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Clustering – defined as an unsupervised data-analysis
classification transforming real-space information into
data in pattern space and analyzing it – may require
that data be represented by a set, rather than points,
due to data uncertainty, e.g., measurement error mar-
gin, data regarded as one point, or missing values.
These data uncertainties have been represented as in-
terval ranges for which many clustering algorithms
are constructed, but the lack of guidelines in selecting
available distances in individual cases has made selec-
tion difficult and raised the need for ways to calculate
dissimilarity between uncertain data without intro-
ducing a nearest-neighbor or other distance. The tol-
erance concept we propose represents uncertain data
as a point with a tolerance vector, not as an inter-
val, while this is convenient for handling uncertain
data, tolerance-vector constraints make mathemati-
cal development difficult. We attempt to remove the
tolerance-vector constraints using quadratic penalty-
vector regularization similar to the tolerance vector.
We also propose clustering algorithms for uncertain
data considering optimization and obtaining an opti-
mal solution to handle uncertainty appropriately.

Keywords: clustering, fuzzy c-means, uncertain data, op-
timization, penalty vector

1. Introduction

The data from numerous natural and social phenom-
ena accumulated into humongous computer databases is
clearly too massive and complex to analyze manually. In
roughly supervised and unsupervised data-analysis clas-
sification, data clustering is the most widely used unsu-
pervised classification, dividing sets of objects into cate-
gories called clusters. Clustering is classified into hierar-
chical and non-hierarchical methods.

Hard c-Means clustering [1] (HCM), the most widely
used non-hierarchical approach, classifies a set of ob-
jects simply into c clusters using deterministic assign-
ments, e.g., an object x is assigned exclusively to one
cluster. There are many HCM extensions including Fuzzy
c-Means clustering [2] (FCM), which extends HCM us-
ing fuzzy sets, although not requiring the detailed fuzzy
set theory.

Data in real space generally transformed into a point
in pattern space and analyzed in clustering often must be
represented by a set instead of a point due to data uncer-
tainty. Take the following three examples:

• Errors introduced when the object is mapped
from real space to pattern space

In this general case, rounding error is introduced
when data is mapped from real space to pattern
space.

• Uncertainty introduced in real space

In measuring the scale of an astronomical object, the
scale estimated has many errors due to the uncer-
tainty such as measurement-gauge fluctuation or a
lack of knowledge about the object.

• Original uncertainty with data

In mapping an object from real space to three-
dimensional (3D) RGB color space, the object rep-
resented as one point in pattern space may actually
have colors making it more logical to represent it as
an interval, not a single point, in pattern space.

These data uncertainties have been represented as inter-
val ranges for which numerous clustering algorithms have
been constructed [3–5] using distances between intervals,
e.g., nearest neighbor, furthest neighbor, or Hausdorff dis-
tance, to calculate dissimilarity in target data. A lack of
guidelines for selecting the distance between intervals has
complicated selection.
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The tolerance concept we introduce here includes
data uncertainties for which we propose clustering algo-
rithms [6, 7]. The basic tolerance concept assumes that
data x ∈ ℜp with uncertainty is represented as interval
[κ,κ] = [(κ1, . . . ,κ p)T ,(κ1, . . . ,κ p)T ] ⊂ ℜp. This is rep-
resented in one of two ways as [x + κ,x + κ] and as
x + (κ + κ)/2 + ε (ε = (ε1, . . . ,εp)T ) under constraints
|ε j| ≤ (κ j −κ j)/2 ( j = 1, . . . , p). This second way corre-
sponds to the basic tolerance concept, and ε is called the
tolerance vector. Although convenient in handling uncer-
tain data, tolerance vector constraints make mathematical
development difficult.

To remove constraint, we use quadratic regularization
in which the tolerance vector is called a penalty vector
because the penalty vector role differs from tolerance vec-
tors in its absence of constraint. After considering op-
timization problems applying a quadratic regularization
term of penalty vectors instead of norms of tolerance
constraints, we construct clustering algorithms based on
standard Fuzzy c-Means (sFCM) and entropy-regularized
Fuzzy c-Means (eFCM) on a Euclidean (L2) norm for data
with tolerance while solving the optimization problems.

2. Penalty Vector Concept

As stated regarding point vs. set representation, we
have handled the uncertainty range as tolerance and de-
fine the tolerance vector within tolerance [6, 7].

To define terms, X = {x1, . . . ,xn} is a subset
on p-dimensional vector space ℜp written xk =
(xk1, . . . ,xkp)T ∈ ℜp. Dataset X is classified into clusters
Ci (i = 1, . . . ,c). Let vi = (vi1, . . . ,vip)T ∈ ℜp and vi ∈V .
vi is cluster center Ci. uki ∈ [0,1] is a membership grade of
xk belonging to Ci. A partition matrix is U = [uki]. εk ∈ E
is tolerance vector under constraint:

|εk j| ≤ κk j, (κk j ≥ 0) . . . . . . . . . (1)

κk j is the maximum tolerance range, meaning the width of
data uncertainty. Uncertain data is represented as xk + εk
with constraint Eq. (1). The basic tolerance concept al-
though well known, is new in that it is introduced into ob-
jective functions to construct clustering algorithms. We
have handled data uncertainty as tolerance and proposed
new clustering algorithms elsewhere [6, 7], but those al-
gorithms could not handle uncertain data with an un-
known range, and uncertainty is not given in many cases.
Algorithms may also fail to consider data distribution,
so we introduce the penalty vector, which is denoted as
δk = (δk1, . . . ,δkp)T ∈ ℜp and a set of penalty vectors as
∆ = {δ1, . . . ,δn}. In conventional tolerance work, uncer-
tain data is represented as xk + εk with constraint Eq. (1).
Here we represent data as xk +δk with no constraint – the
most difficult point from tolerance. Fig. 1 is an example
of the penalty vector in ℜ2.

xk +δk

xk

xk1 +δk1

xk2 +δk2

Fig. 1. An example of penalty vector in ℜ2.

3. Objective Functions and Optimal Solutions

In discussing a basic theory to construct new fuzzy
c-means clustering algorithms for uncertain data using
quadratic regularization, we define two objective func-
tions and derive optimal solutions minimizing the func-
tions using a Lagrange multiplier.

3.1. sFCM for Uncertain Data Using Quadratic
Regularization

The objective function and constraints of sFCM are as
follows:

J(U,V ) =
n

∑
k=1

c

∑
i=1

(uki)m‖xk − vi‖2, . . . . . (2)

c

∑
i=1

uki = 1. . . . . . . . . . . . . . . (3)

We introduce the following quadratic regularization
term:

n

∑
k=1

δk
TWkδk =

p

∑
j=1

p

∑
l=1

wkl jδklδk j. . . . . . . (4)

where

Wk =




wk11 · · · wk1p
...

. . .
...

wk p1 · · · wk pp




is a penalty matrix and wk j(wk j ≥ 0) is a penalty coef-
ficient. Wk is assumed to be a symmetrical matrix, i.e.,
wk j = wjk. When Wk is diagonal, the quadratic regular-
ization term is as follows:

n

∑
k=1

δk
TWkδk =

n

∑
k=1

p

∑
j=1

wk j j
(
δk j
)2

.

We add term Eq. (4) to the objective function of sFCM
Eq. (2) to obtain the following objective function:

Js(U,V,∆) =
n

∑
k=1

c

∑
i=1

(uki)m‖xk +δk − vi‖2

+
n

∑
k=1

δk
TWkδk. . . . . . . . . (5)
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The nearer it approaches (xk + δk) by vi, the smaller the
first term of Eq. (5) becomes. The penalty term of Eq. (5),
however, grows proportionally to squared δk j, so the big-
ger the wk j, the smaller the optimal solution δk j, which
minimizes Eq. (5). The smaller the wk j, the larger the
optimal solution δk j, which minimizes Eq. (5). Wk thus
means the uncertainty of data xk.

Our goal here is to derive optimal solutions U , V , and
∆, which minimize objective function Eq. (5) under the
following constraint:

c

∑
i=1

uki = 1. . . . . . . . . . . . . . . (6)

We first derive optimal solutions of U , introducing the
following Lagrange function:

Ls = Js(U,V,∆)+
n

∑
k=1

γk(
c

∑
i=1

uki −1).

From

∂Ls

∂uki
= m(uki)m−1‖xk +δk − vi‖2 + γk = 0, . . (7)

we have

uki =
( −γk

m‖xk +δk − vi‖2

) 1
m−1

.

From constraint Eq. (6), we have

c

∑
l=1

( −γk

m‖xk +δk − vl‖2

) 1
m−1

= 1. . . . . . . (8)

From Eqs. (7) and (8), we have

uki =
ski

∑c
l=1 skl

,

where

ski = ‖xk +δk − vi‖− 2
m−1 .

We next consider how to derive optimal solutions of V .
From

∂Ls

∂vi j
= −

n

∑
k=1

2(uki)m(xk j +δk j − vi j) = 0,

we have

vi j =
∑n

k=1(uki)m(xk j +δk j)
∑n

k=1(uki)m .

We last consider how to derive ∆. From

∂Ls

∂δk j
=

∂
∂δk j

(
n

∑
k=1

n

∑
i=1

p

∑
j=1

(uki)m(xk j +δk j − vi j)2

+
p

∑
l=1

p

∑
j=1

wkl jδklδk j

)

= 2
c

∑
i=1

(uki)m(xk j +δk j − vi j)+2
p

∑
l=1

wkl jδkl

= 0,

we have the following:(
c

∑
i=1

(uki)m

)
δk j +

p

∑
l=1

wkl jδkl

+
c

∑
i=1

(uki)m(xk j − vi j) = 0.

The above equation holds for any j (1 ≤ j ≤ p). Hence,
 ∑c

i=1(uki)m 0
. . .

0 ∑c
i=1(uki)m






δk1
...

δk p




+




wk11 · · · wk p1
...

. . .
...

wk1p · · · wk pp






δk1
...

δk p




+




∑c
i=1(uki)m(xk1 − vi1)

...
∑c

i=1(uki)m(xk p − vi p)


= 0. . . (9)

We use the following symbols:

Ak =


 ∑c

i=1(uki)m 0
. . .

0 ∑c
i=1(uki)m




+




wk11 · · · wk p1
...

. . .
...

wk1p · · · wk pp




=

(
c

∑
i=1

(uki)m

)
I +W T

k ,

Bk =




∑c
i=1(uki)m(xk1 − vi1)

...
∑c

i=1(uki)m(xk p − vi p)


 .

I is a unit matrix.
Using symbols Ak and Bk, Eq. (9) is rewritten as fol-

lows:

Akδk +Bk = 0.

We then get the following solution:

δk = −(Ak)−1Bk.

We require that Ak be regularized for optimal solutions ∆.

3.2. eFCM for Uncertain Data Using Quadratic
Regularization

The objective function and constraints of eFCM are as
follows:

J(U,V ) =
n

∑
k=1

c

∑
i=1

uki‖xk − vi‖2 +λ−1
n

∑
k=1

c

∑
i=1

uki loguki.

. . . . . . . . . . . . . . . (10)

The constraint is the same as sFCM Eq. (3).
We add the quadratic regularization term Eq. (4) to the
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objective function of eFCM Eq. (10) to obtain the follow-
ing objective function:

Je(U,V,E) =
n

∑
k=1

c

∑
i=1

uki‖xk +δk − vi‖2

+λ−1
n

∑
k=1

c

∑
i=1

uki loguki +
n

∑
k=1

δk
TWkδk, (11)

Our goal here is again to derive optimal solutions U ,
V , and ∆ which minimize objective function Eq. (11) un-
der constraints Eq. (6). As in Section 3.1, we introduce
the following Lagrange function to solve the optimization
problem:

Le = Je(U,V,E)+
n

∑
k=1

γk(
c

∑
i=1

uki −1).

After considering how to derive optimal solutions of U ,
from

∂Le

∂uki
= ‖xk +δk − vi‖2 +λ−1(loguki +1)+ γk = 0,

we have

uki =
ski

∑c
l=1 skl

,

where

ski = e−λ‖xk+δk−vi‖2
.

Optimal solutions of V are obtained as in Section 3.1:

vi j =
∑n

k=1 uki(xk j +δk j)
∑n

k=1 uki
.

To optimally solve ∆, we do again as done in Sec-
tion 3.1:

δk = −(A′
k)−1B′

k.

Here,

A′
k =




1 0
. . .

0 1


+




wk11 · · · wk p1
...

. . .
...

wk1p · · · wk pp




= I +W T
k ,

B′
k =




∑c
i=1 uki(xk1 − vi1)

...
∑c

i=1 uki(xk p − vi p)


 .

We again require that A′
k be regularized optimal solu-

tions ∆.

4. Proposed Algorithms

We propose new fuzzy c-means clustering algorithms
for uncertain data using quadratic regularization, i.e.,
standard fuzzy c-means clustering algorithms for un-
certain data with quadratic penalty-vector regularization
(sFCMQ) and entropy-regularized c-means clustering for
uncertain data with quadratic penalty-vector regulariza-

Algorithm 1 sFCMQ
sFCMQ1 Give the values of m and Wk, and set initial val-
ues of V and ∆.
sFCMQ2 Update U using the following optimal solution:

uki =
ski

∑c
l=1 skl

,

where

ski = ‖xk +δk − vi‖− 2
m−1 .

sFCMQ3 Update V using the following optimal solution:

vi j =
∑n

k=1(uki)m(xk j +δk j)
∑n

k=1(uki)m .

sFCMQ4 Update ∆ using the following optimal solution:

δk = −(Ak)−1Bk.

sFCMQ5 If (U,V,∆) is convergent, stop. Otherwise, re-
turn to sFCMQ2.

Algorithm 2 eFCMQ
eFCMQ1 Give the values of λ and Wk, and set initial val-
ues of V and ∆.
eFCMQ2 Update U using the following optimal solution:

uki =
ski

∑c
l=1 skl

,

where

ski = e−λ‖xk+δk−vi‖2
.

eFCMQ3 Update V using the following optimal solution:

vi j =
∑n

k=1 uki(xk j +δk j)
∑n

k=1 uki
.

eFCMQ4 Update ∆ using the following optimal solution:

δk = −(A′
k)−1B′

k.

eFCMQ5 If (U,V,∆) is convergent, stop. Otherwise, re-
turn to eFCMQ2.

tion (eFCMQ). Numerical examples are shown below.

4.1. sFCMQ
In proposing an sFCMQ algorithm using the above op-

timal solutions, we iteratively optimize the algorithm (Al-
gorithm 1).

4.2. eFCMQ
In proposing an eFCMQ algorithm using the above op-

timal solutions, we iteratively optimize the algorithm (Al-
gorithm 2).
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Table 1. The table shows the artificial dataset which consists
of two clusters and one point regarded as noise. Each cluster
includes five data.

(xk1,xk2) (xk1,xk2)
(10,10) (9,10)
(11,10) (10,9)
(10,11) (20,10)
(19,10) (21,10)
(20,9) (20,11)
(17,80)

5. Numerical Examples

In examples of classification using the above algo-
rithms, we use an artificial dataset and Polaris data.

In all algorithms, the convergence condition is

max
i, j

|vi j − v̄i j| < 10−6,

where v̄i j is the previous optimal solution.

5.1. Artificial Dataset
We use a simple artificial dataset in two-dimensional

(2D) Euclidean space. The dataset consists of two clusters
and one point regarded as noise. Each cluster includes five
data (Table 1).

We classify the dataset into two clusters using sFCM,
sFCMQ, eFCM and eFCMQ. We set v1 = (0,0) and v2 =
(3,0) on initial cluster centers and wk jl = 1.0δ jl . δ jl is
the Kronecker delta.
• and × is data in the first and second clusters. · is an

individual cluster center. The line from each data is the
penalty vector.

Figures 2 and 3 show the classification results for
sFCM and eFCM. Noise data interrupts appropriate clus-
tering results in both cases. Both sFCMQ and eFCMQ,
however, give appropriate results from pulling noise data
by penalty vectors (Figs. 4 and 5).

Both cluster centers are close to each cluster in
sFCMQ, while one cluster center is closer to a cluster but
the other is further in eFCMQ than in sFCMQ, so we con-
sider eFCMQ to be more sensitive to initial values than
sFCMQ.

5.2. Polaris Data
A classified dataset is the Polaris star chart and its

neighboring stars are Polaris data. We classify the dataset
into three clusters and set v1 = (0,0), v2 = (0.5,1.0)
and v3 = (1.0,0.0) on the initial cluster center. We set
penalty coefficient Wk of two patterns for each algorithm
– wk jl = 1.0δ jl and wk jl = 4.0δ jl as shown in Figs. 6
and 7.

The penalty vector becomes larger as data becomes
more distant from the cluster center in these examples.
The greater the value of wk j, the smaller the penalty vec-
tor norm, reducing data uncertainty.

 0

 20

 40
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 80

 100

 0  5  10  15  20  25  30

cluster1
cluster2
centers

Fig. 2. This figure
shows the classification re-
sult for the artificial dataset
by sFCM with m = 2.
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Fig. 3. This figure
shows the classification re-
sult for the artificial dataset
by eFCM with λ = 0.1.
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svector

Fig. 4. This figure shows
the classification result by
sFCMQ with m = 2 and
wk jl = 1.0δ jl . δ jl is the
Kronecker delta.
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 0  5  10  15  20  25  30

cluster1
cluster2
centers
svector

Fig. 5. This figure
shows the classification re-
sult for the artificial dataset
by eFCMQ with λ = 0.1
and wk jl = 1.0δ jl . δ jl is
the Kronecker delta.
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Fig. 6. This figure shows the classification result for Polaris
data by sFCMQ with wk jl = 1.0δ jl . δ jl is Kronecker delta.
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Fig. 7. This figure shows the classification result for Polaris
data by sFCMQ with wk jl = 4.0δ jl . δ jl is Kronecker delta.

6. Conclusion

The clustering algorithms we have proposed for un-
certain data use quadratic penalty-vector regularization.
Their effectiveness was verified in numerical examples.

We now plan to derive appropriate penalty coefficient
Wk corresponding to data distribution for individual algo-
rithms. We expect this to make proposed algorithms more
effective for handling uncertain data.
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