IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003 519

Evolving Accurate and Compact Classification Rules
With Gene Expression Programming

Chi Zhou, Weimin Xiao, Thomas M. TirpalMember, IEEEand Peter C. Nelson

Abstract—Classification is one of the fundamental tasks of data rules that are relatively accurate and understandable. The dis-
mining. Most rule induction and decision tree algorithms perform  advantage, however, is that the generated rules are often more
local, greedy search to generate classification rules that are often complex than necessary [36]. The reason is that the local, greedy

more complex than necessary. Evolutionary algorithms for pattern h f db diti | alqorith | |
classification have recently received increased attention becauseS€arch performed by traditional algorithms selects only one at-

they can perform global searches. In this paper, we propose a tribute atatime and, therefore, the feature space is approximated
new approach for disqovering classification ruleg by using gene by a set of hypercubes. In real-world applications, the feature
expression programming (GEP), a new technique of genetic gpace js often very complex and a large set of such hypercubes

programming (GP) with linear representation. The antecedent . . .
of discovered rules may involve many different combinations of might be needed to approximate the class boundaries between

attributes. To guide the search process, we suggest a fitness func-clusters of different classes.

tion considering both the rule consistency gain and completeness. Genetic classifiers, which are based on evolutionary al-
A multiclass classification problem is formulated as multiple gorithms such as genetic algorithms (GAs) [23] and genetic
two-class problems by using the one-against-all learning method. programming (GP) [31], have been proposed as alternative

The covering strategy is applied to learn multiple rules if appli- . .
cable for each class. Compact rule sets are subsequently evolve ethods. Based on the principle of natural selection and

using a two-phase pruning method based on the minimum de- Survival of the fittest,” evolutionary algorithms operate by
scription length (MDL) principle and the integration theory. Our iteratively evolving a population of chromosomes, encoding
approach is also noise tolerant and able to deal with both numeric candidate solutions, through genetic operators, i.e., selection,
and nominal attributes. Experiments with several benchmark data crossover, and mutation, to find an optimum solution. Unlike

sets have shown up to 20% improvement in validation accuracy, most traditional rule-learnina alaorithms. denetic classifiers
compared with C4.5 algorithms. Furthermore, the proposed GEP i u Ing algori 9 ! i

approach is more efficient and tends to generate shorter solutions Perform a global search in which genetic operators can select

compared with canonical tree-based GP classifiers. many attributes at a time. Possible solutions, i.e., candidate
Index Terms—Classification rule, data mining, gene expression fules are evaluated by the fitness function. One disadvantage
programming (GEP), genetic algorithms (GAs). of genetic classifiers, however, is that they are usually compu-

tationally intensive. Nevertheless, in the cases where off-line
computation time is not a limiting factor, a genetic classifier
may be more desirable.
ECENTLY, there has been a growing interest in the area of Gene expression programming (GEP) [15] is a new technique
data mining where the goal is to discover useful knowl-of evolutionary algorithm for data analysis. GEP uses fixed-
edge from observed data. Among various data mining tasks, éagth, linear strings of chromosomes to represent computer
tracting classification rules is a fundamental activity. Given programs in the form of expression trees of different shapes and
set of predetermined, disjoint target clasé€4, C2,...,Cn}, sizes, and implements a GA to find the best program. Although
a set of input attribute§A1, A2, ... Am}, and a set of training Ferreira does not mention this relationship, GEP can be consid-
data S with each instance taking the forfal,a2,...,am), eredaspecialization of GP based on linear string representation.
whereai (i = 1,2, ...m)isinthe domain of attributeli and as- As we will see later in this paper, GEP combines the advantages
sociated with a unique target class label, the task is to build a 8éboth GA and GP, while overcoming some of their individual
of IF-THEN rules that can be used to predict the target category fnitations.
new unseen data given its input attributes’ values. Rule induc-In this paper, we propose a new approach for mining clas-
tion (e.g., CN2 [10 ]) and decision tree algorithms (e.g., CARgification rules by using GEP technique. The discovered rules
[8] and C4.5 [46]) are traditionally employed to derive classifi@re high order in the sense that the rule antecedents can in-
cation rules from data. These algorithms can quickly generatelve any logical or mathematical combination of attributes.
The basic idea is to decompose a multiclass problem into
Manuscript received August 30, 2002; revised July 2, 2003. This work wgg"“_"t'ple binary class_lflcatlon problems ahd the_n perform evo-
supported in part by Motorola’s Advanced Technology Center and in part Bytionary search using GEP for better inductive learning of
th% Mgﬂg[lacwin)?i;%g:écqC&m% Ak are with the Motorola. Advance rules based on the covering strategy for each class. The min-
Tecr.mologg/ Cénter, ’MotoroI.a, 'Schanmeurg, IL 60196-0178 USA (e—maﬁlmum descrlpthn length (_MDL) p_rlr_wlple and the integration
A19387@motorola.com; AWX003@motorola.com; T.Tirpak@motorola.comjheory are applied to avoid overfitting and remove redundant
P. C. Nelsqn is With'the AI’tIfICIal Intelligenpe Labore}tory, Department Of’ules_ The experimenta| results conducted on several bench-
Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7053 .
USA (e-mail: nelson@cs.uic.edu). mark data sets have demonstrated that our approach achieved
Digital Object Identifier 10.1109/TEVC.2003.819261 up to 20% improvement in validation accuracy and much

. INTRODUCTION

1089-778X/03$17.00 © 2003 IEEE



520 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

smaller size of rule sets, compared with the C4.5 algorithni29], [45]. Nodaet al. introduced a rule “interestingness” term
In comparison with the canonical tree-based GP approadh,the fitness function in order to discover interesting rules
GEP runs more efficiently and tends to produce shorter 44-3].
lutions. The remaining sections of this paper are organizedKoza introduced the idea of using GP to induce a decision tree
as follows. In Section II, we review related work of learninglassifier, which was represented by a LISP S-expression [32].
classification rules through evolutionary algorithms. The folSince then, several investigations have employed GP to develop
lowing section contains a brief description of GEP. Section I¥ecision trees [6], [38], [42]. Such classifiers limit the gener-
describes the proposed GEP approach for classification raked programs to decision tree structures, which are more con-
discovery. Then, we present the study of benchmark tests atihined than standard genetic programs returning real values.
comparison between GEP, C4.5, and traditional GP classifiefénce the 1990s, many GP-based frameworks have been studied
The final section draws the conclusions and some directiofeg discovering explicit classification rules instead of decision
for future work. trees [4], [14], [19], [30], [51], [52]. GP is receiving more at-
tention recently because unlike most data mining algorithms,
Il. RELATED WORK GP can discover the underlying relationships in the data and ex-
o _ press them in any logical, mathematical combinations of input
As a robust, domain-independent mechanism for numedgyipytes. GP manipulates variable size genomes, thus allowing
and symbolic optimization, GAs have been applied to evolyg adapt better the solution structure to the data compared with
a set of production rules for more than two decades, whigk therefore, GP is more open-ended than GAs. But this comes
forms a machine learning paradigm called learning classifigjiith a cost, i.e., GP is more difficult to navigate in much larger
systems (LCS) [33]. The first LCS, callecbgnitive system search spaces. In[18], Freitas presents a good survey of existing
level one(CS-1), was introduced in 1978 [27]. Since thegata mining approaches with evolutionary algorithms, i.e., GA
many different types of classifier systems have been describgty Gp.
in the literature. GA-based classifier systems usually fall into 1o gevelop a standard GP-based classifier for a given
two basic classes: the Michigan approach and the Pittsbugglynlem, one must first define the GP's terminal set and func-
approach. The main difference between these two stems frggh set. The terminal set usually consists of all input attributes
the chromosome encoding schemes in the population of infhd a random number generator; the function set may contain
viduals. In the Michigan approach, e.g., CS-1, each individugbme mathematical, comparative, and logical operators. Each
with fixed length encodes a single production rule. Wheregsdividual, i.e., a parse tree, in the GP population, encodes a
in the Pittsburgh approach, each individual is represented bya#ndidate rule and the objective is to minimize the classification
variable-length string and encodes a complete set of rules, &for rate through genetic manipulations, where classification
example, GABIL [13], GIL [29], HDPDCS [45], and LS-1[50], is done by comparing the output of the GP expression to a
etc. The Pittsburgh approach is better suited for static domagjigen threshold. For a two-class problem, one GP expression
and batch-mode learning, in which all training examples aie sufficient to predict whether or not a given feature vector
available before the learning process starts, and the Michigeglongs to one class. The division between negative and
approach is more flexible to handle incremental-mode learningnnegative output values acts as a natural boundary between
in which training examples arrive over time and dynamicalliwo classes. In this way, for an-class ¢ > 2) problem,
changing domains [11]. multiple threshold “bands” need to be determined. However,
In order to alleviate the disadvantages of these two afinding meaningful division points over the set of numeric
proaches, some hybrid Michigan/Pittsburgh methodologigalues the GP expressions may return is difficult. There exist
have been proposed, for example, REGAL [22], COGIN [24iwo methods to select the bands: static range selection and
and DOGMA [25]. In the SIA system [54], a covering (somedynamic range selection [34]. Another simple and often-used
times called separate-and-conquer) strategy [20] was applaggproach for solving multiclass problems using GP is to break
to learn one rule at a time that covers part of the traininhen-class problem down inta binary classification problems
examples until all examples are covered and then combineatdid run the GF: times, each time solving a binary problem
the discovered rules together to form the target concept.[Md], [30]. This method is called “binary decomposition” [34]
system called GRaCCE uses a multistage GA-based approachone-against-all learning” [21]. For each class, one GP
to first reduce the feature set and then locate class-homoggpression is generated to predict whether a given instance
neous regions within the data to generate classification ruleslongs to that class or not.
[37]. Most GA-based classifier systems proposed in the lit- GP-based classifiers also have some weak spots. For example,
erature address the task of rule extraction in the form dfe closure property of standard GP requires that all the vari-
propositional logic, while REGAL and SIAO1 [1] can learnables, constants, arguments for functions, and values returned
first-order-logic (FOL) concept descriptions. The systems d&om functions must be of the same data type. This property
scribed in [26] and [28] can generate an appropriate set iefsatisfied when the standard GP is applied on classification
fuzzy rules from examples using GAs. In general, the indiviggroblems with numeric data. Some systems [4], [12], [14], use
uals in GA-based classifiers, i.e., candidate rules, are usuailyly Boolean attributes or booleanize all the attributes being
encoded as binary strings and the rule quality is accessed hyiaed, and then apply logical operators in order to meet the
fitness function. Most fitness functions proposed in the literalosure propertyStrongly typed GRSTGP) [41] (sometimes
ture favor more accurate and comprehensible rules [13], [1€hlled constrained-syntax GP) and the grammar-based GP have



ZHOU et al: EVOLVING ACCURATE AND COMPACT CLASSIFICATION RULES WITH GENE EXPRESSION PROGRAMMING 521

been proposed to deal with this problem when addressing cla @
sification problems with a mixture of continuous and nominal
attributes GP [5], [55]. Moreover, GPs tree-based individuals

typically result in bloating [56], [48], i.e., uncontrolled growth ° @

in the size of individuals over the course of genetic manipula:

tions, such as subtree crossover and various kinds of mutatio ° e d e
The bloat can be controlled by proper coordination between th

fitness function and the genetic learning operators. Only whe e Q @ e

there is such a proper coordination the search may progress st @ e
cessfully. Q ° 0 e

I1l. OVERVIEW OF GENE EXPRESSIONPROGRAMMING

Like GP, five general components, the function set, termina
set, fitness function, control parameters, and stop criteria [31,,
must be determined when usmg G!EP to solye a problem. Uﬁ?é_ 1. Example of GEP expression trees.
like the parse tree representation in canonical GP, GEP uses
a fixed-length of character strings to represent computer pro-
grams, which are afterwards expressed as parse trees (calig@xpressed as Fig. 1(a), which can be further expressed in a
“expression tree” in GEP) of different sizes and shapes wha{athematical form as
evaluating their fithess. During reproduction it is the chromo-

somes of the individuals, not the expression trees (ETs), that are
\/(a +b*c)"a

1

reproduced with modification and transmitted to the next gener- )
c—d

ation. Thus, in GEP, the search space is separated from the so-
lution space, which can result in benefits such as unconstrained
search of the genome space, while still ensuring validity of tHéhe inverse process, i.e., the conversion of an ET into a
program’s output as noted in [2]. The original GEP techniqug-expression, is also very straightforward, just recording the
was proposed by Ferreira[15], in which GEP chromosomes magdes from left to right in each layer of the ET, from root layer
consist of one or more genes of equal length. In this paper, @ewn to the deepest one to form the string, e.g., the expression
consider one-gene chromosomes and use a slightly different Vigge in Fig. 1(a) is recorded as chromosome (3.1).

(3.2)

sion described as follows. Like GP, the function set and terminal set must havecthe
sure property each function must be able to take as its argu-
A. GEP Chromosomes and ETs ments any value of data type which can be returned by a func-

) i tion or assumed by a terminal. Furthermore, in our implementa-
‘Each GEP chromosome is composed of a list of symbqig, mathematical errors are prevented by using protected func-
with a fixed length, which can be any element from the funGjons For instance, if division by zero is attempted, protected

tion set and the terminal set. For example, from the function $§tision returns the value of division by a very small number
{+, —, *, /, sqrt} and the terminal sdll, a, b, ¢, d}, a typical (e = 1E — 6)

GEP chromosome (with size 15) can be

As stated before, GEP chromosomes have fixed length, which
is predetermined for a given problem. Thus, in GEP, what varies
sqrt.*. 4+ .*.a.* sqrt.a.b.c./.1. — .c.d (3.1) s not the length of chromosomes, but the size of the corre-
sponding expression trees. This means that there exist a cer-
tain number of redundant elements, which are not useful for the
genome-ET mapping. For example, the following chromosome:

where “” is used to separate elements for easy reading;
is the square-root functiori; is a constant; and, b, ¢, d are
variable (or attribute) names. The above is typically named as
Karva notation, or K-expression [15]. A K-expression can be
mapped into an ET following a width-first fashion. The con-
version starts from the first position in the K-expression, whidhas the same length of 15 as chromosome (3.1), but its valid
corresponds to the root of the ET and reads through the strikgexpression size is 6, i.e., only the first six elements are used
one-by-one. For each node (from left to right) in one layer ito construct the solution functiom*(a*\/E), with the corre-

the ET, if it is a function withn(n >= 1) arguments, then the sponding expression tree shown in Fig. 1(b).

nextn symbols in the K-expression are attached below itas So the valid length of a K-expression may be equal or less
child branches. Otherwise, each terminal node forms a leaftbfin the length of the chromosome. In order to guarantee that
the ET. This tree expanding process continues layer-by-layerly legal expression trees are generated, the original GEP tech-
until all leaf nodes in the ET are composed of elements fromique employs a head-tail method. Each chromosome is com-
the terminal set. For example, the sample chromosome (3.1) pmsed of a head and a tail. The head may contain symbols from

*.a.” sqri.ab.c./. 1. — cd.sqrt.* + (3.3)



522 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

lection, and reproduction. The process is repeated for a certain
number of generations or until a solution has been found.

> In GEP, individuals are often selected and copied into the

next generation according to fithess by roulette-wheel sampling
[23] with elitism, which guarantees the survival and cloning of

Create Chromosomes of Initial Population

Express Chromosomes as Expression Trees

v the best individual to the next generation. Variation in the pop-
Evaluate Fitness of Expression Trees ulation is introduced by conducting genetic operations on se-
I lected chromosomes, as illustrated in Fig. 3, which include the
. — following.
Select New Population Probabilistically 1) Crossover, in which two parent genomes are randomly
v chosen and paired to exchange some elements between
Crossover, Mutation, and Rotation them. There are two kinds of crossover: one-point, and
7 two-point crossover, working in the same fashion as that
in GAs.

Chromosomes for New Generation

Termination Criterion
Satisfied?

2) Mutation, in which the symbols at any position in a
genome are subject to a random change according to a
certain probability. Note that like crossover, a mutation in
the coding sequence of a chromosome usually drastically

Yes reshapes the ET. For example, the case of mutation in

Fig. 3 has changes at two positions, which results in the

corresponding ET reshaping as shown in Fig. 4.

3) Rotation, in which two subparts of element sequence in

Fig. 2. Flowchart of a typical GEP algorithm. a genome are rotated with respect to a randomly chosen

point. Rotation can also drastically reshape the expres-
sion trees, as shown in the example chromosomes (3.1)
both the function set and the terminal set, whereas the tail con-  and (3.3). Note that chromosome (3.3) was produced by

tains only terminals. In our GEP implementation, we applied a  rotating the first three elements of chromosome (3.1).

validity test program to dynamically check if a chromosome ishe output chromosomes from these operators must pass the

able to encode a legal expression tree within the size limit, ipalidity test to ensure that they can form valid expression trees
stead of using the head-tail method. The program reads throygithin the predefined chromosome size limit. If an individual
the symbol list of a candidate chromosome sequentially (froploduced by a genetic operator does not pass the test, the op-
left to right) and accumulates the number of arguments requirgghtor will be performed repeatedly until the offspring passes
for each symbol (the number of arguments for a terminal Syrthe test. For example, one-point crossover will be repeated on
bols is zero) into a variable, which was set to one initially, sinage same parents (not the invalid chromosome) but at a different
the shortest expression consists of one terminal. If at a certaivssover point if either of the children fails the test. An anal-
point within the list, the value of this variable equals the totajsis of the evolutionary dynamics for each of these operators
number of symbols (including the current one) that have beean be found in [16]. Although GEP may also evolve expres-
scanned so far, the chromosome is a valid one. Otherwise, if #iens with redundant complexity, i.e., subexpressions that could
two numbers cannot match till the end of the chromosome,bé replaced by much simpler or smaller expressions that yield
is invalid. All chromosomes randomly generated or reproducélte same result, the bloating problem is much less serious that
by genetic operators are subject to this test to prevent illegal ésaditional GP. Since the valid length of a K-expression never

pressions coming up. exceeds the limit of the predefined chromosome length, GEP
has the tendency to produce shorter programs.
B. The GEP Algorithm and Operators In summary, like GAs, the chromosomes in GEP are linear,

Fig. 2 illustrates the flowchart of a typical GEP algorithmcompact, and easy to genetically manipulate; like GP, the
Like GAs and GP, the GEP algorithm begins with an initial pogevolved computer programs in the form of expression trees
ulation of chromosomes, which are randomly generated, linefhibit a certain amount of functional complexity. And the
strings with a fixed length. Then, the linear chromosomes dféiertranslation of chromosomes and ETs is pretty straightfor-
expressed as ETs and the fitness of each individual is evaluatfd. Moreover, GEP exhibits more simplicity, i.e., the user
based on a predefined fitness function. The individuals are the@ed not explicitly specify the genotype-to-phenotype mapping
selected according to fitness to form a new generation, i.e., fi#eg., through a BNF grammar), compared with other linear
higher the fitness value, the more chance an individual has to®8s such as binary GP (BGP) [2], GADS [44], or grammatical
selected. The selected individuals are also subject to reprodeeslution (GE) [49]. On account of these characteristics, i.e.,
tion with modification, through genetic operators like crossovesimplicity, high efficiency, and functional complexity, GEP
mutation, and rotation (which will be described later). The irsombines the advantages of both GAs and GP, while over-
dividuals of this new generation are, in their turn, subjected tmming some of their limitations, which offers great potentiality
the same developmental process: expression of the genomeggcsselve complex modeling and optimization problems.



ZHOU et al: EVOLVING ACCURATE AND COMPACT CLASSIFICATION RULES WITH GENE EXPRESSION PROGRAMMING 523

Initial chromosomes Offspring
Crossover (single-point):

sqrt.*.+.*.a.* sqrt.a.b.c./.1.-.c.d >_< sqrt.*.+.*.a.c.a.1.b./.a.sqrt.d.a.b

-.b.+.sqrt.b.c.a.1.b./.a.sqrt.d.a.b -.b.+.sqrt.b.*.sqrt.a.b.c./.1.-.c.d

Crossover (two-point):

sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d sqrt.*.+.*.b.c.a.l.b.c/.1.-cd

-.b.+.sqrt.b.c.a.1.b./.a.sqrt.d.a.b >_< -.b.+.sqrt.a.*.sqrt.a.b./.a.sqrt.d.a.b
Mutation:

sqrt.*.+.*.a.* sqrt.a.b.c./.1.-.c.d sqrt.*.+.a.a.*.sqrt.+.b.c/.l.-.c.d

Rotation

sqrt.* +.*.a.*sqrt.a.b.c/l-.cd 5 *a*sqrtab.c/l.-cdsqrt*+

Fig. 3. Genetic operators of the GEP algorithm.

indicating whether or not a given instance belongs to that class,
ie.,

e e @ e —> @ whereX is the input feature vector. To extend this approach
° to n-class classification problems, whene > 2, we adopt

a o 0 d@ the often-usedne-against-allearning method to transform the
offe © L

° @ IF GEPJ (X) >0

THEN X € Class j ELSE X ¢ Class j (j=0,1)

n-class problem inta 2-class problems. These are constructed

d ’ by using the examples of classs the positive examples and

the examples of classes other thiaas the negative examples.

o o In our early work in [57], for each class, only one rule is
evolved to recognize instances belonging to its own class and
reject instances of other classes. We have found that many real-
world problems have complex feature spaces for which a single
rule may not adequately classify all instances of a given class.

) ) ~In this paper, we apply the covering strategy to learn multiple

As a global search technique using GAs, GEP has exhibitgfles for each binary classification problem. For each class in the
great potential for solving complex problems [15]. The reasogg/en training set, we learn a rule that covers as many positive
to use GEP for classification include the following. examples as possible and as few negative examples as possible.

1) Flexibility: GEP is more flexible than traditional rule in-Then, we remove all positive examples that have been covered

duction and decision tree algorithms, since it more fleXrom the training set and repeat the procedure to learn another
ibly reformulates the underlying representations. rule. These steps are repeated until no positive examples remain

2) Capability: Due to the employment of the powerful evoluin the training set.

tionary search mechanisms, it can discover relationshipsThere are two additional issues to be considered in developing
in the form of a combination of attributes and expressn efficient classifier. One is the problem of over fitting noisy
them mathematically. data. In our approach, the MDL principle [47] is applied to avoid

3) Efficiency: With the help of linear representation of chroeverly specific rules that try to fit noisy examples. Another issue

mosomes with fixed-length and easy manipulation of garises when the generated GEP rules are applied to new cases.
netic operations, GEP is more efficiently than traditionat is possible for more than one GEP expression to return a pos-

Fig. 4. Reshaping of ETs from the mutation in Fig. 3.

IV. CLASSIFICATION THROUGH GEP

tree-based GP. itive value, which results in a “classification conflict.” In the
, . worst case, all rules may not be satisfied. So there is the need
A. One-Against-All Learning for a strategy to solve classification conflict and rejection. These

For a two-class (binary) problem, the GEP expression pgroblems are addressed later in this paper as our technique of
forms classification by returning a positive or nonpositive valusvo-phase rule pruning is explained.



524 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

B. Function Set and Terminal Set examples as the training set (just like a random guess), the con-

For a given classification problem, we need to define the fun8iStENcy gain is zero; and in the case of perfect consistency, it
tion set and terminal set for GEP. The function set usually coill réturn one. Itis also possible for a rule to return a negative
sists of mathematical and logical operators, elg.,—, *, /, consistency gain, which signifies that the rule is less accurate
sqrt, 1F. 1F is & logical comparison function with three arguti@n @ pure random guess.
ments {, v, z), which take the valueif = > 0, theny elsez. In this work, the fitness function has the form
Using therr operation, GEP can manipulate piecewise-contin-
uous functions, which are very useful for real-world classificditness(R)
tion problems. _ {0, if consig(R) <0

The terminal set consists of all input attributes and a list of — | consig(R)* exp(compl(R) — 1), otherwise
constants, e.g{1, 2, 3,..., N}. In GP literature [31], there
exist two ways to introduce constant values into comput@herecompl(R) = p/P is the rule completeness.

programs: one is using a random number generator; the othethijs formula is similar to the one defined by Brazdil and

is using a set of constants. In our implementation, we followorgo in [7]. The use of thexp() function makes the quality

the second one, which enables GEP to represent any ratiadglasure prefer the consistency gain of the rule. This fithess

number using a given combination of constants and functiongynction has the advantages of being simple and returning a nor-
o ) ) malized value in the range .. . 1].

C. Numerization of Nominal Attributes

All operands are considered numeric in our GEP implementa- Two-Phase Rule Pruning

tion. There are two ways to perform numerization of nominal at- |n order to evolve an accurate, noise-tolerant and compact
tributes. One method is to map the values of a nominal attribyige set, we apply two phases of rule pruning: prepruning and
to integers, so that the attribute can be considered as nume@etpruning. For each binary classification task, ideally the cov-
inside the GEP. For example, if an attribute can take three peging strategy works by iterating the process of learning a rule
sible values, then these nominal values are mapped into a seh@fk covers part of the training examples until no positive ex-
integers, i.e., {0, 1, 2}. The disadvantage of this approach, hogmples remain. This method, however, may not be desirable if
ever, lies in the fact that it imposes an order that does not exisé training data are not noise free, because it tends to generate
in the original data. Another method is to divide a nominal asome specific rules that fit the noisy data very well, but do not
tribute inton binary attributes, which is called “binarization,” if generalize the concept to be learned well, thus resulting in over-
there aren possible values (here, > 2), with 0/1 representing fitting. One common approach to deal with this problem is early
the absence/presence of each value. This method overcomestbgping [40]. In the prepruning process, we employ a stop cri-
shortcomings of the first-integer approach, but will generatet@rion based on the MDL principle to determine when to stop
large set of derived attributesifis large. In this paper, we uselearning more rules for that class. The MDL principle tries to

the binarization approach. avoid learning complicated rules that cover only a small number
_ ) of examples, which may result from noisy data.
D. Fitness Function The central idea of the MDL principle originates from the in-

The problem of defining fitness functions to measure tHermation theory. Given some observed data and a collection
rule quality remains an interesting issue in data mining. Ideal§f possible theories that might explain the data, we want to
we should incorporate three criteria in a fitness function, i.gransmitthe concept membership of each instance across a wire.
predictive power, comprehensibility, and interestingness [18]he information being transmitted, i.e., the description length,
Here, we focus on finding accurate rules. Several formulas iificludes the amount of bits needed to encode both the theory
tegrating completeness (the ratio of positive examples covef€d., a set of rules) and the exceptions, i.e., all positive exam-
by the rule to total number of positive examples in the trainingles not covered by the theory (false-negatives) and all negative
set) and consistency (the ratio of positive examples coveredéxamples erroneously covered by the theory (false positives).
the rule to the total number of examples covered) have bee@llowing the Occam’s razor principle [40], the MDL principle
described in the literature [9]. Rather than using a consistergiptes that the best theory is the one that minimizes the total de-
metric, our approach incorporates rule consistency gain [38Efiption length.
because this measure takes into account the distribution of pogh our approach, we follow the method used in C4.5 [46] and
itive and negative examples in the training set. The consisteriigfine the description length of a rule détas
gain of ruleR is defined as

L(H) = Lexception(H) + W*Ltheory(H) (41)

P P+ N
consig(R) = < P )* +

p+n P+ N N where0 < W < 1 (here,W = 0.5). Lexception(H ) is the
number of exception bits defined as:

wherep andn are the number of positive and negative examples

covered by rulg?, andP andN are the total number of positive n N—n

and negative examples in the training set. In the case that a rulé"emptio"(H) = logy ((pr>> + log, << Ngn ))

have the identical distribution of covered positive and negative 2)



ZHOU et al: EVOLVING ACCURATE AND COMPACT CLASSIFICATION RULES WITH GENE EXPRESSION PROGRAMMING 525

Algorithm: Covering(E*,E™)
Input: E” set of positive examples, E~ set of negative examples
Output: A set of GEP rules H

Initialize the variables:
H:=0;

L = 999999 (minimum description length obtained so far);

L, =0 (current description length);

L,,.., =0 (theory bits).

Repeat
Apply the GEP algorithm to learn a rule R covering some

elements in E*
1) E*= E*- {e]eis covered by R}.
2) Ly = Ly + number of bits encoding rule R,

Lipeupion (HD =number of bits encoding the current exceptions,
Ly =05%L, . + L opion(H)-
3)If (L, =L, ) Then Stop; Otherwise H = H U {R}.
HUu L, >L,.then =1, .
Until E*=@.

Fig. 5. Covering algorithm involving a rule prepruning process.

wheren is the number of examples covered by the rulef$et
N is the total number of training examples, aiNg,, and N,

are the number of false positives and false negatives.
Lineory (H) is the number of theory bits defined as

Ltheory(H) = IOgZ(NC)* Z L(RL) (43)
=1

wheres is the number of ruled, (R;) is the valid chromosome

be. Then, the class of the GP expression with highest strength
of association will be assigned to the input case. The other ap-
proach also considers rule quality, but goes through the entire
set of rules, combines the qualities of the matched rules of the
same class and assigns the new example to the class for which
the combined quality is the maximum. For example, the CN2
unordered rule induction algorithm [10] follows this approach.

Since the fitness function used in our approach already takes
into account the rule consistency, completeness, as well as the
class distribution, it provides a natural criterion for ordering the
GEP rules. We have employed the following strategy for conflict
resolution and pruning redundant rules, which follows the first
scheme mentioned and the integration theory in [7].

1. Order all generated rules according to
their fithess values.

2. Select the rule with the highest fit-
ness value, and add it to the ordered
rule set.

3. Remove all positive and negative exam-
ples covered by the selected rule.

4. Recompute the fitness values of the

remaining rules on the remaining exam-

ples.

Repeat steps 1-4 until there is no ex-

ample left, or until none of the re-

maining rules yields a positive fithess
value.

6. A default class is selected in case
that all rules reject a new example.

o

The method for selecting the default class again follows the

size for expressiok;, and V.. is the total number of different way used in C4.5 rule induction algorithm. For each training
symbols usedin GEP, i.e., the total number of functions, variablggample, the ordered rules generated through steps 1-5 are ap-
and constants. For each rutg, we needog, (N.)+L(1;) bitsto  plied one by one in that order until one of them is fired. We only
encode the GEP chromosome list. There is no need to specify §a@sider the examples that cannot return a positive value by all

right-hand side of the rule, since all rules are related to the safhe GEP expressions, and select the class that has the largest
class for each binary classification. Based on the MDL principlaumber of unclassified examples as the default class, resolving
a stopping criterion is applied for each binary classification taskes in favor of the class with the larger number of instances in
to avoid learning more rules that may overfit the data, which {Re training set. After this postpruning process, redundant rules

called prepruning. After each rule is evolved by GEP and addggk eliminated. The final rule set is compact and ordered.
to the rule set, the total description length of the rule set is com-

puted according to formula (4.1)—(4.3). The covering algorithm

(described in Fig. 5) stops adding rules when this description h h of for classif
length is larger than the smallest description length obtained sdn order to test the proposed approach of GEP for classifica-

far, or when there are no more positive examples. tion, we hgve applied i'F to seve_ral data sets selected from the
The prepruning phase deals with noise during rule Iearnin‘gjj.CI repository of machine learning databases [3].

The second phase of pruning, which is performed after the rulg- ,

learning process has been completed for all classes, tries to ‘I%_Monk s Problems

prove the learned theory and resolve any classification conflictsThe Monk’s problems are created as a benchmark test for

and rejections. In general, there are two methods to solve gfnparison of different concept learning algorithms [53]. The

conflict problem [9]. One is to make the unordered rules an diree classification problems are derived from an artificial robot

dered list according to their confidences or qualities. For efomain described by six different nominal attributes:

ample, Kishoreet al. proposed a measure named “strength of ¢ al: head_shape: {round, square, octagon};

association” (SA) as the criterion of ordering a set of GP rules * a2: body_shape: {round, square, octagon};

[30]. The SA value indicates the degree to which a GP expres- ¢ a3: is_smiling: {yes, no};

sion can recognize examples belonging to its own class, and re-+ a4: holding: {sword, balloon, flag};

ject examples of other classes. The higher the value of SA, thee a5: jacket_color: {red, yellow, green, blue};

better the predictive performance of the corresponding rule will « a6: has_tie: {yes, no}.

V. EMPIRICAL EVALUATION



526 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

TABLE |
TESTACCURACY ON MONK'S PROBLEMS Rule 1:
IF  ad4_I-((a3+(a6-(a2_1+(AND(AND((al_l >0 ? a5_3 :
M1 M2 M3 a5_3+a5_2), a3), (a2_3 >0 ?al_3 : a5_2))-a2_1 >0 ?
C4.5 75.70% 65% 97.20% (AND(a5_4, a5_3) >0 ?al_3 : 2.0) : a5_1))))-al_1)>0
C4.5Rules| 100% | 66.20% | 96.30% THEN class 0
GEP 100% | 99.07% | 100% Rule 2:
IF (a6-(a5_l+(a2_1+(a4_l-(a3-al_1)))))*2.0 > 0
. . o . o THEN class 0
Each learning task involves finding a logical description of Rule 3
class that can differentiate whether or not robots belong to t e
class. IF AND(OR(AND(a2_1, a3-((((a5_3 >0 ?al_3 : a6-a2_I)+
_ (AND (al_1, a4_1)))+a4_3)*(1.0-OR(a4_1, al_1)))), a6-
» Problem M1 [124/432]: (OR(a4_1, a3))), a5_2) >0

THE, X
1F (a1 = a2) OR (a5 =red) THEN class 1 (5.1) N class I

* Problem M2 [169/432]:

Default class: 1

1F Exactly two of the six attributes Fig. 6. GEP rules for Monk’s problem 2.

have their first value THEN class 1 (5.2)

. Rule 1:
* Problem M3 [122/432]: IF (2.3 >0 ?a4_3+(a5_3 >0 ?a4.2 : 2.0): a5.4) > 0

THEN class 0

Rule 2:
IF  (a5_4 >0 ?AND(a2_1, a5_2)-1.0 : a2_1)+(((a5_3*
a2_3)*a4_1)+a2_2) >0
THEN class 1

IF (a5 = green AND a4 = sword) OR

(a5 <> blue AND a2 <> octagon) THEN class 1 (5.3)

The numbers in the bracket are the numbers of instances in
training set and testing set. Problem 3 has 5% misclassificatio
i.e., noise in the training set. Default class: 0

Since all attributes are nominal, the proposed binarization
method was used to make these values numeric. For exampie,7. GEP rules for Monk’s problem 3.
attributea5 is divided into four binary attributess_1,a5_2,a5_3,

anda5_4. An a5 value will have Only one of these four attributeERL”e (54) has exacﬂy the same functiona”ty as rule (51) Ex-
taking 1 and all others taking 0, @.9.al5 = green, thena53 ~ amples of the rules generated for problems M2 and M3 are
takes 1, and the other three take 0. The GEP function setincludggwn in Figs. 6 and 7 individually. Some of them are even

{1, +, —, *, O, AND}, and the terminal set contains constanigore complicated. However, the rules generated by GEP exhibit
{1,2, 3 and all the attribute names. Her@R andAND are two  petter compactness, compared with the C4.5Rules algorithm.
logical functions with two argumentsc(y), which takes the por example, C4.5Rules produced twelve disjunctive rules (four
following semanticsif = > 0ory > 0,thenOR(x, y) = 1,0th- ¢5r class 1, and eight for class 0) for task M1, and it is more dif-

erwiseO R(z,y) = 0;ifx > 0andy > 0,thenAND(x,y) =1, ficylt for human beings to derive the underlying concept as the
otherwiseAN D(z,y) = 0. We compare the GEP cIaSS|f|cat|0qogica| description (5.1).

results with those from the benchmark machine learning algo-
rithms, i.e.,C4.5and C4.5Rules. Table | presentsthe testaccurgcyoiher Problems

from these algorithms. (GEP results were obtained using the fol- i .
lowing control parameters: fixed chromosome lengthl 00, To further validate the proposed GEP approach for classifi-
crossover probability= 0.7, mutation probability = 0.02 cation, we tested GEP in 12 other benchmark data sets from the

rotation probability = 0.02, population size= 1000, and UCI repository. A brief description of the data-set properties
maximum generations: 5000, see Table I.) is presented in Table Il, which gives the number of instances,
The classification rule sets found by GEP achieved tfdtributes, and distinct class labels for each data set. To eval-
highest test accuracy on all three problems (one tie witffte the classification accuracy, we used fivefold cross-valida-
C4.5Rules on M1). GEP also exhibits noise tolerance &N (CV), which consists of dividing data into five subgroups.
problem M3. Actually, the performance of GEP on Monk'§ach subgroup’s examples are classified by the classification
problems is outstanding compared with many other learnifigles constructed from the remaining four subgroups and the
algorithms studied in [53]. estimated accuracy rate is the average accuracy from these five
The rules obtained by GEP learning are somewhat more dilbsamples. _
ficult to understand, but they can be transformed to exactly theThe function set and terminal set for GEP are often
same disjunctive or conjunctive normal form (DNF/CNF) aftehosen according to the user's knowledge of each problem.
logical analysis. For example, GEP found the following rule fdp all the following experiments, we used the function set

class 1 of task M1: {+, —, %, /, sqrt, 17}. The terminal set contained all input
attributes for each problem and a list of constants {1, 2, 3, 5,
1F OR(a5-1,1F(a2-2>0,al.2, (1r(a2-3>0,al1.3,al.1))) 7). The choice of the GA parameters, e.g., chromosome size,

> 0THEN class 1 (5.4) population size, probability of crossover, and mutations, also



ZHOU et al: EVOLVING ACCURATE AND COMPACT CLASSIFICATION RULES WITH GENE EXPRESSION PROGRAMMING 527

TABLE I The result of GEP and GP was also compared with respect to
CHARACTERISTICS OF THEBENCHMARK DATA SETS their average performance, i.e., the average of five runs, thereby
Database | No. Cases | No. Attr. | No. Class enabling a fair comparison vyith conventional classification
Balance Scale 625 7 3 methods. GEP achieved the hlghgst average accuracy on 7 out
Broast Cancor W1 683 5 > of the 12_ databases, among which three also _had the lowest
o 748 3 2 95% co_nﬂdence mte_rval, i.ebalance scalecar, andiris (high-
lighted in bold face in Table Ill). For 6 of the 12 benchmarks,
Glass 214 2 6 GEP achieved both higher accuracy and a smaller confidence
Heart Disease | 270 13 2 interval, compared with the results for C4.5 and C4.5Rules. A
Ionosphere 351 34 2 comparison of GEP with GP showed that GEP achieved higher
Iris 150 4 3 average accuracy for 11 of the 12 benchmarks and matched the
Lung Cancer 32 56 3 performance for the remaining one (i.e., thaveformdata).
Pima Indian 768 8 2 The two-tailedi-test [40] method was also used to determine
Waveform 5000 21 3 the level of significance that one algorithm outperforms another.
Wine 178 13 3 Using this method, good outcomes should have high accuracies
Zoo 101 17 7 and low standard deviations. Theest comparing the average

No. Caseis the number of caselp. Attr. is the number results from GEP and GP indicated that GEP outperformed GP
of attributes, andNo. Classis the number of classes. significantly on thecar data (with >99% significance), and
there is no significant difference for the remaining 11 bench-

contribute much to the success of rule discovery. In our exp&parks. The-tests also showed that GEP outperforms C4.5 and
iments, we used the same values of 0.8 for crossover, 0.02 €t-5Rules significantly on thiealance scalelata (with>99%
mutation, and 1000 for population size on all the databases. TH@nificance). GEP also outperformed C4.5 ondaedata (with
chromosome size and the maximum number of GA iteratioas?9% significance). For the other benchmarks, there was no
to execute may depend on the characteristics of the problesi@nificant difference between GEP and C4.5, or C4.5Rules.
such as dimensionality. For each binary-class learning, the GEF hebalance scalelata was generated to model the results of
algorithm stops when the number of generation reaches 10B&ychology experiments. Each example is classified as having
(except for thepima Indiandata, which uses 5000 generationsiie balance scale tip to the right, tip to the left, or be balanced.
or the fitness measure reaches 1.0, which means it corredtfje four predicting attributes awél (the left weight),A2 (the
classifies all positive and negative examples. The chromosolfif distance) A3 (the right weight), andi4 (the right distance).
size for thebalance scalgiris, ionosphere andlung cancer The correct way to find the class is the greater4f{A2) and
databases were set to 50, 80, 150, and 150 individually, whilé3* A4). If these two terms are equal, the scale is balanced.
all other data sets using 100 as the fixed chromosome lengttRules (5.5), (5.6), and (5.7) show one example set of identified
1) Comparison of Classification Accuracyfhe perfor- GEP rules, for which the default class is Left
mance of GEP is compared with the canonical tree-based GP
classifier as well as the C4.5 programs. A Koza-style GP system Rule 1
was implemented. To make the GP classifier comparable to the IF E*AQ — A3>0 THEN class = Left.

GEP approach, we used the same function set, terminal set, Ad

fitness function, and GA parameters as those used in GEP for (5-5)

each problem. We also employed the same covering algorithm Rule 2 :

and two-phase pruning strategy for rule induction in GP, as F1—7.0* <A4*A3 _ A2> > 0

described in Section IV. To avoid GP program bloating, we Al

specified a maximum number of nodes allowed to grow in GP THEN class = Balanced.

trees, which equals to the size of fixed-length chromosomes (5.6)

used in GEP for each benchmark data. Considering the sto- Rule 3 :

chastic behavior of GAs, for each data set, both GEP and GP A4 .

classifiers were run five times independently. 1P —o*A3—A1>0 THEN class = Right.
Table Il presents a comparison of classification accuracy in (5.7)

percentage for the four algorithms, i.e., C4.5, C4.5Rules, GEP,

and GP. The results were obtained from fivefold CV in terms should be noted that GEP successfully found the boundary
of their average accuracy and 95% confidence interval, whigatween the three classes, i.e.,

is proportional to the standard deviation. For GEP and GP, the

average results, as well the best results for five independent runs (A1"A2) — (A3"A4) = 0. (5.8)

are reported. The best result was obtained from the run that

achieved the highest accuracy of fivefold CV. Considering the As shown in Table Ill, GEP was always able to achieve a
best performance of GEP and GP, we found that GEP was atasting accuracy of 100% for thmlance scalelata, more than

to achieve the highest classification accuracy on 11 out of tB8% more accurate than the C4.5 and C4.5Rules algorithms.
12 databases, among which two have ties with GP. The only éx-appears that the reason for this significant difference in
ception is thgpima Indiandata. performance is that whereas GEP generated the appropriate



528 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

TABLE Il
COMPARISON OFCLASSIFICATION ACCURACY IN PERCENTAGE

Average Best
GEP GP GEP GP

Balance Scale | 78.7+6.8 | 77.3+7.1 | 100.0+0.0 | 99.8+0.3 | 100.0+0.0 | 100.0+0.0
Breast Cancer W.| 94.7+1.5 | 95.6+1.6 | 96.2+1.8 | 95.3+1.2 | 96.542.0 | 96.5+1.6
Car 91.0+2.4 | 932419 | 94.6+1.7 | 91.0+1.5 | 96.8+2.0 | 92.8+2.8

Glass 65.7+45.6 | 65.848.4 | 63.9+8.8 | 54.246.1 | 70.1+4.7 | 60.3+7.7
Heart Disease | 77.7+4.4 | 80.6+5.1 | 79.9+5.2 | 78.846.8 | 82.2+7.6 | 81.149.1
Ionosphere 91.1+8.6 | 90.0+48.3 | 90.2+2.4 | 90.0+1.7 | 92.6+2.4 | 92.0+3.0
Iris 93.948.1 | 94.6+8.2 | 95.3+4.6 | 92.9+4.7 | 96.0+3.2 | 94.0+5.0
Lung Cancer | 44.3+23.6 | 38.6+16.1 | 54.4+15.6 | 42.7+13.5 | 57.6+25.0 | 46.7+17.0
Pima Indian 74.844.7 | 75.444.3 | 69.7+3.8 | 67.7+4.2 | 74.9+4.5 | 71.0+4.7
Waveform 76.2+1.8 | 77.2+1.5 | 76.6+1.4 | 76.640.8 | 77.9+1.5 | 77.540.9
Wine 91.6+8.1 | 91.6+8.1 | 92.0+6.0 | 90.745.5 | 93.8+2.7 | 92.0+4.9

Zoo 92.0+7.7 | 91.047.5 | 93.9+6.9 | 92.1+5.3 | 95.147.8 | 95.0+5.7

Results from fivefold CV with the benchmarks are stated in terms of their average accuracy and 95%
confidence interval. For GEP and GP, the best and average results out of five independent runs are

Database C4.5 C4.5Rules

listed.
TABLE IV
COMPARISON OFGEP/GP EFICIENCY
GEP/GP Avg. Exp. Size Exec. Time (min)
Database Size Limit GEP GP GEP GP
Balance Scale 50 9 34 27.9 109.3
Breast Cancer W. 100 19 77 139.2 643.4
Car 100 13 92 1209.4 14874.2
Glass 100 20 82 2144 854.2
Heart Disease 100 13 93 82.4 440.4
Ionosphere 150 10 131 186.9 507.8
Iris 80 30 48 427 91.1
Lung Cancer 150 5 137 359 483
Pima Indian 100 29 97 1849.7 5721.5
Waveform 100 11 93 1660.5 7703.1
Wine 100 15 84 70.0 2149
Zoo 100 7 45 19.5 325

Avg. Exp. Size represents the average expression size, Exec. Time is the average execution
time in minutes. The size limit is the fixed length of GEP chromosomes; the same size was
used to control the maximum number of nodes allowed to grow in a GP tree.

curved boundaries between the classes, C4.5 relied on hygiee different runs. Both GEP and GP systems were programmed
cubic boundaries and could only generate piecewise-constasing Java and tested on Pentium IIl 1.7-MHz machines with
approximations. On average, C4.5 generated a decision tsd2 M RAM. On average, the size of GP expressions is 7.67
containing about 47 nodes, resulting in only 78.7% test acdimes larger than that of GEP expressions; on the other hand,
racy, while C4.5Rules produced about 25 rules with 77.3%e GEP system runs faster than GP with an average speedup
testing accuracy. In this case, the GEP generated rules are nufr4.07 under the same circumstances. It can be concluded that
accurate, more compact, and easier to understand. GEP tends to generate shorter expressions and costs less time to
2) Comparison of Efficiency Between GEP and GPis execute compared with GP, while achieving comparable classi-
trivial to compare the CPU time between GEP with C4.5 afication performance.
gorithms, since GEP is definitely more time-consuming. But it 3) Comparison of Rule Set Compactneg€oncerning the
is necessary to compare GEP with traditional GP approach. Abmpactness of evolved rule sets, we compare the average
though there is no significant difference on the accuracy ratember of rules generated by GEP with that of C4.5Rules and
between GEP and GP on most of the testing databases, the @HPfor each problem, and the results are shown in Table V.
approach is more efficient than GP with respect to the time afh average, the number of rules generated by C4.5Rules is
solution complexity. Table IV gives a comparison of the avera@e8 times larger than that of GEP. Thus, we claim that our
expression size generated by GEP and GP, i.e., the numbeG&P approach tends to produce more compact rule sets than
nodes in the program tree and their average execution time otraditional rule induction algorithm like C4.5Rules, especially



ZHOU et al: EVOLVING ACCURATE AND COMPACT CLASSIFICATION RULES WITH GENE EXPRESSION PROGRAMMING 529

TABLE V genome-ET mapping scheme. GEP harnesses the power of evo-
COMPARISON OFRULE SET COMPACTNESS lutionary search to detect underlying but unknown relationships
Method| (4 SRules GEP cp among data and express them as mathematical expressions,
Databases : which overcomes the shortcomings of local, heuristic, and
Balance Scale 25 3 3 greedy search used by conventional machine learning algo-
Breast Cancer 8 4 4 rithms like C4.5. The fitness measures for rule quality consider
Car 73 14 8 both the rule consistency gain and completeness. The covering
Glass 13 9 4 strategy was applied to learn a group of rules for each class
Heart Disease 9 4 4 and the MDL principle was used to avoid overfitting. Finally,
Tonosphere 8 4 4 we remove redundant rules and make the final rule set ordered
Iris 5 5 for conflict resolution and compact. Experiments conducted on
Lung Cancer 4 3 3 several UCI machine learning data sets with both numeric and
Pima Indian 10 5 5 nominal attributes have shown that our GEP approach achieved
Waveform 51 7 6 up to 20% improvement in validation accuracy, compared
Wine 5 5 5 with the C4.5 algorithms. The reason for this performance
700 3 7 7 improvement is due to the global searching capability of GEP to

produce the appropriate curved boundaries between the classes
in the data space. Furthermore, the proposed GEP approach is
more efficient and tends to generate shorter solutions compared
on complex problems. For example, GEP generates approytn canonical tree-based GP classifiers.

imately 14 rules for thecar data, while C4.5Rules requires Tne ploating problems that appear often in traditional GP are
about 73 rules to describe the data. The reason lies in the fﬁ:ﬁﬁgated by the fixed chromosome size in GEP. However, in
that GEP is good at representing a curved boundary by meaggne cases GEP may generate very long and complex expres-
of mathematical expressions, while traditional algorithms lik§ions that are difficult for humans to understand. GEP may gen-
C4.5 utilize piecewise constant approximation to construgtate complex expressions that “overfit” the training examples
hypercubic boundaries in contrast. We notice that GP genera@sperform poorly over the complete input space. To avoid this
fewer rules than GEP on three out of the twelve data sets, g}plem, future research should address the identification and
equal on others. The reason for this lies in the fact that GP rulgsplication of the appropriate parsimony pressure into the fit-
are usually more complex that GEP rules, which costs moggss function to restrict the expression size, increase the compu-
description bits. Since we use the same MDL criterion for earf4tional efficiency of the method, and improve the understand-
stopping, it is reasonable that GP tends to generate fewer ru%my of the solutions.

But with respect to the overall complexity of the whole rule set, Fytyre work should also address how to handle incremental

Each entry gives the average number of rules generated for each problem.

GEP still gets better compactness. learning. Currently, our system can save the learned GEP equa-
) ) tions as “seed chromosomes” and reload them later to relearn
C. Discussion concepts for the same data set or a modified data set. Real-world

Due to the stochastic behavior of GAs, GEP often results §ystems typically evolve over time; therefore, it is necessary to
different expression rules from different runs. For example, @tevelop a computationally efficient GEP method that reuses the
another trial GEP found a more complex expression with th&@owledge in a set of previously learned rules, to represent both
same classification power as (5.5) for classltké on thebal- old and new training examples.
ance scalalata

A9 ACKNOWLEDGMENT

Al —A3>0 . .
" *IF(Al > 0, A4, (A3 — A2)*1) > The authors would like to thank the anonymous reviewers

THEN class = Left. (5.9) who provided valuable comments for the quality of this paper.
They would also like to thank the Motorola Advanced Tech-

Since the value for attributé1 is in the range 0f1.0..3.0], itis  nology Center (MATC) for providing funding for this project.
always larger then 0, so the expression (5.9) is actually the same
as (5.5). This demonstrates the element redundancy existed in REFERENCES
the GEP Ch.romosomes and the fact that multiple g_en_omgs Canl] S. Augier, G. Venturini, and Y. Kodratoff, “Learning first order logic
ij‘ mapped into the same SOlu“_or_]' GEFS ”Q”d‘?term'”'sm IS ber{' rules with a Qenetic aIg’orithm,’-’ iRroc. 1st Int. Conf. Knowledge Dis-
eficial in the context of data mining, since it might lead to un- covery and Data MiningU. M. Fayyad and R. Uthurusamy, Eds., 1995,

expected and interesting discoveries among observed data. pp. 21-26. _ ,
[2] W. Banzhafet al, “Genotype-phenotype mapping and neutral vari-
ation—A case study in genetic programming,” Rarallel Problem
VI. CONCLUSION AND FUTURE WORK Solving from Nature—PPSN JIV¥. Davidor et al, Eds. News York:
] ) - Springer-Verlag, 1994, vol. 866, Lecture Notes in Computer Science,
In this paper, we have demonstrated the applicability of GEP  pp. 322-332.

to extract high-order rules for classification problems. As a [3] C.Blake, E. Keogh, and C. J. Merz. (1998) UCI Repository of Machine
Learning Databases. Univ. California at Irvine, Dept. Inform. Comput.

new type of GP, GEP exhibits simplicity, high efficiency, and g "ca. [online]. Available: http:/ww.ics.uci.edu/~mlearn/ ML-
functional complexity because of its linear representation and  Repository.html




530

(4]

(5]

(6]

(7]

(8]

El

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]
(23]
(24]

(25]

(26]

[27]

(28]

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

C. C. Bojarczuk, H. S. Lopes, and A. A. Freitas, “Discovering compre-[29] C. Z. Janikow, “A knowledge-intensive genetic algorithm for supervised

hensible classification rules using genetic programming: A case study

in a medical domain,” ifProc. Genetic and Evolutionary Computation [30]

Conf, Orlando, FL, July 14-17, 1999, pp. 953-958.

——, “Data mining with constrained-syntax genetic programming: Ap-
plications to medical data sets,” Proc. Intelligent Data Analysis in
Medicine and Pharmacology (IDAMAR)ondon, U.K., 2001.

M. C. J. Bot and W. B. Langdon, “Application of genetic program-
ming to induction of linear classification trees,” Rroc. 3rd European
Conf. Genetic Programming (EuroGRjol. 1802, LNCS , R. Poli, W.
Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty, Eds.,
Edinburgh, 2000, pp. 247-258.

P. Brazdil and L. Torgo, “Knowledge acquisition via knowledge integra-
tion,” in Current Trends in Knowledge AcquisitionAmsterdam, The
Netherlands: 10S Press, 1990.

L. Breiman, J. H. Friedman, R. A. Olsen, and C. J. St@lessification
and Regression Trees Belmont, CA: Wadsworth, 1984.

I. Bruha, “Quality of decision rules: Definitions and classification
schemes for multiple rules,” iMachine Learning and Statistics: The
Interface G. Nakhaeizadeh and C. C. Taylor, Eds.
1997, pp. 107-131.

P. Clarkand T. Niblett, “The CN2 induction algorithniMachine Learn,

vol. 3, no. 4, pp. 261-283, 1989.

A. L. Corcoran and S. Sen, “Using real-valued genetic algorithms to
evolve rule sets for classificationProc. 1st IEEE Conf. Evolutionary
Computation pp. 120-124, June 1994.

G. F. Davenportet al, “Rule induction using a reverse polish rep-
resentation,” inProc. Genetic and Evolutionary Computation Conf.
(GECCO0'99) vol. 2, W. Banzhatt al,, Eds., 1999, pp. 990-995.

K. A. De Jong, W. M. Spears, and D. F. Gordon, “Using genetic al-
gorithms for concept learningMachine Learn.vol. 13, pp. 161-188,
1993.

J. Eggermont, A. E. Eiben, and J. I. van Hemert, “A comparison of ge-
netic programming variants for data classification,” in Advances in Intel-

ligent Data Analysis, 3rd Int. Symp. (IDA-99), Amsterdam, The Nether- [40]
[41]

lands, 1999.
C. Ferreira, “Gene expression programming: A new adaptive algorithm
for solving problems,’'Complex Systvol. 13, no. 2, pp. 87-129, 2001.
——, “Mutation, transposition, and recombination: An analysis of the
evolutionary dynamics,” ifProc. 6th Joint Conf. Information Sciences,
4th Int. Workshop on Frontiers in Evolutionary Algorithmil. J.
Caulfield, S.-H. Chen, H.-D. Cheng, R. Duro, V. Honavar, E. E. Kerre,
M. Lu, M. G. Romay, T. K. Shih, D. Ventura, P. P. Wang, and Y. Yang,
Eds., Research Triangle Park, NC, 2002, pp. 614-617.

I. W. Flockhart and N. J. Radcliffe, “A genetic algorithm-based approach
to data mining,” inProc. 2nd Int. Conf. Knowledge Discovery & Data
Mining, 1996, pp. 299-302.

A. A. Freitas, “A survey of evolutionary algorithms for data mining and
knowledge discovery,” irAdvances in Evolutionary ComputatioA.
Ghosh and S.S. Tsutsui, Eds. New York: Springer-Verlag, 2001.

——, “A genetic programming framework for two data mining tasks: [46]

Classification and generalized rule induction,Aroc. 2nd Annu. Conf.,
Genetic ProgrammingJ. R. Kozaet al,, Eds., 1997, pp. 96-101.

J. Firnkranz, “Separate-and-conquer rule learnidgtif. Intell. Rev,
vol. 13, no. 1, pp. 3-54, Jan. 1999.

——, “Round robin rule learning,” irProc. 18th Int. Conf. Machine
Learning (ICML-01) C. E. Brodley and A. P. Danyluk, Eds., 2001, pp.
146-153.

A. Giordana and F. Neri, “Search-intensive concept inducti&vgl.
Comput, vol. 3, no. 4, pp. 375-416, 1995.

D. E. GoldbergGenetic Algorithms in Search, Optimization, and Ma-
chine Learning Reading, MA: Addison-Wesley, 1989.

D. P. Greene and S. F. Smith, “Competition-based induction of decision
models from examplesMachine Learn.vol. 13, pp. 229-257, 1993.

J. Hekanaho, “GA-based rule enhancement in concept learning,” if51]

Proc. 3rd Int. Conf. Knowledge Discovery and Data Minifdgwport
Beach, CA, 1997, pp. 183-186.

F. Herrera, M. Lozano, and J. L. Verdegay, “Generating fuzzy rules[52]

from examples using genetic algorithms,” fuzzy Logic Soft Com-
puting B. Bouchon-Meunier, R. R. Yager, and L. A. Zadeh, Eds.,
1995, pp. 11-20.

J. H. Holland and J. S. Reitman, “Cognitive systems based on adaptivis3]

algorithms,” inPattern-Directed Inference Systeris A. Waterman and
F. Hayes-Roth, Eds. New York: Academic, 1978.

H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting fuzzy [54]

if-then rules for classification problems using genetic algorithdi=2E
Trans. Fuzzy Systvol. 8, pp. 485-488, Aug. 1995.

(31]
[32] ——, “Concept formation and decision tree induction using the genetic

(33]

(34]

(35]

New York: Wiley, [36]

(38]

(39]

[42]

(43]

(44]

[45]

[47]

(48]

[49]

(50]

learning,”Machine Learn.vol. 13, pp. 189-228, 1993.

J. K. Kishore, L. M. Patnaik, V. Mani, and V. K. Agrawal, “Application
of genetic programming for multicategory pattern classificatidBEE
Trans. Evol. Computvol. 4, pp. 242-258, Sept. 2000.

J. R. KozaGenetic Programming Cambridge, MA: MIT Press, 1992.

programming paradigm,” ifParallel Problem Solving from Natuyé.
Schwefel and R. Maenner, Eds: Springer-Verlag, 1991.

P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Edsearning Clas-
sifier Systems: From Foundations to Application8erlin, Germany:
Springer-Verlag, 2000, vol. 1813, Lecture Notes on Artificial Intelli-
gence.

T. Loveard and V. Ciesielski, “Representing classification problems in
genetic programming,” ifProc. Congress Evolutionary Computatjon
vol. 2, 2001, pp. 1070-1077.

S. Luke, “Code growth is not caused by introns,” linte Breaking
Papers at the 2000 Genetic and Evolutionary Computation Conf.
(GECC0-2000)2000, pp. 228-235.

R. E. Marmelstein and G. B. Lamont, “A method for mining simplified
decision rule sets,” in Int. ICSC Congress Computational Intelligence:
Methods and Applications (CIMA'99), Rochester, NY, 1999.

[837] ——, “GraCCE: A genetic environment for data mining,” lmate

Breaking Papers at the Genetic Programming 1998 CahfR. Koza,
Ed., 1998, pp. 22-25.

, “Pattern classification using a hybrid genetic program decision
tree approach,” ifProc. 3rd Annu. Conf. Genetic Programming R.
Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M.
H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds., Madison, WI,
July 1998, pp. 223-231.

R. S. Michalskiet al, “Learning patterns in noisy data: The AQ ap-
proach,” inMachine Learning and Its Application&. Palioura%t al,
Eds: Springer-Verlag, 2001, vol. 2049, Lecture Notes in Artificial Intel-
ligence (LNAI), pp. 22-38.

T. Mitchell, Machine Learning New York: McGraw-Hill, 1997.

D. J. Montana, “Strongly typed genetic programmingyol. Comput.

vol. 3, no. 2, pp. 199-230, 1995.

N. Nikolaev and V. Slavov, “Inductive genetic programming with
decision trees,Intell. Data Anal.: An Int. J.vol. 2, no. 1, pp. 31-44,
1998.

E. Noda, A. A. Freitas, and H. S. Lopes, “Discovering interesting pre-
diction rules with a genetic algorithm,” presented at the 1999 Conf. Evo-
lutionary Computation (CEC-99), Washington, DC, July 1999.

M. R. Paterson and M. Livesey, “Distinguishing genotype and pheno-
type in genetic programming,” ibate Breaking Papers at the Genetic
Programming 1996 ConfJ. R. Koza, Ed., 1996, pp. 141-150.

M. Pei, E. D. Goodman, and W. F. Punch, “Pattern discovery from
data using genetic algorithms,” presented at the 1st Pacific-Asia Conf.
Knowledge Discovery and Data Mining (PAKDD-97), Singapore, Feb.
1997.

J. R. Quinlan4.5: Programs for Machine Learning San Mateo, CA:
Morgan Kaufmann, 1993.

J. Rissanen, “Modeling by shortest data descriptidtomatica vol.

14, pp. 465-471, 1978.

J. P. Roscat al, “Generality versus size in genetic programming,” in
Proc. 1st Annu. Conf. Genetic Programming 1996R. Kozeet al,, Eds.,
Cambridge, MA, 1996, pp. 381-387.

C. Ryan, J. J. Collins, and M. O’Neill, “Grammatical evolution:
Evolving programs for an arbitrary language,”ist European Work-
shop on Genetic Programming 199898, vol. 1391, Lecture Notes in
Computer Science, pp. 83-95.

S. F. Smith, “Flexible learning of problem solving heuristics through
adaptive search,” ifProc. 8th Int. Joint Conf. Artificial Intelligence
1983, pp. 422-425.

W. A. Tackett, “Genetic programming for feature discovery and image
discrimination,” inProc. 5th Int. Conf. Genetic Algorithm4993, pp.
303-309.

K. C. Tan, A. Tay, T. H. Lee, and C. M. Heng, “Mining multiple
comprehensible classification rules using genetic programming,” in
Proc. Congr. Evolutionary Computation (CEC’Q2)ol. 2, 2002, pp.
1302-1307.

S. B. Thrun, T. Mitchell, and J. Cheng, “The Monk’s problems—A
performance comparison of different learning algorithms,” Carnegie
Mellon Univ., Comput. Sci. Dept., CS-CMU-91-197, 1991.

G. Venturini, “A supervised inductive algorithm with genetic search for
learning attributes based concepts,"Hroc. European Conf. Machine
Learning 1993, pp. 280-296.




ZHOU et al: EVOLVING ACCURATE AND COMPACT CLASSIFICATION RULES WITH GENE EXPRESSION PROGRAMMING 531

[55] M.L.Wong and K. S. LeungData Mining Using Grammar-Based Ge-
netic Programming and ApplicationsNorwell, MA, 2000.

[56] B.-T.Zhang and H. Muhlenbein, “Balancing accuracy and parsimony
genetic programming,Evol. Comput.vol. 3, no. 1, pp. 17-38, 1995.

[57] C.Zhou, P.C. Nelson, W. Xiao, and T. M. Tirpak, “Discovery of classii* |
fication rules by using gene expression programming,” presented at {
Int. Conf. Artificial Intelligence (IC-Al'02), Las Vegas, NV, June 24-27, |
2002.

Thomas M. Tirpak (M'91) received the B.S. and
M.S. degrees in general engineering (robotics), the
Ph.D. degree in electrical and computer engineering
from the University of lllinois at Urbana-Champaign,
and the Master of Engineering Management degree
from Northwestern University, Evanston, IL.

He is a Principal Staff Engineer with the Motorola
Advanced Technology Center, Schaumburg, IL,
where he has led efforts to develop new methods
for improving the cycle time, quality, and cost
of electronics manufacturing and product design

operations. In cooperation with Motorola University, he developed and taught
Chi Zhou received the B.S. and M.S. degrees inclasses on “SMT manufacturing optimization” and “factory physics.” He has
computer science from Nanjing University, Nanjing,mentored research programs with universities in the U.S., Europe, Asia, and
China, in 1996 and 1999, respectively, and the Ph.D5outh America, and was a Visiting Lecturer at the University of Mining and
degree in computer science from the University oMetallurgy, Krakow, Poland. His current research interests include process
lllinois at Chicago, in 2003. modeling and optimization, multidisciplinary design optimization, and decision

He is currently a Senior Software Engineersupport systems.
with the Motorola Advanced Technology Center, Dr. Tirpak is a Motorola Science Advisory Board Associate and a Member of

i Schaumburg, IL. His applied research has focusethe Institute for Operations Research and Management Science, and Tau Beta Pi.

‘ / e on developing advanced knowledge discovery and
@\ % /& management techniques for manufacturing. His
) ) interests include machine learning, neural networks,
evolutionary algorithms, and data mining.

Peter C. Nelsonreceived the B.A. degree in com-
puter science and mathematics from North Park Col-
lege, Chicago, IL, in 1984, and the M.S. and Ph.D.
degrees in computer science from Northwestern Uni-
versity, Evanston, IL, in 1986 and 1988, respectively.
Currently, he is a Professor and Head of the De-
partment of Computer Science, University of lllinois
at Chicago. His interests include developing useful
China, and Ph.D. degree in computational structure Al techniques for intelligent transportation systems,
mechanics from University of Kentucky, Lexington. g W  manufacturing optimization, molecular biology, and
He was a Lecturer at Zhejiang Industrial Univer- ~intelligent tools for managing high availability, high-
sity, Hangzhou, China. Currently, he is a Principalperformance computer clusters. He has published the results of these projects by
Software Engineer with the Motorola Advancedcoauthoring over 50 technical articles with his collaborators. His research has
Technology Center, Schaumburg, IL. His researcheen funded by the U.S. Department of Transportation, lllinois Department of
interests include distributed computing, automatedransportation, National Institutes of Health, National Research Council, Na-
FEA system, mixed integer linear and nonlinear optimization, machinm®nal Science Foundation, lllinois State Toll Highway Authority, National In-
learning, automated mathematical model discovery, and knowledge discovstijute of Statistical Sciences, Manufacturing Research Center, Motorola, and
from database. Sun Microsystems.

Weimin Xiao received the B.S. degree in structural
engineering from Zhejiang University, Zhejiang,
China, the M.S. degree in computational structura
mechanics from Chongging University, Chongqing,




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


