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Fuzzy models describe nonlinear input-output relationships with linguistic fuzzy rules. A hier-
archical fuzzy modeling is promising for identification of fuzzy models of target systems that
have many input variables. In the identification, (1) determination of a hierarchical structure of
submodels, (2) selection of input variables of each submodel, (3) division of input and output
space, (4) tuning of membership functions, and (5) determination of fuzzy inference method are
carried out. This article presents a hierarchical fuzzy modeling method with an uneven division
method of input space of each submodel. For selecting input variables of submodels, the multiple
objective genetic algorithm (MOGA) is utilized. MOGA finds multiple models with different input
variables and different numbers of fuzzy rules as compromising solutions. A human designer can
choose desirable ones from these candidates. The proposed method is applied to acquisition of
fuzzy rules from cyclists’ pedaling data. In spite of a small number of data, the obtained model
was able to give detailed suggestions to each cyclist. © 2002 Wiley Periodicals, Inc.

1. INTRODUCTION

Fuzzy modeling1,2 is a method to describe nonlinear input-output relationships
using fuzzy rules. For automatic acquisition of fuzzy rules, combinations of fuzzy
logic and neural networks have been studied.3–11 The fuzzy neural network (FNN)
in Refs. 5 and 9 is capable of identifying fuzzy rules and tuning the membership
functions by means of backpropagation learning. This FNN has been applied to the
fuzzy modeling of nonlinear systems.10
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Division of input space of fuzzy models is one of the important steps of fuzzy
modeling. This division is a coarse setting of model parameters, thus it determines
the performance of fine tuning using an FNN. For an appropriate division of input
space, several methods have been reported.12–16 These conventional methods have
achieved the division by merging similar membership functions or inserting new
ones. This article proposes a new method for dividing the input space unevenly
based on model errors.

As it is hard to obtain a sufficient data set from an actual plant with many
input variables that covers the whole input space, a hierarchical fuzzy modeling
method using multiple FNNs11 was proposed. Each submodel in the hierarchical
fuzzy model has a smaller number of input variables. Therefore, it does not need
many data for the description of the input-output relationships in the subspace.

Karr, Freeman, and Meredith17 proposed a combination of fuzzy logic and a
genetic algorithm (GA). A GA finds fuzzy rules using the payoff for the success/
failure of its actions. A GA was applied to identification of the hierarchical structure
of the fuzzy model18 from given input-output pairs of data. Matsushita, et al.19 and
Furuhashi, et al.20 have applied a GA to selection of input variables in hierarchical
models. This method is very effective in the case where the plant has a strong
nonlinearity.

This article studies the performance of hierarchical fuzzy modeling using the
multiple objective genetic algorithm (MOGA).22 Two types of coding are tested for
acquiring various fuzzy models on a Pareto front. Numerical experiments using a
data set generated from a nonlinear equation are done. The results show that a new
coding that decides the number of divisions of input space of each submodel is
effective for generating various models on the Pareto front. The proposed division
method and the new coding method are applied to a fuzzy modeling of 14 cyclists’
pedaling. It is shown that useful suggestions for each cyclist were extracted from
the obtained model.

2. FUZZY MODELING

Fuzzy modeling is a method to identify input-output relationships using fuzzy
if-then rules. Hierarchical fuzzy modeling is used to carry out the following:

(1) Determination of a hierarchical structure of submodels
(2) Selection of input variables of each submodel from candidates obtained from the mod-

eling object
(3) Division of input and output space of each submodel
(4) Tuning of membership functions
(5) Determination of a fuzzy inference method

In this section, step 3 is mainly discussed. For the division of input space, this
section presents a new method based on model errors and a statistical test.

Steps 1 and 2 are discussed in Section 3. For steps 4 and 5, this article uses the
fuzzy neural network (FNN) described in Refs. 5 and 9. This FNN is described in
the following subsections.
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2.1. Fuzzy Rules and a Simplified Fuzzy Inference Method

Suppose that the target system has M inputs and N outputs, and the fuzzy
modeling is to identify the input-output relationships with fuzzy rules. The i th rule
Ri (i = 1, . . . ,NOR) is described as:

Ri : IF x is Ai THEN y is Bi (1)

x = (x1, x2, . . . , xM), y = (y1, y2, . . . , yN ),
(2)

Ai = (
Ai

1, A
i
2, . . . , A

i
M

)
, Bi = (

Bi
1, B

i
2, . . . , B

i
N

)
where the input variables xm (m = 1, . . . , M) and the output variables yn (n =
1, . . . , N ) are real numbers, Ai

m is the fuzzy variable for the mth input variable, and
Bi
n is the fuzzy variable for the nth output variable.

This article uses the simplified fuzzy inference method given by:

µi (x) =
M∏

m=1

Ai
m(xm) (3)

µ̂i (x) = µi (x)∑NOR
j=1 µ j (x)

(4)

y∗
n (x) =

NOR∑
i=1

µ̂i (x)bin (5)

where Bi
n in Equation 2 is a singleton denoted by bin , µi is the activation value of

Ri , µ̂i is the normalized activation value, and y∗
n is the inferred value.

The parameters to be determined are the division of input space, the shapes of
membership functions in the antecedent parts, and the singletons in the consequent
parts.

2.2. Fuzzy Neural Network

A fuzzy neural network is a good tool to finely tune the parameters, such as
the shapes of membership functions and the singletons in the consequent parts. The
FNN presented in Refs. 5 and 9 is a multi-layered backpropagation (BP) model with
a specially designed structure for easy extraction of fuzzy rules from a trained one.
This article uses Type I of the FNNs in Ref. 9. Figure 1 shows an example of the
FNN.

This is a case where the FNN has two inputs, x1 and x2, one output y, and three
membership functions for each input. The backpropagation (BP) learning algorithm
can be applied to modify the connection weights wc,wg, and wb.

Figure 2(a) shows an example of membership functions in the antecedent
formed in the (A)–(D) layers. The connection weights, wc and wg, determine the
positions and slopes of the sigmoid functions f in the units in the (C) layer, re-
spectively. The output of the (C) layer, the grade of the membership function Ai

m , is
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Figure 1. Fuzzy neural network.

given by:

Ai
m = f

(
wi,m

g ∗ (
xm + wi,m

c

))
(6)

Each membership function consists of one or two sigmoid functions. The outputs of
the units in the (D) layer are the values of the membership functions. The products
of these values are the inputs to the units in the (E) layer. The outputs of the units
are the normalized activation values in the antecedent µ̂i in Equation 4. The output
of the unit in the (F) layer is the sum of the products of the connection weights
wb and the normalized truth values. The connection weights wb correspond to the
singletons in the consequent parts bin as shown in Figure 2(b). The output in the (F)
layer is, therefore, the inferred value y∗

n in Equation 5.
The model infers y∗(xs) = (y∗

1 (xs), . . . , y∗
N (xs)) for a teaching signal (xs, ys).

The error es for this teaching signal is given by:

es = (
es1, e

s
2, . . . , e

s
N

)
(7)∀n (n = 1, . . . , N ) esn = y∗

n (x
s) − ysn
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The parameters of the FNN are updated so that:

minimize E =
N∑
n

NOD∑
s

(
esn

)2 (8)

where NOD is the number of sampled data.
Since the center-of-gravity method is used in the (E) layer, the updating method

of connection weights, i.e., the BP algorithm, needs some modifications. The learning
algorithm for the FNN is well described in Ref. 9.

The feature of this FNN is that fuzzy rules can be extracted easily from the
trained FNN. The conventional three-layered neural network can identify the input-
output relationships. However, it is hard to extract rules from the trained three-layered
neural network.

2.3. Division of Input Space

Initial division of the input space determines the performance of the fine tuning
of the FNN. There are three major methods to divide the input space for fuzzy
modeling: grid-type, tree-type, and cluster-type. The grid division tends to identify
a model with too many rules in the case in which the data set has multiple input
variables. In this article, we choose tree division, which divides the input space in
a way similar to a decision tree. The number of divisions is made smaller with this
division method, and it is easy for us to extract rules from the identified model. The
cluster-type division probably makes the simplest model with the smallest number
of rules. But the divided subspaces do not cover the input space and the identified
model sometimes loses generality. This subsection presents a tree division using the
statistical t-test. This test is to examine whether the average value of a group of data
is significantly different from that of the other group. This article uses the p-value
of the t-test. We apply the t-test as the stopping condition of the following division
algorithm:

(1) The I -dimensional input space (we assume that the data have I input variables) is not
divided initially; i.e., the number of subspaces equals 1. A fuzzy rule is identified in
each subspace; the number of rules, NR , is the same as the number of subspaces. Thus,
NR is 1 initially. The subspace, which covers the whole input space, is denoted by S1.

(2) The data are divided into NR data sets. If the input of a datum is in the r th subspace Sr ,
this datum belongs to the r th data set. One of subspaces is going to be divided into two.
This subspace SDIV is decided as:

SDIV = arg max
r=1,...,NR

(nr − 1)V (Sr ) (9)

where V (Sr ) and nr are the variance of outputs and the number of data in the r th data
set, respectively.

The selected subspace for the division is the one with the maximum error. SDIV is
divided into new two subspaces, Snew1 and Snew2. The dividing point, xd , is decided as:

min
i=1,...,I

min
xdi∈SDIV

{(nnew1 − 1)V (Snew1(i, xdi )) + (nnew2 − 1)V (Snew2(i, xdi ))} (10)

where Snew1(i, xdi p) and Snew2(i, xdi ) denote the data sets generated by dividing SDIV at
xdi , which is the dividing point on the i th axis. NR is increased by 1; i.e. NR := NR +1.
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Figure 3. Obtained division and membership functions.

(3) The division of the data set is evaluated by a t-test. If the p-value is less than the preset
significance level, step 2 is repeated to divide another subspace. We consider that if the
p-value of the t-test to a division is less than a pre-specified level, the average output
values in the two divided subspaces are significantly different from each other.

(4) An FNN with NR rules is generated and trained. The training of the FNN is only to
adjust the singletons in the consequent parts for an efficient training.

The division process is repeated until the p-value becomes greater than the signif-
icance level, or the number of rules becomes greater than a decided-upon number.
Figure 3 shows an example of uneven division of the input space xk and xl , and the
membership functions.

3. HIERARCHICAL FUZZY MODELING

A hierarchical fuzzy model is effective in the case in which (1) the modeling
target has many input variables, and (2) a small amount of data is given.

A fuzzy model with too many rules (empirically one-fifth or more of the number
of data) lacks the generality and the estimation ability. For a small-sized data set
of 20 input-output pairs, for example, a model with three or four rules tends to
have good generality and good estimation value. These three or four rules are all the
information extracted from the data. More fuzzy rules can be obtained from the same
data set with our hierarchical fuzzy modeling method, by identifying a hierarchical
structure of submodels. The model is, of course, effective for a large-sized data set.
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Figure 4. A hierarchical fuzzy model using FNNs.

3.1. Structure of Hierarchical Fuzzy Model

The structure of a hierarchical fuzzy model is illustrated in this subsection.
Figure 4 shows an example of a hierarchical fuzzy model, which consists of three
FNN submodels. The figure shows a case where the model has a five-dimensional
input vector X = (x1, x2, x3, x4, x6), a single output y = (y), and a two-layered
hierarchical structure. In Figure 4, y{1,1}∗, y{1,2}∗, and y∗ are the inferred values of
the fuzzy submodels. In the first layer, the submodel SM{1,1} is the fuzzy model with
the inputs x2 and x3. The other fuzzy model with x1 and x6 are lined up in parallel.
The outputs of these models are y{1,1}∗ and y{1,2}∗, respectively. These two fuzzy
submodels in the first layer greatly contribute to the input-output relationships of the
system. The input variable x4 is used by the fuzzy submodel in the second layer. This
input is considered to be used for a small adjustment of the model. This fuzzy model
reduces the number of input variables for each submodel. This makes each fuzzy
rule simple, and makes the number of fuzzy rules small. This reduction of fuzzy
rules prevents the model from over-fitting. The obtained fuzzy model, therefore, has
generality.

The authors have proposed a hierarchical fuzzy modeling method using FNNs
and a GA.11,19 Each submodel was built using an FNN. A proper set of input variables
and sets of membership functions for the submodel were selected by a GA. A
hierarchical structure was constructed by finding proper submodels one by one.

3.2. Procedure of Hierarchical Fuzzy Modeling

This subsection describes the procedure of constructing a hierarchical fuzzy
model. In this subsection, the modeled system is assumed to have an M-dimensional
input vector X and a single output y.
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(1) The number of layer h and the model number in the layer j are initially set to 1; i.e.,
h := 1 and j := 1.

(2) In this step, the structure of the j th submodel in the hth layer is identified. The submodel
is denoted by SM{h, j}. This model is identified using the method in Section 3.3. A set
of input variables are selected out of the candidates of inputs X by the multiple objective
genetic algorithm.

If j equals 1, this submodel is the first one in the hth layer to be identified. For other
models, the errors of SM{h, j − 1} are used. The teaching signal y{h, j} is given by:

y{h, j} :=
{
y ( j = 1)

e{h, j−1} ( j 
= 1)

If the sum of outputs of the submodels in the previous layer (h − 1) is better than that
of the obtained fuzzy model SM{h, 1}, the sum is used as the final inference value, and
this process is stopped. If not, go to step 3.

(3) The next step is the fine tuning of the acquired model SM{h, j} by the BP learning of
the FNN.9 The membership functions in the antecedent parts and the singletons in the
consequent parts are modified to obtain the best model.

(4) j is increased by 1 ( j := j + 1). If j is smaller than a preset number J (maximum
number of models allowed in a layer), go to step 2. If j equals J , submodels in the next
layer are to be identified. The outputs of submodels in the current layer can also be used
as input variables of submodels in the next layer:

∀ j ( j = 1, . . . , J ) XM+ j := y{h, j}∗ (11)

M := M + J (12)

where y{h, j} denotes the output of SM{h, j}. Set j := 1, h := h + 1, and go to step 2.

3.3. Identification Methods of Submodel

This subsection introduces two methods of structure identification of each
submodel. Both methods utilize the multiple objective genetic algorithm (MOGA).

The first method encodes the combination of input variables. Figure 5 shows
an example of the chromosome. This method is called method 1 in this work.

If a gene contains 1, the corresponding variable is used as an input variable of
the submodel. If it contains 0, the variable is not used.

The other method encodes the maximum allowable number of fuzzy rules
as well as the combination of input variables. Figure 6 shows an example of the
chromosome. The number of fuzzy rules is encoded in n1 to nK by binary numbers.
In this case, the stopping condition for the division of input space is not the preset

x1

1 1 10 0

x2 x3 x4 xMx…
…

Figure 5. An example of the chromosome for method 1.

x1 n1 nk

1 1 10 0

x2 xMx

…
…

…
…

Figure 6. An example of the chromosome for method 2.
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p-value. The input space determined by the chromosome is divided up into the
number given by the chromosome.

g(p) = (g1(p), g2(p), . . . , gL(p)) denotes the pth chromosome in the popu-
lation. Each gene has a binary number, 0 or 1, as shown in the example. The length
of each chromosome L is the same as M in the first method and M+K in the second
method. The population, that is the number of chromosomes, is denoted by P .

The evolution of individuals is carried out by the following procedure:

(1) Chromosomes are initialized to contain 0 in each gene. The binary number in each gene
is flipped to 1 with the probability of prini .

∀p = 1, . . . , P, ∀n = 1, . . . , L, gn(p) =
{

1, with the probability of prini
0, otherwise

(2) Chromosomes are evaluated. Chromosome g(p)decides a combination of input variables
and a number of fuzzy rules. A model θ p is identified using only the selected input
variables and the output variable. The division process of the input space described in
Section 2.3 is carried out.

The fitness vector f (p) = ( f1(p), f2(p), f3(p)) is used for the evaluation of the chro-
mosome. The elements in the fitness vector evaluate estimation ability of the submodel,
the number of rules, and the number of input variables, respectively. f1(p) is Akaike
information criterion (AIC)21 given by:

f1 = ND log

(
E

ND

)
+ 2DOF (13)

where ND is the number of data examples, E is the total error in Equation 8 and DOF
is the degree of freedom of the model. DOF is given by:

DOF = 2NR − 1 (14)

for this uneven division of input space, where NR is the number of rules. AIC is a good
criterion for the estimation capability of submodels. f2(p) and f3(p) are the number of
rules and the number of selected input variables of the model θ p , respectively.

f2 = NR (15)

f3 = NV (16)

where NV is the number of selected input variables. The smaller these values are, the
better the submodel is. The solution has to be a trade-off between these values, especially
the pairs ( f1, f2) and ( f1, f3).

The rank of chromosome g(p) in the population is given by:

rank(p) := 1 + n(p) (17)

where n(p) is the number of chromosomes that are “superior” to the chromosome gp .
The “superiority” is defined such that g(q) is superior to g(p) in the case where:

(∀i = 1, 2, 3) fi (q) ≤ fi (p) ∧ (∃i = 1, 2, 3) fi (q) < fi (p) (18)

(3) If rank(p) is 1, the chromosome is elite. Elite chromosomes are reserved for the next
generation.

(4) The crossover operation is applied to the whole population except for the elites at the
rate of prcr . Parents are selected according to the total fitness value of chromosomes.
The total fitness value of chromosome g(p) is given by 1/rank(p).

The mutation operation is applied to each gene of all the chromosomes except for that
of the elite chromosomes at the rate of prmut .
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(5) Stop if the number of elite chromosomes becomes larger than a preset number, or
generations become larger than a pre-decided limit number. Otherwise, go to step 2.

Multiple elite models are obtained by the above processes. A human designer
should select a desirable model out of the obtained elite models. If the designer
regards the conciseness of the model to be more important than the estimation
ability, he/she would choose a model with a smaller number of rules.

4. NUMERICAL EXPERIMENT

In this section, two coding methods introduced in Section 3.3 are examined.
Then the proposed hierarchical fuzzy modeling method is applied to acquisition of
fuzzy rules from a data set of 14 cyclists.26

4.1. Effect of Coding Method in Section 3.3

We used the following nonlinear equation as the modeling target:

y = sin(πx1) + cos(π(x1 + x2)) + cos(πx1x3) + sin(π(x1 − x4)) (19)

A variable x5 that has no relationship with y was also used. The value of each input
was set at {0, 0.5, 1}. (35 =) 243 data examples were generated from this equation.

The first fuzzy submodel in the first layer, FM1,1, was identified. Figure 7 shows
the value of AIC versus the numbers of rules of all the possible combinations of less
than four input variables.

Figure 8 shows an example of elite models obtained by method 1. Seven solu-
tions were obtained. Figure 9 shows another example of candidate models obtained
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Figure 7. All possible solutions with less than four inputs.
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Figure 8. Models obtained by method 1.

by method 2. Fifteen solutions were obtained. These models generated by method 2
were spread widely over the Pareto front. The significant difference in these results
was due to the difference in the coding method. Recall that method 2 let the number
of rules NR be determined by a GA. And the MOGA with method 2 could generate
various candidates.

–950

–900

–850

–800

–750

–700

–650

0 5 10 15 20 25 30

A
IC

Number of rules

Figure 9. Models obtained by method 2.
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Figure 10. Obtained division of input space with three rules.

Figure 10 and Figure 11 show two examples of the obtained divisions of input
space. In both cases, x1 and x2 were selected as input variables. The obtained fuzzy
rules are shown in Table I and Table II, respectively. The fuzzy rules can be expressed
by linguistic labels as shown in the tables.
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Figure 11. Obtained division of input space with seven rules.
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Table I. Obtained rule set with three fuzzy rules.

IF x1 is not large and x2 is small THEN y = 1.6
IF x1 is large THEN y = 0.33
IF x1 is not large and x2 is not small THEN y = 0.62

Table II. Obtained rule set with seven fuzzy rules.

IF x1 is not large and x2 is small THEN y = 1.6
IF x1 is large and x2 is small THEN y = −0.67
IF x1 is small and x2 is not small THEN y = 0.16
IF x1 is medium and x2 is medium THEN y = 0.57
IF x1 is large and x2 is medium THEN y = 0.33
IF x1 is medium and x2 is large THEN y = 1.6
IF x1 is large and x2 is large THEN y = 1.3

Table III. Obtained rule set with 21 fuzzy rules.

IF x1 is small and x2 is not large and x3 is small THEN y = 0.68
IF x1 is large and x2 is small and x3 is small THEN y = 0.20
IF x1 is small and x2 is small and x3 is not small THEN y = 0.70
IF x1 is large and x2 is medium and x3 is small THEN y = 0.40
IF x1 is small and x2 is medium and x3 is not small THEN y = 0.50
IF x1 is large and x2 is large and x3 is small THEN y = 0.60
IF x1 is medium and x2 is small and x3 is small THEN y = 0.91
IF x1 is medium and x2 is medium and x3 is not small THEN y = 0.41
IF x1 is medium and x2 is large and x3 is medium THEN y = 0.71
IF x1 is large and x2 is small and x3 is medium THEN y = 0.40
IF x1 is large and x2 is medium and x3 is medium THEN y = 0.60
IF x1 is large and x2 is large and x3 is large THEN y = 0.60
IF x1 is small and x2 is large and x3 is small THEN y = 0.40
IF x1 is small and x2 is medium and x3 is not small THEN y = 0.30
IF x1 is large and x2 is medium and x3 is large THEN y = 0.40
IF x1 is large and x2 is medium and x3 is large THEN y = 0.80
IF x1 is large and x2 is small and x3 is large THEN y = 0.20
IF x1 is medium and x2 is small and x3 is medium THEN y = 0.71
IF x1 is medium and x2 is not small and x3 is small THEN y = 0.81
IF x1 is medium and x2 is large and x3 is large THEN y = 0.51
IF x1 is medium and x2 is small and x3 is large THEN y = 0.51

Table III shows another set of fuzzy rules obtained by method 2. There were
21 fuzzy rules. These rules had three input variables. This model had less amount
of error, but the number of rules was large. Human users can choose one of the
solutions according to his/her own purpose.

4.2. Analysis of Cyclists’ Pedaling Technique

The proposed hierarchical fuzzy modeling method with the tree-division
method and the coding method 2 was applied to extraction of pedaling know-how
from pedaling data of 14 cyclists.26 All cyclists were measured while they were
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Figure 12. Force patterns of five cyclists.

pedaling at their maximal effort. Six cyclists of the 14 were also measured while
they were pedaling at 90 percent of their maximal outputs. The number of data was
20. The data set consisted of pedal angle θ , and normal and tangential forces to
the pedal as functions of crank angle ranged from 0 to 360 degrees. Two variables,
absolute value of the force exerted on the pedal, |F |, and angle of the force direction
to the pedal, θF , were calculated. The variables |F |, θF , and θ were averaged in
every 90 degrees of the crank angle. Three variables in four ranges, for a total of 12
variables, were obtained as the inputs. The output variable y is the average output
power [watt]. Figure 12 depicts force patterns of five cyclists. Cyclist A had the
weakest output among the 14. Cyclist E was the best of the 14. Common interests
by cyclists with this kind of data were: the factor that affected the output most; and
the point that they should concentrate on to improve their outputs.

4.2.1. Hierarchical Fuzzy Model of Cyclists’ Data

Hierarchical fuzzy modeling was utilized to analyze the data. Figure 13 depicts
the final structure of the obtained hierarchical model. The submodels SM{1-1} and
SM{1-2} were identified. The outputs of the two obtained submodels were added in
the second layer.

Figure 14(a) shows the solutions for the first submodel in the first layer searched
by the MOGA. The solutions, which were on the Pareto front in the final generation,
are indicated by circles. We selected the model with four rules and two inputs out
of the compromising solutions as the submodel SM{1, 1}. Table IV shows the fuzzy
rules of this submodel. The two inputs were |F |1, the force strength, and θF1, the
force direction, in the first half of downstroke. Linguistic labels and ranges in which
the grades are greater than 0.5 are shown. The consequent singletons, y1, are also
shown. The universe of discourse of the input is shown in the bottom row. The rules
were interesting. Though the force |F |1 of rule 3 was stronger than that of rule 2,
the application of the force was to a wrong direction; i.e., a small θF1 limited the
output.
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Figure 13. Obtained hierarchical model.

Further information would not be obtained from this quite small amount of
data unless hierarchical modeling was utilized.

The second submodel SM{1, 2} was identified using the error of submodel
SM{1-1} as its output. Figure 14(b) shows the solutions for submodel SM{1-2}.
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Figure 14. Solutions searched by MOGA for each submodel.
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Table IV. Fuzzy rules in submodel SM{1-1}.
No |F |1 θF1 y1

1 Large (315∼) Large (−78∼) 253
2 Medium (274 ∼ 315) — 209
3 Large (315∼) Small (∼−78) 207
4 Small (∼274) — 184

176 ∼ 371 −83 ∼ −48

Table V. Fuzzy rules in submodel SM{1-2}.
No |F |3 θF3 y2

1 Large (97∼) Large (−137∼) +16
2 — Small (∼−137) +6
3 Small (∼97) Large (−137∼) −15

42 ∼ 114 −244∼−97

We chose the model with three rules and two inputs. Table V shows the rules. The
strength |F |3 and the force direction θF3 in the first half of upstroke were selected
as the inputs of the compensative submodel. These rules were also interesting. If the
force direction was small (nearly parallel to the pedal surface), the strength did not
contribute to the output. If it was large, the error of SM{1, 1} depends on |F |3.

For the first submodel in the second layer, SM{2,1}, the outputs of submodels in
the first layer were also the candidates of its inputs. Figure 14(c) shows the solutions
for submodel SM{2-1}. We chose the model with four rules and two inputs. Table VI
shows the rules. The rules indicate that the compensation by the submodel SM{1-2}
was needed only for the cyclists in intermediate levels. But, the model did not have
less error than the sum of the outputs of submodel SM{1-1} and submodel SM{1-2}.
So, in the second layer, a sum unit was employed instead of the fuzzy model SM{2, 1}.

The root-mean-squared error of the hierarchical fuzzy model was 7.1 watts,
which was 3.3 percent of the average output, 211 watts. The model had 12 degrees
of freedom in total. A linear regression with 13 degrees of freedom gave a smaller
error. The root-mean-squared error with the linear regression was 4.8 watts. However,
more detailed information was extracted from the fuzzy model as discussed in the
next subsection.

Table VI. Fuzzy rules in submodel SM{2-1}.
No y1 y2 y

1 Large (229∼) — 253
2 Medium (196 ∼ 229) Large (−15∼) 212
3 Medium (196 ∼ 229) Small (∼−15) 188
4 Small (∼196) — 184

183 ∼ 266 −18 ∼ +12



STRUCTURE IDENTIFICATION METHOD OF SUBMODELS 511

Table VII. Activation values of fuzzy rules of five cyclists.

Rule no (consequent singleton) Output

1 (253) 2 (209) 3 (207) 4 (184) 1 (+16) 2 (+6) 3 (−15) Inferred Actual

A 0 0 0 100 0 51 49 176.2 163.0
B 29 61 8 2 3 33 64 203.5 196.4
C 11 0 74 16 70 9 20 222.7 230.5
D 61 37 1 1 0 100 0 244.2 248.2
E 97 0 1 2 63 28 9 278.5 279.6

4.2.2. Discussion

The fuzzy model gave us more information about the pedaling technique. The
strength and the force direction in the first half of downstroke were important. And
those in the first half of upstroke were also important. This information was difficult to
extract from the linear regression. The correlation coefficients of input variables to the
output were 0.78 at the maximum. The most related input variable to the output was
|F |2: strength in the second half of downstroke. The second maximal coefficient was
0.60 of the strength in the first half of downstroke, |F |1. The correlation coefficients
of the force directions in the halves of downstroke θF1 and θF2 were −0.08 and 0.47,
respectively. The correlation coefficients of the force strength |F |3 and direction θF3

in the first half of upstroke, which were selected by the fuzzy model, were 0.52 and
0.20, respectively.

The fuzzy model found out the combination effects of the force strength and the
direction, which the linear regression could not reveal. Furthermore, the fuzzy model
was able to give detailed information as follows: Table VII shows the normalized
activation values of four fuzzy rules in SM{1, 1} and three fuzzy rules in SM{1, 2}
in the case of five cyclists, A–E. The activation values are normalized so that the
sum of all the activation values of a submodel is 100 percent.

Cyclist A matched the fourth rule in submodel SM{1-1}, and matched the
second and the third rules in submodel SM{1-2} half and half. Referring to Table IV,
the major cause of his relatively low performance was explained by the small force in
the first half of downstroke. And referring to Table V, the minor cause was explained
by the application of force to a wrong direction in the first half of upstroke.

According to the second row in Table VII, Table IV, and Table V, the pedaling
of cyclist B was characterized by the medium force in the first half of downstroke
and the small force in the first half of upstroke. He should take more care in his
upstroke than downstroke.

The third line in Table VII and the rule tables indicate that the pedaling of
cyclist C was characterized by the strong but wrong directional force in the first half
of downstroke and the large force in the first half of upstroke. He should mind the
force direction in his downstroke.

Cyclist D had acquired proper force direction in the first half of downstroke,
because the first and the second rules of submodel SM{1-1} had higher activa-
tion values. He should improve strength in downstroke and correct the direction in
upstroke.
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These pieces of advice were extractable because the acquired fuzzy models
had interpretability. Especially for a small data set, the proposed hierarchical fuzzy
modeling is effective.

5. CONCLUSION

This article presented a hierarchical fuzzy modeling method. A new division
method of input space of each submodel based on model errors was proposed. The
MOGA was utilized to determine a combination of input variables and number of
rules of each submodel. Two coding methods were proposed and tested. The coding
method that encodes both combinations of input variables and number of rules
generated various compromising solutions on the Pareto front. A human designer
can choose the desirable one from the candidates.

The proposed hierarchical fuzzy modeling method was applied to acquisition
of fuzzy rules from cyclists’ pedaling data. In spite of a small number of data, the
obtained model was able to give detailed suggestions to each cyclist.
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