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Abstract Consider estimation of a population mean of a re-
sponse variable when the observations are missing at ran-
dom with respect to the covariate. Two common approaches
to imputing the missing values are the nonparametric regres-
sion weighting method and the Horvitz-Thompson (HT) in-
verse weighting approach. The regression approach includes
the kernel regression imputation and the nearest neighbor
imputation. The HT approach, employing inverse kernel-
estimated weights, includes the basic estimator, the ratio
estimator and the estimator using inverse kernel-weighted
residuals. Asymptotic normality of the nearest neighbor im-
putation estimators is derived and compared to kernel re-
gression imputation estimator under standard regularity con-
ditions of the regression function and the missing pattern
function. A comprehensive simulation study shows that the
basic HT estimator is most sensitive to discontinuity in the
missing data patterns, and the nearest neighbors estimators
can be insensitive to missing data patterns unbalanced with
respect to the distribution of the covariate. Empirical studies
show that the nearest neighbor imputation method is most
effective among these imputation methods for estimating a
finite population mean and for classifying the species of the
iris flower data.
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1 Introduction

Proportional weighting and the Horvitz-Thompson (HT) in-
verse weighting (Horvitz and Thompson 1952) for estimat-
ing a population parameter are commonly used in the analy-
sis of stratified sampling (Cochran 1977). Without assuming
a parametric model, a nonparametric regression approach to
estimating a population mean can be fairly efficient when
the underlying joint distribution satisfies certain regularity
conditions. The validity of these conditions may not be eas-
ily tested when the observed data are incomplete or partly
missing. While nonparametric inference can hardly be ex-
amined for cases without regularity conditions, it is never-
theless useful to investigate the difference in computational
performance between the nonparametric regression estima-
tion and the HT estimation. This aims to compare the meth-
ods of estimation for missing data beyond the usual regular-
ity conditions on the underlying distribution.

Consider estimating the population mean of a response
variable when the responses could be missing depending on
a covariate. This type of missing data commonly arises in
survey questionnaires conducted in many areas of applied
science, and nonresponses to ambiguous cases could lead
to biased inference without effective correction by random-
ization (Cochran 1977). It also occurs when a double sam-
pling design is used to omit some responses due to demo-
graphic constraints (Neyman 1938). If the missing mech-
anism is not completely random, a measure of its depen-
dence on other covariates can be used to impute values for
the nonresponses to rectify the potentially biased inference.
Statistical inference with partial nonresponse data has been
widely discussed since the early work by Yates (1933), An-
derson (1957), Orchard and Woodury (1972), see for exam-
ple, Little and Rubin (2002). Analysis with data missing at
random (MAR, Rubin 1976), and the EM algorithm (Demp-
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ster et al. 1977) have been extensively used. The MAR con-
dition is a basic assumption upon which most parametric
and semiparametric inference with missing data have been
developed.

Suppose a random sample with incomplete responses and
complete covariates is observed from a double sampling de-
sign, and denoted by

(Xi, Yi, δi), i = 1,2, . . . , n. (1.1)

All the covariates Xi are observed, and δi = 1 if Yi is
observed, otherwise δi = 0. Suppose that the mean of Y ,
μ = EY , would be estimated under the assumption of MAR,
that is, missing Y depends mainly on the covariate X

P(δ = 1|X,Y) = P(δ = 1|X) = p(X). (1.2)

The missing pattern function p(x) defined under MAR is an
analog of the well-known propensity score p(x,α) of para-
metric inference, which is traditionally termed as “propen-
sity to be exposed to a treatment” (Rosenbaum and Ru-
bin 1983). Without assuming a parametric likelihood model
or a parametric regression model together with a propen-
sity model, a nonparametric approach to estimating μ de-
pends on effective estimation of both the regression func-
tion m(x) = E(Y |x) and the propensity score p(x), such
that proper imputation can be used to make up for the loss
of incomplete data information.

There are two basic approaches to nonparametric imputa-
tion. The nonparametric regression weighted estimation and
the classical Horvitz-Thompson (HT) inverse weighting es-
timation. The regression method imputes a missing value
(Yi, δi = 0) with a weighted regression estimate for m(Xi),
and also a similarly weighted estimate for p(Xi). The HT
method weights each observed response (Yi, δi = 1) by the
inverse of an estimated probability of observation to reflect
a proper sample size. Under MAR, the estimated probabili-
ties are the estimated propensity scores p(Xi) based on the
nonparametric inference frame (1.1) and (1.2).

A basic nonparametric regression imputation is the
kernel-weighted regression (KR) estimator introduced by
Cheng and Wei (1986):

μ̃ = 1

n

n∑

i=1

m̃(Xi)

= 1

n

n∑

i=1

⎧
⎨

⎩

n∑

j=1

Wh(Xi,Xj )δjYj

/ n∑

j=1

Wh(Xi,Xj )δj

⎫
⎬

⎭ .

(1.3)

The regression function is estimated by m̃(x), W is a sym-
metric probability density function (pdf), and Wh(u,x) =

h−1W((u − x)/h). An analog of (1.3) is

μKR = 1

n

n∑

i=1

{δiYi + (1 − δi)m̃(Xi)}. (1.4)

Estimators (1.3) and (1.4) were proved to be asymptoti-
cally equivalent as they approximate the same normal dis-
tribution under the same regularity conditions on the re-
gression function, the propensity score and the kernel band-
width h (Cheng 1994). This asymptotic normality has also
been proved using the empirical likelihood approach, see for
example, Wang and Rao (2002).

The idea of using kernel regression weights was also ap-
plied to define nearest neighbor (NN) regression weights,
for example, Cheng (1984, 1994). For a finite positive inte-
ger K , an NN imputation estimator is defined as

μNN = 1

n

n∑

i=1

{δiYi + (1 − δi)mK(Xi)}. (1.5)

Here mK(Xi) = 1
K

∑K
j=1 Yi(j), and {(Xi(j), Yi(j)) :

δi(j) = 1, j = 1, . . . ,K} is a set of K observed data pairs,
and Xi(j) denotes the j th nearest neighbor to Xi among all
the covariates X’s corresponding to those Yk’s with δk = 1.
The imputed kernel estimates m̃(Xi) of (1.4) are replaced
by the nearest-neighbors estimate mK(Xi) in (1.5), and the
kernel bandwidth h is replaced by a random distance defined
between the covariates.

The classical HT weighting scheme recovers the incom-
plete data information by inverting the sampling weights to
reflect the effective sample size. Under MAR, a basic HT
imputation estimator of μ is defined by inverting the esti-
mated propensity score:

μHT = 1

n

n∑

i=1

δiYi

wi

, (1.6)

where wi = p̃(Xi) = ∑n
j=1 δjWh(Xj ,Xi)/

∑n
j=1 Wh(Xj ,

Xi) estimates the propensity score p(Xi) using the same
kernel smoothed estimate as defined by (1.3). Alternatively,
the sample size n in (1.6) can be replaced by an adjusted to-
tal, that is, a ratio estimate of the effective sample size. This
yields the commonly-used HT ratio estimator:

μHT R =
(

n∑

i=1

δiYi/wi

)/(
n∑

i=1

δi/wi

)
. (1.7)

The ratio estimator is generally preferred to the naive esti-
mator with complete data and, whether any difference could
exist with the analysis of missing data will be examined later
in a simulation study.

It is notable that Robins et al. (1994) used the HT in-
verse probability weighting to estimate a semiparametric re-
gression function m(x,β) when some covariates are miss-
ing at random. A remarkable advantage is that the method is
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asymptotically efficient, when either the parametric regres-
sion model m(x,β) or the propensity score model p(x,α)

is correctly specified. This is termed the double-robustness
(DR) property by Scharfstein et al. (1999), and it has been
extensively used with semiparametric inference. Thereafter,
the DR property has attracted much discussion, for exam-
ple, Robins and Rotnitzky (2001), Carpenter et al. (2006),
Kang and Schafer (2007), and Qin et al. (2008). Kang and
Schafer (2007) questioned whether the DR property could
be lost when both models are not correctly specified. Nev-
ertheless, the possible failure of consistent estimation was
remarked when the inverse probability weights are highly
variable (Robins et al. 2007).

In contrast, a nonparametric analog of the DR property,
coined the Robins-Rotnitzky-Zhao estimator, was formu-
lated by Carpenter et al. (2006, formula (5)), and also by
Qin et al. (2008, p. 798). Without parametric modeling,
a nonparametric analog of the DR property requires both
the regression function and the propensity score be ideally
smooth functions. A polynomial regression function and a
logistic-type propensity score have been used in many sim-
ulation studies under semiparametric modeling. This modi-
fies the basic HT estimator (1.6) by defining a nonparametric
doubly-robust HT estimator as

μDR = 1

n

n∑

i=1

[
m̃(Xi) + δi{Yi − m̃(Xi)}

wi

]
, (1.8)

where m̃ and wi are the estimates of m(x) and p(x) in (1.3)
and (1.6), respectively. Clearly, estimator μDR modifies μ̃ of
(1.3) by using inversely weighted regression residuals. This
motivates the definition of a nonparametric DR property in
the sense that the nonparametric DR estimator μDR can be
efficient so long as either the regression function m(x) or
the propensity score p(x) is sufficiently smooth. When both
m(x) and p(x) are ideally smooth, it can be expected, as
evidenced in a simulation study, that all the imputation esti-
mators using the same kernel-estimated weights yield com-
parable performance to μDR in terms of the bias, the MSE,
a standardized z-score and the coverage probability of con-
fidence intervals. In this case, the NN imputation estima-
tor μNN could yield larger sampling variance, hence larger
MSE when using a smaller K for convenience. In view of
the previous remark on the failure of the parametric DR
property (Robins et al. 2007), it is of interest whether the
nonparametric estimator μDR is surely preferred to the NN
estimator μNN when both m(x) and p(x) are smooth and
well estimated by the kernel method. This will be examined
using a comprehensive simulation study in Sect. 3.

This study will address two issues. The first goal is to
prove a basic asymptotic normality for the NN imputation
using a multivariate covariate, while similar results in the
literature were given with a univariate covariate, e.g., Shao

and Wang (2008). Section 2 proves Theorem 1 that distinct
normal approximations for the NN and the KR imputation
are achieved under identical regularity conditions. This char-
acterizes the difference in the asymptotic variance between
the two local-weighting schemes that has not been well illus-
trated in the literature. The case 1 simulation study of Sect. 3
calibrates this difference, and shows that all the methods
except the NN are comparably efficient under ideally reg-
ular conditions. In contrast to Theorem 1, the second goal
of this study is to examine the difference in performance be-
tween the NN imputation and the other imputation methods
when the regularity conditions of Theorem 1 are not satis-
fied. From the simulation study case 2, it is found that among
all imputation methods using kernel estimated weights, the
DR estimator μDR and a nearest-neighbors (NN) modified
estimator μDR2 (to be defined in Sect. 3) yield the most sta-
ble performance in terms of the MSE and the z-score, being
insensitive to discontinuity in the propensity score. When
the propensity scores vary widely across the mixture distri-
bution of the covariate as in the case 3 simulation, estima-
tors using the NN imputation with a small K , 1 or 2, be-
come highly competitive. They yield the best performance
in terms of smaller MSE and more accurate coverage prob-
ability of confidence interval for the true mean, while the
NN-modified estimator μDR2 becomes the second best in
the same simulation study. Section 4 will apply the impu-
tation estimators to two datasets using simulated MAR de-
signs. For the orthodontic growth dataset of size 27 (Potthoff
and Roy 1964), a miniature simulation study was conducted
to resemble the case 3 simulation study, yielding expected
computational results. For the iris flower dataset (cf. Fisher
1936), similar simulations were conducted for studying the
accuracy in classifying the three species and for estimat-
ing the species proportions. The NN imputation method ob-
tains better classification accuracy than the KR method does
under general missing data mechanisms. In both empirical
studies, the NN imputation with a small K , 1 or 2, presented
the best performance. It is well-known that the NN method
differs from the others in using a random distance as a vari-
able bandwidth defined by the covariate distribution instead
of a constant bandwidth. While a proof for a general joint
distribution under the MAR condition is beyond the scope of
this study, it is examined by computation that the NN impu-
tation could be less sensitive to the variation in the propen-
sity scores and the unknown covariate distribution.

2 Nearest neighbor imputation

The K-nearest neighbor (K-NN) decision rule due to Fix
and Hodges (1951) has been widely used in pattern recog-
nition. Logtsgaarden and Quesenberry (1965) applied it to
yield consistent estimation of a probability density function,
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and Cover and Hart (1967) discussed admissibility of 1-NN
classification rule. In various scientific computing environ-
ments, K-NN estimation has been widely used to study clas-
sification with multivariate data. Nearest neighbor rules in
statistical estimation were discussed with hot-deck impu-
tation (Sande 1979), and nonparametric regression (Cheng
1984). In a study of the KR imputation, the use of K-NN
imputation was remarked by Cheng (1994). Methods of NN
imputation were also studied by Lee et al. (1994), Rancourt
(1999), Chen and Shao (2000, 2001), and Shao and Wang
(2008). Most of these studies discussed missing responses
in a nonparametric or semiparametric regression model with
a 1-dimensional covariate X.

The KR imputation estimator (1.4) and the NN estima-
tor (1.5) are constructed by locally-weighted nonparametric
regression, but differ in the statistical distance used. With
small or moderate sample size n, the KR imputation may
find difficulty in using the local-bandwidth weighting with
sparse high-dimensional data. In contrast, the NN imputa-
tion uses a random statistical distance between the covari-
ates. Thus, the NN rule is basically unaffected by disconti-
nuity of p(x), sparse data or multi-dimensional covariate X.
Computations for such cases will be illustrated in the simu-
lation study of Sect. 3.

Asymptotic normality for the NN method has not been
fully discussed when the data are incomplete. It is known
that like KR estimation using a small bandwidth, the estima-
tor μNN using a small K would yield negligible bias in es-
timating μ, but a larger variance. In theory, asymptotic vari-
ance can only be derived under regularity conditions (ideal
smoothness) of the regression function m(x) and the propen-
sity score p(x). Such asymptotic properties under regularity
conditions are typical facts of the kernel estimator μKR , and
the HT type estimators μHT R and μDR , but not well stud-
ied for the NN estimator μNN in the literature. Compared to
the asymptotic normality of the KR estimator μKR (Cheng
1994), a less asymptotically efficient result for the NN esti-
mator μNN is obtained under essentially the same regularity
conditions of the joint distribution. This is given in Theo-
rem 1 below.

Theorem 1 Assume EY 2 < ∞ and that the conditional
variance function σ 2(x) = Var(Y |x), the regression func-
tion m(x), and the propensity score p(x) are finite and
first-order differentiable. Then, the NN imputation estimator
μNN of (1.5) yields the approximation in distribution:
√

n(μNN − μ) → N(0, σ 2(μNN)), (2.1)

as n → ∞ where

σ 2(μNN) = Var(Y ) +
(

1 + 1

K

)
E[σ 2(X)(1 − p(X))]

+ E

[
σ 2(X)(1 − p(X))2

p(X)

]
. (2.2)

The proof of Theorem 1 will be given in the Appendix.
Under the same conditions of Theorem 1, the kernel-
weighted regression imputation estimator μKR yields the
asymptotic distribution N(0, σ 2(μKR)) (Cheng 1994, The-
orem 2.1), where the asymptotic variance is

σ 2(μKR) = Var(Y ) + E

[
σ 2(X)(1 − p(X))

p(X)

]
. (2.3)

The difference between the two asymptotic variances of
(2.2) and (2.3) is

σ 2(μNN) − σ 2(μKR) = 1

K
E[σ 2(X)(1 − p(X))]. (2.4)

Computational effects of Theorem 1 and (2.4) will be ex-
amined and illustrated in the case 1 simulation of Sect. 3.
The statistical distance plays a key role in the NN impu-
tation, allowing flexible choices such as the Euclidean dis-
tance, the Mahalanobis distance, whichever is appropriate
to the data joint distribution. As a random distance between
the covariate variables, it alleviates the constraint of using an
optimal constant bandwidth in the KR method, particularly
with a mixture, multi-dimensional or sparse distribution of
the covariate X. With a small K , a K-NN imputation esti-
mator generally yields smaller bias but larger variance com-
pared to those of the KR imputation. Nevertheless, it usually
yields smaller MSE, when the distribution of the covariate is
a mixture. This will be exemplified in the case 3 simulation
of Sect. 3.

It may be expected that a modification of the weights of
the NN estimator μNN of (1.5), assigning unequal weights
to the K nearest neighbors, for example, using a bell-shaped
unimodal kernel, could possibly reduce the sampling MSE.
Because no significant reduction of MSE was found from
the computation in each case study, the weighted-distance
NN estimation will not be discussed. In Sect. 3, three cases
of simulation study are defined using smooth regression
functions, and smooth or discontinuous propensity scores,
and mixture covariate distributions are examined. It is re-
markable that the NN imputation (using a proper K) can
yield stable performance in terms of the MSE and the cov-
erage probability of confidence interval, compared to the
imputation methods using kernel-estimated weights with
proper bandwidths.

3 Simulation study

Three cases of simulation study were conducted to evaluate
the performance of the aforementioned imputation methods.
A common regression model was used in each case

Y = m(X) + ε, (3.1)
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where the error variable ε is independent of X and distrib-
uted as standard normal. Varied distributions of the covari-
ate X and the propensity score p(X) were defined with
the regression model (3.1). Random samples of sizes n =
50,100,500 were generated in each case. Six imputation es-
timators for the population mean μ = EY were computed
using 1,000 replications in each case. They were compared
in terms of the average bias, the MSE, the z-score (ZS de-
notes the ratio of the average bias to the standard error esti-
mate), and the coverage probability of confidence intervals
(denoted by CCI) for μ = EY . These statistics were com-
puted from the simulated samples and are reported in Ta-
bles 1 to 3.

1. The K−NN estimator μNN of (1.5) is used with K =
1,2,4,8 in each simulation, plus two larger multiples of
4 in cases 1 and 2.

2. The kernel regression (KR) estimator is defined by (1.4)
using the well-known Epanechnikov quadratic kernel
function

W(t) =
{

0.75(1 − t2), for |t | ≤ 1,

0, otherwise.

When
∑n

j=1 Wh(Xi,Xj )δj = 0 and p̃(Xi) = 0, there is
no candidate donor within one bandwidth of the covari-
ate Xi associated with a missing response. Then, no value
would be imputed for the missing response, and the ac-
tual sample size used in this computation could be less
than n.

3. The same kernel function with the selected bandwidths
was used with the KR estimator μKR , the HT estimator
μHT , the HT ratio estimator μHT R , and the nonparamet-
ric DR estimator μDR .

4. For the DR estimation, two imputation schemes were
designed in situations where

∑n
j=1 Wh(Xi,Xj )δj = 0:

(1) as for μKR , no imputed value was used, denoted by
μDR ; (2) impute a value, which is the average of two
observed Y ′

j s of the two nearest covariate X′
j s to Xi , de-

noted by μDR2.

The first set of simulations, case 1 below, is used
to evaluate Theorem 1, where both regression function
m(x) and propensity score p(x) are first-order differen-
tiable.

Case 1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m1(x) = 2x,

p1(x) = e2.5x

1+e2.5x ,

X ∼ U(0,1),

E(Y ) = 1, E(Yobs) = 1.0956,

P (δ = 1) = 0.7543.

Table 1 reports the average bias, MSE, ZS and CCI out of
1,000 replications in computing the estimators for the simu-
lation study of case 1. With smooth m(x) and p(x), most es-
timators exhibit uniformly small bias and MSE, stable CCI,

giving consistent estimation with imputation, which seems
to be unaffected by the slight difference between the true
mean E(Y) and the observed mean E(Yobs). For a wide
range of bandwidth values (h = 0.20, 0.15 and 0.05 corre-
sponding to n = 50, 100 and 500, respectively) all band-
width estimators yield comparable MSE and CCI, except
that larger z-scores (ZS) may occur with large bandwidths
or K . The NN estimator yields slightly larger MSE in gen-
eral, but gives the smallest bias with smaller K such as 1
and 2. Table values for larger K such as 16 and 32 were com-
puted to yield smaller variance or MSE, particularly for the
case when the sample size is 500 or larger. Here, the asymp-
totic variance of (2.2) is σ 2(μNN) = 1.7005 + 0.2457/K

which approximates σ 2(μKR) = 1.7005, that of (2.3). It is
notable in Table 1 that the MSEs of the NN method also ap-
proximate those of the KR method as K tends to infinity, in
accordance with (2.4) of Theorem 1.

Next, in case 2, a quadratic polynomial m(x) and a piece-
wise constant propensity score p(x) are used. The purpose
is to examine any adverse effect due to discontinuity in the
propensity.

Case 2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m2(x) = 3 − 6(x − 0.6)2,

p2(x) =

⎧
⎪⎨

⎪⎩

0.8, 0 ≤ x ≤ 0.3,

0.2, 0.3 < x ≤ 0.7,

0.8, 0.7 < x ≤ 1,

X ∼ U(0,1),

E(Y ) = 2.44, E(Yobs) = 2.26,

P (δ = 1) = 0.56.

Values in Table 2 given by the simulation case 2 gen-
erally present consistent estimation. The basic HT imputa-
tion estimator μHT yields the poorest performance among
all, showing that it is most sensitive to discontinuity in the
propensity score p(x). With an adjustment of sample size,
the ratio HT imputation μHT R corrects the drawback and
yields similar performance to the other estimators. The NN
imputation gives satisfactory performance when K is greater
than 1, and it yields the smallest bias but larger variance
hence larger MSE when K = 1. Here, the values of ZS and
CCI vary more widely than those in the ideal case 1, and are
unsatisfactory with bandwidths larger than 0.20 or larger K ;
this is essentially due to discontinuity in the propensity
score.

Case 3 differs from cases 1 and 2 by defining the co-
variate X as a mixture of two uniform distributions. It is
designed to test the performance stability of the nonpara-
metric imputation methods by putting heavy missingness on
the data region of one component of the mixture distribution
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Table 1 Average bias, n·MSE, z-score and coverage of CI for Case 1

Estimator Sample Size n

50 100 500

Bias n·MSE ZS CCI Bias n·MSE ZS CCI Bias n·MSE ZS CCI

μNN 1 −0.004 2.07 −0.63 0.954 0.003 2.03 0.74 0.956 −0.004 1.96 −1.89 0.954

2 −0.005 2.00 −0.79 0.945 0.003 1.92 0.63 0.957 −0.003 1.73 −1.53 0.952

4 −0.001 1.92 −0.14 0.944 0.004 1.84 0.83 0.947 −0.002 1.63 −1.33 0.955

8 0.007 1.86 1.07 0.943 0.006 1.85 1.37 0.945 −0.003 1.60 −1.43 0.949

16 0.027 1.90 4.41 0.946 0.014 1.85 3.23 0.954 −0.002 1.59 −1.16 0.951

32 0.077 2.13 12.65 0.939 0.034 1.98 7.95 0.948 0.000 1.59 −0.25 0.949

μKR 0.05 0.001 1.97 0.16 0.949 0.004 1.85 0.92 0.947 −0.002 1.58 −1.14 0.953

0.15 −0.002 1.87 −0.29 0.947 0.006 1.80 1.42 0.949 0.001 1.58 0.79 0.952

0.20 0.000 1.84 0.06 0.945 0.009 1.80 2.13 0.95 0.004 1.58 2.36 0.95

0.30 0.007 1.82 1.19 0.944 0.016 1.83 3.88 0.954 0.012 1.64 6.51 0.947

μHT 0.05 −0.031 1.85 −5.11 0.946 −0.006 1.79 −1.45 0.949 −0.004 1.58 −2.06 0.956

0.15 −0.009 1.82 −1.50 0.948 0.002 1.77 0.40 0.946 −0.001 1.57 −0.41 0.955

0.20 −0.006 1.81 −1.07 0.948 0.004 1.77 0.95 0.949 0.001 1.56 0.58 0.953

0.30 −0.002 1.78 −0.33 0.945 0.009 1.77 2.22 0.948 0.006 1.56 3.25 0.95

μHT R 0.05 0.013 1.98 2.02 0.944 0.010 1.87 2.32 0.943 −0.001 1.59 −0.61 0.949

0.15 0.002 1.88 0.36 0.945 0.008 1.82 1.93 0.946 0.002 1.58 1.02 0.95

0.20 0.003 1.86 0.51 0.946 0.011 1.82 2.51 0.947 0.005 1.59 2.57 0.952

0.30 0.009 1.83 1.41 0.945 0.017 1.84 4.05 0.951 0.012 1.64 6.63 0.945

μDR 0.05 0.000 2.00 0.06 0.951 0.004 1.87 0.90 0.95 −0.002 1.59 −1.38 0.955

0.15 −0.004 1.90 −0.64 0.948 0.003 1.81 0.68 0.945 −0.002 1.58 −1.22 0.952

0.20 −0.004 1.87 −0.66 0.947 0.004 1.80 0.83 0.948 −0.002 1.58 −1.00 0.953

0.30 −0.003 1.84 −0.53 0.946 0.005 1.80 1.28 0.948 0.000 1.58 0.02 0.955

μDR2 0.05 −0.005 1.99 −0.85 0.949 0.003 1.86 0.69 0.951 −0.002 1.59 −1.38 0.955

0.15 −0.004 1.90 −0.66 0.948 0.003 1.81 0.68 0.945 −0.002 1.58 −1.22 0.952

0.20 −0.004 1.87 −0.65 0.947 0.004 1.80 0.83 0.948 −0.002 1.58 −1.00 0.953

0.30 −0.003 1.84 −0.53 0.946 0.005 1.80 1.28 0.948 0.000 1.58 0.02 0.955

Table values are based on 1,000 replications. Values of K and bandwidth h are listed in the second column. ZS is the z-score of standardized
average bias, CCI is the coverage probability of confidence intervals

of X. The simulation is defined as follows.

Case 3

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m3(x) = 2x + 1,

p3(x) = exp(2.5x)
1+exp(2.5x)

,

X ∼ 0.3U(−3,0) + 0.7U(0,4),

E(Y ) = 2.9, E(Yobs) = 5.009,

P (δ = 1) = 0.679.

Compared to the previous cases 1 and 2, the highly un-
balanced missing pattern p(x) in the mixture distribution of
the covariate appears to present serious adverse effect on the
estimators using kernel bandwidths. Consistent estimation
may not be secured if the values n·MSE increase steadily
with n. In this case, estimators μHT , μKR , μHT R , and μDR

tend to give larger average bias, MSE and ZS, but smaller
CCI as compared to the estimators μNN and μDR2. It is
seen from Table 3 that the NN estimator μNN with K = 1,2
yields the best results, comparable to the estimator μDR2.
Clearly, μDR2 costs more computation time in requiring a
bandwidth h that roughly decreases from 1.5 to the range
(0.5,0.8) as the sample size n increases from 50 to 500.

With unbalanced missingness in the mixture distribution
of the covariate, it is natural to consider using two different
bandwidths, that is, a larger one for the sparse data region,
and a smaller one for the less-missing part. By using various
combinations of two bandwidths h and two Ks in case 3,
a modified simulation study indicates that there are no ap-
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Table 2 Average bias, n·MSE, z-score and coverage of CI for Case 2

Estimator Sample Size n

50 100 500

Bias n·MSE ZS CCI Bias n·MSE ZS CCI Bias n·MSE ZS CCI

μNN 1 0.006 3.55 0.72 0.953 −0.002 4.38 −0.28 0.952 0.004 4.10 1.41 0.954

2 −0.007 2.89 −0.96 0.952 −0.007 3.64 −1.09 0.949 0.003 3.46 1.16 0.953

4 −0.021 2.54 −2.98 0.95 −0.014 3.14 −2.48 0.956 0.003 3.11 1.08 0.954

8 −0.055 2.47 −8.13 0.939 −0.032 2.86 −6.13 0.952 0.001 2.86 0.59 0.955

16 −0.098 2.79 −14.38 0.92 −0.065 2.92 −13.02 0.935 −0.004 2.71 −1.51 0.959

32 −0.165 3.61 −24.70 0.89 −0.110 3.73 −21.88 0.903 −0.017 2.66 −7.63 0.945

μKR 0.10 −0.012 2.93 −1.56 0.948 −0.010 3.32 −1.78 0.949 −0.006 2.69 −2.47 0.953

0.15 −0.012 2.73 −1.64 0.955 −0.020 3.02 −3.63 0.947 −0.016 2.64 −7.16 0.943

0.20 −0.025 2.53 −3.48 0.953 −0.034 2.83 −6.45 0.948 −0.030 2.82 −13.72 0.926

0.25 −0.041 2.44 −5.95 0.942 −0.051 2.80 −10.01 0.938 −0.047 3.38 −21.81 0.885

0.30 −0.059 2.45 −8.67 0.937 −0.069 2.92 −13.94 0.927 −0.065 4.36 −30.63 0.84

μHT 0.10 −0.277 8.54 −28.58 0.855 −0.162 7.10 −24.25 0.893 −0.080 6.14 −32.97 0.818

0.15 −0.212 6.52 −22.87 0.899 −0.154 6.12 −25.17 0.889 −0.114 9.31 −48.39 0.654

0.20 −0.213 5.97 −24.70 0.886 −0.180 6.72 −30.37 0.846 −0.153 14.60 −63.40 0.5

0.25 −0.224 5.77 −27.84 0.873 −0.208 7.52 −36.70 0.8 −0.189 20.86 −77.37 0.315

0.30 −0.223 5.40 −29.14 0.863 −0.217 7.65 −40.04 0.775 −0.203 23.52 −84.95 0.246

μHT R 0.10 −0.037 2.96 −4.83 0.944 −0.027 3.42 −4.66 0.945 −0.012 2.84 −5.09 0.949

0.15 −0.033 2.86 −4.43 0.953 −0.031 3.21 −5.47 0.947 −0.023 2.86 −9.87 0.934

0.20 −0.042 2.71 −5.80 0.951 −0.042 3.05 −7.91 0.946 −0.036 3.15 −16.37 0.917

0.25 −0.054 2.59 −7.79 0.942 −0.059 2.99 −11.40 0.939 −0.054 3.81 −24.61 0.872

0.30 −0.069 2.56 −10.11 0.937 −0.076 3.06 −15.29 0.923 −0.072 4.85 −33.52 0.81

μDR 0.10 −0.008 3.06 −1.06 0.945 −0.005 3.58 −0.87 0.952 0.001 2.85 0.35 0.956

0.15 −0.001 2.98 −0.08 0.956 −0.007 3.34 −1.24 0.95 −0.001 2.71 −0.58 0.953

0.20 −0.003 2.79 −0.35 0.955 −0.010 3.11 −1.77 0.947 −0.004 2.63 −1.84 0.953

0.25 −0.009 2.63 −1.19 0.96 −0.015 2.91 −2.87 0.947 −0.010 2.56 −4.34 0.95

0.30 −0.019 2.50 −2.67 0.951 −0.026 2.77 −4.93 0.941 −0.021 2.62 −9.34 0.937

μDR2 0.10 0.001 3.12 0.17 0.954 −0.004 3.60 −0.69 0.954 0.001 2.85 0.35 0.956

0.15 0.001 2.99 0.14 0.956 −0.007 3.34 −1.21 0.95 −0.001 2.71 −0.58 0.953

0.20 −0.002 2.79 −0.30 0.955 −0.010 3.11 −1.77 0.947 −0.004 2.63 −1.84 0.953

0.25 −0.009 2.63 −1.19 0.96 −0.015 2.91 −2.87 0.947 −0.010 2.56 −4.34 0.95

0.30 −0.019 2.50 −2.67 0.951 −0.026 2.77 −4.93 0.941 −0.021 2.62 −9.34 0.937

Table values are based on 1,000 replications. Values of K and bandwidth h are listed in the second column. ZS is the z-score of standardized
average bias, CCI is the coverage probability of confidence intervals

parent improvements. Details are given in the manuscript on
the author’s website www.stat.sinica.edu.tw/pcheng/.

4 Empirical study

Two datasets with small to moderate sample sizes will be
studied in this section. The first study examines the perfor-
mance of the imputation estimators with the small orthodon-

tic growth dataset where Theorem 1 and related asymptotic
properties are invalid. For estimating a mean parameter from
this small dataset, the NN and the NN-modified DR estima-
tors are found to be most effective among all the imputa-
tion estimators under artificial MAR designs. The second
study uses the iris flower data (in the UCI Machine Learn-
ing Repository, MLR) and considers classifying the species
and estimating the proportions. It is seen that all the imputa-
tion estimators can be used to estimate the proportions, but

http://www.stat.sinica.edu.tw/pcheng/
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Table 3 Average bias, n·MSE, z-score and coverage of CI for Case 3

K/h Sample Size n

50 100 500

Bias n·MSE ZS CCI Bias n·MSE ZS CCI Bias n·MSE ZS CCI

μNN 1 0.684 41.78 35.70 0.811 0.553 54.06 36.09 0.797 0.282 80.82 31.15 0.842

2 0.784 45.55 45.49 0.704 0.648 61.45 46.37 0.688 0.345 90.25 44.15 0.713

4 0.920 54.79 58.20 0.549 0.772 75.89 60.44 0.519 0.434 117.90 62.99 0.500

8 1.129 74.95 75.43 0.359 0.921 98.32 79.06 0.290 0.550 170.15 89.08 0.192

μKR 0.8 1.405 118.21 71.00 0.376 1.217 175.91 72.97 0.355 0.778 377.77 63.62 0.442

1.0 1.331 108.75 66.29 0.435 1.144 159.64 67.54 0.423 0.721 327.86 61.63 0.475

1.4 1.210 93.53 60.09 0.513 1.036 135.09 62.29 0.491 0.659 265.05 67.51 0.446

1.8 1.120 80.98 58.58 0.539 0.970 118.17 62.38 0.499 0.683 260.17 92.74 0.160

2.0 1.094 77.24 58.55 0.555 0.955 112.75 64.85 0.482 0.728 284.89 116.03 0.038

μHT 0.8 0.583 27.45 40.32 0.769 0.581 45.94 52.55 0.622 0.485 140.45 71.61 0.334

1.0 0.587 27.80 40.39 0.767 0.583 46.46 52.21 0.633 0.495 146.34 71.80 0.328

1.4 0.605 28.79 41.65 0.753 0.604 49.02 53.80 0.608 0.543 168.52 83.98 0.205

1.8 0.634 30.33 44.35 0.739 0.640 52.80 58.74 0.540 0.605 198.95 107.15 0.087

2.0 0.653 31.28 46.17 0.721 0.661 55.13 61.73 0.506 0.636 215.87 121.32 0.041

μHT R 0.8 1.600 145.57 85.48 0.225 1.459 238.55 90.86 0.182 1.111 701.84 85.24 0.223

1.0 1.584 143.76 82.62 0.245 1.454 238.95 87.58 0.211 1.156 759.66 85.69 0.217

1.4 1.585 144.19 82.07 0.244 1.493 250.25 90.05 0.178 1.300 923.21 103.54 0.121

1.8 1.611 147.01 86.66 0.206 1.552 264.00 101.92 0.101 1.4441094.35 142.20 0.028

2.0 1.626 148.49 90.12 0.183 1.580 270.44 109.28 0.067 1.5031169.48 169.22 0.008

μDR 0.8 1.381 115.33 69.17 0.397 1.184 168.67 70.10 0.385 0.720 336.82 57.80 0.513

1.0 1.293 104.48 63.27 0.468 1.094 149.65 63.29 0.470 0.637 277.01 52.32 0.601

1.4 1.139 86.68 54.50 0.580 0.950 120.65 54.53 0.584 0.536 201.98 49.54 0.655

1.8 1.016 72.10 50.17 0.638 0.851 100.41 50.91 0.636 0.534 178.70 62.74 0.505

2.0 0.975 67.29 49.02 0.641 0.823 93.08 51.65 0.631 0.570 189.59 77.60 0.304

μDR2 0.8 0.742 43.50 41.57 0.746 0.612 58.29 42.31 0.733 0.320 85.45 38.62 0.781

1.0 0.738 43.35 41.11 0.747 0.611 58.36 42.18 0.738 0.332 89.34 40.01 0.759

1.4 0.739 43.59 40.93 0.752 0.626 60.13 43.26 0.723 0.389 107.66 48.72 0.666

1.8 0.757 44.38 42.61 0.734 0.666 64.26 47.08 0.683 0.490 146.19 68.05 0.415

2.0 0.775 45.36 44.22 0.714 0.696 67.31 50.55 0.642 0.553 175.45 82.09 0.249

Table values are based on 1,000 replications. Values of K and bandwidth h are listed in the second column. ZS is the z-score of standardized
average bias, CCI is the coverage probability of confidence intervals

only the KR and the NN estimators can be used to classify
the iris species under various missing data mechanisms.

4.1 Orthodontic growth data

The data in Table 4 (Potthoff and Roy 1964) are orthodontic
growth measurements for 11 girls and 16 boys. For each sub-
ject, the distance from the center of the pituitary to the max-
illary fissure was recorded at the ages of 8, 10, 12, and 14
years. Assuming the four distance measures were observed
from a multivariate normal distribution, Little and Rubin

(2002, Table 11.4) examined the inference for the linear re-
gression parameters as if the data were incomplete. An arti-
ficial deletion mechanism was designed to be MAR, specifi-
cally, values at age 10 years were deleted for cases with low
values at age 8 years. By analogy with their MAR design, we
may assume that the finite population mean of the 27 mea-
sures of all the boys and girls at age 14 is to be estimated us-
ing a similar MAR design. Thus, measures at age 14 are the
response Y values, and let those at age 12 be defined as the
covariate X values. Our goal is to examine the performance
of the imputation methods in estimating μ = EY = 26.09.
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In accordance with formulae (1.1) and (1.2), let some Y val-
ues be deleted according to the propensity score p(x) de-
fined as

p(x) =
{

0.9, x < 25,

0.4, x ≥ 25.
(4.1)

Because of the small data size, n = 27, this deletion mecha-
nism was only simulated 20 times. A typical simulated miss-
ing data is presented in Table 4, where the deleted Y val-
ues are quoted in parentheses. For these twenty simulated
datasets, all of the previously discussed imputation methods
are computed and the results are summarized in Table 5. As
in the previous simulation study of case 3, there was no clear
advantage in using pairs of bandwidths h, one for the girls

Table 4 Orthodontic growth data for 11 girls and 16 boys

Girl Age (in years) Boy Age (in years)

12(X) 14(Y ) 12(X) 14(Y )

1 21.5 23.0 1 29.0 (31.0)

2 24.0 25.5 2 23.0 26.5

3 24.5 26.0 3 24.0 27.5

4 25.0 (26.5) 4 26.5 (27.0)

5 22.5 23.5 5 22.5 (26.0)

6 21.0 22.5 6 27.0 28.5

7 23.0 25.0 7 24.5 26.5

8 23.5 24.0 8 24.5 25.5

9 22.0 (21.5) 9 31.0 26.0

10 19.0 19.5 10 31.0 31.5

11 28.0 (28.0) 11 23.5 (25.0)

12 24.0 28.0

13 26.0 29.5

14 25.5 26.0

15 26.0 (30.0)

16 23.5 25.0

Sources: Potthoff and Roy (1964); Little and Rubin (2002)

and another for the boys, or pairs of K , when both observed
x and y values were not sparsely distributed. Thus, the re-
sults in Table 5 were reported using a single h and K for this
simulated missing data analysis. By missing a large propor-
tion of the response values of the boys, but not of the girls, it
is expected that the results in Table 5 would resemble those
in Table 3. Indeed, the NN estimator μNN , with K = 1,2,
and the NN-modified estimator μDR2 yield the best results
among all estimators.

4.2 Iris flower data

The iris flower dataset is well known from the study of clas-
sification using linear discriminant analysis (Fisher 1936).
The dataset consists of 50 samples from each of three
species of iris flowers (iris setosa, iris virginica and iris ver-
sicolor). Four features were measured from each sample,
they are the length and the width of sepal and petal, in cen-
timeters. Scatter plots of the six paired features are available
in the MLR. The plots indicate that iris setosa is linearly sep-
arable from the other two species, which are not separable
from each other. The attribute of interest is the species indi-
cator variable, denoted by Y , say, Y = 0 stands for iris se-
tosa, Y = 1 for virginica and Y = 2 for versicolor. The use-
ful covariate is the predictor vector X = (X1,X2,X3,X4)

of the four features (Sepal length, Sepal width, Petal length,
Petal width). In the context of machine learning, data mea-
surements of validation samples are used to supervise the
training of a classifier, and then the unknown attributes
(species, response types) of the remaining test samples are
classified as if they were missing completely at random
(MCAR). It is however notable that both the attributes and
the covariates in specific data regions are used in training
the classifiers, this is called feature extraction in supervised
learning. As a consequence of repeated sampling and train-
ing on the same data, such missing data mechanisms may
not be MCAR or MAR, but rather missing not at random
(MNAR), which is also termed non-ignorable missing in

Table 5 A simulated incomplete growth data analysis for estimating EY

K/h Bias Var n·MSE h Bias Var n·MSE h Bias Var n·MSE

μNN 1 −0.133 0.093 2.87 μHT 2.0 −2.757 4.300 315.57 μDR 2.0 −0.256 0.084 3.92

2 −0.182 0.071 2.71 2.1 −2.666 3.988 294.19 2.1 −0.192 0.104 3.66

4 −0.282 0.079 4.19 2.2 −2.559 3.826 274.94 2.2 −0.191 0.102 3.60

8 −0.367 0.080 5.68 2.5 −2.264 3.658 232.20 2.5 −0.189 0.099 3.51

μKR 2.0 −0.284 0.079 4.20 μHT R 2.0 −0.321 0.109 5.60 μDR2 2.0 −0.160 0.085 2.88

2.1 −0.225 0.098 3.88 2.1 −0.322 0.099 5.35 2.1 −0.141 0.092 2.90

2.2 −0.227 0.097 3.89 2.2 −0.321 0.093 5.16 2.2 −0.140 0.090 2.83

2.5 −0.233 0.097 3.95 2.5 −0.313 0.083 4.78 2.5 −0.138 0.087 2.74

Table values are based on 20 simulated datasets. Numbers of nearest neighbors are denoted by K , and h is the kernel bandwidth
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Table 6 A classification analysis for the iris flower data

Propensity
score

Average
misclassification No.

Average
missing No.

KR/h = 0.9 1-NN

MAR (0.7, 0.1) 5.0 3.0 100.8

(0.1, 0.7) 7.8 4.4 79.2

(0.7, 0.3) 3.7 2.7 82.2

(0.3, 0.7) 4.7 3.9 67.6

(0.9, 0.4) 2.2 1.5 61.8

(0.4, 0.9) 3.1 3.0 43.8

(0.6, 0.4) 3.8 3.2 79.0

(0.4, 0.6) 4.4 3.9 71.9

(0.5, 0.5) 4.0 3.6 75.3

MCAR 0.4 5.5 4.4 90.1

0.5 4.0 3.5 75.2

0.6 3.1 2.7 59.9

Propensity scores are given by formula (4.2) under MAR, and are con-
stants under MCAR. Table values are based on 500 replications

parametric inference (Little and Rubin 2002). Without su-
pervised learning, the covariate X is used for selecting a
validation sample at random, then the attributes of the test
sample are regarded as MAR, or MCAR if the sampling is
independent of X. In this study, classification accuracy for
the iris flower species is examined using the KR and the NN
imputation methods, and compared under MAR and MCAR
designs. Meanwhile, it is notable that the HT-type estima-
tors can by definition only estimate the species proportions
or the species total counts, the latter take the same value of
50 for each of the iris species.

The test accuracy of the KR and the NN imputation meth-
ods can be assessed and compared under both MAR and
MCAR designs. The MCAR design can be simply defined
using a constant propensity score p(x) as shown in Table 6.
A typical MAR design on the attribute Y is defined and sim-
ulated with a propensity score, for example,

p(x) =
{

0.7, x2 < 3.0,

0.1, x2 ≥ 3.0.
(4.2)

The feature x2, the Sepal width, was chosen as the covari-
ate because its values spread across the three species more
evenly than the other three features. The simulation was
repeated 500 times in accordance with the data size 150,
and the average observed sample size is 49. For each sim-
ulated sample, missing attributes were imputed using the
KR estimator μKR and the NN estimator μNN , respectively,
and checked against the true attributes. The uniform den-
sity function was used as the kernel for ease of computa-
tion. By using the feature x2, the bandwidth h = 0.9 and
K = 1 yield the least average number of test errors for the

estimators μKR and μNN , respectively. The average mis-
classified counts are reported in Table 6, where results ob-
tained from other propensity scores are also listed under
both MAR and MCAR designs. The table values indicate
that the NN method yields better classification accuracy of
the iris flower species than the KR method does. Under the
MAR and MCAR designs, the ranges of average misclassi-
fied errors can be wider than those obtained from the analy-
sis using a support vector machine with supervised learning,
see for example, Gunn (1998).

Meanwhile, in the same simulation study, all the im-
putation estimators were used to estimate the same total
count of 50 for each of the iris species, ignoring the data
size of 150. The average bias, variance and MSE out of
500 replications are reported in Table 7. The NN estima-
tor μNN using K = 1, the 1-NN estimator, yields the best
performance among all. Imputation estimators μKR , μDR ,
and μDR1 yield comparable results using bandwidths in the
range [1.0,1.5], which are better with smaller bandwidths
close to 1.0. The HT estimators μHT and μHT R yield poor
results using the bandwidth 1.5, in particular, the biases of
the estimator μHT may not sum to zero, but μHT R recti-
fies the drawback using a proper range of bandwidth. It is
worth noting that the 1-NN and the NN-modified DR esti-
mator μDR1 (using the first nearest neighbor) can estimate
the total count of iris setosa without error. This happens even
though the scatter plots (in the MLR) show that iris setosa
is linearly separable from the other species either by X3, the
Petal length, or by X4, the Petal width; but not by X2, the
Sepal width, which is used to define the MAR design of this
comparison study.

In summary, it is shown that under the MAR design the
1-NN imputation estimator presents the best performance of
both species classification and proportion estimation for the
iris data.

5 Discussion

Nearest neighbor estimation has been widely used in study-
ing classification and discrimination with multivariate data
where the source of information is often presented as a mix-
ture distribution. This study examines the performance of
the NN imputation method in estimating a population mean
of incomplete responses and also in classifying the incom-
plete responses which are missing at random depending on
the covariate.

For estimating a population mean, Theorem 1 and sim-
ulation case 1 clarify the computational difference between
the NN imputation and the KR imputation in terms of dis-
tinct asymptotic normality properties which hold under ideal
regularity conditions on the regression function and the
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Table 7 Average bias, variance and MSE in estimating the same total count of the iris species

K/h Bias Variance MSE

setosa virginica versicolor setosa virginica versicolor setosa virginica versicolor

μNN 1 0.000 −0.306 0.306 0.000 3.515 3.515 0.000 3.602 3.602

2 −0.001 −0.143 0.144 0.001 4.400 4.400 0.001 4.412 4.412

4 −1.285 0.934 0.351 20.547 25.108 4.977 22.156 25.929 5.091

8 −11.322 10.557 0.764 96.856 109.054 8.279 224.844 220.292 8.847

μKR 0.5 −1.679 8.253 −6.574 43.329 25.391 22.177 46.061 93.452 65.349

1.0 0.072 −0.003 −0.069 1.822 8.260 8.501 1.824 8.244 8.488

1.5 −0.032 1.452 −1.420 0.050 13.550 13.448 0.051 15.631 15.438

1.8 −0.477 3.727 −3.250 0.161 16.297 15.971 0.388 30.158 26.503

2.0 −2.194 6.321 −4.127 2.372 19.897 16.940 7.180 59.812 33.941

μHT 0.5 −7.837 −5.032 −14.886 124.265 15.764 28.739 185.431 41.049 250.290

1.0 1.128 −2.704 −3.666 52.068 6.463 21.243 53.235 13.764 34.643

1.5 1.175 −0.330 −1.651 30.708 9.193 14.865 32.027 9.283 17.560

1.8 0.234 1.794 −2.708 16.748 11.079 18.925 16.769 14.275 26.219

2.0 −2.051 3.298 −3.874 8.061 12.270 18.709 12.253 23.120 33.678

μHT R 0.5 0.999 5.711 −6.711 93.006 47.977 39.562 93.818 80.500 84.515

1.0 2.782 −0.831 −1.951 26.149 14.113 17.489 33.838 14.776 21.260

1.5 1.341 0.012 −1.353 12.094 12.890 15.051 13.868 12.864 16.852

1.8 0.415 2.080 −2.495 6.648 13.568 16.691 6.807 17.866 22.882

2.0 −1.216 4.284 −3.068 5.076 14.844 16.608 6.545 33.169 25.989

μDR 0.5 −1.703 8.173 −6.471 43.884 25.453 22.494 46.695 92.207 64.322

1.0 0.072 −1.167 1.095 1.822 6.484 6.714 1.824 7.835 7.901

1.5 −0.032 −1.762 1.793 0.050 10.919 10.845 0.051 14.000 14.040

1.8 −0.162 0.274 −0.112 0.437 13.939 13.173 0.462 13.986 13.159

2.0 −0.427 1.827 −1.400 1.851 16.619 14.307 2.030 19.924 16.238

μDR1 0.5 0.000 0.631 −0.631 0.000 4.085 4.085 0.000 4.474 4.474

1.0 0.000 −1.874 1.874 0.000 5.469 5.469 0.000 8.970 8.970

1.5 0.000 −1.780 1.780 0.000 10.860 10.860 0.000 14.008 14.008

1.8 −0.160 0.272 −0.113 0.431 13.922 13.184 0.456 13.969 13.170

2.0 −0.427 1.827 −1.400 1.851 16.619 14.307 2.030 19.924 16.238

Table values are based on 500 replications. Numbers of nearest neighbors are denoted by K , and h is the kernel bandwidth

propensity score. All imputation estimators except the ba-
sic HT estimator are insensitive to discontinuity in the miss-
ing pattern as shown by the case 2 simulation study. If the
propensity score is unbalanced with respect to the covariate
distribution as defined in the case 3 simulation study, then
only the NN estimator and the NN-modified DR estimator
can yield satisfactory performance. The same advantage of
these two imputation estimators is also evidenced in the em-
pirical study of the small orthodontic growth data.

It is worth noting that classification methods using su-
pervised learning are often evaluated when the unknown at-
tributes of the test samples may not be MCAR or MAR,
but MNAR. In this study, the KR and the NN imputation

methods are applied to classify the iris flower species when
the test samples are defined under both MAR and MCAR
designs. This confirms once again that the NN imputation
method yields the best classification accuracy of the iris
flower species. In conclusion, a future study of both KR and
NN imputation methods when the data are MNAR will be
worthwhile.
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Appendix: Proof of Theorem 1

The parameter to be estimated is μ = E(Y) and the K-NN
estimator μNN is defined by (1.5). The difference between
the regression-type estimator μNN and μ can be expressed
as

μNN − μ =
n∑

i=1

{δiYi + (1 − δi)mK(Xi)}/n − μ

= R + S + T , (A.1)

where R = ∑n
i=1{m(Xi)−μ}/n, S = ∑n

i=1 δi{Yi −m(Xi)}
/n. By first-order differentiability of the regression function
m(x) and the propensity function p(x), a similar analysis to
that for kernel regression estimation (Cheng 1994) yield that

T =
n∑

i=1

(1 − δi){mK(Xi) − m(Xi)}/n = T ′ + o(1/
√

n)

asymptotically in probability, with

T ′ = 1

n

n∑

i=1

(1 − δi)

[
1

K

k∑

j=1

{δi(j)Yi(j) − m(Xi(j))}
]
. (A.2)

It is straightforward to see that E(R) = E(S) =
E(T ′) = 0,

nVar(R) = Var(m(X)), (A.3)

and

nVar(S) = E[p(X)σ 2(X)]. (A.4)

To compute the approximate formula of Var(T ), or Var(T ′),
it is more clear by writing the square as a product before
taking the expectation:

(T ′)2 = 1

n2

n∑

i

n∑

j

(1 − δi)(1 − δj )

×
[

1

K

K∑

k=1

{δi(k)Yi(k) − m(Xi(k))}
]

×
[

1

K

K∑

k′=1

{δj (k′)Yj (k′) − m(Xj(k′))}
]

. (A.5)

In (A.5), consider for each i, δi = 0, i = 1,2, . . . , n, the
expectation of the conditional distribution of the prod-
uct {δi(k)Yi(k) − m(Xi(k))}{δj (k′)Yj (k′) − m(Xj(k′))} having
δj = 0, given that Xi(k) = Xj(k′) and δi(k) = δj (k′) = 1. This
includes the identical terms having j = i and those having
j 	= i, which yield all the non-zero terms of conditional vari-
ance that are contained in the product (A.5). By smoothness

of the conditional variance function σ 2(x) and the propen-
sity function p(x), it can be derived from (A.5) that

nVar(T ′) 
 1

K
E[{1 − p(X)}σ 2(X)]

+ E

[ {1 − p(X)}2σ 2(X)

p(X)

]
. (A.6)

Formula (A.6) corrects a previous error in the same asymp-
totic variance parameter given in Cheng (1994, Remark 2.5).
By a similar analysis to (A.6), it is straightforward to com-
pute that

2nCov(S,T ) 
 2E[{1 − p(X)}σ 2(X)]. (A.7)

Taking the sum (A.3) + (A.4) + (A.6) + (A.7), the desired
asymptotic variance is approximately

nVar(μNN) 
 Var(Y ) +
(

1 + 1

K

)
E[{1 − p(X)}σ 2(X)]

+ E

[ {1 − p(X)}2σ 2(X)

p(X)

]
. (A.8)

This verifies formula (2.2), hence (2.1), and concludes Theo-
rem 1. It follows that the asymptotic variance of kernel mean
imputation (2.3) can be reached by letting K → ∞ in for-
mula (A.8). That is, under the same regularity conditions of
smoothness on the propensity and regression functions, the
limiting asymptotic variance of μNN is equal to

σ 2(μKR) = Var(Y ) + E

[ {1 − p(X)}σ 2(X)

p(X)

]
. (A.9)
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