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Abstract The fuzzy min–max neural network classifier is

a supervised learning method. This classifier takes the

hybrid neural networks and fuzzy systems approach. All

input variables in the network are required to correspond to

continuously valued variables, and this can be a significant

constraint in many real-world situations where there are not

only quantitative but also categorical data. The usual way

of dealing with this type of variables is to replace the

categorical by numerical values and treat them as if they

were continuously valued. But this method, implicitly

defines a possibly unsuitable metric for the categories.

A number of different procedures have been proposed to

tackle the problem. In this article, we present a new

method. The procedure extends the fuzzy min–max neural

network input to categorical variables by introducing new

fuzzy sets, a new operation, and a new architecture. This

provides for greater flexibility and wider application. The

proposed method is then applied to missing data imputation

in voting intention polls. The micro data—the set of the

respondents’ individual answers to the questions—of this

type of poll are especially suited for evaluating the method

since they include a large number of numerical and cate-

gorical attributes.
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1 Introduction

Missing information in datasets is a by no means uncom-

mon scenario [1–4]. A frequently used procedure to deal

with this problem in opinion polls is to replace each

missing variable value with an estimated value or impu-

tation obtained from the values of other variables in the

same item [5, 6].

On the other hand, classification is one of the tasks

involved in a data mining process. Classification can be

defined as a procedure in which individual items are placed

into groups or categories based on quantitative information

on one or more characteristics inherent to the items

(referred to as variables, characters, features, etc.,) and

based on a training set of previously labeled items. Because

of the appeal of simple rules that are easy to construct,

fuzzy control systems have been used for the purpose of

classification from the earliest days of fuzzy logic [7, 8].

These systems usually generate a rule for each classifica-

tion category, specifying the rule’s antecedent from fuzzy

sets defined over the input variables set. The rules are easy

to specify when there are not many categories, but this gets

harder as the number grows. To overcome this problem,

some hybrid approaches have been proposed to ease the

learning of the fuzzy rules [9, 10]. These hybrid procedures

are mainly based on the combination of fuzzy set theory

with other methodologies, like evolutionary algorithms and

neural networks. Neuro-fuzzy computation is one of the

most popular hybridizations in the artificial intelligence

literature [11–14], because it combines the merits of the
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neural and fuzzy approaches. It has the generic benefits of

neural networks—like massive parallelism and robust-

ness—and, at the same time, uses fuzzy logic to model

vague or qualitative knowledge and convey uncertainty

[15].

The fuzzy min–max neural network classifier is a

supervised learning method that takes the hybrid neural

networks and fuzzy systems approach. The original fuzzy

min–max neural networks model was developed by

Simpson [16, 17], and was modified and improved in a

later version [18, 19]. This version offers a new approach

to dealing with missing input variables data. A number of

modifications have also been put forward aimed at

improving the fuzzy membership definition [20], and the

effectiveness of some of the learning process steps [21–23].

A characteristic of the fuzzy min–max neural network

classifier is that all the input variables for learning and

classification are required to correspond to numerical,

continuously valued variables. One typical way of dealing

with this problem when there are categorical variables, is to

replace the categorical by numerical values and treat them

as if they were continuously valued. But this procedure

implicitly defines a metric for the categories, which may

not be suitable [24]. This suggests that a different proce-

dure for dealing with categorical variables must be used.

In this article, we present a method that extends the

fuzzy min–max neural network classifier input to categor-

ical variables by introducing new fuzzy sets, a new oper-

ation, and a new architecture. This new procedure provides

for greater flexibility and wider application, and also

straightforwardly extends the treatment of the missing

values in the input variables.

To test the proposed method, it will be used to tackle the

problem of missing data. Specifically, it will be applied to

non-response imputation in opinion polls. The micro data

(the set of the respondents’ individual answers to the

questions) of this type of poll are especially suited for

evaluating the method, since they include a large number

of numerical and categorical attributes. To perform cate-

gorical variables imputation, every category or value of the

variable to be imputed will be associated with a classifier

class, and the estimation for a missing data input consists

of the classification category [25].

The article is organized as follows. Section 2 gives a

brief review of the architecture and operation of fuzzy

min–max neural networks as a starting point for the new

classifier. Section 3 describes the new fuzzy sets-based

method used to define new networks and their architecture

and operation. Section 4 shows the context of the impu-

tation problem to be solved with the new method and

presents the experimental results. Some conclusions are

presented in Sect. 5. The results are also compared with the

outcomes of applying traditional methods to the same data

sets, resulting in some improvements as shown in the

outlined experiment.

2 Fuzzy min–max neural network classifier

The original fuzzy min–max neural networks algorithm

was introduced for the first time in two articles by Simpson

[16, 17]. It is a classification method that separates the joint

input variables space into classes of any size and shape

with nonlinear boundaries. Here, we outline a later version

that includes some improvements [18, 19].

2.1 Classification model

The n input variables must be numerical, and the output is a

label or category of the discrete set of the categorical

variable values. A hyperbox in Rn is a Cartesian product of

closed intervals on the real line and is completely defined

by its minimum and maximum points, as shown in the

three-dimensional example in Fig. 1. Although it is possi-

ble to use hyperboxes with an arbitrary range of values in

any dimension, min–max networks only use values that

range from 0 to 1.

The operation is based on the hyperbox fuzzy sets

defined in the n-dimensional pattern space. Thus, the input

space is the n-dimensional unit cube In ¼ 0; 1½ � � 0; 1½ �
� � � � � 0; 1½ �. The hyperbox fuzzy set Bj is defined by the

ordered set

Bj ¼ x; vj; wj; bj x; vj; wj

� �� �
; 8 x 2 In ð1Þ

where vj ¼ ðvj1; . . .; vjnÞ is the hyperbox minimum, wj ¼
ðwj1; . . .; wjnÞ is the maximum, and bjðx; vj; wjÞ is the

membership function, where all patterns within the

hyperbox have full-class membership.

Figure 2 shows an example of how the hyperboxes are

aggregated to form nonlinear boundaries in a two-class R2

classification problem.

Pattern classification works in this type of networks by

passing an input pattern through each characteristic func-

tion defining each class, and assigning the class with the

Min

Max

Fig. 1 Hyperbox in R3 defined from its min and max points
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largest value for these functions. Consequently, the first

step for classifying an input pattern using the min–max

neural networks classifier is to calculate its membership

function of each class as the maximum of its membership

functions of each of the hyperboxes defining this class (the

maximum is the selected fuzzy union operator). The next

step is to classify the point as the category corresponding to

the class with the highest degree of membership.

One of Gabrys and Bargiela’s improvements [18, 19],

was to allow input patterns that are hyperboxes and not just

numerical points. In this case, each input is specified by a

vector xh; h ¼ 1; 2; . . .; M, where xh ¼ xl
h; xu

h

� �
is the

hth input hyperbox defined by its minimum vector xl
h ¼

xl
h1; xl

h2; . . .; xl
hn

� �
and its maximum vector xu

h ¼ xu
h1;

�

xu
h2; . . .; xu

hnÞ. When xl
h and xu

h are equal, the hyperbox

shrinks to a point. The membership function of the

hyperbox fuzzy set Bj for an input xh is defined as

bjðxhÞ ¼ min
i¼1; ...; n

min 1� g xu
hi � wji; c

� �� �
;

��

1� g vji � xl
hi; c

� �� ���
ð2Þ

where c is a parameter regulating how fast the membership

function decreases and g is the ramp-threshold function of

two parameters:

gðx; cÞ ¼
1 if x:c[ 1

x:c if 0� x:c� 1

0 if x:c\0

8
<

:
ð3Þ

The membership function measures the degree to which

the input pattern xh falls inside of the Bj hyperbox fuzzy

set. It takes the value 1—full membership—within the

hyperbox and decays to zero as xh moves away from the

hyperbox. A two-dimensional example is shown in Fig. 3

for the hyperbox fuzzy set defined by the minimum

vj = (0.4, 0.2), the maximum wj = (0.8, 0.4), and the

parameter c = 3.

The hyperboxes are incrementally trained by appropri-

ately adjusting their number and volumes in a neural net-

works framework. This accounts for the name of fuzzy

min–max neural networks. The network architecture and

learning are described next.

3 Network architecture

Figure 4 shows the three-layer feedforward neural network

implementing Gabrys and Bargiela’s fuzzy min–max neu-

ral classifier. Its topology grows adaptively to meet the

problem requirements. The input layer has 2n nodes, two

for each of the n input vector dimensions corresponding to

the input hyperbox minimums xl
hi

� �
and maximums xu

hi

� �
.

Each intermediate layer node represents a hyperbox fuzzy

set, where the connections with the input layer are the

hyperbox fuzzy set minimum ðvjiÞ and maximum ðwjiÞ
points, and the activation function is the hyperbox mem-

bership function (2).

Figure 5 shows the jth node of the intermediate layer in

more detail. The connections between the second-layer and

third-layer nodes are binary values, whose expression is

ujk ¼
1 if Bj is a hyperbox for class Ck

0 otherwise

�
ð4Þ

where Bj is the jth intermediate layer node and Ck is the kth

output layer node. The result of this last node represents the

membership degree of input xh to class k. The activation

function for each output layer node is the fuzzy union of

the hyperbox membership functions according to the

expression ck ¼ maxj¼1; ...;m bj � ujk. The classifier result for

xh is the class k with the greatest ck value. The values for

the connections are adjusted using the learning algorithm

described next.

Class one

Class two

Fig. 2 Fuzzy min–max hyperboxes along the boundary of a two-class

problem

Fig. 3 Membership function of the hyperbox in I2 defined by the

minimum vj = (0.4, 0.2), the maximum wj = (0.8, 0.4), and the

parameter c = 3
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3.1 Learning algorithm

Following Gabrys and Bargiela [18], the learning set con-

sists of M ordered pairs

xh; dhf g; h ¼ 1; . . .; M ð5Þ

where xh ¼ xl
h; xu

h

� �
is the hth input defined by its mini-

mum xl
h ¼ xl

h1; xl
h2; . . .; xl

hn

� �
and maximum xu

h ¼ xu
h1;

�

xu
h2; . . .; xu

hnÞ points, and dh 2 f1; 2; . . .; pg is the index of

one of the p classes. The fuzzy min–max neural networks

learning algorithm is a three-step expansion–contraction

process:

1. Search for the closest expandable hyperbox (if neces-

sary) and expand

2. Test for hyperbox overlap

3. Contract hyperbox

and it is repeated for each training input point. The process

begins with the input of an ordered pair, searching the

hyperbox with the highest membership degree that belongs

to the same class and includes or allows expansion to

include xh. If none of the hyperboxes satisfies the

conditions, then a new hyperbox Bk for the input is created,

adjusted, added to the neural network, and labeled by

making class(Bk) = dh.

The hyperbox is expanded by setting

vnew
ji ¼ min vold

ji ; xl
hi

	 

; i ¼ 1; . . .; n ð6Þ

wnew
ji ¼ max wold

ji ; xu
hi

	 

; i ¼ 1; . . .; n ð7Þ

and is constrained by a user-defined parameter h; ð0�
h� 1Þ; where wji � vji

�� ��� h; 8i ¼ 1; . . .; n. The expan-

sion can lead to an overlap between hyperboxes. This is not

a problem when the overlap is between hyperboxes rep-

resenting the same class. But when the overlap is between

hyperboxes of different classes, it may mean that one input

pattern belongs to two or more classes. So, when there is an

overlap of this type, it is solved using a contraction process,

following the principle of minimal adjustment where only

the smallest overlap for one dimension is adjusted. The

contraction process only eliminates the overlap between

portions of the hyperbox fuzzy sets from separate classes

that have full membership, allowing non-unit-valued por-

tions of each of the hyperbox fuzzy sets to overlap. The

boundaries between two classes are just the points with

equal membership degree for both classes.

This learning process forms classes that are non-linearly

separable. The existing classes can be refined over time and

new classes can be added without retraining, thereby

reducing total training time.

Concerning the issue of algorithm convergence, work by

Zang et al. [26] is worth mentioning. They developed a rule

for the min–max neural networks training and proved

theoretically that converged using stochastic theory.

3.2 Numerical missing values treatment

A possible use of the min–max neural networks classifier is

to perform imputation for categorical missing values as

will be shown in Sect. 4. How the classifier deals with the

missing values in the quantitative input variables is another

question.

Thanks to the possibility of using hyperboxes as inputs

[18, 19], missing values are easy to deal with: The missing

features are represented as real-valued intervals spanning
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Fig. 4 Three-layer neural network implementing the fuzzy min–max
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the whole range of possible values. The procedure designed

for learning and classification is to assign the minimum

xl
hi ¼ 1 and the maximum xu

hi ¼ 0 to the ith numerical

missing variable. Applying this strategy, the lower limit of

the missing variable will never be less than vji and the

upper limit will never be greater than wji, ensuring that the

neural network structure will not have to be changed when

processing inputs with missing values. It also has the

advantage that when some limits for a missing feature are

known, they can be used straightforwardly to contribute to

the membership function.

According to Song and Shepperd’s [27] missing data

techniques taxonomy, this is a toleration technique because

it does not impute missing data but works directly with data

sets containing missing values. According to the same

taxonomy, the proposed fuzzy min–max neural network

algorithm that will be used in Sect. 4 is an imputation

technique because it estimates each missing value.

4 New model with input of categorical variables

In contrast to the original fuzzy min–max neural networks

classifier, the procedure proposed in this paper considers

categorical as well as numerical variables as input. The

problem with the categorical variable input is that there is

no measure of distance between the different values or

categories of the variables. This prevents the definition of

hyperbox fuzzy sets membership functions.

The new method starts by defining such a distance to

solve this problem. The following sections describe the

proposed procedure according to the same framework as

used in Gabrys and Bargiela’s model. The basic process is

divided into several stages:

1. Define distances between categories

2. Define hyperbox fuzzy sets in categorical variables

3. Extend network architecture and operation

4. Extend missing data treatment.

4.1 Defining distances between categories

To define a distance between the categories of a categorical

variable, we will consider the relation of this variable to the

classification variable, which must also be categorical. To

illustrate this idea, Table 1 shows an example of a two-

dimensional frequency table for the categorical variables

region and employment situation.

Table 2 is calculated from Table 1 by just dividing the

value of each cell by its row total. The vector (q1; . . .; qp)

in each row of Table 2 contains the response rates for the

employment situation categories in this region, referred to

as the region’s employment situation profile.

To define distances between regions, we examine their

profiles, i.e., the North and Center regions have similar

profiles (0.55, 0.08, 0.13, 0.23) and (0.59, 0.07, 0.12, 0.22),

respectively. This means that the employment situation is

similarly distributed across the categories in these regions.

The profiles for the West and South regions are also similar,

albeit different from the North and Center regions, whereas

the East region is very different to the others. It could be

said that, regarding the employment situation, the North

and Center regions are closer to each other than to all the

others; the West and South are also close, and so on.

The category profiles are points of the p-dimensional

space Rp belonging to the hyperplane defined by

q1 þ � � � þ qp ¼ 1. The distances between the profiles in

this space can be used to define the distances between the

categories. In this paper, we consider two distances:

Euclidean distance: d1 ai; aj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

k¼1

pik � pjk

� �2

s

ð8Þ

Logarithmic distance: d2 ai; aj

� �
¼
Xp

k¼1

log pik � log pjk

�� ��

ð9Þ

where ai, aj are the categories and pikð Þ; pjk

� �
; k ¼ 1;

. . .; p, are the corresponding profiles. As the proportions

forming the profiles take values between 0 and 1, we

consider the logarithmic distance in an attempt to prevent

Table 1 Frequency table for region and employment situation

variables

Region Employment situation

Employed Unemployed Retired Others

North 360 52 87 152

West 548 321 428 249

Center 132 16 27 48

East 811 723 543 703

South 264 178 227 136

Total 2,115 1,290 1,312 1,288

Table 2 Region’s employment situation profiles

Region Employment situation

Employed Unemployed Retired Others

North 0.55 0.08 0.13 0.23

West 0.35 0.21 0.28 0.16

Center 0.59 0.07 0.12 0.22

East 0.29 0.26 0.2 0.25

South 0.33 0.22 0.28 0.17

Total 0.35 0.21 0.22 0.21
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proportionally short distances between high values from

overdominating the calculations. To standardize and use

the distances in the context of fuzzy set membership

functions, they are also divided by their maximum:

ck ai; aj

� �
¼

dk ai; aj

� �

max
i;j

dk ai; aj

� �; k ¼ 1; 2 ð10Þ

This idea of distance between profiles appears well suited for

classification purposes, because it takes into account the

relation between each categorical variable to be measured

and the classification variable. Correspondence analysis [28],

for example, also exploits the same distance. Its use in a

fuzzy min–max neural networks classifier is discussed next.

4.2 Defining hyperbox fuzzy sets in categorical

variables

The next step after defining the distances between cate-

gories is to define the hyperbox fuzzy sets in the categorical

dimensions.

This is not a straightforward step because, unlike

numerical values, the categories or values of the categori-

cal variable form a discrete rather than a dense set. This

makes hyperboxes harder to create, update and modify. To

do this, each hyperbox fuzzy set in the ith categorical

dimension is defined by two categories eji and fji with a full

membership function (equal to 1) similar to the two

points—minimum and maximum—determining the hy-

perbox in the numerical dimensions. In any other category

aki, this ith dimension membership function takes the value

bji ahið Þ ¼ min 1� c ðahi; ejiÞ; 1� c ðahi; fjiÞ
� �

ð11Þ

where function c refers to any of the normalized distances

previously defined in (10), and the size of the hyperbox in

each dimension is limited by a user-defined parameter

g; ð0� g� 1Þ; where cðeji; fjiÞ� g.

Figure 6 is an example of the symmetric distance

function c(ak, al) between the five categories of a variable

and the membership function bj(ak) obtained from the

distance for the jth hyperbox that is determined by the two

full-membership categories ej = a3 and fj = a5.

When there are numerical and categorical variables, the

Bj hyperbox membership function—of all the dimen-

sions—is defined by

bj xh;ahð Þ

¼min min
i¼1; ...;n

�
min 1�g xu

hi�wji;c
� �

; 1�g vji�xl
hi;c

� �� �� �
;

min
i¼nþ1; ...;nþr

min 1�ci ahi;eji

� �
; 1�ci ahi; fji

� �� �� �
ð12Þ

where n is the number of numerical variables and r is the

number of categorical variables; g is the ramp-threshold

function defined in (3); ci; i ¼ nþ 1; . . .; nþ r, are the

normalized distances defined in (10) for the categorical

dimensions; xh ¼ xl
h xu

h

� �
is the numerical input defined by

its vectors of minimum xl
hi

� �
and maximum xu

hi

� �
points;

ah ¼ ahnþ1; . . .; ahnþrð Þ is the categorical input vector; vji

is the minimum and wji is the maximum of the jth hyperbox

in the ith numerical dimension, i ¼ 1; . . .; n; and eji, fji are

the two categories defining hyperbox Bj in the ith cate-

gorical dimension, i ¼ nþ 1; . . .; nþ r.

Note that the defined distance is suitable for categorical

inputs with a lot of categories. When the categorical inputs

are binary, the resulting distance will be the trivial:

c ahi; ahj

� �
¼ 1 if i 6¼ j; i; j ¼ 1; 2

0 if i ¼ j; i; j ¼ 1; 2

�
ð13Þ

When defining the hyperbox fuzzy sets for categorical

variables, we also studied the use of other numbers of

categories, especially just one, to determine the hyperbox

fuzzy sets. But, we chose the number of two categories

because it is similar to the numerical case with the

maximum and minimum points, and also makes the

hyperboxes in the categorical dimensions easier to update

and refine during the learning step.

4.3 Extended network architecture and operation

The above membership function treats the categorical

variables in a similar manner to how it processes numerical

variables, where the inputs are categories in the first case

and numerical hyperboxes in the second: the distances ci

play the role of functions g and they are combined by the

same fuzzy operators. This straightforwardly extends neu-

ral network operation. Figure 7 shows the new network

architecture including both types of variables, and Fig. 8 is

the detail of an intermediate layer node.

The most important difference from Gabrys and Bargi-

ela’s network is the input layer, where, apart from the

2n numerical variable nodes, there are r additional nodes

for the input categories, each having two connections

with the second-layer nodes—one for each category eji, fji
defining the Bj hyperbox.

As in the original network, the second layer maintains a

node for each hyperbox. But, these are different hyperboxes

because they now have categorical as well as numerical

dimensions. The activation function of this second-layer is

the membership function defined in (12). Its connections

with the first layer are the 2(n ? r) defined above. Apart from

the 2n connections for the numerical features (the same Bj

hyperbox minimums vji and maximums wji; i ¼ 1; . . .; n),

there are the new 2r connections for the categorical dimen-

sions, that is, the two categories eji and fji defining the Bj

hyperbox in dimension i; i ¼ nþ 1; . . .; nþ r.
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Finally, like the original network, the third layer has a

node for each one of the variable classification categories,

and its connections with the intermediate layer are the

same ujk as defined in (4).

Learning in this three-layer feedforward neural network

consists of creating and expanding or contracting hyper-

boxes. Its objective is to establish the connections vji, wji,

eji and fji, that is, the hyperboxes defining each class. The

first step—taken only once—is to calculate the distances

between the categories of categorical variables and the

resulting membership function, as described above.

This is followed by the iterative process to set and

update the connection values. This process is repeated for

each input and has the same steps as the original network.

In fact, the procedures are exactly the same for the

numerical dimensions and try to perform similar functions

for the categorical dimensions. The new method proposed

for the categorical dimensions results in a more compli-

cated algorithm because of the difficulties in dealing with

the finite number of categories and the more complex

architectural design.

1. Initialization. When a new hyperbox Bj needs to be

created for numerical dimensions, its minimum and

maximum points are initially set—as in Gabrys and

Bargiela’s original network—to

vji ¼ 1 and wji ¼ 0; 8i ¼ 1; . . .; n ð14Þ

Applying this strategy, when the jth hyperbox is

adjusted for the first time using the input

Fig. 6 The symmetric distance

function between categories

c(ak, al) and the derived

membership function bj (ak) of

the hyperbox defined by

categories ej = a3 and fj = a5
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xh ¼ xl
h1; . . .; xl

hn; xu
h1; . . .; xu

hn

� �
, the minimum and

maximum points of this hyperbox would be

vji ¼ xl
hi and wji ¼ xu

hi ð15Þ

The categorical dimensions are also initialized so that

the expansion step can automatically use the hyperbox

adjustment process. To do this, the new category ai0 is

introduced in each ith categorical variable,

i ¼ nþ 1; . . .; nþ r, and each distance function

definition is extended as

c ai0; aikð Þ ¼ c aik; ai0ð Þ ¼ 0;
8i ¼ nþ 1; . . .; nþ r; 8k ð16Þ

In this way, the two categories initializing hyperbox Bj

are

eij ¼ aio and fij ¼ ai0; 8i ¼ nþ 1; . . .; nþ r

ð17Þ

These values are later adjusted when the hyperbox is

expanded for the first time. The role of the new

category ai0 is just to improve the network operation,

and it does not modify the aim of the learning and

classification steps in any way.

2. Search for the expandable hyperbox with the highest

membership degree, and expand. A network input now

takes the form

xh; ah; dhf g ð18Þ

where xh ¼ xl
h1; . . .; xl

hn; xu
h1; . . .; xu

hn

� �
, xl

hi are the

minimums and xu
hi are the maximums of the input

hyperboxes in dimension i; i ¼ 1; . . .; n; ah ¼ ahnþ1;ð
. . .; ahnþrÞ are the input categories in dimension i; i ¼
nþ 1; . . .; nþ r; and dh 2 1; 2; . . .; pf g is the index

of one of the p classes. When the hth input pattern is

presented, it searches the hyperbox Bj with the highest

membership degree defined by (12). The first test run is

to check whether the detected hyperbox and the input

are members of the same class (dj = dh?). If not, it will

search the hyperbox with the next highest membership

degree. Once a hyperbox Bj from the same class of the

input has been found, it must satisfy a number of

different numerical and categorical data criteria before

it can expand to include the input. For the numerical

dimensions, it must meet the same condition as the

original network:

maxðwji; xu
hiÞ �minðvji; xl

hiÞ
� �

� h; 8i ¼ 1; . . .; n

ð19Þ

where h; ð0� h� 1Þ is the user-defined parameter for

the maximum size of the hyperbox in the numerical

dimensions.As for the expansion of the categorical

dimensions, there are different cases depending on the

values of the two categories defining the hyperbox in

each dimension.

Case 1: if the input value in a categorical dimension ahi

matches one of the values of the categories eji or fji,

there is no need for expansion in this dimension.

Case 2: when eji = ai0 and fji = ai0, that is, neither of the

two categories are preset, the hyperbox can be

expanded without further testing.

Case 3: when eji = ai0 and fji = ai0, that is, when only

one of the two categories defining the hyperbox

is preset in the ith categorical dimension, the

following criterion must be satisfied

c eji; ahi

� �
� g ð20Þ

before the hyperbox can expand, g being the

user-defined parameter for the maximum size of

the hyperbox in the categorical dimensions

ð0� g� 1Þ.

Case 4: when eji = ai0, fji = ai0 and the input category

for the ith dimension ahi is not equal to either eji

or fji, first check whether replacing either of the

two categories eji or fji defining the hyperbox

with the input category ahi would increase the

hyperbox size in this ith dimension. If so, later

test criterion (20) defining the maximum size of

the resulting hyperbox.

After verifying the criteria for the numerical and cate-

gorical dimensions, the expandable hyperbox Bj is adjusted

to include the input by setting the numerical dimensions

i ¼ 1; . . .; n as

vnew
ji ¼ min vold

ji ; xl
hi

	 

ð21Þ

wnew
ji ¼ max wold

ji ; xu
hi

	 

ð22Þ

and setting the categorical dimensions i ¼ nþ 1; . . .; nþ r

as

Case 1: eji = ai0 and fji = ai0 ) eji = ahi

Case 2: eji = ai0 and fji = ai0 ) fji = ahi

Case 3: eji = ai0 and fji = ai0 and c(eji, ahi)

[ c(eji, fji) ) fji = ahi

Case 4: eji = ai0 and fji = ai0 and c(ahi, fji)

[ c(eji, fji) ) eji = ahi

If neither of the existing hyperboxes include or can

expand to include the input, then a new hyperbox Bj is

initialized, adjusted, and labeled by setting

classðBjÞ ¼ dh ð23Þ

3. Overlapping hyperboxes test. All the numerical

and categorical dimensions must be checked for a
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non-empty overlap between full-membership portions

of hyperboxes representing different classes, in order

to prevent an input pattern from being classified in two

or more different classes at the same time. Hyperboxes

with only one non-overlapping dimension—numerical

or categorical—would pass the test.

4. Hyperboxes contraction according to the test result.

Only if the overlap test result is positive, that is,

when there is a non-empty overlap in all the

numerical and categorical dimensions, are the hyper-

boxes contracted, following the minimum change

principle, in a single dimension starting with the

categorical dimensions. We try to change the over-

lapping category of the existing hyperbox for another

one reducing the hyperbox size, that is, another

category closer to the remaining category defining the

hyperbox, in one of these dimensions. If this is

possible, it is replaced—eliminating the overlap—

and, if not, we try to contract in another dimension (it

might not always be feasible to contract hyperboxes

in this way in a given categorical dimension). When

there are no more categorical dimensions left, we

move on to the numerical dimensions. Contraction is

always possible in numerical dimensions, and it is

performed as defined for the original network,

distributing the overlapping space between the two

hyperboxes [18].

This learning algorithm is guaranteed to convergence

because the extension designed for the categorical inputs is

based on the previously defined metric between a finite

number of categories.

Finally, the new network operates similarly to its pre-

decessor in terms of classification: it is assigned the cate-

gory corresponding to the class with the highest

membership degree.

Let us look at a simple example based on data from

Table 2, to illustrate this procedure. The region is the

categorical input variable, whereas X = age/100 is the

numerical input variable and employment situation is

the categorical variable to be imputed. First, we calculate

the Euclidean distances between the R4 row profile vectors

in Table 2, and then we divide by the greatest of these

distances to get the distances between regions listed in

Table 3.

Now, suppose that result of the above learning steps

are the three hyperboxes shown in Table 4 defining three

different classes:

Then, we calculate the three hyperbox membership

degrees of the input case z = (0.50, West) to be imputed:

bH1ðzÞ ¼ min 1; min 1� 0:794943; 1� 0:893085½ �f g
¼ min 1; 0:106915f g ¼ 0:106915

bH2ðzÞ ¼ min 1; min 1� 0:392967; 1� 0:794943½ �f g
¼ min 1; 0:205057f g ¼ 0:205057

bH3ðzÞ ¼ min 0; min 1� 0:893085; 1� 0:000000½ �f g
¼ min 0; 0:106915f g ¼ 0:000000

As hyperbox H2 defines the class with the highest

membership degree, the category Unemployed is assigned

to the z input case.

4.4 Categorical missing values treatment

Numerical missing data inputs are treated in the same way

as proposed by Gabrys [19]. We also define a toleration

technique [26] for the inputs with categorical missing

values. This technique works directly with data sets con-

taining missing data without making imputations as

follows.

Categorical values could be missing at two different

stages of the designed operation. First, they could be

missing when calculating frequencies and distances

between categorical variable categories. In this case, the

calculations would be made using exclusively non-missing

data, as is usual practice in most statistical software

packages. Secondly, categorical data required to set and

update the connections could also be missing during the

iterative process. The method for dealing with this is also

designed to use the other variables with non-missing data

as though there were no missing attributes for this input.

Table 3 Distances between regions

North West Center East South

North 0.000000 0.794943 0.119344 0.888457 0.839879

West 0.794943 0.000000 0.893085 0.392967 0.067065

Center 0.119344 0.893085 0.000000 1.000000 0.941306

East 0.888457 0.392967 1.000000 0.000000 0.346324

South 0.839879 0.067065 0.941306 0.346324 0.000000

Table 4 Example of hyperboxes created after the learning

Hyperbox X input Region input Class or category

of imputation

H1 [0.49, 0.52] North, Center Employed

H2 [0.46, 0.51] East, North Unemployed

H3 [0.86, 0.93] Center, West Retired
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This is done by making the hyperbox membership degree

equal to one for the corresponding dimension and all

hyperboxes.

The designed method always takes advantage of all the

available information. This is useful when there are a lot of

variables or attributes and they all have missing values.

5 Case study: application to voting intention

imputation in a political poll

A frequent procedure used to collect information about a

population is to take a survey. When the questions refer to

individual opinions or attitudes, these surveys are known as

opinion polls [29, 30]. These polls have proven to be an

especially fast and easy-to-use tool, because they simplify

the most technical phases of the survey process. As in most

surveys, there is usually total or partial non-response—

when a respondent fails to answer all or some of the

questions, respectively. The procedure for total non-

response is usually addressed at the sampling design stage.

This paper focuses on partial non-response.

Partial non-response is generally solved by imputing

values to the missing variables from the answers of other

respondents and from the non-missing variables in

responses by the same individual. However, the usual way

of dealing with non-response in polls is to add the ‘‘don’t

know/not applicable’’ category and treat it like any other

category. Little and Rubin [31] argue that this is not a

highly recommendable method because it can cause prob-

lems at the results analysis stage, but it is widely applied in

polls due to its straightforwardness.

In election polls, though, there is one variable—which

political party do you intend to vote for in the next general

elections (voting intention, from now on)—for which the

above procedure is not good enough, and missing values

were imputed using other methods. Elsewhere, we pre-

sented a paper where fuzzy control procedures were used to

estimate voting intention in an electoral poll [32]. It

stressed the potential of using methods to automatically

obtain fuzzy set membership functions. This is what we do

now using neural networks, by imputing missing voting

intention from the responses to other questions in the same

survey.

Different procedures based on neural networks have

been used to impute numerical variables from other like-

wise numerical values [33–35]. We are not aware of their

use for imputing categorical variables from other numerical

and categorical variables, as proposed in this paper.

To evaluate the operation of the proposed neuro-fuzzy

classifier, we selected polls number 2555 and 2750 from the

Sociological Research Center’s catalog (the Sociological

Research Center is an institution responsible for making

opinion polls for the Spanish Public Administration). These

surveys refer to the general elections held in Spain in 2004

and 2008. They contain 16,345 and 13,280 interviews,

respectively, with an answer to the voting intention ques-

tion. The chosen polls contain questions with different types

of variables:

• Quantitative variables. Questions answered by entering

a numerical value. They include questions referring to

ideological self-location (the result of asking respon-

dents to place themselves ideologically on a scale of

1–10, 1 being the extreme left and 10 the extreme

right). Other possibilities are, the rating of three

specific political figures, likelihood to vote, and likeli-

hood to vote for three specific political parties, all of

which are rated on a scale of 0–10.

• Ordered categorical variables. Questions answered by

entering categories that are so well ordered that they are

easy and straightforward to transform into quantitative

variables. They refer to government and opposition

party ratings. The answer categories are ‘‘very good’’,

‘‘good’’, ‘‘fair’’, ‘‘bad’’ and ‘‘very bad’’, which we

transform into the values 1, 0.75, 0.5, 0.25 and 0,

respectively, assuming they are ordered equidistantly.

They should take values within the unit interval like the

membership functions of fuzzy sets.

• Categorical variables with non-ordered categories.

Questions including voting intention and similar, such

as vote memory (party the respondent voted for at the

last general election); the Autonomous Community;

which of the likely candidates the respondent would

prefer to see as president of the government; how sure/

definite the respondents’ voting intention is; the polit-

ical party the respondent tips to win and the political

party the respondent would prefer to win.

Although missing values are found in all the above

variables, this paper focuses on the imputation of the cat-

egorical voting intention variable which is, thus, the clas-

sification feature. Our method will deal with missing data

in other variables as explained in Sect. 3, depending on the

variable type. We will explain the procedure for dealing

with missing data when we present other methods for

comparison.

For the purposes of imputation, each class or classifi-

cation category is matched with one of the different values

the variable to be imputed takes. So, the imputed value is

the category corresponding to the class with the greatest

membership degree.

Eleven categories have been taken for the voting

intention variable, including the most important political

parties’ names, ‘‘blank vote’’, ‘‘abstention’’ and a category

of ‘‘others’’. This would appear to be quite a good granu-

larity level for obtaining reliable proportions for
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nationwide voting intention, whereas a larger granularity

would make the problem tougher. The sixteen numerical

and ordered and non-ordered categorical variables descri-

bed above are used as classifier inputs for both of the

surveys.

The performance of the proposed method is then com-

pared with other classical approaches. For the comparisons,

we used an evaluation criterion frequently used in the

supervised classification procedures area: the correctly

imputed rate, that is, the percentage of imputed values that

exactly match the original data over the inputs with non-

missing voting intention. A tenfold cross-validation, par-

titioning the test data into ten parts (folds), is performed.

We retain a single fold as the validation data for testing the

model, whereas the remaining nine are used as training

data. The cross-validation process is then repeated 10 times

with each of the tenfolds, and the results are averaged to

produce a single estimation. The advantage of this method

is that all observations are used for both training and val-

idation, and each observation is used for validation exactly

once. This procedure provides non-biased estimations of

the correctly imputed rate [36].

One of the procedures used nowadays for single impu-

tation of the voting intention variable is to make predic-

tions from logistic regressions on other variables, and this

is taken as a baseline for comparison. The tenfold cross-

validation of the data sets with logistic regression and the

sixteen variables (generated using SAS/STATS software,

Version 9.1.3 of the SAS System for Windows. Copyright

2002–2003 by SAS Institute Inc., Cary, NC, USA), returns

the results shown in Table 5.

Note that, we are likely to come across some problems

using logistic regression to impute missing values. First of

all, the likelihood equation for a logistic regression model

does not always have a finite solution, making it difficult to

estimate model parameters. Sometimes, there is a non-

unique maximum on the boundary of the parameter space

at infinity. The existence, finiteness, and uniqueness of

maximum-likelihood estimates for the logistic regression

model depend on the patterns of data points in the obser-

vation space. When there is a complete or quasi-complete

separation, there exist infinite estimations, and only if there

is an overlap of sample points do unique maximum like-

lihood estimates exist [37]. In our case, there is the pos-

sibility of separation because of the great many variables

and categories, and the output models are questionable.

A second problem with the use of logistic regression is that

units with missing values in one or more input variables are

deleted, reducing the learning set size.

To make an additional comparison using the same fuzzy

min–max neural network classifier, we looked at another

distance frequently used with categorical variables: if ah, aj

are two categories, then

c3 ah; aj

� �
¼ 1� dhj ð24Þ

where dhj is the Kronecker delta. The resulting hyperbox

membership function is then defined by

bj xh; ahð Þ

¼min min
i¼1; ...;n

min 1� f ðxu
hi�wji; c

� �
; 1� f ðvji�xl

hi; cÞ
� �� �

;

�

min
i¼rþ1; ...;nþr

1�c3 ahi; eji

� �� �
ð25Þ

where eji is the only category defining the hyperbox Bj in

the ith dimension. (Note that this distance has no need of

the g parameter because g does not make sense if there is

only one category.) In this case, the membership function

portion corresponding to a categorical dimension

min
i¼nþ1; ...; nþr

1� c3 ahi; eji

� �� �
¼ min

i¼nþ1; ...; nþr
1� d ahi; eji

� �� �

ð26Þ

takes only values 1 (when all the categorical inputs are

equal to each matching hyperbox category) and 0. As a

result, this Kronecker distance works by learning separate

numerical variables for each combination of categorical

variables.

The experiment run implements a classifier for each one

of the three membership functions resulting from the three

distances. As the designed networks have some user-

defined parameters for adjustment (the maximum numeri-

cal hyperbox size h, the numerical membership function

decreasing parameter c, and the maximum categorical

hyperbox size g), estimations have been made for the set of

parameter combinations resulting from c = 0.5, 1.5, 2.5,

3.5, 4.5, h = 0.25, 0.35, 0.45, 0.55, 065 and g = 0.25,

0.35, 0.45, 0.55, 0.65.

Tables 6, 7 and 8 show the correctly imputed rates with

the tenfold cross-validation for the parameter combinations

returning the best results for each membership function and

each dataset in decreasing order of these rates.

The level of the scores reached with each distance is

similar for both datasets, but the combinations of the user-

defined parameters with the best results are different. This

reflects the fact that the input variables are not exactly the

same in each dataset.

An important feature or weakness of this kind of

learning method is that the learning set order may have an

Table 5 Correctly imputed rate

for the logistic regression

imputations

Dataset % Correctly

imputed

2555 64.20

2750 63.05
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impact on the results. The validation process has been

repeated several times with a number of different ran-

domizations of the input datasets to deal with this problem.

The resulting rates were similar, thereby confirming the

method’s robustness.

6 Conclusions

We have shown how the fuzzy min–max neural network

classifier could be extended to admit categorical inputs and

the results of using the method for missing data imputation

in opinion polls. It is possible to extract some conclusions

from Tables 6, 7 and 8:

• The correctly imputed rates for the Euclidean and the

logarithmic distance are significantly greater than for

the Kronecker distance and logistic regression. Results

are up around 11 percentage points over the Kronecker

distance and 21 percentage points over logistic regres-

sion in each input dataset. The results range—up to

86%, even with a great many classification categories—

is much better than what is usually achieved in similar

polls.

• No significant difference has been found between the

behavior of the Euclidean and logarithmic distances in

Table 6 Correctly imputed rate for the proposed method imputations

using the Euclidean distance

Dataset 2555 Dataset 2750

c h d % Correctly

imputed

c h d % Correctly

imputed

1.5 0.35 0.65 85.63 2.5 0.55 0.55 86.06

0.5 0.45 0.55 85.54 2.5 0.65 0.35 85.95

1.5 0.35 0.55 85.54 2.5 0.65 0.25 85.94

0.5 0.45 0.45 85.46 2.5 0.55 0.35 85.93

0.5 0.35 0.25 85.34 2.5 0.55 0.45 85.93

0.5 0.45 0.35 85.21 1.5 0.45 0.55 85.91

1.5 0.45 0.65 85.21 2.5 0.55 0.25 85.91

0.5 0.45 0.25 85.19 1.5 0.45 0.65 85.89

0.5 0.35 0.45 85.17 1.5 0.25 0.65 85.88

1.5 0.55 0.55 85.16 1.5 0.35 0.65 85.88

1.5 0.35 0.45 85.05 1.5 0.45 0.45 85.88

0.5 0.45 0.65 84.98 2.5 0.45 0.45 85.88

0.5 0.35 0.55 84.97 1.5 0.35 0.45 85.81

1.5 0.55 0.45 84.94 2.5 0.35 0.65 85.79

1.5 0.45 0.25 84.92 2.5 0.45 0.55 85.79

0.5 0.25 0.65 84.9 1.5 0.65 0.25 85.76

1.5 0.55 0.25 84.9 2.5 0.45 0.35 85.76

1.5 0.45 0.35 84.87 2.5 0.45 0.65 85.76

0.5 0.35 0.65 84.86 1.5 0.45 0.25 85.68

0.5 0.35 0.35 84.85 1.5 0.45 0.35 85.66

Table 7 Correctly imputed rate for the proposed method imputations

using the logarithmic distance

Dataset 2555 Dataset 2750

c h d % Correctly
imputed

c h d % Correctly
imputed

0.5 0.35 0.25 85.57 0.5 0.35 0.65 85.21

0.5 0.45 0.25 85.55 1.5 0.35 0.65 85.18

0.5 0.35 0.35 84.85 0.5 0.35 0.55 85.06

0.5 0.25 0.25 84.55 0.5 0.25 0.55 84.9

0.5 0.65 0.25 84.53 0.5 0.35 0.45 84.86

0.5 0.25 0.35 84.47 0.5 0.25 0.65 84.82

0.5 0.35 0.65 84.38 0.5 0.25 0.45 84.77

0.5 0.45 0.35 83.98 0.5 0.45 0.25 84.73

0.5 0.25 0.65 83.92 0.5 0.25 0.35 84.69

0.5 0.25 0.55 83.9 1.5 0.45 0.25 84.67

0.5 0.35 0.55 83.57 0.5 0.35 0.25 84.64

0.5 0.35 0.45 83.48 1.5 0.35 0.35 84.64

0.5 0.55 0.25 83.48 1.5 0.35 0.45 84.63

0.5 0.25 0.45 83.37 1.5 0.45 0.35 84.62

0.5 0.45 0.45 82.96 0.5 0.25 0.25 84.57

0.5 0.45 0.65 82.75 0.5 0.45 0.55 84.57

1.5 0.55 0.25 82.31 0.5 0.35 0.35 84.49

0.5 0.45 0.55 82.01 0.5 0.45 0.35 84.48

1.5 0.65 0.25 81.72 0.5 0.45 0.45 84.47

1.5 0.45 0.25 81.44 1.5 0.25 0.45 84.45

Table 8 Correctly imputed rate for the proposed method imputations

using the Kronecker distance

Data set 2555 Data set 2750

c h % Correctly

imputed

c h % Correctly

imputed

0.5 0.35 76.12 0.5 0.45 72.65

0.5 0.45 75.99 0.5 0.35 72.46

0.5 0.55 75.69 0.5 0.25 72.42

0.5 0.65 75.69 1.5 0.55 72.02

0.5 0.25 75.19 0.5 0.15 71.95

1.5 0.35 75.08 1.5 0.45 71.93

1.5 0.45 74.96 1.5 0.25 71.73

1.5 0.55 74.88 1.5 0.35 71.73

1.5 0.65 74.75 1.5 0.15 71.15

1.5 0.25 74.33 2.5 0.55 67.41

2.5 0.65 71.21 2.5 0.45 66.98

2.5 0.55 71.19 2.5 0.35 66.74

2.5 0.35 71.01 2.5 0.25 66.58

2.5 0.45 70.98 2.5 0.15 66.2

2.5 0.25 70.19 3.5 0.55 63.25

3.5 0.65 63.68 3.5 0.45 63.01

3.5 0.55 63.67 3.5 0.35 62.55

3.5 0.45 63.36 3.5 0.25 62.17

3.5 0.35 63.23 3.5 0.15 61.19

3.5 0.25 63.01 4.5 0.55 53.91
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any of the datasets. Thus, the logarithmic distance does

not appear to solve potential problems stemming from

proportionally short distances between high input

values. The question requires more thorough investi-

gation before either of these distances is selected.

• Gabrys and Bargiela propose the use of different

parameters h and c for each numerical dimension. The

same parameters were used here, and we were able to

improve results by varying the c, h and g thresholds in

each dimension.

• The procedure presented here, proves to be especially

apt if there is a relatively high number of classification

categories, as opposed to the more commonly dealt

with case of binary variables with just two categories.

• Also, note that the proposed neuro-fuzzy classifier is

well suited when there are a lot of numerical and

categorical input variables. In the case of missing

values in input datasets, logistic regression estimations

take into account only the complete data patterns. As a

result, the number of inputs decreases dangerously

when there are a lot of variables all with non-response.

The proposed procedure always uses all the available

data in the most efficient way, and the more variables

there are, the better the results will be. Using this

method, the select variables step could be eliminated,

leading to more automatic imputation.

• Another important point is that the neuro-fuzzy clas-

sifier proposed here, works efficiently when there are

the two types of inputs—numerical and categorical—in

the learning dataset. It does not appear to be suitable

when inputs are exclusively categorical variables

because of the subsidiary role the categorical variables

play at the contraction step. Further work will focus on

testing the procedure in this case.
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