
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003 519

Evolving Accurate and Compact Classification Rules
With Gene Expression Programming
Chi Zhou, Weimin Xiao, Thomas M. Tirpak, Member, IEEE, and Peter C. Nelson

Abstract—Classification is one of the fundamental tasks of data
mining. Most rule induction and decision tree algorithms perform
local, greedy search to generate classification rules that are often
more complex than necessary. Evolutionary algorithms for pattern
classification have recently received increased attention because
they can perform global searches. In this paper, we propose a
new approach for discovering classification rules by using gene
expression programming (GEP), a new technique of genetic
programming (GP) with linear representation. The antecedent
of discovered rules may involve many different combinations of
attributes. To guide the search process, we suggest a fitness func-
tion considering both the rule consistency gain and completeness.
A multiclass classification problem is formulated as multiple
two-class problems by using the one-against-all learning method.
The covering strategy is applied to learn multiple rules if appli-
cable for each class. Compact rule sets are subsequently evolved
using a two-phase pruning method based on the minimum de-
scription length (MDL) principle and the integration theory. Our
approach is also noise tolerant and able to deal with both numeric
and nominal attributes. Experiments with several benchmark data
sets have shown up to 20% improvement in validation accuracy,
compared with C4.5 algorithms. Furthermore, the proposed GEP
approach is more efficient and tends to generate shorter solutions
compared with canonical tree-based GP classifiers.

Index Terms—Classification rule, data mining, gene expression
programming (GEP), genetic algorithms (GAs).

I. INTRODUCTION

RECENTLY, there has been a growing interest in the area of
data mining, where the goal is to discover useful knowl-

edge from observed data. Among various data mining tasks, ex-
tracting classification rules is a fundamental activity. Given a
set of predetermined, disjoint target classes ,
a set of input attributes , and a set of training
data with each instance taking the form ,
where () is in the domain of attribute and as-
sociated with a unique target class label, the task is to build a set
of IF-THENrules that can be used to predict the target category for
new unseen data given its input attributes’ values. Rule induc-
tion (e.g., CN2 [10]) and decision tree algorithms (e.g., CART
[8] and C4.5 [46]) are traditionally employed to derive classifi-
cation rules from data. These algorithms can quickly generate

Manuscript received August 30, 2002; revised July 2, 2003. This work was
supported in part by Motorola’s Advanced Technology Center and in part by
the Manufacturing Research Center.

C. Zhou, W. Xiao, and T. M. Tirpak are with the Motorola Advanced
Technology Center, Motorola, Schaumburg, IL 60196-0178 USA (e-mail:
A19387@motorola.com; AWX003@motorola.com; T.Tirpak@motorola.com).

P. C. Nelson is with the Artificial Intelligence Laboratory, Department of
Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7053
USA (e-mail: nelson@cs.uic.edu).

Digital Object Identifier 10.1109/TEVC.2003.819261

rules that are relatively accurate and understandable. The dis-
advantage, however, is that the generated rules are often more
complex than necessary [36]. The reason is that the local, greedy
search performed by traditional algorithms selects only one at-
tribute at a time and, therefore, the feature space is approximated
by a set of hypercubes. In real-world applications, the feature
space is often very complex and a large set of such hypercubes
might be needed to approximate the class boundaries between
clusters of different classes.

Genetic classifiers, which are based on evolutionary al-
gorithms such as genetic algorithms (GAs) [23] and genetic
programming (GP) [31], have been proposed as alternative
methods. Based on the principle of natural selection and
“survival of the fittest,” evolutionary algorithms operate by
iteratively evolving a population of chromosomes, encoding
candidate solutions, through genetic operators, i.e., selection,
crossover, and mutation, to find an optimum solution. Unlike
most traditional rule-learning algorithms, genetic classifiers
perform a global search in which genetic operators can select
many attributes at a time. Possible solutions, i.e., candidate
rules are evaluated by the fitness function. One disadvantage
of genetic classifiers, however, is that they are usually compu-
tationally intensive. Nevertheless, in the cases where off-line
computation time is not a limiting factor, a genetic classifier
may be more desirable.

Gene expression programming (GEP) [15] is a new technique
of evolutionary algorithm for data analysis. GEP uses fixed-
length, linear strings of chromosomes to represent computer
programs in the form of expression trees of different shapes and
sizes, and implements a GA to find the best program. Although
Ferreira does not mention this relationship, GEP can be consid-
ered a specialization of GP based on linear string representation.
As we will see later in this paper, GEP combines the advantages
of both GA and GP, while overcoming some of their individual
limitations.

In this paper, we propose a new approach for mining clas-
sification rules by using GEP technique. The discovered rules
are high order in the sense that the rule antecedents can in-
volve any logical or mathematical combination of attributes.
The basic idea is to decompose a multiclass problem into
multiple binary classification problems and then perform evo-
lutionary search using GEP for better inductive learning of
rules based on the covering strategy for each class. The min-
imum description length (MDL) principle and the integration
theory are applied to avoid overfitting and remove redundant
rules. The experimental results conducted on several bench-
mark data sets have demonstrated that our approach achieved
up to 20% improvement in validation accuracy and much

1089-778X/03$17.00 © 2003 IEEE

520 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

smaller size of rule sets, compared with the C4.5 algorithms.
In comparison with the canonical tree-based GP approach,
GEP runs more efficiently and tends to produce shorter so-
lutions. The remaining sections of this paper are organized
as follows. In Section II, we review related work of learning
classification rules through evolutionary algorithms. The fol-
lowing section contains a brief description of GEP. Section IV
describes the proposed GEP approach for classification rule
discovery. Then, we present the study of benchmark tests and
comparison between GEP, C4.5, and traditional GP classifiers.
The final section draws the conclusions and some directions
for future work.

II. RELATED WORK

As a robust, domain-independent mechanism for numeric
and symbolic optimization, GAs have been applied to evolve
a set of production rules for more than two decades, which
forms a machine learning paradigm called learning classifier
systems (LCS) [33]. The first LCS, calledcognitive system
level one (CS-1), was introduced in 1978 [27]. Since then
many different types of classifier systems have been described
in the literature. GA-based classifier systems usually fall into
two basic classes: the Michigan approach and the Pittsburgh
approach. The main difference between these two stems from
the chromosome encoding schemes in the population of indi-
viduals. In the Michigan approach, e.g., CS-1, each individual
with fixed length encodes a single production rule. Whereas
in the Pittsburgh approach, each individual is represented by a
variable-length string and encodes a complete set of rules, for
example, GABIL [13], GIL [29], HDPDCS [45], and LS-1 [50],
etc. The Pittsburgh approach is better suited for static domains
and batch-mode learning, in which all training examples are
available before the learning process starts, and the Michigan
approach is more flexible to handle incremental-mode learning,
in which training examples arrive over time and dynamically
changing domains [11].

In order to alleviate the disadvantages of these two ap-
proaches, some hybrid Michigan/Pittsburgh methodologies
have been proposed, for example, REGAL [22], COGIN [24],
and DOGMA [25]. In the SIA system [54], a covering (some-
times called separate-and-conquer) strategy [20] was applied
to learn one rule at a time that covers part of the training
examples until all examples are covered and then combine all
the discovered rules together to form the target concept. A
system called GRaCCE uses a multistage GA-based approach
to first reduce the feature set and then locate class-homoge-
neous regions within the data to generate classification rules
[37]. Most GA-based classifier systems proposed in the lit-
erature address the task of rule extraction in the form of
propositional logic, while REGAL and SIAO1 [1] can learn
first-order-logic (FOL) concept descriptions. The systems de-
scribed in [26] and [28] can generate an appropriate set of
fuzzy rules from examples using GAs. In general, the individ-
uals in GA-based classifiers, i.e., candidate rules, are usually
encoded as binary strings and the rule quality is accessed by a
fitness function. Most fitness functions proposed in the litera-
ture favor more accurate and comprehensible rules [13], [17],

[29], [45]. Nodaet al. introduced a rule “interestingness” term
in the fitness function in order to discover interesting rules
[43].

Koza introduced the idea of using GP to induce a decision tree
classifier, which was represented by a LISP S-expression [32].
Since then, several investigations have employed GP to develop
decision trees [6], [38], [42]. Such classifiers limit the gener-
ated programs to decision tree structures, which are more con-
strained than standard genetic programs returning real values.
Since the 1990s, many GP-based frameworks have been studied
for discovering explicit classification rules instead of decision
trees [4], [14], [19], [30], [51], [52]. GP is receiving more at-
tention recently because unlike most data mining algorithms,
GP can discover the underlying relationships in the data and ex-
press them in any logical, mathematical combinations of input
attributes. GP manipulates variable size genomes, thus allowing
to adapt better the solution structure to the data compared with
GA, therefore, GP is more open-ended than GAs. But this comes
with a cost, i.e., GP is more difficult to navigate in much larger
search spaces. In [18], Freitas presents a good survey of existing
data mining approaches with evolutionary algorithms, i.e., GA
and GP.

To develop a standard GP-based classifier for a given
problem, one must first define the GP’s terminal set and func-
tion set. The terminal set usually consists of all input attributes
and a random number generator; the function set may contain
some mathematical, comparative, and logical operators. Each
individual, i.e., a parse tree, in the GP population, encodes a
candidate rule and the objective is to minimize the classification
error rate through genetic manipulations, where classification
is done by comparing the output of the GP expression to a
given threshold. For a two-class problem, one GP expression
is sufficient to predict whether or not a given feature vector
belongs to one class. The division between negative and
nonnegative output values acts as a natural boundary between
two classes. In this way, for an-class () problem,
multiple threshold “bands” need to be determined. However,
finding meaningful division points over the set of numeric
values the GP expressions may return is difficult. There exist
two methods to select the bands: static range selection and
dynamic range selection [34]. Another simple and often-used
approach for solving multiclass problems using GP is to break
the -class problem down into binary classification problems
and run the GP times, each time solving a binary problem
[14], [30]. This method is called “binary decomposition” [34]
or “one-against-all learning” [21]. For each class, one GP
expression is generated to predict whether a given instance
belongs to that class or not.

GP-based classifiers also have some weak spots. For example,
the closure property of standard GP requires that all the vari-
ables, constants, arguments for functions, and values returned
from functions must be of the same data type. This property
is satisfied when the standard GP is applied on classification
problems with numeric data. Some systems [4], [12], [14], use
only Boolean attributes or booleanize all the attributes being
mined, and then apply logical operators in order to meet the
closure property.Strongly typed GP(STGP) [41] (sometimes
called constrained-syntax GP) and the grammar-based GP have

ZHOU et al.: EVOLVING ACCURATE AND COMPACT CLASSIFICATION RULES WITH GENE EXPRESSION PROGRAMMING 521

been proposed to deal with this problem when addressing clas-
sification problems with a mixture of continuous and nominal
attributes GP [5], [55]. Moreover, GPs tree-based individuals
typically result in bloating [56], [48], i.e., uncontrolled growth
in the size of individuals over the course of genetic manipula-
tions, such as subtree crossover and various kinds of mutation.
The bloat can be controlled by proper coordination between the
fitness function and the genetic learning operators. Only when
there is such a proper coordination the search may progress suc-
cessfully.

III. OVERVIEW OF GENE EXPRESSIONPROGRAMMING

Like GP, five general components, the function set, terminal
set, fitness function, control parameters, and stop criteria [31],
must be determined when using GEP to solve a problem. Un-
like the parse tree representation in canonical GP, GEP uses
a fixed-length of character strings to represent computer pro-
grams, which are afterwards expressed as parse trees (called
“expression tree” in GEP) of different sizes and shapes when
evaluating their fitness. During reproduction it is the chromo-
somes of the individuals, not the expression trees (ETs), that are
reproduced with modification and transmitted to the next gener-
ation. Thus, in GEP, the search space is separated from the so-
lution space, which can result in benefits such as unconstrained
search of the genome space, while still ensuring validity of the
program’s output as noted in [2]. The original GEP technique
was proposed by Ferreira [15], in which GEP chromosomes may
consist of one or more genes of equal length. In this paper, we
consider one-gene chromosomes and use a slightly different ver-
sion described as follows.

A. GEP Chromosomes and ETs

Each GEP chromosome is composed of a list of symbols
with a fixed length, which can be any element from the func-
tion set and the terminal set. For example, from the function set

and the terminal set , a typical
GEP chromosome (with size 15) can be

(3.1)

where “ ” is used to separate elements for easy reading;
is the square-root function; is a constant; and, , , are
variable (or attribute) names. The above is typically named as
Karva notation, or K-expression [15]. A K-expression can be
mapped into an ET following a width-first fashion. The con-
version starts from the first position in the K-expression, which
corresponds to the root of the ET and reads through the string
one-by-one. For each node (from left to right) in one layer in
the ET, if it is a function with () arguments, then the
next symbols in the K-expression are attached below it as
child branches. Otherwise, each terminal node forms a leaf of
the ET. This tree expanding process continues layer-by-layer
until all leaf nodes in the ET are composed of elements from
the terminal set. For example, the sample chromosome (3.1) can

Fig. 1. Example of GEP expression trees.

be expressed as Fig. 1(a), which can be further expressed in a
mathematical form as

(3.2)

The inverse process, i.e., the conversion of an ET into a
K-expression, is also very straightforward, just recording the
nodes from left to right in each layer of the ET, from root layer
down to the deepest one to form the string, e.g., the expression
tree in Fig. 1(a) is recorded as chromosome (3.1).

Like GP, the function set and terminal set must have theclo-
sure property: each function must be able to take as its argu-
ments any value of data type which can be returned by a func-
tion or assumed by a terminal. Furthermore, in our implementa-
tion, mathematical errors are prevented by using protected func-
tions. For instance, if division by zero is attempted, protected
division returns the value of division by a very small number
().

As stated before, GEP chromosomes have fixed length, which
is predetermined for a given problem. Thus, in GEP, what varies
is not the length of chromosomes, but the size of the corre-
sponding expression trees. This means that there exist a cer-
tain number of redundant elements, which are not useful for the
genome-ET mapping. For example, the following chromosome:

(3.3)

has the same length of 15 as chromosome (3.1), but its valid
K-expression size is 6, i.e., only the first six elements are used
to construct the solution function , with the corre-
sponding expression tree shown in Fig. 1(b).

So the valid length of a K-expression may be equal or less
than the length of the chromosome. In order to guarantee that
only legal expression trees are generated, the original GEP tech-
nique employs a head-tail method. Each chromosome is com-
posed of a head and a tail. The head may contain symbols from

522 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

Fig. 2. Flowchart of a typical GEP algorithm.

both the function set and the terminal set, whereas the tail con-
tains only terminals. In our GEP implementation, we applied a
validity test program to dynamically check if a chromosome is
able to encode a legal expression tree within the size limit, in-
stead of using the head-tail method. The program reads through
the symbol list of a candidate chromosome sequentially (from
left to right) and accumulates the number of arguments required
for each symbol (the number of arguments for a terminal sym-
bols is zero) into a variable, which was set to one initially, since
the shortest expression consists of one terminal. If at a certain
point within the list, the value of this variable equals the total
number of symbols (including the current one) that have been
scanned so far, the chromosome is a valid one. Otherwise, if the
two numbers cannot match till the end of the chromosome, it
is invalid. All chromosomes randomly generated or reproduced
by genetic operators are subject to this test to prevent illegal ex-
pressions coming up.

B. The GEP Algorithm and Operators

Fig. 2 illustrates the flowchart of a typical GEP algorithm.
Like GAs and GP, the GEP algorithm begins with an initial pop-
ulation of chromosomes, which are randomly generated, linear
strings with a fixed length. Then, the linear chromosomes are
expressed as ETs and the fitness of each individual is evaluated
based on a predefined fitness function. The individuals are then
selected according to fitness to form a new generation, i.e., the
higher the fitness value, the more chance an individual has to be
selected. The selected individuals are also subject to reproduc-
tion with modification, through genetic operators like crossover,
mutation, and rotation (which will be described later). The in-
dividuals of this new generation are, in their turn, subjected to
the same developmental process: expression of the genomes, se-

lection, and reproduction. The process is repeated for a certain
number of generations or until a solution has been found.

In GEP, individuals are often selected and copied into the
next generation according to fitness by roulette-wheel sampling
[23] with elitism, which guarantees the survival and cloning of
the best individual to the next generation. Variation in the pop-
ulation is introduced by conducting genetic operations on se-
lected chromosomes, as illustrated in Fig. 3, which include the
following.

1) Crossover, in which two parent genomes are randomly
chosen and paired to exchange some elements between
them. There are two kinds of crossover: one-point, and
two-point crossover, working in the same fashion as that
in GAs.

2) Mutation, in which the symbols at any position in a
genome are subject to a random change according to a
certain probability. Note that like crossover, a mutation in
the coding sequence of a chromosome usually drastically
reshapes the ET. For example, the case of mutation in
Fig. 3 has changes at two positions, which results in the
corresponding ET reshaping as shown in Fig. 4.

3) Rotation, in which two subparts of element sequence in
a genome are rotated with respect to a randomly chosen
point. Rotation can also drastically reshape the expres-
sion trees, as shown in the example chromosomes (3.1)
and (3.3). Note that chromosome (3.3) was produced by
rotating the first three elements of chromosome (3.1).

The output chromosomes from these operators must pass the
validity test to ensure that they can form valid expression trees
within the predefined chromosome size limit. If an individual
produced by a genetic operator does not pass the test, the op-
erator will be performed repeatedly until the offspring passes
the test. For example, one-point crossover will be repeated on
the same parents (not the invalid chromosome) but at a different
crossover point if either of the children fails the test. An anal-
ysis of the evolutionary dynamics for each of these operators
can be found in [16]. Although GEP may also evolve expres-
sions with redundant complexity, i.e., subexpressions that could
be replaced by much simpler or smaller expressions that yield
the same result, the bloating problem is much less serious that
traditional GP. Since the valid length of a K-expression never
exceeds the limit of the predefined chromosome length, GEP
has the tendency to produce shorter programs.

In summary, like GAs, the chromosomes in GEP are linear,
compact, and easy to genetically manipulate; like GP, the
evolved computer programs in the form of expression trees
exhibit a certain amount of functional complexity. And the
intertranslation of chromosomes and ETs is pretty straightfor-
ward. Moreover, GEP exhibits more simplicity, i.e., the user
need not explicitly specify the genotype-to-phenotype mapping
(e.g., through a BNF grammar), compared with other linear
GPs such as binary GP (BGP) [2], GADS [44], or grammatical
evolution (GE) [49]. On account of these characteristics, i.e.,
simplicity, high efficiency, and functional complexity, GEP
combines the advantages of both GAs and GP, while over-
coming some of their limitations, which offers great potentiality
to solve complex modeling and optimization problems.

ZHOU et al.: EVOLVING ACCURATE AND COMPACT CLASSIFICATION RULES WITH GENE EXPRESSION PROGRAMMING 523

Fig. 3. Genetic operators of the GEP algorithm.

Fig. 4. Reshaping of ETs from the mutation in Fig. 3.

IV. CLASSIFICATION THROUGH GEP

As a global search technique using GAs, GEP has exhibited
great potential for solving complex problems [15]. The reasons
to use GEP for classification include the following.

1) Flexibility: GEP is more flexible than traditional rule in-
duction and decision tree algorithms, since it more flex-
ibly reformulates the underlying representations.

2) Capability: Due to the employment of the powerful evolu-
tionary search mechanisms, it can discover relationships
in the form of a combination of attributes and express
them mathematically.

3) Efficiency: With the help of linear representation of chro-
mosomes with fixed-length and easy manipulation of ge-
netic operations, GEP is more efficiently than traditional
tree-based GP.

A. One-Against-All Learning

For a two-class (binary) problem, the GEP expression per-
forms classification by returning a positive or nonpositive value

indicating whether or not a given instance belongs to that class,
i.e.,

where is the input feature vector. To extend this approach
to -class classification problems, where , we adopt
the often-usedone-against-alllearning method to transform the

-class problem into 2-class problems. These are constructed
by using the examples of classas the positive examples and
the examples of classes other thanas the negative examples.

In our early work in [57], for each class, only one rule is
evolved to recognize instances belonging to its own class and
reject instances of other classes. We have found that many real-
world problems have complex feature spaces for which a single
rule may not adequately classify all instances of a given class.
In this paper, we apply the covering strategy to learn multiple
rules for each binary classification problem. For each class in the
given training set, we learn a rule that covers as many positive
examples as possible and as few negative examples as possible.
Then, we remove all positive examples that have been covered
from the training set and repeat the procedure to learn another
rule. These steps are repeated until no positive examples remain
in the training set.

There are two additional issues to be considered in developing
an efficient classifier. One is the problem of over fitting noisy
data. In our approach, the MDL principle [47] is applied to avoid
overly specific rules that try to fit noisy examples. Another issue
arises when the generated GEP rules are applied to new cases.
It is possible for more than one GEP expression to return a pos-
itive value, which results in a “classification conflict.” In the
worst case, all rules may not be satisfied. So there is the need
for a strategy to solve classification conflict and rejection. These
problems are addressed later in this paper as our technique of
two-phase rule pruning is explained.

524 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

B. Function Set and Terminal Set

For a given classification problem, we need to define the func-
tion set and terminal set for GEP. The function set usually con-
sists of mathematical and logical operators, e.g.,, , , ,

, . is a logical comparison function with three argu-
ments (), which take the value:if , then else .
Using the operation, GEP can manipulate piecewise-contin-
uous functions, which are very useful for real-world classifica-
tion problems.

The terminal set consists of all input attributes and a list of
constants, e.g., . In GP literature [31], there
exist two ways to introduce constant values into computer
programs: one is using a random number generator; the other
is using a set of constants. In our implementation, we follow
the second one, which enables GEP to represent any rational
number using a given combination of constants and functions.

C. Numerization of Nominal Attributes

All operands are considered numeric in our GEP implementa-
tion. There are two ways to perform numerization of nominal at-
tributes. One method is to map the values of a nominal attribute
to integers, so that the attribute can be considered as numeric
inside the GEP. For example, if an attribute can take three pos-
sible values, then these nominal values are mapped into a set of
integers, i.e., {0, 1, 2}. The disadvantage of this approach, how-
ever, lies in the fact that it imposes an order that does not exist
in the original data. Another method is to divide a nominal at-
tribute into binary attributes, which is called “binarization,” if
there are possible values (here,), with 0/1 representing
the absence/presence of each value. This method overcomes the
shortcomings of the first-integer approach, but will generate a
large set of derived attributes if is large. In this paper, we use
the binarization approach.

D. Fitness Function

The problem of defining fitness functions to measure the
rule quality remains an interesting issue in data mining. Ideally,
we should incorporate three criteria in a fitness function, i.e.,
predictive power, comprehensibility, and interestingness [18].
Here, we focus on finding accurate rules. Several formulas in-
tegrating completeness (the ratio of positive examples covered
by the rule to total number of positive examples in the training
set) and consistency (the ratio of positive examples covered by
the rule to the total number of examples covered) have been
described in the literature [9]. Rather than using a consistency
metric, our approach incorporates rule consistency gain [39],
because this measure takes into account the distribution of pos-
itive and negative examples in the training set. The consistency
gain of rule is defined as

where and are the number of positive and negative examples
covered by rule , and and are the total number of positive
and negative examples in the training set. In the case that a rule
have the identical distribution of covered positive and negative

examples as the training set (just like a random guess), the con-
sistency gain is zero; and in the case of perfect consistency, it
will return one. It is also possible for a rule to return a negative
consistency gain, which signifies that the rule is less accurate
than a pure random guess.

In this work, the fitness function has the form

if
otherwise

where is the rule completeness.
This formula is similar to the one defined by Brazdil and

Torgo in [7]. The use of theexp() function makes the quality
measure prefer the consistency gain of the rule. This fitness
function has the advantages of being simple and returning a nor-
malized value in the range .

E. Two-Phase Rule Pruning

In order to evolve an accurate, noise-tolerant and compact
rule set, we apply two phases of rule pruning: prepruning and
postpruning. For each binary classification task, ideally the cov-
ering strategy works by iterating the process of learning a rule
that covers part of the training examples until no positive ex-
amples remain. This method, however, may not be desirable if
the training data are not noise free, because it tends to generate
some specific rules that fit the noisy data very well, but do not
generalize the concept to be learned well, thus resulting in over-
fitting. One common approach to deal with this problem is early
stopping [40]. In the prepruning process, we employ a stop cri-
terion based on the MDL principle to determine when to stop
learning more rules for that class. The MDL principle tries to
avoid learning complicated rules that cover only a small number
of examples, which may result from noisy data.

The central idea of the MDL principle originates from the in-
formation theory. Given some observed data and a collection
of possible theories that might explain the data, we want to
transmit the concept membership of each instance across a wire.
The information being transmitted, i.e., the description length,
includes the amount of bits needed to encode both the theory
(e.g., a set of rules) and the exceptions, i.e., all positive exam-
ples not covered by the theory (false-negatives) and all negative
examples erroneously covered by the theory (false positives).
Following the Occam’s razor principle [40], the MDL principle
states that the best theory is the one that minimizes the total de-
scription length.

In our approach, we follow the method used in C4.5 [46] and
define the description length of a rule setas

(4.1)

where (here,). is the
number of exception bits defined as:

(4.2)

ZHOU et al.: EVOLVING ACCURATE AND COMPACT CLASSIFICATION RULES WITH GENE EXPRESSION PROGRAMMING 525

Fig. 5. Covering algorithm involving a rule prepruning process.

where is the number of examples covered by the rule set,
is the total number of training examples, and and

are the number of false positives and false negatives.
is the number of theory bits defined as

(4.3)

where is the number of rules, is the valid chromosome
size for expression , and is the total number of different
symbolsused inGEP, i.e., the totalnumberof functions, variables
and constants. For each rule, we need bits to
encode the GEP chromosome list. There is no need to specify the
right-hand side of the rule, since all rules are related to the same
class for each binary classification. Based on the MDL principle,
a stopping criterion is applied for each binary classification task
to avoid learning more rules that may overfit the data, which is
called prepruning. After each rule is evolved by GEP and added
to the rule set, the total description length of the rule set is com-
puted according to formula (4.1)–(4.3). The covering algorithm
(described in Fig. 5) stops adding rules when this description
length is larger than the smallest description length obtained so
far, or when there are no more positive examples.

The prepruning phase deals with noise during rule learning.
The second phase of pruning, which is performed after the rule-
learning process has been completed for all classes, tries to im-
prove the learned theory and resolve any classification conflicts
and rejections. In general, there are two methods to solve the
conflict problem [9]. One is to make the unordered rules an or-
dered list according to their confidences or qualities. For ex-
ample, Kishoreet al. proposed a measure named “strength of
association” (SA) as the criterion of ordering a set of GP rules
[30]. The SA value indicates the degree to which a GP expres-
sion can recognize examples belonging to its own class, and re-
ject examples of other classes. The higher the value of SA, the
better the predictive performance of the corresponding rule will

be. Then, the class of the GP expression with highest strength
of association will be assigned to the input case. The other ap-
proach also considers rule quality, but goes through the entire
set of rules, combines the qualities of the matched rules of the
same class and assigns the new example to the class for which
the combined quality is the maximum. For example, the CN2
unordered rule induction algorithm [10] follows this approach.

Since the fitness function used in our approach already takes
into account the rule consistency, completeness, as well as the
class distribution, it provides a natural criterion for ordering the
GEP rules. We have employed the following strategy for conflict
resolution and pruning redundant rules, which follows the first
scheme mentioned and the integration theory in [7].

1. Order all generated rules according to
their fitness values.

2. Select the rule with the highest fit-
ness value, and add it to the ordered
rule set.

3. Remove all positive and negative exam-
ples covered by the selected rule.

4. Recompute the fitness values of the
remaining rules on the remaining exam-
ples.

5. Repeat steps 1–4 until there is no ex-
ample left, or until none of the re-
maining rules yields a positive fitness
value.

6. A default class is selected in case
that all rules reject a new example.

The method for selecting the default class again follows the
way used in C4.5 rule induction algorithm. For each training
example, the ordered rules generated through steps 1–5 are ap-
plied one by one in that order until one of them is fired. We only
consider the examples that cannot return a positive value by all
the GEP expressions, and select the class that has the largest
number of unclassified examples as the default class, resolving
ties in favor of the class with the larger number of instances in
the training set. After this postpruning process, redundant rules
are eliminated. The final rule set is compact and ordered.

V. EMPIRICAL EVALUATION

In order to test the proposed approach of GEP for classifica-
tion, we have applied it to several data sets selected from the
UCI repository of machine learning databases [3].

A. Monk’s Problems

The Monk’s problems are created as a benchmark test for
comparison of different concept learning algorithms [53]. The
three classification problems are derived from an artificial robot
domain described by six different nominal attributes:

• : head_shape: {round, square, octagon};
• : body_shape: {round, square, octagon};
• : is_smiling: {yes, no};
• : holding: {sword, balloon, flag};
• : jacket_color: {red, yellow, green, blue};
• : has_tie: {yes, no}.

526 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

TABLE I
TEST ACCURACY ON MONK’S PROBLEMS

Each learning task involves finding a logical description of a
class that can differentiate whether or not robots belong to the
class.

• Problem M1 [124/432]:

(5.1)

• Problem M2 [169/432]:

(5.2)

• Problem M3 [122/432]:

(5.3)

The numbers in the bracket are the numbers of instances in the
training set and testing set. Problem 3 has 5% misclassifications,
i.e., noise in the training set.

Since all attributes are nominal, the proposed binarization
method was used to make these values numeric. For example,
attribute isdivided into fourbinaryattributes , , ,
and . An value will have only one of these four attributes
taking 1 and all others taking 0, e.g., if , then
takes 1, and the other three take 0. The GEP function set includes

, and the terminal set contains constants
{ 1, 2, 3} and all the attribute names. Here,OR andAND are two
logical functions with two arguments (), which takes the
following semantics:if or , then ,oth-
erwise ; if and , then ,
otherwise . We compare the GEP classification
results with those from the benchmark machine learning algo-
rithms, i.e.,C4.5andC4.5Rules.Table Ipresents thetestaccuracy
from these algorithms. (GEP results were obtained using the fol-
lowing control parameters: fixed chromosome length ,
crossover probability , mutation probability ,
rotation probability , population size , and
maximum generations , see Table I.)

The classification rule sets found by GEP achieved the
highest test accuracy on all three problems (one tie with
C4.5Rules on M1). GEP also exhibits noise tolerance on
problem M3. Actually, the performance of GEP on Monk’s
problems is outstanding compared with many other learning
algorithms studied in [53].

The rules obtained by GEP learning are somewhat more dif-
ficult to understand, but they can be transformed to exactly the
same disjunctive or conjunctive normal form (DNF/CNF) after
logical analysis. For example, GEP found the following rule for
class 1 of task M1:

(5.4)

Fig. 6. GEP rules for Monk’s problem 2.

Fig. 7. GEP rules for Monk’s problem 3.

Rule (5.4) has exactly the same functionality as rule (5.1). Ex-
amples of the rules generated for problems M2 and M3 are
shown in Figs. 6 and 7 individually. Some of them are even
more complicated. However, the rules generated by GEP exhibit
better compactness, compared with the C4.5Rules algorithm.
For example, C4.5Rules produced twelve disjunctive rules (four
for class 1, and eight for class 0) for task M1, and it is more dif-
ficult for human beings to derive the underlying concept as the
logical description (5.1).

B. Other Problems

To further validate the proposed GEP approach for classifi-
cation, we tested GEP in 12 other benchmark data sets from the
UCI repository. A brief description of the data-set properties
is presented in Table II, which gives the number of instances,
attributes, and distinct class labels for each data set. To eval-
uate the classification accuracy, we used fivefold cross-valida-
tion (CV), which consists of dividing data into five subgroups.
Each subgroup’s examples are classified by the classification
rules constructed from the remaining four subgroups and the
estimated accuracy rate is the average accuracy from these five
subsamples.

The function set and terminal set for GEP are often
chosen according to the user’s knowledge of each problem.
In all the following experiments, we used the function set

. The terminal set contained all input
attributes for each problem and a list of constants {1, 2, 3, 5,
7}. The choice of the GA parameters, e.g., chromosome size,
population size, probability of crossover, and mutations, also

ZHOU et al.: EVOLVING ACCURATE AND COMPACT CLASSIFICATION RULES WITH GENE EXPRESSION PROGRAMMING 527

TABLE II
CHARACTERISTICS OF THEBENCHMARK DATA SETS

No. Caseis the number of cases,No. Attr. is the number
of attributes, andNo. Classis the number of classes.

contribute much to the success of rule discovery. In our exper-
iments, we used the same values of 0.8 for crossover, 0.02 for
mutation, and 1000 for population size on all the databases. The
chromosome size and the maximum number of GA iterations
to execute may depend on the characteristics of the problems
such as dimensionality. For each binary-class learning, the GEP
algorithm stops when the number of generation reaches 1000
(except for thepima Indiandata, which uses 5000 generations)
or the fitness measure reaches 1.0, which means it correctly
classifies all positive and negative examples. The chromosome
size for thebalance scale, iris, ionosphere, and lung cancer
databases were set to 50, 80, 150, and 150 individually, while
all other data sets using 100 as the fixed chromosome length.

1) Comparison of Classification Accuracy:The perfor-
mance of GEP is compared with the canonical tree-based GP
classifier as well as the C4.5 programs. A Koza-style GP system
was implemented. To make the GP classifier comparable to the
GEP approach, we used the same function set, terminal set,
fitness function, and GA parameters as those used in GEP for
each problem. We also employed the same covering algorithm
and two-phase pruning strategy for rule induction in GP, as
described in Section IV. To avoid GP program bloating, we
specified a maximum number of nodes allowed to grow in GP
trees, which equals to the size of fixed-length chromosomes
used in GEP for each benchmark data. Considering the sto-
chastic behavior of GAs, for each data set, both GEP and GP
classifiers were run five times independently.

Table III presents a comparison of classification accuracy in
percentage for the four algorithms, i.e., C4.5, C4.5Rules, GEP,
and GP. The results were obtained from fivefold CV in terms
of their average accuracy and 95% confidence interval, which
is proportional to the standard deviation. For GEP and GP, the
average results, as well the best results for five independent runs
are reported. The best result was obtained from the run that
achieved the highest accuracy of fivefold CV. Considering the
best performance of GEP and GP, we found that GEP was able
to achieve the highest classification accuracy on 11 out of the
12 databases, among which two have ties with GP. The only ex-
ception is thepima Indiandata.

The result of GEP and GP was also compared with respect to
their average performance, i.e., the average of five runs, thereby
enabling a fair comparison with conventional classification
methods. GEP achieved the highest average accuracy on 7 out
of the 12 databases, among which three also had the lowest
95% confidence interval, i.e.,balance scale, car, andiris (high-
lighted in bold face in Table III). For 6 of the 12 benchmarks,
GEP achieved both higher accuracy and a smaller confidence
interval, compared with the results for C4.5 and C4.5Rules. A
comparison of GEP with GP showed that GEP achieved higher
average accuracy for 11 of the 12 benchmarks and matched the
performance for the remaining one (i.e., thewaveformdata).

The two-tailed -test [40] method was also used to determine
the level of significance that one algorithm outperforms another.
Using this method, good outcomes should have high accuracies
and low standard deviations. The-test comparing the average
results from GEP and GP indicated that GEP outperformed GP
significantly on thecar data (with 99% significance), and
there is no significant difference for the remaining 11 bench-
marks. The -tests also showed that GEP outperforms C4.5 and
C4.5Rules significantly on thebalance scaledata (with 99%
significance). GEP also outperformed C4.5 on thecardata (with

99% significance). For the other benchmarks, there was no
significant difference between GEP and C4.5, or C4.5Rules.

Thebalance scaledata was generated to model the results of
psychology experiments. Each example is classified as having
the balance scale tip to the right, tip to the left, or be balanced.
The four predicting attributes are (the left weight), (the
left distance), (the right weight), and (the right distance).
The correct way to find the class is the greater of () and
(). If these two terms are equal, the scale is balanced.
Rules (5.5), (5.6), and (5.7) show one example set of identified
GEP rules, for which the default class is Left

(5.5)

(5.6)

(5.7)

It should be noted that GEP successfully found the boundary
between the three classes, i.e.,

(5.8)

As shown in Table III, GEP was always able to achieve a
testing accuracy of 100% for thebalance scaledata, more than
20% more accurate than the C4.5 and C4.5Rules algorithms.
It appears that the reason for this significant difference in
performance is that whereas GEP generated the appropriate

528 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

TABLE III
COMPARISON OFCLASSIFICATION ACCURACY IN PERCENTAGE

Results from fivefold CV with the benchmarks are stated in terms of their average accuracy and 95%
confidence interval. For GEP and GP, the best and average results out of five independent runs are
listed.

TABLE IV
COMPARISON OFGEP/GP EFFICIENCY

Avg. Exp. Size represents the average expression size, Exec. Time is the average execution
time in minutes. The size limit is the fixed length of GEP chromosomes; the same size was
used to control the maximum number of nodes allowed to grow in a GP tree.

curved boundaries between the classes, C4.5 relied on hyper-
cubic boundaries and could only generate piecewise-constant
approximations. On average, C4.5 generated a decision tree
containing about 47 nodes, resulting in only 78.7% test accu-
racy, while C4.5Rules produced about 25 rules with 77.3%
testing accuracy. In this case, the GEP generated rules are more
accurate, more compact, and easier to understand.

2) Comparison of Efficiency Between GEP and GP:It is
trivial to compare the CPU time between GEP with C4.5 al-
gorithms, since GEP is definitely more time-consuming. But it
is necessary to compare GEP with traditional GP approach. Al-
though there is no significant difference on the accuracy rate
between GEP and GP on most of the testing databases, the GEP
approach is more efficient than GP with respect to the time and
solution complexity. Table IV gives a comparison of the average
expression size generated by GEP and GP, i.e., the number of
nodes in the program tree and their average execution time over

five different runs. Both GEP and GP systems were programmed
using Java and tested on Pentium III 1.7-MHz machines with
512 M RAM. On average, the size of GP expressions is 7.67
times larger than that of GEP expressions; on the other hand,
the GEP system runs faster than GP with an average speedup
of 4.07 under the same circumstances. It can be concluded that
GEP tends to generate shorter expressions and costs less time to
execute compared with GP, while achieving comparable classi-
fication performance.

3) Comparison of Rule Set Compactness:Concerning the
compactness of evolved rule sets, we compare the average
number of rules generated by GEP with that of C4.5Rules and
GP for each problem, and the results are shown in Table V.
On average, the number of rules generated by C4.5Rules is
2.8 times larger than that of GEP. Thus, we claim that our
GEP approach tends to produce more compact rule sets than
traditional rule induction algorithm like C4.5Rules, especially

ZHOU et al.: EVOLVING ACCURATE AND COMPACT CLASSIFICATION RULES WITH GENE EXPRESSION PROGRAMMING 529

TABLE V
COMPARISON OFRULE SET COMPACTNESS

Each entry gives the average number of rules generated for each problem.

on complex problems. For example, GEP generates approx-
imately 14 rules for thecar data, while C4.5Rules requires
about 73 rules to describe the data. The reason lies in the fact
that GEP is good at representing a curved boundary by means
of mathematical expressions, while traditional algorithms like
C4.5 utilize piecewise constant approximation to construct
hypercubic boundaries in contrast. We notice that GP generates
fewer rules than GEP on three out of the twelve data sets, and
equal on others. The reason for this lies in the fact that GP rules
are usually more complex that GEP rules, which costs more
description bits. Since we use the same MDL criterion for early
stopping, it is reasonable that GP tends to generate fewer rules.
But with respect to the overall complexity of the whole rule set,
GEP still gets better compactness.

C. Discussion

Due to the stochastic behavior of GAs, GEP often results in
different expression rules from different runs. For example, in
another trial GEP found a more complex expression with the
same classification power as (5.5) for class theLeft on thebal-
ance scaledata

(5.9)

Since the value for attribute is in the range of , it is
always larger then 0, so the expression (5.9) is actually the same
as (5.5). This demonstrates the element redundancy existed in
the GEP chromosomes and the fact that multiple genomes can
be mapped into the same solution. GEPs nondeterminism is ben-
eficial in the context of data mining, since it might lead to un-
expected and interesting discoveries among observed data.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated the applicability of GEP
to extract high-order rules for classification problems. As a
new type of GP, GEP exhibits simplicity, high efficiency, and
functional complexity because of its linear representation and

genome-ET mapping scheme. GEP harnesses the power of evo-
lutionary search to detect underlying but unknown relationships
among data and express them as mathematical expressions,
which overcomes the shortcomings of local, heuristic, and
greedy search used by conventional machine learning algo-
rithms like C4.5. The fitness measures for rule quality consider
both the rule consistency gain and completeness. The covering
strategy was applied to learn a group of rules for each class
and the MDL principle was used to avoid overfitting. Finally,
we remove redundant rules and make the final rule set ordered
for conflict resolution and compact. Experiments conducted on
several UCI machine learning data sets with both numeric and
nominal attributes have shown that our GEP approach achieved
up to 20% improvement in validation accuracy, compared
with the C4.5 algorithms. The reason for this performance
improvement is due to the global searching capability of GEP to
produce the appropriate curved boundaries between the classes
in the data space. Furthermore, the proposed GEP approach is
more efficient and tends to generate shorter solutions compared
with canonical tree-based GP classifiers.

The bloating problems that appear often in traditional GP are
mitigated by the fixed chromosome size in GEP. However, in
some cases GEP may generate very long and complex expres-
sions that are difficult for humans to understand. GEP may gen-
erate complex expressions that “overfit” the training examples
yet perform poorly over the complete input space. To avoid this
problem, future research should address the identification and
application of the appropriate parsimony pressure into the fit-
ness function to restrict the expression size, increase the compu-
tational efficiency of the method, and improve the understand-
ability of the solutions.

Future work should also address how to handle incremental
learning. Currently, our system can save the learned GEP equa-
tions as “seed chromosomes” and reload them later to relearn
concepts for the same data set or a modified data set. Real-world
systems typically evolve over time; therefore, it is necessary to
develop a computationally efficient GEP method that reuses the
knowledge in a set of previously learned rules, to represent both
old and new training examples.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
who provided valuable comments for the quality of this paper.
They would also like to thank the Motorola Advanced Tech-
nology Center (MATC) for providing funding for this project.

REFERENCES

[1] S. Augier, G. Venturini, and Y. Kodratoff, “Learning first order logic
rules with a genetic algorithm,” inProc. 1st Int. Conf. Knowledge Dis-
covery and Data Mining, U. M. Fayyad and R. Uthurusamy, Eds., 1995,
pp. 21–26.

[2] W. Banzhaf et al., “Genotype-phenotype mapping and neutral vari-
ation—A case study in genetic programming,” inParallel Problem
Solving from Nature—PPSN III, Y. Davidor et al., Eds. News York:
Springer-Verlag, 1994, vol. 866, Lecture Notes in Computer Science,
pp. 322–332.

[3] C. Blake, E. Keogh, and C. J. Merz. (1998) UCI Repository of Machine
Learning Databases. Univ. California at Irvine, Dept. Inform. Comput.
Sci., CA. [Online]. Available: http://www.ics.uci.edu/~mlearn/ ML-
Repository.html

530 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

[4] C. C. Bojarczuk, H. S. Lopes, and A. A. Freitas, “Discovering compre-
hensible classification rules using genetic programming: A case study
in a medical domain,” inProc. Genetic and Evolutionary Computation
Conf., Orlando, FL, July 14–17, 1999, pp. 953–958.

[5] , “Data mining with constrained-syntax genetic programming: Ap-
plications to medical data sets,” inProc. Intelligent Data Analysis in
Medicine and Pharmacology (IDAMAP), London, U.K., 2001.

[6] M. C. J. Bot and W. B. Langdon, “Application of genetic program-
ming to induction of linear classification trees,” inProc. 3rd European
Conf. Genetic Programming (EuroGP), vol. 1802, LNCS , R. Poli, W.
Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty, Eds.,
Edinburgh, 2000, pp. 247–258.

[7] P. Brazdil and L. Torgo, “Knowledge acquisition via knowledge integra-
tion,” in Current Trends in Knowledge Acquisition. Amsterdam, The
Netherlands: IOS Press, 1990.

[8] L. Breiman, J. H. Friedman, R. A. Olsen, and C. J. Stone,Classification
and Regression Trees. Belmont, CA: Wadsworth, 1984.

[9] I. Bruha, “Quality of decision rules: Definitions and classification
schemes for multiple rules,” inMachine Learning and Statistics: The
Interface, G. Nakhaeizadeh and C. C. Taylor, Eds. New York: Wiley,
1997, pp. 107–131.

[10] P. Clark and T. Niblett, “The CN2 induction algorithm,”Machine Learn.,
vol. 3, no. 4, pp. 261–283, 1989.

[11] A. L. Corcoran and S. Sen, “Using real-valued genetic algorithms to
evolve rule sets for classification,”Proc. 1st IEEE Conf. Evolutionary
Computation, pp. 120–124, June 1994.

[12] G. F. Davenportet al., “Rule induction using a reverse polish rep-
resentation,” inProc. Genetic and Evolutionary Computation Conf.
(GECCO’99), vol. 2, W. Banzhafet al., Eds., 1999, pp. 990–995.

[13] K. A. De Jong, W. M. Spears, and D. F. Gordon, “Using genetic al-
gorithms for concept learning,”Machine Learn., vol. 13, pp. 161–188,
1993.

[14] J. Eggermont, A. E. Eiben, and J. I. van Hemert, “A comparison of ge-
netic programming variants for data classification,” in Advances in Intel-
ligent Data Analysis, 3rd Int. Symp. (IDA-99), Amsterdam, The Nether-
lands, 1999.

[15] C. Ferreira, “Gene expression programming: A new adaptive algorithm
for solving problems,”Complex Syst., vol. 13, no. 2, pp. 87–129, 2001.

[16] , “Mutation, transposition, and recombination: An analysis of the
evolutionary dynamics,” inProc. 6th Joint Conf. Information Sciences,
4th Int. Workshop on Frontiers in Evolutionary Algorithms, H. J.
Caulfield, S.-H. Chen, H.-D. Cheng, R. Duro, V. Honavar, E. E. Kerre,
M. Lu, M. G. Romay, T. K. Shih, D. Ventura, P. P. Wang, and Y. Yang,
Eds., Research Triangle Park, NC, 2002, pp. 614–617.

[17] I. W. Flockhart and N. J. Radcliffe, “A genetic algorithm-based approach
to data mining,” inProc. 2nd Int. Conf. Knowledge Discovery & Data
Mining, 1996, pp. 299–302.

[18] A. A. Freitas, “A survey of evolutionary algorithms for data mining and
knowledge discovery,” inAdvances in Evolutionary Computation, A.
Ghosh and S.S. Tsutsui, Eds. New York: Springer-Verlag, 2001.

[19] , “A genetic programming framework for two data mining tasks:
Classification and generalized rule induction,” inProc. 2nd Annu. Conf.,
Genetic Programming, J. R. Kozaet al., Eds., 1997, pp. 96–101.

[20] J. Fürnkranz, “Separate-and-conquer rule learning,”Artif. Intell. Rev.,
vol. 13, no. 1, pp. 3–54, Jan. 1999.

[21] , “Round robin rule learning,” inProc. 18th Int. Conf. Machine
Learning (ICML-01), C. E. Brodley and A. P. Danyluk, Eds., 2001, pp.
146–153.

[22] A. Giordana and F. Neri, “Search-intensive concept induction,”Evol.
Comput., vol. 3, no. 4, pp. 375–416, 1995.

[23] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[24] D. P. Greene and S. F. Smith, “Competition-based induction of decision
models from examples,”Machine Learn., vol. 13, pp. 229–257, 1993.

[25] J. Hekanaho, “GA-based rule enhancement in concept learning,” in
Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining, Newport
Beach, CA, 1997, pp. 183–186.

[26] F. Herrera, M. Lozano, and J. L. Verdegay, “Generating fuzzy rules
from examples using genetic algorithms,” inFuzzy Logic Soft Com-
puting, B. Bouchon-Meunier, R. R. Yager, and L. A. Zadeh, Eds.,
1995, pp. 11–20.

[27] J. H. Holland and J. S. Reitman, “Cognitive systems based on adaptive
algorithms,” inPattern-Directed Inference Systems, D. A. Waterman and
F. Hayes-Roth, Eds. New York: Academic, 1978.

[28] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting fuzzy
if-then rules for classification problems using genetic algorithms,”IEEE
Trans. Fuzzy Syst., vol. 8, pp. 485–488, Aug. 1995.

[29] C. Z. Janikow, “A knowledge-intensive genetic algorithm for supervised
learning,”Machine Learn., vol. 13, pp. 189–228, 1993.

[30] J. K. Kishore, L. M. Patnaik, V. Mani, and V. K. Agrawal, “Application
of genetic programming for multicategory pattern classification,”IEEE
Trans. Evol. Comput., vol. 4, pp. 242–258, Sept. 2000.

[31] J. R. Koza,Genetic Programming. Cambridge, MA: MIT Press, 1992.
[32] , “Concept formation and decision tree induction using the genetic

programming paradigm,” inParallel Problem Solving from Nature, H.
Schwefel and R. Maenner, Eds: Springer-Verlag, 1991.

[33] P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds.,Learning Clas-
sifier Systems: From Foundations to Applications. Berlin, Germany:
Springer-Verlag, 2000, vol. 1813, Lecture Notes on Artificial Intelli-
gence.

[34] T. Loveard and V. Ciesielski, “Representing classification problems in
genetic programming,” inProc. Congress Evolutionary Computation,
vol. 2, 2001, pp. 1070–1077.

[35] S. Luke, “Code growth is not caused by introns,” inLate Breaking
Papers at the 2000 Genetic and Evolutionary Computation Conf.
(GECCO-2000), 2000, pp. 228–235.

[36] R. E. Marmelstein and G. B. Lamont, “A method for mining simplified
decision rule sets,” in Int. ICSC Congress Computational Intelligence:
Methods and Applications (CIMA’99), Rochester, NY, 1999.

[37] , “GraCCE: A genetic environment for data mining,” inLate
Breaking Papers at the Genetic Programming 1998 Conf., J. R. Koza,
Ed., 1998, pp. 22–25.

[38] , “Pattern classification using a hybrid genetic program decision
tree approach,” inProc. 3rd Annu. Conf. Genetic Programming, J. R.
Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M.
H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds., Madison, WI,
July 1998, pp. 223–231.

[39] R. S. Michalskiet al., “Learning patterns in noisy data: The AQ ap-
proach,” inMachine Learning and Its Applications, G. Paliouraset al.,
Eds: Springer-Verlag, 2001, vol. 2049, Lecture Notes in Artificial Intel-
ligence (LNAI), pp. 22–38.

[40] T. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[41] D. J. Montana, “Strongly typed genetic programming,”Evol. Comput.,

vol. 3, no. 2, pp. 199–230, 1995.
[42] N. Nikolaev and V. Slavov, “Inductive genetic programming with

decision trees,”Intell. Data Anal.: An Int. J., vol. 2, no. 1, pp. 31–44,
1998.

[43] E. Noda, A. A. Freitas, and H. S. Lopes, “Discovering interesting pre-
diction rules with a genetic algorithm,” presented at the 1999 Conf. Evo-
lutionary Computation (CEC-99), Washington, DC, July 1999.

[44] M. R. Paterson and M. Livesey, “Distinguishing genotype and pheno-
type in genetic programming,” inLate Breaking Papers at the Genetic
Programming 1996 Conf., J. R. Koza, Ed., 1996, pp. 141–150.

[45] M. Pei, E. D. Goodman, and W. F. Punch, “Pattern discovery from
data using genetic algorithms,” presented at the 1st Pacific-Asia Conf.
Knowledge Discovery and Data Mining (PAKDD-97), Singapore, Feb.
1997.

[46] J. R. Quinlan,C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1993.

[47] J. Rissanen, “Modeling by shortest data description,”Automatica, vol.
14, pp. 465–471, 1978.

[48] J. P. Roscaet al., “Generality versus size in genetic programming,” in
Proc. 1st Annu. Conf. Genetic Programming 1996, J. R. Kozaet al., Eds.,
Cambridge, MA, 1996, pp. 381–387.

[49] C. Ryan, J. J. Collins, and M. O’Neill, “Grammatical evolution:
Evolving programs for an arbitrary language,” in1st European Work-
shop on Genetic Programming 1998, 1998, vol. 1391, Lecture Notes in
Computer Science, pp. 83–95.

[50] S. F. Smith, “Flexible learning of problem solving heuristics through
adaptive search,” inProc. 8th Int. Joint Conf. Artificial Intelligence,
1983, pp. 422–425.

[51] W. A. Tackett, “Genetic programming for feature discovery and image
discrimination,” inProc. 5th Int. Conf. Genetic Algorithms, 1993, pp.
303–309.

[52] K. C. Tan, A. Tay, T. H. Lee, and C. M. Heng, “Mining multiple
comprehensible classification rules using genetic programming,” in
Proc. Congr. Evolutionary Computation (CEC’02), vol. 2, 2002, pp.
1302–1307.

[53] S. B. Thrun, T. Mitchell, and J. Cheng, “The Monk’s problems—A
performance comparison of different learning algorithms,” Carnegie
Mellon Univ., Comput. Sci. Dept., CS-CMU-91–197, 1991.

[54] G. Venturini, “A supervised inductive algorithm with genetic search for
learning attributes based concepts,” inProc. European Conf. Machine
Learning, 1993, pp. 280–296.

ZHOU et al.: EVOLVING ACCURATE AND COMPACT CLASSIFICATION RULES WITH GENE EXPRESSION PROGRAMMING 531

[55] M. L. Wong and K. S. Leung,Data Mining Using Grammar-Based Ge-
netic Programming and ApplicationsNorwell, MA, 2000.

[56] B.-T. Zhang and H. Muhlenbein, “Balancing accuracy and parsimony in
genetic programming,”Evol. Comput., vol. 3, no. 1, pp. 17–38, 1995.

[57] C. Zhou, P. C. Nelson, W. Xiao, and T. M. Tirpak, “Discovery of classi-
fication rules by using gene expression programming,” presented at the
Int. Conf. Artificial Intelligence (IC-AI’02), Las Vegas, NV, June 24–27,
2002.

Chi Zhou received the B.S. and M.S. degrees in
computer science from Nanjing University, Nanjing,
China, in 1996 and 1999, respectively, and the Ph.D.
degree in computer science from the University of
Illinois at Chicago, in 2003.

He is currently a Senior Software Engineer
with the Motorola Advanced Technology Center,
Schaumburg, IL. His applied research has focused
on developing advanced knowledge discovery and
management techniques for manufacturing. His
interests include machine learning, neural networks,

evolutionary algorithms, and data mining.

Weimin Xiao received the B.S. degree in structural
engineering from Zhejiang University, Zhejiang,
China, the M.S. degree in computational structural
mechanics from Chongqing University, Chongqing,
China, and Ph.D. degree in computational structural
mechanics from University of Kentucky, Lexington.

He was a Lecturer at Zhejiang Industrial Univer-
sity, Hangzhou, China. Currently, he is a Principal
Software Engineer with the Motorola Advanced
Technology Center, Schaumburg, IL. His research
interests include distributed computing, automated

FEA system, mixed integer linear and nonlinear optimization, machine
learning, automated mathematical model discovery, and knowledge discovery
from database.

Thomas M. Tirpak (M’91) received the B.S. and
M.S. degrees in general engineering (robotics), the
Ph.D. degree in electrical and computer engineering
from the University of Illinois at Urbana-Champaign,
and the Master of Engineering Management degree
from Northwestern University, Evanston, IL.

He is a Principal Staff Engineer with the Motorola
Advanced Technology Center, Schaumburg, IL,
where he has led efforts to develop new methods
for improving the cycle time, quality, and cost
of electronics manufacturing and product design

operations. In cooperation with Motorola University, he developed and taught
classes on “SMT manufacturing optimization” and “factory physics.” He has
mentored research programs with universities in the U.S., Europe, Asia, and
South America, and was a Visiting Lecturer at the University of Mining and
Metallurgy, Krakow, Poland. His current research interests include process
modeling and optimization, multidisciplinary design optimization, and decision
support systems.

Dr. Tirpak is a Motorola Science Advisory Board Associate and a Member of
the Institute for Operations Research and Management Science, and Tau Beta Pi.

Peter C. Nelsonreceived the B.A. degree in com-
puter science and mathematics from North Park Col-
lege, Chicago, IL, in 1984, and the M.S. and Ph.D.
degrees in computer science from Northwestern Uni-
versity, Evanston, IL, in 1986 and 1988, respectively.

Currently, he is a Professor and Head of the De-
partment of Computer Science, University of Illinois
at Chicago. His interests include developing useful
AI techniques for intelligent transportation systems,
manufacturing optimization, molecular biology, and
intelligent tools for managing high availability, high-

performance computer clusters. He has published the results of these projects by
coauthoring over 50 technical articles with his collaborators. His research has
been funded by the U.S. Department of Transportation, Illinois Department of
Transportation, National Institutes of Health, National Research Council, Na-
tional Science Foundation, Illinois State Toll Highway Authority, National In-
stitute of Statistical Sciences, Manufacturing Research Center, Motorola, and
Sun Microsystems.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

