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Abstract Missing data imputation is an important research
topic in data mining. The impact of noise is seldom con-
sidered in previous works while real-world data often con-
tain much noise. In this paper, we systematically investi-
gate the impact of noise on imputation methods and pro-
pose a new imputation approach by introducing the mecha-
nism of Group Method of Data Handling (GMDH) to deal
with incomplete data with noise. The performance of four
commonly used imputation methods is compared with ours,
called RIBG (robust imputation based on GMDH), on nine
benchmark datasets. The experimental result demonstrates
that noise has a great impact on the effectiveness of impu-
tation techniques and our method RIBG is more robust to
noise than the other four imputation methods used as bench-
mark.
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1 Introduction

Data in business are often corrupted by missing values,
especially the data collected from surveys. For example,
consumer data obtained from questionnaires usually con-
tain missing values because the consumers refuse to an-
swer some sensitive questions (e.g., income level, age) or
they simply have no opinions about them and so on. In-
dustrial databases are another data source which contains
a lot of missing data. The databases maintained by Honey-
well company, for instance, have more than 50% of its items
(or values) missing, despite great efforts taken in data col-
lection [23]. Such nonresponses complicate the data mining
process because most data mining algorithms cannot be im-
mediately and straightforwardly applied to incomplete data.
The simplest method to deal with missing data is data re-
duction which deletes the instances with missing values.
But such method will lead to great information loss since
in many cases the datasets contain a large amount of miss-
ing data [27]. In order to solve this problem, two categories
of techniques have been developed. First, there are missing
data toleration techniques which integrate the techniques of
missing values handling in specific data mining algorithms
such as in classification [39, 48], clustering [16] and fea-
ture selection [4]. Second, there are missing data imputa-
tion techniques which fill in missing values before using
complete-data methods. One advantage of imputation is that
the treatment of missing data is independent of the suc-
ceeding learning algorithm, and people can select a suitable
learning algorithm after imputation [36]. Therefore, imputa-
tion has received considerable attention and many methods
have been proposed in recent years [25, 43].

However, an important issue has been neglected by pre-
vious research: real-world data often contain much noise in
addition to the missing values while the impact of noise is
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seldom considered in current literature. The noise comes
from the process of data collection, data entry, data trans-
formation, etc. The presence of noise may introduce some
negative effects. For example, most classification algorithms
are sensitive to noise [28, 50]. Consequently, noise will af-
fect the performance of imputation methods that are based
on such classification algorithms. Therefore, it is necessary
to investigate the performance of current imputation meth-
ods in the presence of noise.

Group Method of Data Handling (GMDH) proposed by
Ivakhnenko [20] is a heuristic self-organizing data min-
ing technique for complex system modeling and identifica-
tion. One of the main advantages of the GMDH method is
its noise immunity. As Aksenova and Yurachkovsky have
stated in [2], GMDH will produce a so-called non-physical
model when the dataset includes noise. The non-physical
model has simpler structure and better generalization than
a complete physical model. Therefore, GMDH has been ap-
plied to many real-world data mining applications in recent
years [31]. In this paper, we try to design a new imputa-
tion method using the mechanism of GMDH and expect that
the missing values can be predicted accurately in a noisy
environment. Extensive experiments and comparisons are
done on 9 benchmark datasets from different domains. Ex-
perimental results show that noise has a remarkable impact
on the effectiveness of imputation techniques and our new
method RIBG is more robust to noise than the other imputa-
tion methods used as benchmark.

The rest of the paper is organized as follows. In Sect. 2,
we discuss related works on imputation method. In Sect. 3,
we introduce some definitions to be used in this paper and
give a brief description of GMDH. In Sect. 4, we describe
in detail the proposed new approach RIBG. Section 5 ex-
plores the impact of noise on imputation methods and eval-
uate the effectiveness of RIBG, particularly its robustness in
the presence of noise, through experiments on 9 bechmark
datasets. Finally in Sect. 6, we conclude the whole paper.

2 Related work

Methods to deal with missing values are not something new.
In 1976, Rubin developed a framework of inference from
incomplete data that is still in use today [38]. After that
many researchers have run into this area and proposed a
great number of methods. All the imputation methods can
be roughly classified into the following six categories:

• Mean substitution: It is the simplest imputation method.
It replaces the missing values by the mean of all the ob-
served values or a subgroup at the same variable. It is fast,
simple and easily implemented.

• Hot-deck imputation [14]: For Hot-deck imputation,
missing values are recovered from similar cases drawn

from the same dataset. It is often used to handle missing
data of survey.

• Regression imputation [7]: Regression imputation uses re-
gression models to predict missing values. Many forms of
regression models can be used for regression imputation
such as linear regression, logistic regression and semi-
parametric regression [36].

• EM imputation: The EM imputation is based on the
Expectation-Maximization (EM) algorithm proposed by
Dempster, Laird and Rubin [10]. It uses the iterative pro-
cedure of the EM algorithm to calculate the sufficient sta-
tistics and estimate the parameters. The missing values
will be produced in the process.

• Multiple imputation [15]: Multiple imputation was first
proposed by Rubin [38] and now is an increasingly popu-
lar way to handle missing data. It produces m complete
datasets, and then each of the datasets is analyzed by
complete-data method. At last, the results derived from
these m datasets are combined. Multiple imputation re-
flects the uncertainty of the missing values.

• Machine-learning-based approach: Most methods de-
scribed above come from statistics. Recently, some ma-
chine learning techniques have been introduced to es-
timate missing values. For example, a decision tree ap-
proach was suggested by Quinlan [37]. Lakshminarayan,
Harp and Samad [23] used Autoclass clustering to han-
dle missing data. Batista and Monard [6] suggested a
k-nearest-neighbor approach to fill in the missing data.
Huang and Lee [18] employed a grey-based nearest
neighbor method to impute the missing data. Hruschka
Jr., Hruschka and Ebecken [17] used Bayesian network to
substitute missing values. Also there is another work by
Chen and Huang [8, 9], which used the weighted fuzzy
rules to estimate null values in relational database. These
methods mainly use the predictive power of machine
learning algorithms to estimate missing values.

To examined the performance of aforementioned imputa-
tion methods, several works have been done. Myrtveit, Sten-
srud and Olsson [32] presented an empirical evaluation of
imputation methods in the context of software cost model-
ing. Olinsky, Chen and Harlow [34] compared the efficacy
five imputation methods in structural equation modeling.
Farhangfar, Kurgan and Dy [13] studied how the choice of
different imputation methods affects the performance of var-
ious classifiers. Twala [44] investigated the impact of popu-
lar imputation approaches on tree-based model.

Although there have been a large amount of work on im-
putation, relatively little attention has been given to the im-
pact of noise. As far as we know, the only work that consid-
ered the influence of noise on imputation methods was [47].
In [47], Van Hulse and Khoshgoftaar analyzed the perfor-
mance of five popular imputation techniques on noisy soft-
ware measurement data, namely mean imputation, regres-
sion imputation, REPTree imputation, Bayesian multiple
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imputation, and k-nearest-neighbor imputation. It concluded
that noise has a dramatic negative impact on the effective-
ness of these imputation techniques. But there are some lim-
itations in that paper just as the authors have pointed out.
First, the conclusion was drawn from experiments on single
software measurement dataset. Second, it assumed the miss-
ing values and noise appear only on one variable (dependent
variable).

In this paper, we examine the impact of noise on imputa-
tion methods in a more general situation. Specifically, exper-
iments are done on 9 benchmark datasets from several differ-
ent domains. Meanwhile, we assume noise and missingness
distribute throughout the dataset which means both depen-
dent and independent variables in a dataset contain noise and
missing values. This is a more realistic situation, because for
real-world data, the number of independent variables is large
and they are much dirtier than dependent variables [50]. Ex-
perimental results demonstrate that noise has considerable
negative effects on imputation methods and our proposed
method RIBG outperforms other competing methods in the
presence of noise.

3 Preliminaries

3.1 Basic notions

In this section, we define some notions about missing values
and then introduce missing data mechanism which is con-
sidered in our experiments. Finally, a brief description of
the GMDH algorithm is given.

Let D denote an incomplete dataset with r variables
D = {A1,A2, . . . ,Ar} and n instances. For each variable
Aj , j = 1,2, . . . , r , it contains two parts: Aj = {Aobs

j ,Amis
j },

where Aobs
j is the set of observed elements and Amis

j is the
set of missing elements. Similarly, the entire dataset D also
consists of two components, D = {Dobs,Dmis}, where Dobs

is the set of observed values and Dmis is the set of missing
values.

We can also introduce a response indicator matrix R

which is the same size as D to describe the missingness.
Each element of R is defined as follows:

Rij =
{

0 if vij is missing
1 if vij is observed

(1)

where vij is the value of the i-th instance at variable Aj , i =
1,2, . . . , n, j = 1,2, . . . , r .

The aim of imputation is to fill in all the blanks of in-
complete dataset D, so that the estimated complete dataset
D̂ can be used for succeeding data mining algorithm.

3.2 Missingness mechanism

The missingness mechanism determines how the missing
data are generated and it is a potential factor that will af-
fect the imputation results. Thus, a comprehensive study of
the noise impact on imputation methods must take differ-
ent missingness mechanisms into account. There are three
types of missing data mechanisms according to Little and
Rubin [25]:

• Missing Completely At Random (MCAR)
If Pr(R|Dmis,Dobs) = Pr(R), then the missing mecha-
nism is defined as MCAR, where Pr presents the prob-
ability. MCAR implies that the missingness is unrelated
to both the missing and observed values in the dataset.

• Missing at Random (MAR)
If Pr(R|Dmis,Dobs) = Pr(R|Dobs), then the missingness
mechanism is called MAR. MAR means the missingness
depends on observed values but not on missing values.

• Not Missing At Random (NMAR)
If Pr(R|Dmis,Dobs) is not equal to Pr(R|Dobs) and it de-
pends on Dmis, then the missing data is NMAR.

3.3 The GMDH algorithm

GMDH is an inductive modeling method that constructs
a hierarchical (multi-layered) network structure to identify
complex input-output functional relationships from data. It
was first developed by Ivakhnenko as a multivariate analy-
sis method for complex systems modeling and identifica-
tion in the 1960s [19]. During the 1980s its theoretical
background was formulated [21, 41] and later considerable
improvements were introduced by versions of the polyno-
mial network training algorithms (PNETTR) by Barron [5]
and the algorithm for synthesis of polynomial networks
(ASPN) by Elder and Brown [11]. In the 1990s, Mueller
and Lemke further developed the GMDH algorithm into the
self-organizing data mining algorithm [24]. After entering
the 2000s, many researchers have attempt to use computa-
tional intelligence technology such as genetic algorithm [33]
to optimize the network structure of the GMDH model. Now
GMDH has become a set of several algorithms for different
problem solutions. It consists of parametric, clusterization,
analogs complexing, and probability algorithms. It has now
been successfully applied to many domains such as eco-
nomics [29], ecology [45], engineering [35], medical sci-
ence [1], etc.

The process of GMDH is analogous to the natural evo-
lution of wheat. To obtain wheat with a certain property,
a large number of wheat are sown which may have this prop-
erty. From the harvest of the first generation, wheat which
better satisfy the requirements as compared to others are
chosen. The seeds of these wheat are sown again. From the
second harvest certain seeds are once again selected and
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sown. After several generations, some wheat will be ob-
tained in which the desired property are more predominant
than in others. Similarly, the process of GMDH is a self-
organizing process based on sorting-out of gradually com-
plicated models and selection of the best solution by exter-
nal criterion. GMDH first produces some simple elementary
models by reference functions and uses them as initial input
models at the start of modeling process. After generating a
large number of competition models by these initial input
models (inheritance), the algorithm selects certain more op-
timal intermediate models (selection), so that it regenerates a
large number of new competition models by these interme-
diate models. Such procedure of inheritance and selection
is repeated until an optimal complex model has been cre-
ated. According to the theory of optimal complexity, as the
complexity of the model increases, the value of external cri-
terion usually decreases first, then reaches a minimum and
later starts to increase again. The GMDH algorithm will stop
when an eternal criterion reaches its minimum which corre-
sponds to the optimal complex model [26]. In this way, the
algorithm can determine the input variables and structure of
the final model automatically, and has accomplished it by
the process of self-organizing modeling [31].

One desirable characteristic of GMDH is its noise im-
munity. As we all know, when data contain noise, the most
dangerous thing is overfitting [42], which implies that mod-
els tend to be excessively complex, and have poor general-
ization. But for GMDH, this problem can be avoided. As
Ivakhnenko and Stepashko have stated in [22] that when
the dataset contains noise the minimal value of the exter-
nal criterion of GMDH usually indicates a non-physical
model. Aksenova and Yurachkovsky [2] have proved the
non-physical model has simpler structure and better gener-
alization than a complete physical model.

4 Algorithm of RIBG

The main idea of RIBG is using the mechanism GMDH to
impute missing data in the hope it will give more accurate
imputation results than traditional imputation approaches
even when data contain noise. Let us consider an incomplete
dataset D with r variables D = {A1,A2, . . . ,Ar}. RIBG
will fill in the original incomplete dataset D by simple
mean imputation to get an initial complete dataset. We use
mean imputation to initially impute the missing values be-
cause it has been proved to be an efficient pre-imputation
method [12]. Then we use the mechanism of GMDH to pre-
dict and update these initial estimated missing values with
an iterative process. When using the mechanism of GMDH,
we present a new combined criterion RM which integrates
the systematic regularity criterion (SR) and minimum bias

criterion (MB) criterion together:

RM = SR + MB

=
{(∑

i∈B

(yi − ŷC
i )2 +

∑
i∈C

(yi − ŷB
i )2

)}

+
∑

i∈B∪C

(ŷB
i − ŷC

i )2 (2)

where B and C are two disjoint subset of the entire datasets
D (B ∪ C = D), yi is the actual output, ŷB

i and ŷC
i are the

estimated outputs of the model constructed on dataset B and
dataset C, respectively. Algorithm RIBG shows the whole
learning process step by step.

Algorithm RIBG
Input:
D—n × r incomplete dataset
Output:
D̂—n × r complete dataset

Step 1: Divide dataset D into two disjoint subsets: D =
B ∪ C, where B is the training set and C is the val-
idation set;

Step 2: For each variable in D, replace missing elements by
mean (if the variable is a numeric variable) or mode
(if the variable is nominal) of the observed elements
to get an initial complete dataset;

Step 3: Select variable Aj that needs to be imputed as
output variable (y = Aj) and all the remaining
variables as input variables (x = {As |s = 1, . . . , r,

s �= j}) to enter the first layer of the GMDH net-
work;

Step 4: Combine input variables in pairs (xi, xj ), 1 ≤ i,
j ≤ m and generate model candidates from each
combination using the following quadratic polyno-
mial:

y = c0 + c1xi + c2xj + c3xi · xj + c4x
2
i + c5x

2
j (3)

where c0, c1, . . . , c5 are parameters to be estimated
by the ordinary least square (OLS) method. For ex-
ample, if we use x1, x2, . . . , x5 as the input variables
to estimate the output variable y, then 10 model can-
didates are produced in Fig. 1 and input variables x1

and x2 will be combined to produce the model can-
didate Z11 as follows:

Z11 = c0 + c1x1 + c2x2 + c3x1 · x2 + c4x
2
1 + c5x

2
2

(4)

Step 5: Evaluate the external criterion of each model using
the combined criterion RM. Record the minimum of
the external criterion Ri from the current layer. Se-
lect Fi best models with lower criterion values and
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Fig. 1 Generation of candidate models in the first layer

their outputs zti are employed as new input vari-
ables for the second layer of the GMDH network
(xit = zit , t = 1, . . . ,Fi ). For instance, model can-
didates which have lower external criterion values
z1t (t = 2,3,6,7,9) are selected and used as input
variables for the second layer in Fig. 2;

Step 6: Repeat Steps 4–5 to produce model candidates of
the second layer, the third layer, . . . until the lowest
value of external criterion at the current layer Ri is
greater than that in previous layer. The model with
the minimum external criterion at the i-1 layer is
then selected as the final optimal complex model.
Figure 3 gives an example that the optimal complex
model z32 is obtained at the third layer;

Step 7: Use the corresponding estimates of the optimal
complex model to update the missing elements Amis

j

of variable Aj ;
Step 8: Repeat Steps 3–7 until the change of missing ele-

ment estimates Âmis
j becomes smaller than a thresh-

old or maximum number of iterations is reached.
Then assign current values of Aj to the correspond-
ing elements in D̂;

Step 9: Follow Steps 3–8 to update the missing values of
remaining variables.

5 Experiments

In this section, we evaluate the impact of noise on imputa-
tion methods and verify the robustness of RIBG in a noisy
environment through experiments.

5.1 Experimental design

5.1.1 Datasets

Nine datasets from the UCI (University of California at
Irvine) machine learning repository [3] were used in the

Fig. 2 Selection of candidate models

Fig. 3 Generation of optimal complex model

experiments. The basic information of these datasets is
listed in Table 1. The 9 datasets come from several dif-
ferent domains such as economics (Housing), medical sci-
ence (Breast), life science (Bupa, Cmc, Iris), social science
(Balance) and physics (Glass2, Ionosphere and Wine). They
were chosen because they have no missing data (for the
Breast dataset 16 instances with missing values were re-
moved). Consequently, we can have total control over the
generation of missing data in the datasets to produce missing
data with specified patterns and evaluate the performance of
imputation methods by comparing the imputed values with
original ones.

5.1.2 Simulation of missingness and noise

To introduce artificial missingness, we considered two im-
portant factors which may affect the imputation results:
missing rate and missing data mechanism. Three differ-
ent levels of missing rate were considered, i.e., 5%, 10%
and 20%. Meanwhile, three missing mechanisms were taken
into consideration, namely MCAR, MAR and NMAR. We
used the similar approach to produce artificial missingness
as Twala has done in [44]:
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Table 1 Datasets used in the experiments

Dataset Abbr. Size #Variable

Balance Scale Balance 625 5

Breast Cancer Wisconsin Breast 683 10

Liver Disorders Bupa 345 7

Contraceptive Method Choice Cmc 1473 10

Glass Identification (2 class) Glass2 163 10

Housing Housing 506 14

Ionosphere Ionosphere 351 35

Iris Plant Iris 150 5

Wine Wine 178 14

For MCAR, we let every data in the dataset have the same
probability α to be missing, where α was the specified miss-
ing rate.

Simulating MAR was more complex and it worked as
follow: we first randomly separated the variables into pairs
(Aj ,As), 1 ≤ j , s ≤ r , where Aj was the variable into
which missing values were introduced, and As was the vari-
able that affected the missingness of Aj . Given a pair of
variables (Aj ,As) and missing rate α, we first split the in-
stances into two equal-sized subsets according to their val-
ues at As . If the variable As is numerical, we would find the
median amed

s of As and then assigned all the instances into
two subsets according to weather the instances have bigger
values than amed

s at As . If As is nominal, we randomly di-
vided the categorical values of As into two parts, and then
split instances according to which part their corresponding
categorical values at As belong to. After the splitting of in-
stances, we randomly selected one subset of instances and
let their values at Aj to be missing with the probability of
4α. The probability of 4α will result in a missing rate of 2α

on the whole variable Aj which is equivalent to having a
missing rate of α on the two variables (Aj ,As), since we
did not introduce any missing values into As . We can de-
scribe the simulation process by a concrete example. Sup-
pose there is a complete dataset with two variables and nine
instances as in Table 2. The two variables can be numeri-
cal or nominal. If As is numerical, we may let the instances
whose values at As are lower than the median 60 (instance
number 1–5) to be missing with the probability of 4α, that
is to say, Pr(Aj = missing|As ≤ 60) = 4α. If As is nominal,
we can divide the instances into two subsets. On one sub-
set the instances have categorical value S2 at As and on the
other subset the instances have values S1 or S3. We may gen-
erate missing values at variable Aj on those instances com-
ing from the first subset (instance number 2, 3, 6 and 8) with
a probability of 4α, i.e., Pr(Aj = missing|As = S2) = 4α.
In addition, there is one thing that needs to be mentioned.
If the number of variables in the dataset is odd, there would
be a variable Ak (1 ≤ k ≤ r) that does not fall into any pair

Table 2 An example dataset for the simulation of missingness

Instance
number

As Aj

Numerical Nominal Numerical Nominal

1 24 S1 48 J4

2 30 S2 75 J4

3 31 S2 83 J3

4 35 S3 58 J3

5 60 S1 83 J2

6 76 S2 32 J2

7 81 S3 45 J1

8 82 S2 50 J1

9 88 S1 86 J1

of variables. For this variable we randomly selected a pair
of variables for it to form a variable triple (Aj ,Ak,As). In
this triple, the missingness of Aj and Ak all depends on As

and we used the same way as described above to produce
missingness on Aj and Ak , but we made one subset of in-
stances to be missing at Aj and Ak only with the probability
of 3α, as missingness was only introduced into two of the
three variables in the triple.

The process of generating missing values by NMAR was
similar to MAR. The only difference was that there was no
need to split variables into pairs, NMAR produced missing-
ness on every variable directly. For a given variable Aj and
specified missing rate α, if Aj is numerical, we first calcu-
lated the median amed

j of Aj and then randomly let the val-

ues that are lower (or higher) than amed
j to be missing with

probability of 2α. Take the dataset in Table 2 for instance
once more, we may let the values at Aj that are smaller than
the median 58 to be missing with probability of 2α. If Aj

is nominal, categorical values of Aj were randomly divided
into two parts. We then randomly selected one part of val-
ues and made them to be missing with the probability of 2α,
For example, we may split the categorical values of Aj in
Table 2 into two parts: J1 and J2 on one part, while J3 and
J4 on the other part. Then categorical values on the first part
(J3 and J4) are selected to be missing with the probability
of 2α.

The UCI datasets have been carefully examined by the
domain experts and they do not contain much noise [49]. So
we exploited a manual mechanism to add injected noise to
each variable in the datasets. Three noise levels were con-
sidered, i.e., 0%, 10% and 20%. We used the mechanism
adopted by Zhu and Wu [50] to corrupt the data. To cor-
rupt variable Aj with a given noise level δ, we let every
value at the variable Aj have a δ chance to be changed to
any other random value. For discrete variable, the random
value is another possible value at this variable. For continu-
ous variable, the random value is between the maximal and
minimal value.
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5.1.3 Imputation methods

To verify the effectiveness of RIBG, four popular imputation
methods were used in our experiments as base line. They are
regression imputation (RI), EM imputation (EI), grey-based
nearest neighbor imputation (GBNN), multiple imputation
based on fully conditional specification (MI).

RI uses a multivariate linear regression model to impute
the missing values. In order to reduce the number of regres-
sors, forward stepwise selection was used in building the
multivariate linear regression model.

EM imputation in our experiments assumes a distribution
for the data, and uses the iterative procedure of EM algo-
rithm to impute the missing values.

GBNN is a machine-learning-based approach with high
accuracy proposed by Huang and Lee [18]. It first deter-
mines the nearest neighbors of an instance with missing val-
ues using grey-relation analysis and then uses the known
values of nearest neighbors to impute the missing values.
To determine the best choice of k (number of nearest neigh-
bors), we let k vary from 1 to 50 and chose the best one ac-
cording to imputation accuracy as Huang and Lee has done
in [18].

There are generally two strategies for multiple imputa-
tion: joint modeling and fully conditional specification [46].
We selected fully conditional specification in our experi-
ments because it is more flexible than joint modeling. It
allows user to specify imputation model for each variable
separately. Typically, 5–10 imputations are enough for most
problems according to Schafer [40]. To get better results,
we utilized MI to obtain 15 complete datasets in our experi-
ments, and then integrated the 15 complete datasets into one
dataset by taking the average as Van Hulse and Khoshgof-
taar has done in [47].

EM imputation, regression imputation, multiple imputa-
tion were implemented in SPSS with default settings. Mat-
lab codes were developed for GBNN and RIBG. In Algo-
rithm RIBG, we assigned a fixed value to Fi (number of
candidate models selected in each layer) in each layer and
tried three different numbers (10, 20 and 30) and observed
the results was not very sensitive to Fi . As a consequence,
we set Fi to be 10 in every layer.

5.1.4 Experimental design summary

In summary, our experiments considered the following three
aspects:

• Missing rate: 5%, 10%, and 20%
• Noise level: 0%, 10%, and 20%
• Missingness mechanisms: MCAR, MAR, and NMAR

In total, 3 × 3 × 3 = 27 scenarios (combinations of different
missing rates, noise levels, and missingness mechanisms)

were considered for every dataset, we assumed that all the
variables had the same level of noise and all the variables
with missing values had the same missing rate and miss-
ing mechanism. To avoid bias, five independent experiments
(runs) were implemented for each scenario of every dataset.

In general, the experiments were done as follows. Origi-
nal complete datasets were first corrupted by artificial miss-
ingness and noise. Next, RIBG and other benchmark meth-
ods were used to fill in the missing values. Finally, the per-
formance of each method was evaluated by comparing the
imputed values with original ones as Farhangfar, Kurgan and
Pedrycz have done in [12].

5.1.5 Performance measure

To evaluate the precision of imputation, the normalized
mean absolute error (NMAE) is used and its value at vari-
able Aj is calculated as follows:

NMAEj =

⎧⎪⎨
⎪⎩

1
nmis

j

∑nmis
j

i=1(
v̂ij −vij

vmax
j −vmin

j

) if Aj is numerical

1 − ncor
j

nmis
j

if Aj is nominal
(5)

where nmis
j is the number of missing values at Aj , vij and

v̂ij denote the true value and imputed value of the missing
data respectively, vmax

j and vmin
j are the maximum and min-

imum value at Aj , ncor
j is the number of missing nominal

values that are correctly predicted. The value of NMAE on
the whole dataset takes the average over all the variables.
The NMAE of one imputation method at a scenario is cal-
culated as the average over all the five runs of that scenario.

5.2 Experimental results and analysis

5.2.1 Illustration of results

We have carried out the experiments with all the 9 datasets.
Figure 4 only demonstrates one set of representative results
(different scenarios of the Breast dataset), where the x-axis
indicates the noise level and the y-axis represents the im-
putation error in terms of NMAE. Each curve in the fig-
ure represents the results from one imputation method. Take
Fig. 4(a) for example, it presents the results of the five im-
putation methods at three different noise levels (0%, 10%
and 20%) in Breast dataset when the missing rate is 5% and
the missing data mechanism is MCAR. Figures 4(b)–4(i) il-
lustrate the results of other scenarios.

There are two interesting observations from these figures,
which also apply to the other 8 datasets:

• First, different noise levels have different impacts on im-
putation accuracy. Generally speaking, the imputation er-
ror increases with the level of noise for all the meth-
ods. This is understandable because with more noise in-
troduced into the datasets, more negative effects will be
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Fig. 4 Experimental results on Breast dataset
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Fig. 4 (Continued)

brought to the imputation results. Nevertheless, although
the noise will deteriorate the imputation accuracy, when
comparing the results from three noise levels, the pat-
terns of deterioration are different. When the noise level
is low, the impact of noise is limited, and the increas-
ing of imputation errors is not significant. Sometimes a
small amount of noise even seems to improve the results.
However, when level noise is relatively high, the intro-
ducing of more noise will deteriorate the imputation re-
sults dramatically. Take Fig. 4(f) in which the mechanism
is MAR and the missing rate equals to 20% as an exam-
ple, when noise level increases from 0% to 10%, the error
of RI increases slightly from 0.1061 to 0.1094. But when
noise level reaches to 20%, the error degrades seriously
to 0.1271. All the other curves in the same figure demon-
strate the same trend. This contrast indicates that there

may be a threshold in each scenario. When the noise level
is below this threshold, the imputation methods are insen-
sitive to noise. The rising noise level has limited effects on
imputation results. But once the noise level is beyond this
point, the errors usually begin to increase dramatically.

• Another observation is that different methods have differ-
ent reactions to noise. As we can see from these figures,
when there is no noise or the noise level is low, i.e.,10%,
the imputation accuracy is relatively good. When com-
paring different methods, EI and RIBG achieve better ac-
curacy than the other three methods and their accuracy
difference is indiscernible. GBNN and RI appear to be
the second best methods and MI is worst of all the five
methods. When the noise level goes higher, i.e., 20%, the
accuracy difference between RIBG and EI turns to be sig-
nificant and RIBG becomes the best method in all the
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nine scenarios. EI sets the second best. It takes the sec-
ond place six times and the third place three times in term
of imputation accuracy in the nine scenarios. GBNN and
RI set the third best and MI is still worst of all. All these
reveal although no methods can be absolutely robust to
noise, but RIBG is really more robust than others at high
noise level.

5.2.2 The impact of noise on imputation methods

To justify the first observation that noise has a great impact
on imputation methods is statistically significant, analysis of
variance (ANOVA) is used to analyze the experimental re-
sults on each dataset as Van Hulse and Khoshgoftaar have
done in [47]. ANOVA is a powerful statistical model that
can be used to test the hypothesis that different levels of
factor have equal means when there are many factors in-
fluencing the experimental results simultaneously [30]. We
use the ANOVA model to test the null hypothesis that im-
putation results are similar at different noise levels. If the
null hypothesis is rejected, we then use a post-hoc test to
find which noise levels are significantly different from the
others. Four factors are considered in our ANOVA model:
noise level, missing rate, missingness mechanism and impu-
tation method.

The analysis of the main effect noise level on the 9
datasets is tabulated in Table 3, where the second column
gives the degrees of freedom (DF) (since there are three dif-
ferent noise levels, the DF for that factor is 2), the third
column lists the Type III Sum of Squares (SS), the fourth
and fifth column report the F-values and p-values, and the
sixth column tells will the null hypothesis be rejected at 5%
significance level. Since our main purpose is to explore the
influence of noise, we do not present the analysis of other
main effects due to lack of space.

We can see from this table that 7 datasets have p-values
much less than 0.001, one dataset (Wine) has the p-value
0.01 and one dataset (Ionosphere) has a p-value 0.036. The
results of Table 3 indicate the main effect noise level is sig-
nificant at the 5% level on all the 9 datasets. So we reject
the null hypothesis and conclude that of all the three noise
levels there is at least one that is different from others on the
9 datasets.

To determine which noise levels are significantly differ-
ent from others, two popular post hoc tests are used for
multiple comparison: Fisher’s Least Significant Difference
test (LSD) and Tukey’s Honestly Significant Difference test
(HSD) [30]. Table 4 and Table 5 give marginal means and
the grouping of the three noise levels on each dataset based
on these two post hoc tests at 5% significance level. Given
a noise level, the marginal mean is calculated as the aver-
age NMAE across all the scenarios (combinations of differ-
ent missingness mechanisms, missing rates and imputation

Table 3 Main effect noise level

Dataset DF SS F-value p-value Hypothesis

Balance 2 0.0083 45.59 <0.001 Reject

Breast 2 0.0025 30.53 <0.001 Reject

Bupa 2 0.0056 18.90 <0.001 Reject

Cmc 2 0.0069 30.53 <0.001 Reject

Glass2 2 0.0107 49.66 <0.001 Reject

Housing 2 0.0023 31.90 <0.001 Reject

Ionosphere 2 0.0125 3.398 0.036 Reject

Iris 2 0.0207 37.38 <0.001 Reject

Wine 2 0.0011 8.36 0.010 Reject

Table 4 Mean of different noise levels

Dataset Mean

0% 10% 20%

Balance 0.2357 0.2458 0.2548

Breast 0.1003 0.1022 0.1103

Bupa 0.1299 0.1381 0.1457

Cmc 0.2213 0.2293 0.2387

Glass2 0.1042 0.1145 0.1260

Housing 0.0870 0.0938 0.0972

Ionosphere 0.1382 0.1496 0.1618

Iris 0.0905 0.0952 0.1188

Wine 0.1100 0.1115 0.1167

Table 5 Grouping of different noise levels

Dataset LSD HSD

0% 10% 20% 0% 10% 20%

Balance A B C A B C

Breast A A B A A B

Bupa A B C A B C

Cmc A B C A B C

Glass2 A B C A B C

Housing A B C A B C

Ionosphere A AB B A AB B

Iris A A B A A B

Wine A A B A A B

methods) at that noise level. A, B and C in the Table 5 de-
note which group the noise level belongs to. Group A is the
one that has the minimum NMAE and group C has the maxi-
mum NMAE. If two noise levels have significantly different
means, then they fall into different groups; otherwise, they
stay in the same group.
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As Table 4 has shown, the imputation errors on all the
9 datasets always increase with the noise level. But the in-
crease demonstrates different patterns at different noise lev-
els. The increase from the noise level 10% to 20% is signif-
icantly larger than that from 0% to 20% on most datasets.
Take the Iris dataset for example, when raising noise level
from 0% to 10%, the error increase is 0.0047 (from 0.0905
to 0.0952), but when noise level moves from 10% to 20%
the increase reaches 0.0236 (from 0.0952 to 0.1188) which
is almost as five times big as the former increase.

LSD and HSD have the same grouping of the three noise
levels on all the 9 datasets in Table 5. On all the 9 datasets
the noise level 20% belongs to a different group from noise
level 0%, which means it has significantly higher means than
noise level 0%. On 5 datasets (Balance, Bupa, Cmc, Glass2
and Housing), the difference of mean between noise level
10% and 0% is significant, they fall into different groups.
On the remaining 4 datasets (Breast, Ionosphere, Iris and
Wine), the noise level 0% and 10% perform similarly and
they belong to the same group.

The results of Tables 3–5 indicate that noise has a great
negative impact on imputation methods. Even though some-
times low noise levels have limited impact on imputation,
high noise levels are doomed to degrade the imputation re-
sults drastically.

5.2.3 Robustness of RIBG

To validate the second observation in Sect. 5.2.1, i.e., the ro-
bustness of RIBG at high noise level, the ANOVA model
is used again to test the null hypothesis that all imputa-
tion methods perform the same at higher noise level (20%
noise level). In the ANOVA model, three factors are consid-
ered: missing rate, missingness mechanism and imputation
method.

Table 6 tabulates the analysis of the main effect impu-
tation method on the 9 datasets, where the second column
presents the degrees of freedom (DF) (since there are five
imputation methods, the DF for that factor is 4), the third
column reports the Type III Sum of Squares (SS), the fourth
and fifth column give the F-values and p-values, and the
sixth column reports will the null hypothesis be rejected
at 5% significance level. We can see from this table that
the main effect imputation method is significant on all the
8 datasets except Bupa at 5% level. Therefore, we can re-
ject the null hypothesis and infer that at least one imputa-
tion method has significantly lower errors than other meth-
ods one the 8 datasets.

To identify which methods have lower imputation errors,
Tables 7–11 report marginal means and the grouping of the
five imputation methods according to LSD and HSD at 5%
significance level on each dataset. A, B and C in the ta-
bles denote the first, second and third group, respectively.

Table 6 Main effect imputation method

Dataset DF SS F-value p-value Hypothesis

Balance 4 0.0037 14.02 <0.001 Reject

Breast 4 0.0021 13.70 <0.001 Reject

Bupa 4 6.1E-1 1.27 0.301 Accept

Cmc 4 0.0025 3.73 0.012 Reject

Glass2 4 0.0014 4.40 0.005 Reject

Housing 4 0.0016 9.56 <0.001 Reject

Ionosphere 4 0.0938 28.12 <0.001 Reject

Iris 4 0.0180 16.27 <0.001 Reject

Wine 4 9.8E-4 3.02 0.030 Reject

Table 7 Means and grouping of imputation methods (Balance and
Breast)

Method Balance Method Breast

Mean LSD HSD Mean LSD HSD

RIBG 0.2403 A A RIBG 0.1002 A A

EI 0.2516 B B EI 0.1071 B B

RI 0.2541 B B GBNN 0.1084 B B

MI 0.2612 BC B RI 0.1171 C C

GBNN 0.2670 C C MI 0.1189 C C

Table 8 Means and grouping of imputation methods (Bupa and Cmc)

Method Bupa Method Cmc

Mean LSD HSD Mean LSD HSD

RIBG 0.1410 A A RIBG 0.2314 A A

GBNN 0.1428 A A EI 0.2350 A A

EI 0.1449 A A RI 0.2364 A A

RI 0.1486 A A GBNN 0.2376 A A

MI 0.1509 A A MI 0.2532 B B

Table 9 Means and grouping of imputation methods (Glass2 and
Housing)

Method Glass2 Method Housing

Mean LSD HSD Mean LSD HSD

RIBG 0.1196 A A RIBG 0.0896 A A

GBNN 0.1225 A A GBNN 0.0918 AB A

MI 0.1249 A A EI 0.0961 B B

EI 0.1268 AB AB MI 0.1036 C BC

RI 0.1363 B B RI 0.1049 C C

The grouping is obtained in the same way as described in
Sect. 5.2.2. All the five imputation methods are sorted by
imputation accuracy in each table in descending order.
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Table 10 Means and grouping of imputation methods (Ionosphere and
Iris

Method Ionosphere Method Iris

Mean LSD HSD Mean LSD HSD

RIBG 0.1318 A A RIBG 0.0963 A A

GBNN 0.1327 A A GBNN 0.1003 A A

EI 0.1448 A A MI 0.1168 AB

MI 0.1477 A A EI 0.1296 BC B

RI 0.2523 B B RI 0.1510 C C

Table 11 Means and grouping of imputation methods (Wine)

Method Wine

Mean LSD HSD

RIBG 0.1110 A A

EI 0.1128 AB AB

GBNN 0.1162 AB AB

MI 0.1198 BC AB

RI 0.1239 C B

As can be seen from Tables 7–11, in terms of imputation
error, RIBG gives the lowest error on all the 9 datasets. The
next is GBNN and it takes the second place on 5 datasets
and either the third or fourth place on 3 datasets. EI is worse
than the above two methods. It ranks second on 4 datasets,
ranks third on 3 datasets and ranks either fourth or fifth on
2 datasets. RI and MI are the worst methods, and they never
take the first or second place. Meanwhile, the last position is
taken by one of them on 8 datasets.

According to LSD and HSD test, RIBG belongs to the
first group (group A) on all the 9 datasets and takes this po-
sition alone on 2 datasets. For GBNN, it belongs to the first
group (group A) on 7 datasets but never takes it by itself. It
also falls into the second group (group B) on 3 datasets and
the third group (group C) on 1 dataset. For EI, RI and MI,
they sometimes stays in the first group, but never take it by
themselves. It is worth noting that on dataset Bupa the dif-
ference between methods is not statistically significant and
all the methods belong to the same group.

All the above results from Tables 6–11 demonstrate that
RIBG achieves higher imputation accuracy at high noise
level (20%) when comparing with other benchmark meth-
ods.

5.3 Time complexity

We compare the runtime performance of RIBG with mul-
tiple imputation, which is the most popular imputation
method. All the experiments are conducted on a same PC
with a 1.73 GHz Intel Core 2 Duo processor and 2 GB

Table 12 Execution times (in seconds) to impute missing values

Dataset MI RIBG

Balance 19.12 30.15

Breast 32.74 44.69

Bupa 13.24 16.02

Cmc 104.15 98.91

Glass2 11.55 18.69

Housing 36.26 53.97

Ionosphere 66.93 287.31

Iris 7.58 12.81

Wine 15.36 44.12

memory running on Windows Vista operating system. Ta-
ble 12 presents the average time (in seconds) required for
producing the imputation result on one dataset. According
to Table 12, the time complexity RIBG is acceptable in com-
parison with multiple imputation. In view of the higher im-
putation accuracy, our method is worth paying attention to.

5.4 Discussion of the results

In the previous subsections, we presented numerous experi-
ments and comparative studies. Two important conclusions
can be drawn as follows:

1. Noise has a great impact on imputation methods and the
patterns of influence are different for low noise level and
high noise level. The former has a limited impact on im-
putation accuracy and the latter deteriorates the results
dramatically.

2. RIBG outperforms other benchmark methods at high
noise level. This does not surprise us, because most com-
monly used imputation methods are not intentionally de-
signed for noisy environment, whereas RIBG inherits
the noise-immunity of GMDH, so its robustness is ex-
pectable. But we do not claim RIBG outperforms other
benchmark methods in all situations. Actually, as we
have noticed in the Breast dataset, when the noise level
is low the performance of EI is comparable to RIBG.
However, as the noise level goes higher, the merit of
our method becomes obvious. Given a new incomplete
dataset, we usually do not have any prior knowledge
about whether the noise level is low or high, so it is
preferable to use RIBG.

Another interesting finding in our experiments is that MI
and RI which were considered to be effective techniques in
noisy environment [47] perform poorly. One possible reason
for this is that the experiments in [47] assume only the de-
pendent variable contains noise while our experiments make
the assumption that all the variables in the dataset include
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noise. Intuitively, the imputation results using noise-free in-
dependent variables are different from those using noisy
ones. The second explanation is that the software measure-
ment dataset is utilized in [47] while the UCI datasets from
several different domains are used in our experiments. The
special features of software measurement data make itself fit
MI and RI, whereas the characteristics of UCI datasets may
make MI and RI unsuitable. Which factors determine this
fitness remains to be answered.

6 Conclusions

In this paper, we systematically studied the impact of noise
on missing value imputation methods when noise and miss-
ing values distributed throughout the dataset. By observ-
ing the behavior of the different imputation methods at dif-
ferent noise levels, we drew the conclusion that noise has
great negative effects on imputation methods, especially
when the noise level is high. Meanwhile, we designed a
robust method RIBG based on GMDH to impute miss-
ing values in noisy environment. Comparative studies have
shown that RIBG performs quite well in comparison with
other four popular imputation methods in the presence of
noise. Given the frequent occurrence of missing values and
noise, RIBG is a good choice in imputing incomplete data
and has great potential in real-world data mining applica-
tions.
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