t 2 J, let N(t) denote the number of elements
belonging to class t. Let Tr

i denote the total num-

ber of elements in the data set having Ar
i as the

value for Ai. Let M
r
i ðtÞ denote the number of ele-

ments that belong to class t and have attribute

value Ar
i for Ai. Thus

P ðt j Ar
i Þ ¼ M r

i ðtÞ=Tr
i ðA:1Þ

Hence,

P r
i ðwr

i Þ ¼
X
t2wr

i

P ðt j Ar
i Þ ðA:2Þ

where t is selected as described in task 1.

Task 3. Computing P�r
i ð� wr

i Þ: Now, to compute
this, we first have to compute Pðt j A�r

i Þ, i.e. the
proportion of elements which belong to class t

but does not have attribute value Ar
i for Ai, out

of all the elements of the data set.

The quantity ðNðtÞ �M r
i ðtÞÞ denotes the num-

ber of elements which belong to class t but does

not have attribute value Ar
i for Ai. The total num-

ber of elements in the data set which does not have
the attribute value Ar

i for Ai is given by ðn� Tr
i Þ.
Thus the required conditional probability

P ðt j A�r
i Þ is given by

P ðt j A�r
i Þ ¼ ðNðtÞ �Mr

i ðtÞÞ=ðn� Tr
i Þ ðA:3Þ

Hence, as earlier,

P�r
i ð� wr

i Þ ¼
X

t2ð�wr
i Þ
Pðt j A�r

i Þ ðA:4Þ
3.1.2. Complexity of the proposed method

It requires one scan of the database to compute

the probabilities defined in tasks 2 and 3. If there

are g attributes in the database, then the computa-

tion of #r
i has to be done for all the g attributes, for

all values. If an attribute has k categorical values,

then the steps in Task 1 are repeated once for each

attribute for each of its value. Since, step 2 of task
1 is an iterative step over the number of classes, so

the total number of times this step is executed is

gkm, where m is the number of classes in the data-

base. Hence, the total time complexity of this algo-

rithm is O(gn + gkm). Thus in a very large data

base, where usually n � gkm (Cost and Salzberg,

1993), the proposed algorithm becomes effectively

linear in terms of the total number of elements in
the database i.e. it is O(gn).

3.2. Computing Œ() for all attributes

Œ(Ai) finds the association between the attri-

bute Ai and various class decisions, by observing

how a change in the class decision causes a change

in the attribute�s value. It is expected that objects
belonging to different classes will tend to have dif-

ferent values for a really significant attribute. The

computation of Œ(Ai) is very similar to the earlier

computation.

Let V be a subset of attribute values of Ai. As in

Section 3.1, we introduce two quantities P j
iðV Þ and

P�j
i ð� V Þ.

• P j
iðV Þ denotes the probability that elements

belonging to class j, have those attribute values

of Ai which are contained in the set V.

• P�j
i ð� V Þ denotes the probability that elements

not belonging to class j, have those attribute

values of Ai which are not contained in the set

V.
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• Now, for each class j 2 J, we find the subset V j
i

comprised of values of Ai, that maximizes the

quantity ðP j
iðV Þ þ P�j

i ð� V ÞÞ. Thus V j
i contains

those values of attribute Ai, which occur pre-

dominantly in association to class j. High values
for both P j

iðV j
iÞ and P�j

i ð� V j
iÞ indicate that the

values contained in V j
i have a high association

factor with class j, and the remaining classes

have high association with other values of attri-

bute Ai.

Definition 3.2.1. The quantity ðP j
i ðV

j
i ÞþP�j

i ðV �j
i ÞÞ

is denoted by Kj
i and is called the separability of
the attribute values of Ai with respect to class j.

We now define the quantity called +(Ai), which

denotes the class-to-attribute association for the

attribute Ai, as the mean of the separability of

its values. Further, we restrict +(Ai) to lie be-
tween 0.0 and 1.0 and hence we define it as

follows:

�þ ðAiÞ ¼ ð1=mÞ �
X

j¼1;2;...;m

Kj
i

 !
� 1:0 ð3:2Þ

where the database D has elements of m different

classes.

Definition 3.2.2. The significance of an attribute

Ai is computed as the average of Æ(Ai) and Œ(Ai)

and is denoted by r(Ai).

The significance of each attribute in the data-

base is computed using Definition 3.2.2.
Table 1

Significant attributes and their support sets for the heart disease data

Rank Attribute name Support set for h

1 Thal {6—fixed defect,

7—reversible defe

2 Number of major blood vessels

colored by fluoroscopy

{1, 2, 3}

3 Chest pain type {4}

4 Exercise induced angina {Yes}

5 Slope of peak exercise ST segment {Medium, High}

6 Oldpeak = ST depression induced

by exercise relative to rest

{2.06–6.2}

7 Maximum heart rate achieved {71.0–136.0}

8 Sex Female
3.3. Attributes and their support sets—physical

significance

In this section we will illustrate the practical

use of ranking of attributes and also explain the
physical significance of the support sets associated

with the significant attributes. We will illustrate

the significance of the support sets with some

practical data. A database containing heart

patients� data, obtained from www.niaad.liac-

c.up.pt/statlog/datasets.html, contains elements

of two classes—patients with and without heart

disease. This set contains 13 attributes. Table 1
shows the ranking of the most significant attri-

butes obtained by our method along with the

attribute values in their respective support sets

for the class of patients with heart disease. The

most significant attribute is thal which had three

possible values: 3 = normal; 6 = fixed defect;

7 = reversible defect. The support sets for dis-

eased category contains the attribute values 6
and 7 only indicating that heart patients have

either ‘‘fixed defect’’ or ‘‘reversible defect’’ for

the thal factor. The support set for non-heart pa-

tient class contains the value 3, indicating that

‘‘normal’’ value of this attribute would most

likely belong to a person who is not a heart pa-

tient. Similarly, the attribute number of major

blood vessels colored by fluoroscopy has values 0,
1, 2 or 3. The support set for diseased patient cat-

egory in this case includes values 1, 2 and 3, indi-

cating that heart patients have one or more

vessels blocked.
eart-patient class Support set for non-heart-patient class

ct}

{3—normal}

{0}

{1, 2, 3}

{No}

{Low}

<2.06

{136.1–168.7}

Male

http://www.niaad.liacc.up.pt/statlog/datasets.html
http://www.niaad.liacc.up.pt/statlog/datasets.html
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Using another practical data set, we now illus-

trate how the support sets can be used to represent

classificatory knowledge. The image segmentation

data also obtained from the above site, contains

pixels classified into categories BRICKFACE,
SKY, FOLIAGE, CEMENT, WINDOW, PATH

and GRASS. Each pixel is described with 19 attri-

butes, of which we find the seven most significant

ones are intensity, rawred-mean, rawgreen-mean,

rawblue-mean, value-mean, saturation-mean and

hue-mean respectively. The other attributes convey

positional information only and are correctly iden-

tified as insignificant for classification by our
approach. On analysis of support sets for the

significant attributes, we can extract the follow-

ing classificatory knowledge for image segmenta-

tion:

Rule 1: If intensity = HIGH and rawred-mean =

HIGH and rawgreen-mean = HIGH and

rawblue-mean = HIGH and value-mean =
HIGH, then class = SKY.

Rule 2: If Hue-mean = HIGH then class =

GRASS.

Rule 3: If Hue-mean = MEDIUM then class =

WINDOW.

Rule 4: If Hue-mean = LOW then class =

BRICKFACE.

Looking at the support sets for classes CE-

MENT and PATH, it was found that for all signif-

icant attributes, all of them were identical for these

two classes. Thus it can be predicted that it would

be difficult to distinguish between the tuples of

these two classes. The confusion matrix for classi-

fication of test data for this data set confirms this.

The support sets help in identifying correlated
features very easily. Strongly correlated features

have similar partitioning of support sets.
4. Classification of new elements

In this section, we propose a classification

scheme using the support set of an attribute value.
The support set of an attribute value contains

those classes, which have a high degree of associa-

tion with that particular value. Thus we compute
the likelihood of a class for a new data element

by considering whether it belongs to the support

set of the attribute value or not.

For a given attribute value Ar
i of the new ele-

ment, the likelihood of the element belonging to
a particular class t, on the basis of this attribute�s
value is given by Eq. (A.3), otherwise by Eq. (A.4).

LikelihoodðtÞ ¼ ð#r
i � 1:0Þ � P r

i ðtÞ;
if t 2 wr

i ð4:1Þ
LikelihoodðtÞ ¼ 0:0 otherwise ð4:2Þ

where wr
i is the support set for value Ar

i . The like-

lihood of each class for a data element is given

by its summation over all the significant attribute

values. The class that receives the maximum total

contribution is predicted as the actual class of

the data element. Since #r
i and P r

i ðtÞ are pre-com-
puted quantities, this computation is of the order

of O(g 0m) only, where g 0 is the number of signifi-

cant attributes and m is the total number of

classes.
5. Performance evaluation

The best validation for any classification data

mining system can be obtained by judging its clas-

sification performance. In this section we will

illustrate the performance of the proposed algo-

rithms on a number of standard data sets ob-

tained from the sites www.niaad.liacc.up.pt/

statlog/datasets.html and the UCI repository.

These data sets contain pre-classified data from
various domains. For each data set on which we

have experimented, our first aim was to extract

the significance of the attributes used for that

set. Numeric attributes were discretized using

equal interval discretization. Based on Dougherty

et al.�s study (Dougherty et al., 1995), which sug-

gest that 10 intervals are satisfactory for equal

value discretization, we have also used 10 inter-
vals for all the results reported in this paper. After

extracting the significance of the attributes, we or-

dered them and selected a suitable subset of attri-

butes for classification purposes. The results

reported in this section were obtained with a 10-

fold cross-validation over each data set.

http://www.niaad.liacc.up.pt/statlog/datasets.html
http://www.niaad.liacc.up.pt/statlog/datasets.html
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5.1. Classification using significant attributes

We will first establish the correctness of the sig-

nificance values computed for the features through

three different exercises.
We first compare the results of simple k-nearest

neighbour classification to a weighted k-nearest

neighbour algorithm, where the weights are the

significance of the attributes. In simple k-nearest

neighbour-based classification technique (Duda

et al., 2000), one finds k-nearest neighbours

of the element to be classified. The class assigned

to the new element is taken by a majority decision.
The distance between the new element and a train-

ing sample is given by ð
P

ðxi � yiÞ
2Þ1=2. In the

weighted approach we have used the distance meas-

ure ð
P

ðriðxi � yiÞÞ
2Þ1=2, where ri denotes the signif-

icance of featureAi, computed using our technique.

Columns 2 and 3 of Table 2 show the results for

the unweighted and the weighted approaches

respectively. The results are better for the weighted
approach, which shows that the significance values

of features are computed correctly. Next we com-

pared the results of weighted-k-nearest neighbor

classification done with all attributes, against that

obtained by applying the same algorithm but for a

selected subset of the attributes only. Column 5 of

Table 2 shows the number of attributes selected by

our approach for each domain. Columns 6 and 7
of Table 2 show the results of k-nearest classifica-

tion using the weighted and unweighted distance

measure, using a selected features only. It may be

noted that there is always a reduction in classifica-

tion error with weighted k-nn. There is also a sig-
Table 2

Classification accuracy improves with weighted k-nn. It also improve

Data set Number of attributes

in dataset

Error with all attributes (%)

Distance function

without

significance of

attributes

Distance

with sign

of attrib

Iris 4 6.9 6.6

Credit 8 32.7 29.9

Wine 13 4.5 3.3

Vehicle 18 33.7 32.9

Ionosphere 34 25.8 14.6

Image segment 19 5.7 2.9
nificant gain in performance when irrelevant

attributes are eliminated. This also shows the effec-

tiveness of the proposed feature selection

algorithm.

One of the most crucial steps for the implemen-
tation of our feature selection method is to decide

on a threshold for selecting the significant attri-

butes. Empirical observations show that if for

the most significant attribute Ai (say) in the data

base r(Ai) is less than 0.8, then only those attri-

butes for which both attribute-to-class association

i.e. Æ() and class-to-attribute association i.e. Œ()

are greater than sixty percent of r(Ai), contribute
significantly to the prediction of class of a new in-

stance. If in a database the most significant attri-

bute has r(Ai) value greater than 0.8, then for

that database only those attributes contribute sig-

nificantly to the class of an instance which have

Æ() and Œ() values greater than eighty percent

of the highest value. However, these are only

empirical observations and we are yet to provide
any theoretical basis for the selection of the thresh-

old value. Table 3 shows the highest significance

values obtained for an attribute in nine data sets

and also the threshold value for each of them.

We will now show the performance of our pro-

posed likelihood-based classification method

based on feature selection.

Table 4 presents a comparative study of the
proposed classification algorithm against those ob-

tained by C4.5 (obtained from www.niaad.liac-

c.up.pt/statlog/datasets.html and Wu, 1999), and

PEBLS (Cost and Salzberg, 1993). It may be ob-

served that classification performance obtained
s with reduction in insignificant attributes

Number of

significant

attributes

Error with significant

attributes only (%)

function

ificance

utes

Distance function

without weight

Distance function

with significance

of attributes

2 4.9 4.8

3 29.9 27.5

9 3.2 2.9

7 34.9 34.1

17 22.5 10.9

11 3.4 2.5

http://www.niaad.liacc.up.pt/statlog/datasets.html
http://www.niaad.liacc.up.pt/statlog/datasets.html


Table 3

Significance value of the most significant attribute and the

threshold value of cut-off for various data sets

Dataset Highest value of

significance of

an attribute

Threshold

significance

of attribute

Iris 0.84 0.67

Aus-Credit 0.71 0.43

Diabetes 0.37 0.22

Hayes-Roth 0.34 0.20

Vote 0.89 0.71

Wine 0.62 0.37

Heart 0.47 0.28

Vehicle 0.45 0.27

DNA 0.51 0.31
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by using our approach is quite encouraging for

most of the domains. There is an improvement in

classification accuracy. The only exception is that

of the domain ‘‘Hayes Roth’’. The reason for poor

performance in this domain may be attributed to

the fact that none of the attributes were really very

significant in this data set. Our feature selection

algorithm indicated that all features had very low
significance values. Only one feature was found

to be irrelevant. We applied our algorithm for high

dimensional data sets like the DNA data set also.

Classification results for the DNA data set is re-

ported in www.niaad.liacc.up.pt/statlog/. Classifi-

cation accuracy obtained for this set using C4.5

is reported there as 96% for training samples and

92.4% for the test samples. Using our approach,
the number of significant features detected is 18
Table 4

Comparison of classification accuracy using proposed method and C

Database Number of

instances

Total no of

attributes

Classification error

with C4.5

C

w

Iris 150 4 6.7

Aus-Credit 690 14 15.5 1

Diabetes 768 8 27.0 3

Hayes-Roth 160 4 14.4 1

Vote 435 16 3.0

Wine 178 13 1.9

Heart 270 13 30.1 2

Vehicle 846 18 33.3 3

DNA 3186 60 7.6
and the accuracy of classification is 93.5% with

10-fold cross-validation.

We also tried to see whether there was perform-

ance gain by using only the significant attributes

chosen by our method and using C4.5 with default
settings and pruning option set to yes, as men-

tioned in (Quinlan, 1993) as the classification algo-

rithm. However, results in this case were not so

encouraging. This was expected since every classi-

fication algorithm works best with its own evalua-

tion function.

Though it is beyond the scope of the proposed

work, it is worth mentioning that the choice of
the discretization method plays a significant role

in the performance of inductive learning algo-

rithms as has been shown in (Ching et al., 1995).

A class-dependent discretization technique has

also been proposed in the above paper. This paper

reports an improvement in performance for learn-

ing algorithms like AQ and ID3 with pre-pruning

and post-pruning, using their discretization tech-
nique. As shown there for the Iris data set, the best

classification accuracy was 95.2% (error—4.8%)

for ID3 with pre-pruning and 96.3% (error 3.7%)

for M-APACS, which is what we also obtained for

our proposed classification method (shown in

Table 4) with equal value discretization.

5.2. Classification using multiple features at a

time

To observe the effect of combining multiple fea-

tures over classification performance, we consid-
4.5 and PEBLS

lassification error

ith PEBLS

Number of

attributes selected

by our method

Classification error

using support sets

and likelihood

function

6.3 2 3.7

7.8 2 14.4

0.6 3 20.7

4.5 3 18.1

5.8 2 3.9

3.6 9 5.8

2.9 10 13.0

9.5 7 38.0

7.3 18 6.5

http://www.niaad.liacc.up.pt/statlog/


Table 5

Classification results using two feature subsets

Data set Classification error

with one feature-class

Classification error

with a pair of

features-class

correlation

Hayes-Roth 18.1 16.2

Vehicle 38.0 35.6

DNA 6.5 5.3
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ered all possible two-feature subsets and computed

the significance of these combinations using the at-

tribute-to-class and class-to-attribute associations.

Thus with g attributes we consider gC2 combina-

tions of feature pairs. Our computation mechanism

remains same, while the categorical values for the

attributes are now derived from combined labels

of the two attributes in the feature subset under
consideration. On experimenting with the data sets

mentioned in Table 4, most of the data sets did not

show any remarkable improvement in classification

accuracy. Only three data sets showed some

improvement which are illustrated in Table 5.

We observe that there can be some improve-

ment in classification accuracy obtained by using

more than one feature at a time, particularly when
none of the attributes have very high significance

values and thereby do not produce very accurate

classification results. However, the time complex-

ity of computing the significance of feature sets

grows significantly. As the number of features in

a subset is increased, the problem grows combina-

torially. Since there is very little improvement in

classification accuracy, so we did not proceed with
this approach any further. However, it may be

worth investigating this approach in combination

with heuristic branch-and-bound techniques.

5.3. Cost-sensitive learning schemes

For some domains, it is not enough to report

the classification accuracy. Rather they call for a
Table 6

Cost matrix for German credit data (left) heart-patients data (right)

Class ACTUAL Good ACTUAL Bad Clas

PREDICTED Good 0 (TP) 5 (FP) PRE

PREDICTED Bad 1 (FN) 0 (TN) PRE
more detailed cost-sensitive error analysis. Typi-

cally, medical data or credit-card data analyses fall

under this category. The results in these cases are

analyzed using a 2 by 2 matrix recording the num-

ber of True Positives (TP), True Negatives (TN),
False Positives (FP) and False negatives (FN).

Witten and Frank (2000) suggests a general tech-

nique for building cost-sensitive classifiers by var-

ying the proportion of instances in the training

set. A cost matrix is designed in which each entry

has a cost associated with it, which determines

the total reward or the total penalty. Rewards

are for correct identification of TP and TN in-
stances. The other two incur penalty. The total

penalty is calculated as a sum of individual penalty

multiplied by the number of entries in that

category.

We implemented cost-sensitive learning

schemes for two data sets—the heart-patients

database and German Credit Card database. In

both the cases, FP and FN instances have to be
minimized in order to minimize the total penalty.

However, we may associate a larger penalty for

not diagnosing a heart patient than for diagnosing

a non-patient as a patient. If we call absence of

heart disease as a positive case, then this can be

achieved by penalizing a FP (a heart patient not

diagnosed) five times more than that of a FN (a

non-heart patient incorrectly diagnosed). Simi-
larly, for the credit card database, a larger penalty

is incurred if a bad customer is identified as a

good customer, since this may lead to a greater

loss. Table 6 shows the cost matrix for the two

domains.

A cost-sensitive classifier can be easily designed

using our likelihood-based classification scheme.

We skew the likelihood of class ‘‘Present’’ for the
heart data base, by adding a positive quantity

(D) to the right hand side of Eq. (4.1), while keep-

ing the likelihood of ‘‘Absent’’ as earlier. We

started with a value of 0.05 for D and increased
s ACTUAL Absent ACTUAL Present

DICTED Absent 0 (TP) 5 (FP)

DICTED Present 1 (FN) 0 (TN)



Table 7

Cost-sensitive learning using biased likelihood for ‘‘negative’’ classes

Data set Penalty with our proposed

biased likelihood functions

Penalty with C4.5 Other best reported results

Algorithm name Penalty

Heart 39.9 78.1 Bayes 37.4

German credit 53.2 98.5 Discrim 53.5
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it by 0.05 till performance starts dropping. For the

German Credit Card database, the class ‘‘bad’’

was biased. The final value of D was found to be

0.35 for the heart database and 0.5 for the credit

card database. All classification results were ob-

tained by using the significant attributes only.

Table 7 summarizes the total penalty incurred by

our method against the best such results reported
in literature which we obtained from the site

www.niaad.liacc.up.pt/statlog/datasets.html. All

results are averages for 10-fold cross-validation,

with respect to the cost matrix presented in Table 6.
6. Conclusions

As real-world databases are normally large and

noisy, the problem of focusing on relevant infor-

mation has become increasingly important in data

mining. In this paper, we have presented a new

algorithm to compute significance of attributes

and then select a subset of features to be used

for classification purposes. The proposed algo-

rithm works with initial conditional probabilities
which is computed through one scan of the data

base. We have also proposed a classification meth-

od based on this approach. Results show that the

performance of this algorithm is comparable to

some of the well-known algorithms. We have also

shown that this approach can be used very effec-

tively for cost-sensitive learning. Cost-sensitive

learning mechanisms are very useful for real-world
data sets like those derived from medical and

financial domains.

This work is being currently extended to extract

multi-level classification rules using the support

sets associated to attribute values. We are also

working on computing inter-object distances based
on similar measures for unsupervized learning or

clustering of data sets.
Appendix A

Theorem 1. Algorithm FIND_SUPPORT_SET-

(Ar
i ) finds the set wr

i � J , such that for any other

w � J and w 6¼ wr
i ; ðPr

i ðwÞ þ P�r
i ð� wÞÞ < ðPr

i ðwr
i Þþ

P�r
i ð� wr

i ÞÞ.

Proof. Let J = {1,2,3, . . .,m}, the set of all classes.
Since, w and wr

i are subsets of J, therefore the fol-
lowing relations hold:

P r
i ðwr

i Þ ¼
X
t2wr

i

Pðt j Ar
i Þ ðA:2Þ

P�r
i ð� wr

i Þ ¼
X

t2ð�wr
i Þ
Pðt j A�r

i Þ ðA:4Þ

Therefore,

P r
i ðwÞ ¼

X
t2w

P ðt j Ar
i Þ ðA:2Þ

P�r
i ð� wÞ ¼

X
t2ð�wÞ:

P ðt j A�r
i Þ ðA:4Þ

As stated in Section 3.1.1 Algorithm FIND_SUP-

PORT_SET ðAr
i Þ ensures the following

8t 2 wr
i ; P ðt=Ar

i Þ > P ðt=A�r
i Þ ðA:5Þ

8t 2 � wr
i ; P ðt=Ar

i Þ < P ðt=A�r
i Þ ðA:6Þ

Now there are two possible relations between w
and wr

i . We deal with them separately to prove that

ðP r
i ðwÞ þ P�r

i ð� wÞÞ < P r
i ðwr

i Þ þ P�r
i ð� wr

i Þ is al-

ways true.

Case I: w \ wr
i ¼ U i.e. w and wr

i are disjoint

subsets of J.
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In this case, the following relations hold good.

w � � wr
i ðA:7Þ

� w ¼ ðwr
i Þ [ ð� wr

i � wÞ ðA:8Þ

� wr
i ¼ w [ ð� wr

i � wÞ ðA:9Þ
Therefore,

ðP r
i ðwÞ þ P�r

i ð� wÞÞ

¼
X
t2w

P ðt j Ar
i Þ þ

X
t2ð�wÞ

P ðt j A�r
i Þ by ðA.2Þ

¼
X
t2w

P ðt j Ar
i Þ þ

X
t2ðwr

i Þ
P ðt j A�r

i Þ

þ
X

t2ð�wr
i�wÞ

P ðt j A�r
i Þ by ðA.7Þ

Since w � � wr
i , thereforeX

t2w
P ðt j Ar

i Þ <
X
t2w

P ðt j A�r
i Þ by ðA.6Þ:

Hence,

ðP r
i ðwÞþP�r

i ð�wÞÞ

<
X
t2w

P ðt jA�r
i Þþ

X
t2wr

i

P ðt jA�r
i Þþ

X
t2ð�wr

i�wÞ
P ðt jA�r

i Þ

¼
X
t2w

P ðt jA�r
i Þþ

X
t2ð�wr

i�wÞ
P ðt jA�r

i Þþ
X
t2wr

i

P ðt jA�r
i Þ

¼
X
t2�wr

i

P ðt jA�r
i Þþ

X
t2wr

i

P ðt jA�r
i Þ by clubbing

the first two terms and using ðA.9Þ;

<
X
t2�wr

i

P ðt jA�r
i Þþ

X
t2wr

i

P ðt jAr
i Þ by ðA.5Þ

¼ P�r
i ð�wr

i ÞþP r
i ðwr

i Þ by ðA.2Þ and ðA.4Þ

Hence proved.

Case II: w \ wr
i 6¼ U.

In this case, we will be using the following

obvious set-theoretic relations

w ¼ ðw� wr
i Þ [ ðw \ wr

i Þ ðA:10Þ

wr
i ¼ ðwr

i � wÞ [ ðw \ wr
i Þ ðA:11Þ

w ¼ ðw�r
i � wÞ [ ð� wr

i � wÞ ðA:12Þ

� wr ¼ ðw� wrÞ [ ð� wr � wÞ ðA:13Þ
i i i
Therefore,

P r
i ðwÞþP�r

i ð�wÞ

¼
X
t2w

P ðt jAr
i Þþ

X
t2ð�wÞ

P ðt jA�r
i Þby ðA.2Þ

¼
X

t2ðw�wr
i Þ
Pðt jAr

i Þþ
X

t2ðw\wr
i Þ
P ðt jAr

i Þ

þ
X

t2ðwr
i�wÞ

P ðt jA�r
i Þþ

X
t2ð�wr

i�wÞ
P ðt jA�r

i Þ

using ðA.10Þand ðA.12Þ

<
X

t2ðw�wr
i Þ
Pðt jAr

i Þþ
X

t2ðw\wr
i Þ
P ðt jAr

i Þ

þ
X

t2ðwr
i�wÞ

P ðt jAr
i Þþ

X
t2ð�wr

i�wÞ
P ðt jA�r

i Þ

byusing ðA.5Þ for the third term

¼
X

t2ðW�wr
i Þ
Pðt jAr

i Þþ
X
t2wr

i

Pðt jAr
i Þþ

X
t2ð�wr

i�W Þ
P ðt jA�r

i Þ

byusing ðA.11Þ

<
X

t2ðW�wr
i Þ
Pðt jA�r

i Þþ
X
t2wr

i

P ðt jAr
i Þþ

X
t2ð�wr

i�wÞ
P ðt jA�r

i Þ

byusing ðA.6Þ for the first term;

¼
X
t2�wr

i

P ðt jA�r
i Þþ

X
t2wr

i

P ðt jAr
i Þbyusing ðA.13Þ

¼P�r
i ð�wr

i ÞþPr
i ðwr

i Þbyusing ðA.2Þand ðA.4Þ

Thus, it is proved that P r
i ðwÞ þ P�r

i ð� wÞ <
P�r
i ð� wr

i Þþ P r
i ðwr

i Þ for all w 6¼ wr
i . h
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