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Machine learning can extract desired knowledge from existing training examples and ease the develop-
ment bottleneck in building expert systems. Most learning approaches derive rules from complete data
sets. If some attribute values are unknown in a data set, it is called incomplete. Learning from incomplete
data sets is usually more difficult than learning from complete data sets. In the past, the rough-set theory
was widely used in dealing with data classification problems. Most conventional mining algorithms
based on the rough-set theory identify relationships among data using crisp attribute values. Data with
quantitative values, however, are commonly seen in real-world applications. In this paper, we thus deal
with the problem of learning from incomplete quantitative data sets based on rough sets. A learning algo-
rithm is proposed, which can simultaneously derive certain and possible fuzzy rules from incomplete
quantitative data sets and estimate the missing values in the learning process. Quantitative values are
first transformed into fuzzy sets of linguistic terms using membership functions. Unknown attribute val-
ues are then assumed to be any possible linguistic terms and are gradually refined according to the fuzzy
incomplete lower and upper approximations derived from the given quantitative training examples. The
examples and the approximations then interact on each other to derive certain and possible rules and to
estimate appropriate unknown values. The rules derived can then serve as knowledge concerning the
incomplete quantitative data set.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The rough-set theory was proposed by Pawlak in 1982 (Pawlak,
1982; Pawlak, 1996) and has been used in reasoning and knowl-
edge acquisition for expert systems (Grzymala-Busse, 1988;
Orlowska, 1994). It uses the concept of equivalence classes as its
basic principle. Several applications and extensions of the rough-
set theory have been proposed. Examples are Orlowska’s reasoning
with incomplete information (Orlowska, 1994), Germano and Alex-
andre’s knowledge-base reduction (Germano & Alexandre, 1996),
Lingras and Yao’s data mining (Lingras & Yao, 1998), Zhong
et al.’s rule discovery (Zhong, Dong, Ohsuga, & Lin, 1998). Because
of the success of the rough-set theory in knowledge acquisition,
many researchers in the database and machine-learning fields
are very interested in this new research topic since it offers oppor-
tunities to discover useful information in training examples.

In the past, most learning approaches derive rules from complete
data sets. If some attribute values are unknown in a data set, it is
called incomplete. Several methods were proposed to handle the
problem of incomplete data sets (Chmielewski, Grzymala-Busse,
ll rights reserved.

ng), m893331m@isu.edu.tw
).
Peterson, & Than, 1993; Hong & Tseng, 1997; Klir & Folger, 1992;
Slowinski & Stefanowski, 1989; Slowinski & Stefanowski, 1994).
For example, incomplete data sets may first be transformed into
complete data sets (such as by similarity measure) before learning
programs begin (Chmielewski et al., 1993), objects with unknown
values may be directly removed from data sets (Chmielewski
et al., 1993), or unknown objects may be processed in a particular
way (Kryszkiewicz, 1998; Liang & Xu, 2000).

Besides, training data in real-world applications sometimes con-
sist of quantitative values, so designing a sophisticated learning
algorithm able to deal with quantitative data sets presents a chal-
lenge to workers in this research field. Recently, fuzzy-set concepts
have often been used to represent quantitative data expressed in lin-
guistic terms and membership functions in intelligent systems be-
cause of its simplicity and similarity to human reasoning (Graham
& Jones, 1988; Hong & Chen, 1999; Hong, Wang, & Wang, 2000;
Hong, Kuo, & Chi, 1999). They have been applied to many fields such
as manufacturing, engineering, diagnosis, and economics (Zadeh,
1988; Ziarko, 1993; Zimmermann, 1991; Zimmermann, 1987).
Dubois and Prade combined rough sets and fuzzy sets together in
order to get a more accurate account of imperfect information
(Dubois & Prade, 1992). They built up a very good theoretic basis
for fuzzy rough sets. Also, Nakamura predefined similarity matrices
and used fuzzy rough sets to logic reasoning (Nakamura, 1992).
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In this paper, we thus deal with the problem of producing a set
of certain and possible fuzzy rules from incomplete quantitative
data. We combine the rough-set theory and the fuzzy-set concepts
to solve this problem. A new generalized fuzzy learning algorithm
based on the fuzzy incomplete equivalence classes is proposed to
simultaneously derive certain and possible fuzzy rules from
incomplete quantitative data sets and estimate the missing values
in the learning process. Quantitative values are first transformed
into fuzzy sets of linguistic terms using membership functions. Un-
known attribute values are then assumed to be any possible lin-
guistic terms and are gradually refined according to the fuzzy
incomplete lower and upper approximations derived from the gi-
ven quantitative training examples. The examples and the approx-
imations then interact on each other to derive certain and possible
fuzzy rules and to estimate appropriate unknown values. Rule
effectiveness for future data is also derived from these member-
ship values.

The remainder of this paper is organized as follows. The rough-
set theory is reviewed in Section 2. The related fuzzy-set concepts
are introduced in Section 3. Kryszkiewicz’s approach for managing
incomplete data sets is described in Section 4. The notation and
definitions used in this paper are described in Section 5. A novel
learning algorithm to simultaneously induce fuzzy rules and esti-
mate unknown values from incomplete quantitative data sets is
proposed in Section 6. An example to illustrate the proposed algo-
rithm is given in Section 7. Conclusion and future work are finally
given in Section 8.

2. Review of the rough-set theory

The rough-set theory, proposed by Pawlak in 1982 (Pawlak,
1982; Pawlak, 1996), can serve as a new mathematical tool for
dealing with data classification problems. It adopts the concept
of equivalence classes to partition training instances according to
some criteria. Two kinds of partitions are formed in the mining
process: lower approximations and upper approximations, from
which certain and possible rules can easily be derived.

Formally, let U be a set of training examples (objects), A be a set
of attributes describing the examples, C be a set of classes, and Vj

be a value domain of an attribute Aj. Also let v ðiÞj be the value of
attribute Aj for the ith object ObjðiÞ. When two objects ObjðiÞ and
ObjðkÞ have the same value of attribute Aj, (that is, v ðiÞj ¼ v ðkÞj ),
ObjðiÞ and ObjðkÞ are said to have an indiscernibility relation (or an
equivalence relation) on attribute Aj. Also, if ObjðiÞ and ObjðkÞ have
the same values for each attribute in subset B of A;ObjðiÞ and
ObjðkÞ are also said to have an indiscernibility (equivalence) relation
on attribute set B. These equivalence relations thus partition the
object set U into disjoint subsets, denoted by U=B, and the partition
including ObjðiÞ is denoted by BðObjðiÞÞ. The set of equivalence clas-
ses for subset B is referred to as B-elementary set.

Example 1. Table 1 shows a data set containing seven objects
denoted by U ¼ fObjð1Þ;Objð2Þ; . . . ;Objð7Þg, two attributes denoted
Table 1
The data set for Example 1.

Object Systolic Pressure (SP) Diastolic Pressure (DP) Blood Pressure (BP)

Objð1Þ L N L

Objð2Þ H N H

Objð3Þ N N N

Objð4Þ L L L

Objð5Þ H H H

Objð6Þ N H H

Objð7Þ N L N
by A = {Systolic Pressure (SP), Diastolic Pressure (DP)}, and a class set
Blood Pressure (BP). Assume the attributes and the class set have
three possible values: {Low (L), Normal (N), High (H)}.

Since Objð1Þ and Objð4Þ have the same attribute value (L) for
attribute SP, they share an indiscernibility relation and thus belong
to the same equivalence class for SP. The equivalence partitions
(elementary sets) for singleton attributes can be derived as
follows:

U=fSPg ¼ ffObjð2Þ;Objð5ÞgfObjð3Þ;Objð6Þ;Objð7ÞgfObjð1Þ;Objð4Þgg; and

U=fDPg ¼ ffObjð1Þ;Objð2Þ;Objð3ÞgfObjð4Þ;Objð7ÞgfObjð5Þ;Objð6Þgg:
Also; fSPgðObjð1ÞÞ ¼ fSPgðObjð4ÞÞ ¼ fObjð1Þ;Objð4Þg:

The rough-set approach analyzes data according to two basic
concepts, namely the lower and the upper approximations of a
set. Let X be an arbitrary subset of the universe U, and B be an arbi-
trary subset of attribute set A. The lower and the upper approxima-
tions for B on X, denoted B�ðXÞ and B�ðXÞ respectively, are defined
as follows:

B�ðXÞ ¼ fxjx 2 U; BðxÞ# Xg; and
B�ðXÞ ¼ fxjx 2 U and BðxÞ \ X – £g:

Elements in B�ðxÞ can be classified as members of set X with full
certainty using attribute set B, so B�ðxÞ is called the lower approx-
imation of X. Similarly, elements in B�ðxÞ can be classified as mem-
bers of the set X with only partial certainty using attribute set B, so
B�ðxÞ is called the upper approximation of X.

Example 2. Continuing from Example 1, assume X ¼ fObjð1Þ;Objð4Þg.
The lower and the upper approximations of attribute DP with
respect to X can be calculated as follows:

DP�ðXÞ ¼£; and

DP�ðXÞ ¼ ffObjð1Þ;Objð2Þ;Objð3ÞgfObjð4Þ;Objð7Þgg:

After the lower and the upper approximations have been found,
the rough-set theory can then be used to derive both certain and
uncertain information and induce certain and possible rules from
them (Grzymala-Busse, 1988).
3. Review of the related fuzzy-set concepts

The fuzzy-set theory was first proposed by Zadeh in 1965 (Za-
deh, 1988). It is primarily concerned with quantifying and reason-
ing using natural language in which words can have ambiguous
meanings. This can be thought of as an extension of traditional
crisp sets in which each element must either be in or not in a set.

Formally, the process by which individuals from a universal set
X are determined to be either members or non-members of a crisp
set can be defined by a characteristic or discrimination function (Za-
deh, 1988). For a given crisp set A, this function assigns a value
lAðxÞ to every x 2 X such that:

lAðxÞ ¼
1 if and only if x 2 A

0 if and only if x R A

�

This kind of functions can be generalized such that the values
assigned to the elements of the universal set fall within specified
ranges, referred to as the membership grades of these elements
in the set, with larger values denoting higher degrees of set mem-
bership. Such a function is called the membership function, lAðxÞ,
by which a fuzzy set A is usually defined. This function is repre-
sented by:

lA : X ! ½0;1�;
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where [0, 1] denotes the interval of real numbers from 0 to 1, inclu-
sive. The function can also be generalized to any real interval and is
not restricted to [0, 1].

A special notation is often used in the literature to represent
fuzzy sets. Assume that x1 to xn are the elements in fuzzy set A,
and l1 to ln are, respectively, their grades of membership in A. A
is then usually represented as follows:

A ¼ l1=x1 þ l2=x2 þ � � � þ ln=xn:

An a-cut of a fuzzy set A is a crisp set Aa that contains all ele-
ments in the universal set X with membership grades in A greater
than or equal to a specified value of a. This definition can be writ-
ten as:

Aa ¼ fx 2 XjlAðxÞP ag:

The scalar cardinality of a fuzzy set A defined on a finite univer-
sal set X is the summation of the membership grades of all the ele-
ments of X in A. Thus,

jAj ¼
X
x2X

lAðxÞ:

Among operations on fuzzy sets are the basic and commonly
used complementation, union and intersection, as proposed by Za-
deh. They are defined as follows.

(1) The complementation of a fuzzy set A is denoted by :A, and
the membership function of :A is given by:
Table 2
An inco

Obje

Objð1

Objð2

Objð3

Objð4

Objð5

Objð6

Objð7

Objð8

Objð9
l:AðxÞ ¼ 1� lAðxÞ; 8x 2 X:
(2) The intersection of two fuzzy sets A and B is denoted by
A \ B, and the membership function of A \ B is given by:
lA\BðxÞ ¼minflAðxÞ;lBðxÞg; 8x 2 X:
(3) The union of fuzzy sets A and B is denoted by A [ B, and the
membership function of A [ B is given by:
lA[BðxÞ ¼maxflAðxÞ;lBðxÞg; 8x 2 X:
The above fuzzy operations are used in the proposed learning
algorithm to find linguistic certain and possible rules.
4. Incomplete data sets

Data sets can be roughly classified into two classes: complete
and incomplete data sets. All the objects in a complete data set
have known attribute values. If at least one object in a data set
has a missing value, the data set is incomplete. Table 2 shows an
example of an incomplete data set.
mplete data set.

ct Systolic Pressure (SP) Diastolic Pressure (DP) Blood Pressure (BP)

Þ L N N
Þ H L H
Þ N H N
Þ L L L
Þ � H H
Þ N H H
Þ L � L
Þ L H N
Þ � N H
In Table 2, the symbol ‘�’ denotes an unknown attribute value.
Thus, the SP values of Objð5Þ and Objð9Þ are unknown. Similarly,
the DP value of Objð7Þ is unknown. The data set is thus incomplete.

Learning rules from incomplete data sets is usually more diffi-
cult than from complete data sets. Designing a sophisticated learn-
ing algorithm able to deal with incomplete data sets thus presents
a challenge in this research field. In the past, several methods were
proposed to handle the problem of incomplete data sets (Chmie-
lewski et al., 1993; Slowinski & Stefanowski, 1989; Slowinski &
Stefanowski, 1994). For example, incomplete data sets may be
transformed into complete data sets by similarity measures or by
removing objects with unknown values before learning programs
begin (Chmielewski et al., 1993). Incomplete data sets may also
be directly processed in a particular way to get the rules (Kryszkie-
wicz, 1998; Liang & Xu, 2000).

Kryszkiewicz proposed a rough-set approach to directly learn
rules from incomplete data sets without guessing unknown attri-
bute values (Kryszkiewicz, 1998). They defined a similarity relation
between objects for attribute subset A as follows:

SIMðAÞ ¼ fðx; yÞ 2 O� Oja 2 A; aðxÞ ¼ aðyÞ or aðxÞ ¼ � or aðyÞ ¼ �g;

where O is the object set. It means that two objects have a similarity
relation for attribute subset A if they have the same attribute values
of A except for unknown values. For each object x, the decisions
(classes) of the objects having a similarity relation with x are then
collected to form a generalized decision, which is thought of as a
new decision (class) in the learning process. The lower approxima-
tion and the upper approximation are then derived from the gener-
alized decisions (classes). Rules possibly with disjunctive
conclusions are then derived from the lower and the upper
approximations.

Liang and Xu modified Kryszkiewicz’s approach by introducing
the rough entropy to distinguish the power of the attribute subsets
that have the same partition for similarity relations. The attribute
subset with the minimum rough entropy is selected for partition
in incomplete information systems.

In this paper, we propose a new learning algorithm based on
rough sets to simultaneously derive certain and possible fuzzy
rules from incomplete quantitative data sets and estimate the
missing values.
5. Notation and definitions

The following notation is used in this paper.
U the universe of all objects
n the total number of objects in U
ObjðiÞ the ith object, 1 6 i 6 n
A the set of all attributes describing U
m the total number of attributes in A
B an arbitrary subset of A
Aj the jth attribute, 1 6 j 6 m
jAjj the number of possible attribute values for Aj

Rjk the kth fuzzy region of Aj;1 6 k 6 jAjj
Rk

B the kth fuzzy region combination of B

vðiÞj the value of Aj for ObjðiÞ

f ðiÞj the fuzzy set converted from vðiÞj

f ðiÞjk the membership value of vðiÞj in region Rjk

C the set of classes to be determined
jCj the total number of classes in C
xl the lth class, 1 6 l 6 jCj
� a missing attribute value
c a symbol attached to a certain object
u a symbol attached to an uncertain object
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BðObjðiÞÞ the fuzzy incomplete equivalence classes in which ObjðiÞ

exists
Bc

kðObjðiÞÞ the certain part of the kth fuzzy incomplete equivalence
class in BðObjðiÞÞ

B�ðXÞ the fuzzy incomplete lower approximation for B on X
B�ðXÞ the fuzzy incomplete upper approximation for B on X

When the same linguistic term Rjk of an attribute Aj exists in
two fuzzy objects ObjðiÞ and ObjðrÞ with membership values f ðiÞjk

and f ðrÞjk larger than zero, ObjðiÞ and ObjðrÞ are said to have a fuzzy
indiscernibility relation (or fuzzy equivalence relation) on attribute
Aj with a membership value equal to min f ðiÞjk \ f ðrÞjk

� �
. Also, if the

same linguistic terms of an attribute subset B exist in both ObjðiÞ

and ObjðrÞ with membership values larger than zero, ObjðiÞ and
ObjðrÞ are said to have a fuzzy indiscernibility relation (or a fuzzy
equivalence relation) on attribute subset B with a membership va-
lue equal to the minimum of all the membership values. These fuz-
zy equivalence relations thus partition the fuzzy object set U into
several fuzzy subsets that may overlap, and the result is denoted
by U=B. The set of fuzzy partitions, based on B and including
ObjðiÞ, is denoted BðObjðiÞÞ. Thus, BðObjðiÞÞ ¼ fððB1ðObjðiÞÞ;
lB1
ðObjðiÞÞÞ; . . . ; ððBrðObjðiÞÞ;lBr

ðObjðiÞÞÞg, where r is the number of
partitions included in BðObjðiÞÞ; BjðObjðiÞÞ is the jth partition in
BðObjðiÞÞ, and lBj

ðObjðiÞÞ is the membership value of the jth partition.
Since an incomplete quantitative data set contains unknown

attribute values, each object ObjðiÞ is thus represented as a tuple
ðObjðiÞ; symbolÞ, where the symbol may be certain ðcÞ or uncertain
ðuÞ. If an object ObjðiÞ has an uncertain value for attribute Aj, then
ðObjðiÞ;uÞ is put in each fuzzy equivalence class of attribute Aj.
The fuzzy sets formed in this way are called fuzzy incomplete
equivalence classes, which are not necessarily equivalence classes.
The above definition of fuzzy incomplete equivalence classes for
single attributes can easily be extended to attribute subsets. The
set of fuzzy incomplete equivalence classes for subset B is referred
to as B-elementary fuzzy set.

Example 3. Consider the following three incomplete fuzzy objects
shown in Table 3. Assume the linguistic terms in the objects are
transformed from quantitative values by membership functions.
Objð1Þ has a normal systolic pressure with a membership value of
0.1 and a high systolic pressure with a membership value of 0.75.
Objð1Þ has also a normal diastolic pressure with a membership
value of 0.4 and a high diastolic pressure with a membership value
of 0.8. Furthermore, Objð1Þ is classified as having a high blood
pressure. Objð2Þ and Objð3Þ are classified similarly, but Objð2Þ has a
missing value of attribute SP.

Assume the attribute SP has three possible linguistic terms
fL;H;Ng. Three fuzzy incomplete equivalence classes are then
formed. Each object with a symbol c or u is put into appropriate
incomplete equivalence classes. Take the fuzzy incomplete equiva-
lence class for the linguistic term (N) as an example. The linguistic
term (N) for attribute SP appears in Objð1Þ and Objð3Þ, they thus have
a fuzzy indiscernibility relation on the fuzzy term SP.N and thus
form a fuzzy equivalence class with a membership value of
min(0.1, 0.3). Also, since Objð2Þ has a missing value for attribute
SP, it is then put into each fuzzy incomplete equivalence class for
SP with symbol u. The fuzzy incomplete equivalence class from
Table 3
The three incomplete fuzzy objects.

Object Systolic Pressure (SP) Diastolic Pressure (DP) Blood Pressure (BP)

Objð1Þ 0.1/N + 0.75/H 0.4/N + 0.8/H H

Objð2Þ � 0.16/N + 0.6/H H

Objð3Þ 0.5/L + 0.3/N 0.4/N + 0.3/L L
SP = N is then formed as fðObjð1Þ; cÞðObjð3Þ; cÞðObjð2Þ;uÞ;0:1g. The
other fuzzy incomplete indiscernibility relations can be similarly
derived. U=fSPg has thus been found as follows:

U=fSPg ¼ ffðObjð1Þ; cÞðObjð3Þ; cÞðObjð2Þ; uÞ;0:1g;
fðObjð1Þ; cÞðObjð2Þ; uÞ;0:75g; fðObjð3Þ; cÞðObjð2Þ;uÞ; 0:5gg:

Similarly,

U=fDPg ¼ ffðObjð1Þ; cÞðObjð2; cÞðObjð3Þ; cÞ;0:16Þ;
fðObjð1Þ; cÞðObjð2Þ; cÞ;0:6g; fðObjð3Þ; cÞ;0:3gg:

It is easily observed that an object may exist in more than one
fuzzy incomplete equivalence class of an attribute. In the above
example, Objð1Þ exists in two fuzzy incomplete equivalence classes
for attribute SP. Also, SPðObjð1ÞÞ represents the fuzzy incomplete
equivalence classes in which Objð1Þ exists. Thus:

SPðObjð1ÞÞ ¼ ffðObjð1Þ; cÞðObjð3Þ; cÞðObjð2Þ; uÞ; 0:1g;
fðObjð1Þ; cÞðObjð2Þ; uÞ;0:75gg:

BkðObjðiÞÞ represents the kth fuzzy incomplete equivalence class
in BðObjðiÞÞ. Bc

kðObjðiÞÞ then represents the certain part of BkðObjðiÞÞ. In
the above example, SPc

1ðObjð1ÞÞ includes ðObjð1Þ; cÞ and ðObjð3Þ; cÞ.
The fuzzy incomplete lower and upper approximations for B on

X, denoted B�ðXÞ and B�ðXÞ respectively, are defined as follows:

B�ðXlÞ ¼ fðBkðObjðiÞÞ;lBk
ðObjðiÞÞÞj1 6 i 6 n; objðiÞ 2 Xl;

Bc
kðObjðiÞÞ# Xl;1 6 k 6 jBðObjðiÞÞjg;

B�ðXlÞ ¼ fðBkðObjðiÞÞ;lBk
ðObjðiÞÞÞj1 6 i 6 n; Bc

kðObjðiÞÞ \ Xl – £;

Bc
kðObjðiÞÞå Xl;1 6 k 6 jBðObjðiÞÞjg:

Here, the definition of the fuzzy incomplete upper approxima-
tion has the constraint Bc

kðObjðiÞÞå X to exclude the objects in the
fuzzy incomplete lower approximation for avoiding redundant
calculation.

Example 4. Continuing from Example 3, assume
X ¼ fObjð1Þ;Objð2Þg. Since only the certain part of the second fuzzy
incomplete equivalence class in U=fSPg is included in X, the fuzzy
incomplete lower approximation for attribute SP on X is thus:
SP�ðXÞ ¼ fððObjð1Þ; cÞðObjð2Þ;uÞ;0:75Þg:

The certain parts of the first and second incomplete equivalence
class in U=fSPg have non-empty intersections with X. Since the sec-
ond equivalence class has been included in the fuzzy incomplete
lower approximation, the fuzzy incomplete upper approximation
for attribute SP on X is thus:

SP�ðXÞ ¼ fððObjð1Þ; cÞðObjð3Þ; cÞðObjð2Þ; uÞ; 0:1Þg:

The fuzzy incomplete lower and upper approximations for attri-
bute DP on X can be similarly derived.

Elements in B�ðxÞ can be classified as members of set X with full
certainty using attribute set B. Also, the membership values of the
fuzzy incomplete lower approximations may be considered effec-
tiveness measures for future data. A low membership value with
a fuzzy incomplete lower approximation means the lower approx-
imation will have a low tolerance (or effectiveness) on future data.
In this case, the fuzzy partitions from the fuzzy incomplete lower
approximation have a high probability to be removed when future
data are considered. All of the partitions are, however, valid for the
current data set and can be used to correctly classify its elements.

On the other hand, elements in B�ðxÞ can be classified as mem-
bers of set X with only partial certainty using attribute set B, and
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their certainty degrees can be calculated from the membership
values of elements in the upper approximations.

After the fuzzy lower and the fuzzy upper approximations have
been found, certain and uncertain information can be analyzed,
and fuzzy rules can then be derived.
6. The proposed algorithm for incomplete quantitative data sets

In the section, a learning algorithm based on rough sets is pro-
posed, which can simultaneously estimate the missing values and
derive fuzzy certain and possible rules from incomplete quantita-
tive data sets. The proposed fuzzy learning algorithm first trans-
forms each quantitative value into a fuzzy set of linguistic terms
using membership functions. As mentioned before, each object is
represented as a tuple ððObjðiÞÞ; symbolÞ, where the symbol may
be certain (c) or uncertain (u). If the object has a missing value of
an attribute, it is first put into each fuzzy incomplete equivalence
class from that attribute.

The algorithm then calculates fuzzy incomplete lower approxi-
mations and tries to estimate missing quantitative values from
them. If an uncertain object exists in only one fuzzy incomplete
equivalence class in a fuzzy incomplete lower approximation, its
unknown values can easily be estimated by the values representing
the equivalence class, and its symbol is changed into c to reflect the
estimation; otherwise, the value estimation is postponed until fuz-
zy incomplete lower approximations from more attributes can
determine it. If an unknown object still exists in more than one fuz-
zy incomplete equivalence class after all attributes are processed, it
is heuristically assigned. Note that any value heuristically assigned
will not actually affect the certain rules derived.

Next, the algorithm calculates fuzzy incomplete upper approx-
imations and tries to estimate the other quantitative missing val-
ues from them. Similarly, if an uncertain object exists in only one
fuzzy incomplete equivalence class in a fuzzy incomplete upper
approximation, its unknown values can easily be estimated by
the values representing the equivalence class, and its symbol is
changed into c to reflect the estimation; otherwise, the value esti-
mation is postponed until fuzzy incomplete upper approximations
from more attributes can determine it. If an unknown object still
exists in more than one fuzzy incomplete equivalence class after
all attributes are processed, it is heuristically assigned. The details
of the proposed fuzzy learning algorithm are described as follows.

The algorithm:
Input: An incomplete quantitative data set U with n objects,

each of which has m attribute values and belongs to one of a class
set C, and a set of membership functions.

Output: A set of certain and possible fuzzy rules.

Step 1: Partition the object set into disjoint subsets according to
class labels. Denote each set of objects belonging to the
same class Cl as Xl.

Step 2: Transform the quantitative value v ðiÞj of each object
ObjðiÞ; i ¼ 1 to n, for each attribute Aj; j ¼ 1 to m, into a

fuzzy set f ðiÞj , represented as
f ðiÞ
j1

Rj1
þ

f ðiÞ
j2

Rj2
þ � � � þ

f ðiÞ
jl
Rjl

� �
, using

the given membership functions, where Rjk is the kth
fuzzy region of attribute Aj; f ðiÞjk is v ðiÞj ’s fuzzy membership
value in region Rjk, and l ð¼ jAjjÞ is the number of fuzzy
regions for Aj. If ObjðiÞ has a missing value for Aj, keep it
with a missing value ð�Þ.

Step 3: Find the fuzzy incomplete elementary sets of singleton
attributes; That is, if an object ObjðiÞ has a certain fuzzy
membership value f ðiÞjk for attribute Aj, put ðObjðiÞ; cÞ into
the fuzzy incomplete equivalence class from Aj ¼ Rjk; If
ObjðiÞ has a missing value for Aj, put ðObjðiÞ;uÞ into each
fuzzy incomplete equivalence class from Aj; The mem-
bership value lAjk

of a fuzzy incomplete class for
Aj ¼ Rjk is calculated as:
lAjk
¼ Min

i
f ðiÞjk ;

where ObjðiÞ is certain and f ðiÞjk – 0.

Step 4: Initialize q ¼ 1, where q is used to count the number of

attributes currently being processed for fuzzy incom-
plete lower approximations.

Step 5: Compute the fuzzy incomplete lower approximations of
each subset B with q attributes for each class Xl as:
B�ðXlÞ ¼ fðBkðObjðiÞÞ;lBk
ðObjðiÞÞÞj1 6 i 6 n; objðiÞ 2 Xl;

Bc
kðObjðiÞÞ# Xl;1 6 k 6 jBðObjðiÞÞjg;

where BðObjðiÞÞ is the set of fuzzy incomplete equivalence
classes including ObjðiÞ and derived from attribute subset
B;Bc

kðObjðiÞÞis the certain part of the kth fuzzy incomplete
equivalence class in BðObjðiÞÞ.
Step 6: Do the following substeps for each uncertain instance
ObjðiÞ in the fuzzy incomplete lower approximations:
(a) If ObjðiÞ exists in only one fuzzy incomplete equiva-

lence class Bc
kðObjðiÞÞ of the kth region combination

Rk
B from attribute subset B in a fuzzy incomplete

lower approximation, assign the uncertain value of
ObjðiÞ as:

P

ObjðrÞ2Bc
kðObjðiÞÞv

ðrÞ
j � f ðrÞjkP

ObjðrÞ2Bc
kðObjðiÞÞf

ðrÞ
jk

;

where v ðrÞj is the quantitative value of ObjðrÞ for attri-
bute Aj and f ðrÞjk is v ðrÞj ’s fuzzy membership value in Rk

B.
Also transform the estimated ObjðiÞ value into a fuzzy
set, remove ðObjðiÞ;uÞ’s with membership values
equal to zero from the fuzzy incomplete equivalence
classes, change ðObjðiÞ;uÞ’s with membership values
not equal to zero into ðObjðiÞ; cÞ’s and re-calculate
the membership values of the fuzzy incomplete
equivalence classes including them by the minimum
operation. Besides, backtrack to the previously found
fuzzy incomplete lower approximations for doing the
same actions on ObjðiÞ.
(b) If ObjðiÞ exists in more than one fuzzy incomplete
equivalence class in an fuzzy incomplete lower
approximation from attribute subset B, postpone
the estimation of its uncertain value until more
attributes can determine them.
Step 7: Set q ¼ qþ 1 and repeat Steps 5–7 until q > m.
Step 8: If an object ObjðiÞ still exists in more than one fuzzy

incomplete equivalence class in a fuzzy incomplete
lower approximation, use the equivalence class with
the maximum scalar cardinality for certain objects to
estimate the uncertain values of ObjðiÞ. The estimation
and processing are the same as those stated in Step 6(a).

Step 9: Derive the certain fuzzy rules from the fuzzy incomplete
lower approximation of each subset B, and set the mem-
bership values of equivalence classes in the lower
approximation as effectiveness measures for future data.

Step 10: Remove certain fuzzy rules with condition parts more
specific and effectiveness measure equal to or smaller
than those of some other certain fuzzy rules.

Step 11: Reset q ¼ 1, where q is used to count the number of attri-
butes currently being processed for fuzzy incomplete
upper approximations.
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Step 12: Compute the fuzzy incomplete upper approximations of
each subset B with q attributes for each class Xl as:
B�ðXlÞ ¼ fðBkðObjðiÞÞ;lBk
ðObjðiÞÞÞj1 6 i 6 n;Bc

kðObjðiÞÞ \ Xl

– £; Bc
kðObjðiÞÞå Xl;1 6 k 6 jBðObjðiÞÞjg;

where BðObjðiÞÞ is the set of fuzzy incomplete equivalence
classes including ObjðiÞ and derived from attribute subset
B; Bc

kðObjðiÞÞ is the certain part of the kth fuzzy incomplete
equivalence class in BðObjðiÞÞ.
Step 13: Do the following substeps for each uncertain instance
ObjðiÞ in the fuzzy incomplete upper approximations:
(a) If ObjðiÞ exists in only one fuzzy incomplete equiva-

lence class Bc
kðObjðiÞÞ of the kth region combination

Rk
B from attribute subset B in a fuzzy incomplete

upper approximation, assign the uncertain value of
ObjðiÞ as:
P
ObjðrÞ2Bc

kðObjðiÞÞ
&ObjðrÞ2Xl

v ðrÞj � f ðrÞjk

P
ObjðrÞ2Bc

kðObjðiÞÞ
&ObjðrÞ2Xl

f ðrÞjk

;

where v ðrÞj is the quantitative value of ObjðrÞ for attri-
bute Aj and f ðrÞjk is v ðrÞj ’s fuzzy membership value in
Rk

B.Also transform the estimated ObjðiÞ value into a
fuzzy set, remove ðObjðiÞ; uÞ’s with membership val-
ues equal to zero from the fuzzy incomplete equiva-
lence classes, change ðObjðiÞ;uÞ’s with membership
values not equal to zero into ðObjðiÞ; cÞ’s and re-calcu-
late the membership values of the fuzzy incomplete
equivalence classes including them by the minimum
operation. Besides, backtrack to the previously found
fuzzy incomplete upper approximations for doing the
same actions on ObjðiÞ.
(b) If ObjðiÞ exists in more than one fuzzy incomplete
equivalence class in a fuzzy incomplete upper
approximation from attribute subset B, postpone
the estimation of its uncertain value until more
attributes can determine them.
Step 14: Set q ¼ qþ 1 and repeat Steps 12–14 until q > m.
Step 15: Calculate the plausibility measures of each fuzzy incom-

plete equivalence class in an upper approximation for
each class Xl as:
P Bc
kðObjðiÞÞ

� �
¼

P
ObjðrÞ2Bc

kðObjðiÞÞ
&ObjðrÞ2Xl

f ðrÞjk

P
ObjðrÞ2Bc

kðObjðiÞÞf
ðrÞ
jk

;

where f ðrÞjk is the fuzzy membership value of the quantita-
tive value of ObjðrÞ for attribute Aj in Rk

B.
Table 4
An incomplete quantitative data set as an example.

Object Systolic Pressure (SP) Diastolic Pressure (DP) Blood Pressure (BP)

Objð1Þ 80 80 N

Objð2Þ 155 70 H

Objð3Þ 130 92 N

Objð4Þ 87 68 L

Objð5Þ � 93 H

Objð6Þ 140 100 H

Objð7Þ 95 � L

Objð8Þ 95 93 N

Objð9Þ � 78 H
Step 16: If an object ObjðiÞ still exists in more than one fuzzy
incomplete equivalence class in a fuzzy incomplete
upper approximation, use the equivalence class with
the maximum plausibility measure to estimate the
uncertain value of ObjðiÞ. The estimation and processing
are the same as those stated in Step 13(a).

Step 17: Derive the possible fuzzy rules from the fuzzy incom-
plete upper approximation of each subset B, with the
plausibility measure recalculated due to the estimated
objects. Besides, set the membership values of equiva-
lence classes in the upper approximation as effectiveness
measures for future data.

Step 18: Remove possible fuzzy rules with condition parts more
specific and both the effectiveness measure and plausi-
bility equal to or smaller than those of some other possi-
ble fuzzy rules or certain fuzzy rules.

Step 19: Output the certain and possible fuzzy rules.

The fuzzy rules output after Step 19 can then sever as meta-
knowledge concerning the given incomplete quantitative data
set. Also, the missing values in the data set are derived at the same
time in the learning process.
7. An example

In this section, an example is given to show how the proposed
algorithm can be used to generate certain and possible fuzzy rules
from incomplete quantitative data. Table 4 shows an incomplete
quantitative data set, which is similar to that shown in Table 1 ex-
cept that the data attributes are represented as incomplete quanti-
tative values.

Assume the membership functions for each attribute are given
by experts as shown in Fig. 1.

The proposed learning algorithm processes this incomplete
quantitative data set as follows.
Step 1: Since three classes exist in the data set, three partitions

are formed as follows:
XL ¼ fObjð4Þ;Objð7Þg;
XN ¼ fObjð1Þ;Objð3Þ;Objð8Þg; and

XH ¼ fObjð2Þ;Objð5Þ;Objð6Þ;Objð9Þg:
Step 2: The quantitative values of each object are transformed
into fuzzy sets. Take the attribute Systolic Pressure ðSPÞ
in Objð2Þ as an example. The value ‘‘155” is converted into
a fuzzy set ð0:1=N þ 0:75=HÞ using the given membership
functions. Results for all the objects are shown in Table 5.
The missing values are not transformed.

Step 3: Since the attribute SP has three possible linguistic terms,
fL;H;Ng, three fuzzy incomplete equivalence classes are
formed. The fuzzy incomplete elementary set of attribute
SP is found as follows:
U=fSPg ¼ fððObjð2Þ; cÞðObjð5Þ;uÞðObjð9Þ;uÞ;0:75Þ;
ððObjð2Þ; cÞðObjð3Þ; cÞðObjð6Þ; cÞðObjð7Þ; cÞ
ðObjð8Þ; cÞðObjð5Þ;uÞðObjð9Þ;uÞ;0:1Þ; ððObjð1Þ; cÞ
ðObjð4Þ; cÞðObjð7Þ; cÞðObjð8Þ; cÞ
ðObjð5Þ; uÞðObjð9Þ; uÞ;0:5Þg:
Similarly, the fuzzy incomplete elementary set of attribute DP is
found as follows:



Systolic (SP)

90   100      140   160 

L N H 

70   75        90   95 

L N H 
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Fig. 1. The given membership functions of each attribute.

Table 5
The fuzzy s

Object

Objð1Þ

Objð2Þ

Objð3Þ

Objð4Þ

Objð5Þ

Objð6Þ

Objð7Þ

Objð8Þ

Objð9Þ
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U=fDPg ¼ fððObjð2Þ; cÞðObjð4Þ; cÞðObjð7Þ; uÞ;1Þ;
ððObjð3Þ; cÞðObjð5Þ; cÞðObjð6Þ; cÞ
ðObjð8Þ; cÞðObjð7Þ;uÞ;0:4Þ; ððObjð1Þ; cÞ
ðObjð3Þ; cÞðObjð5Þ; cÞðObjð8Þ; cÞ
ðObjð9Þ; cÞðObjð7Þ;uÞ;0:2Þg:
Step 4: q is initially set at 1, where q is used to count the number
of the attributes currently being processed for fuzzy
incomplete lower approximations.

Step 5: The fuzzy incomplete lower approximation of one attri-
bute for XHðfObjð2Þ;Objð5Þ;Objð6Þ;Objð9ÞgÞ is first calculated.
Since only the certain part ðObjð2Þ; cÞ of the first incom-
plete equivalence class for attribute SP is included in XH

and the uncertain instances Objð5Þ and Objð9Þ belong to
XH , thus:
SP�ðXHÞ ¼ ffðObjð2Þ; cÞðObjð5Þ;uÞðObjð9Þ;uÞ;0:75gg:

Since the certain part of each fuzzy incomplete equiva-
lence class for attribute DP is not included in XH , thus:

DP�ðXHÞ ¼£:

Similarly, the fuzzy incomplete lower approximations of
single attributes for XN and XL are found as follows:

SP�ðXNÞ ¼£;

DP�ðXNÞ ¼£;

SP�ðXLÞ ¼£; and
SP�ðXLÞ ¼£:
Step 6: Each uncertain object in the above fuzzy incomplete
lower approximations is checked for change to certain
objects. For example in SP�ðXHÞ, since Objð5Þ and Objð9Þ

exist in only one fuzzy incomplete equivalence class of
SP ¼ H, their values can then be estimated from the cer-
tain objects in the same equivalence class. Since only
one certain object Objð2Þ exists in the fuzzy incomplete
equivalence class of SP ¼ H, the estimated value of Objð5Þ
ets transformed from the data in Table 4.

Systolic Pressure (SP) Diastolic Pressure (DP) Blood Pressure (BP)

1/L 0.7/N N

0.1/N + 0.75/H 1/L H

0.75/N 0.3/N + 0.4/H N

1/L 1/L L

� 0.2/N + 0.6/H H

0.5/N 1/H H

0.5/L + 0.2/N � L

0.5/L + 0.2/N 0.2/N + 0.6/H N

� 0.5/N H
is then (155 � 0.75)/0.75 (=155), where 155 is the quanti-
tative value of Objð2Þ for attribute SP and 0.75 is its fuzzy
membership value for the region of SP ¼ H. Similarly,
the estimated value of Objð9Þ is 155.
The estimated values of Objð5Þ and Objð9Þ are then trans-
formed as the fuzzy set ð0:1=N þ 0:75=HÞ: ðObjð5Þ;uÞ and
ðObjð9Þ;uÞ are then changed as ðObjð5Þ; cÞ and ðObjð9Þ; cÞ.
The modified SP�ðXHÞ is then:
SP�ðXHÞ ¼ fððObjð2Þ; cÞðObjð5Þ; cÞðObjð9Þ; cÞ; 0:75Þg:

The membership value of each fuzzy incomplete equiva-
lence class including Objð5Þ and Objð9Þ is then re-calculated
by the minimum operation. The fuzzy incomplete elemen-
tary set of attribute SP is then modified as:

U=fSPg ¼ fððObjð2Þ; cÞðObjð5Þ; cÞðObjð9Þ; cÞ; 0:75Þ; ððObjð2Þ; cÞ
ðObjð3Þ; cÞðObjð6Þ; cÞðObjð7Þ; cÞðObjð8Þ; cÞ
ðObjð5Þ; cÞðObjð9Þ; cÞ;0:1Þ; ððObjð1Þ; cÞðObjð4Þ; cÞ
ðObjð7Þ; cÞðObjð8Þ; cÞ;0:5Þg:
The incomplete quantitative data set is then modified as shown in
Table 6.
Step 7: q ¼ qþ 1 ¼ 2, and Steps 5–7 are repeated. The fuzzy

incomplete elementary set of attributes {SP, DP} is found
as follows:
U=fSP;DPg ¼ fððObjð1Þ; cÞðObjð8Þ; cÞðObjð7Þ;uÞ;0:2Þ;
ððObjð3Þ; cÞðObjð5Þ; cÞðObjð8Þ; cÞðObjð9Þ; cÞðObjð7Þ;uÞ;0:1Þ;
ððObjð5Þ; cÞðObjð9Þ; cÞ;0:2Þ;
ððObjð3Þ; cÞðObjð5Þ; cÞðObjð6Þ; cÞðObjð8Þ; cÞðObjð7Þ;uÞ;0:1Þ;
ððObjð4Þ; cÞðObjð7Þ;uÞ;0:5Þ; ððObjð5Þ; cÞ;0:6Þ;
ððObjð8Þ; cÞðObjð7Þ;uÞ;0:5Þ;
ððObjð2Þ; cÞðObjð7Þ;uÞ;0:1Þ;
ððObjð2Þ; cÞ;0:75Þg:

The fuzzy incomplete lower approximations of {SP, DP} for
the three classes are found as:

SP;DP�ðXHÞ ¼ fððObjð2Þ; cÞ;0:75Þ; ððObjð2Þ; cÞ;0:1Þ; ððObjð5Þ; cÞ
ðObjð9Þ; cÞ;0:2Þ; ððObjð5Þ; cÞ;0:6Þg;

SP;DP�ðXNÞ ¼ fððObjð1Þ; cÞðObjð8Þ; cÞ;0:2Þ; ððObjð8Þ; cÞ;0:5Þg; and

SP;DP�ðXLÞ ¼ fððObjð4Þ; cÞðObjð7Þ;uÞ;0:5Þg:

Since the uncertain object Objð7Þ in SP;DP�ðXLÞ exists in
only the fuzzy incomplete equivalence class of SP ¼ L
and DP ¼ L, the estimated value of Objð7Þ is then (68 � 1)/
1 (=68), where 68 is the quantitative value of Objð4Þ for
attribute DP and 1 is its fuzzy membership value of
DP ¼ L. The estimated value of Objð7Þ is then transformed
as the fuzzy set ð1=LÞ for attribute DP. Also, ðObjð7Þ;uÞ is



Table 6
The modified incomplete quantitative data set.

Object Systolic Pressure (SP) Diastolic Pressure (DP) Blood Pressure (BP)

Objð1Þ 80 80 N

Objð2Þ 155 70 H

Objð3Þ 130 92 N

Objð4Þ 87 68 L

Objð5Þ 155 93 H

Objð6Þ 140 100 H

Objð7Þ 95 � L

Objð8Þ 95 93 N

Objð9Þ 155 78 H

Table 7
The modified incomplete quantitative data set.

Object Systolic Pressure (SP) Diastolic Pressure (DP) Blood Pressure(BP)

Objð1Þ 80 80 N

Objð2Þ 155 70 H

Objð3Þ 130 92 N

Objð4Þ 87 68 L

Objð5Þ 155 93 H

Objð6Þ 140 100 H

Objð7Þ 95 68 L

Objð8Þ 95 93 N

Objð9Þ 155 78 H
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then changed as ðObjð7Þ; cÞ. The modified SP;DP�ðXLÞ is
then:

SP;DP�ðXLÞ ¼ ffðObjð4Þ; cÞðObjð7Þ; cÞg;0:5g:

The membership value of each fuzzy incomplete equiva-
lence class including Objð7Þ is then re-calculated by the
minimum operation. The fuzzy incomplete elementary
set of attributes SP and DP is then modified as:

U=fSP;DPg ¼ fððObjð1Þ; cÞðObjð8Þ; cÞ;0:2Þ;
ððObjð2Þ; cÞðObjð7Þ; cÞ;0:1Þ;
ððObjð2Þ; cÞ;0:75Þ;
ððObjð3Þ; cÞðObjð5Þ; cÞðObjð8Þ; cÞðObjð9Þ; cÞ;0:1Þ;
ððObjð3Þ; cÞðObjð5Þ; cÞðObjð6Þ; cÞðObjð8Þ; cÞ;0:1Þ;
ððObjð4Þ; cÞðObjð7Þ; cÞÞ; 0:5g;
fðObjð5Þ; cÞðObjð9Þ; cÞ;0:2g;
ððObjð5Þ; cÞ;0:6Þ;
ððObjð8Þ; cÞ;0:5Þg:

The incomplete quantitative data set is then modified as
shown in Table 7.
All unknown values in the data set have been estimated
after this step. The fuzzy incomplete elementary set of
attributes DP is then backtracked and modified as:
U=fDPg ¼ fððObjð2Þ; cÞðObjð4Þ; cÞðObjð7Þ; cÞ;1Þ; ððObjð3Þ; cÞ
ðObjð5Þ; cÞðObjð6Þ; cÞðObjð8Þ; cÞ; 0:4Þ; ððObjð1Þ; cÞ
ðObjð3Þ; cÞðObjð5Þ; cÞðObjð8Þ; cÞðObjð9Þ; cÞ;0:2Þg:

Step 8: Since all objects in the fuzzy incomplete lower approxi-
mations have become certain, the next step is executed.

Step 9: The certain fuzzy rule derived from the fuzzy incomplete
lower approximation of SP is:
1. If Systolic Pressure = High Then Blood Pressure = High,

with future effectiveness = 0.75.
The certain fuzzy rules from the fuzzy incomplete
lower approximation of attributes {SP, DP} are:

2. If Systolic Pressure = High and Diastolic Pressure = Normal
Then Blood Pressure = High, with future effectiveness =
0.2.

3. If Systolic Pressure = High and Diastolic Pressure = High
Then Blood Pressure = High, with future effectiveness =
0.6.

4. If Systolic Pressure = High and Diastolic Pressure = Low
Then Blood Pressure = High, with future effectiveness =
0.75.

5. If Systolic Pressure = Normal and Diastolic Pressure = Low
Then Blood Pressure = High, with future effectiveness =
0.1.
6. If Systolic Pressure = Low and Diastolic Pressure = High
Then Blood Pressure = Normal, with future effectiveness =
0.5.

7. If Systolic Pressure = Low and Diastolic Pressure = Normal
Then Blood Pressure = Normal, with future effectiveness =
0.2.

8. If Systolic Pressure = Low and Diastolic Pressure = Low
Then Blood Pressure = Low, with future effectiveness =
0.5.
Step 10: Since the condition parts and the effectiveness measures
of the certain rules 2, 3 and 4 are more specific and smal-
ler than those of the first rule, the three certain rules are
removed from the certain rule set.

Step 11: q is reset to 1, where q is used to count the number of
attributes currently being processed for fuzzy incom-
plete upper approximations.

Step 12: The fuzzy incomplete upper approximations of single
attributes for the three classes are calculated from the
modified fuzzy incomplete elementary sets. Thus:
SP�ðXHÞ ¼ fððObjð2Þ; cÞðObjð3Þ; cÞðObjð5Þ; cÞðObjð6Þ; cÞ

ðObjð7Þ; cÞðObjð8Þ; cÞðObjð9Þ; cÞ;0:1Þg;

DP�ðXHÞ ¼ fððObjð3Þ; cÞðObjð5Þ; cÞðObjð6Þ; cÞðObjð8Þ; cÞ;0:4Þ;

ððObjð1Þ; cÞðObjð3Þ; cÞðObjð5Þ; cÞðObjð8Þ; cÞðObjð9Þ; cÞ;0:2Þ;

ððObjð2Þ; cÞðObjð4Þ; cÞðObjð7Þ; cÞ;1Þg;

SP�ðXNÞ ¼ fððObjð1Þ; cÞðObjð4Þ; cÞðObjð7Þ; cÞðObjð8Þ; cÞ;0:5Þ;

ððObjð2Þ; cÞðObjð3Þ; cÞðObjð5Þ; cÞðObjð6Þ; cÞðObjð7Þ; cÞ

ðObjð8Þ; cÞðObjð9Þ; cÞ;0:1Þg;

DP�ðXNÞ ¼ fððObjð1Þ; cÞðObjð3Þ; cÞðObjð5Þ; cÞðObjð8Þ; cÞðObjð9Þ; cÞ;0:2Þ;

ððObjð3Þ; cÞðObjð5Þ; cÞðObjð6Þ; cÞðObjð8Þ; cÞ;0:4Þg;

SP�ðXLÞ ¼ fððObjð1Þ; cÞðObjð4Þ; cÞðObjð7Þ; cÞðObjð8Þ; cÞ;0:5Þ;

ððObjð2Þ; cÞðObjð3Þ; cÞðObjð5Þ; cÞðObjð6Þ; cÞ

ðObjð7Þ; cÞðObjð8Þ; cÞðObjð9Þ; cÞ;0:1Þg; and

DP�ðXLÞ ¼ fððObjð2Þ; cÞðObjð4Þ; cÞðObjð7Þ; cÞ;1Þg:
Step 13: Since no uncertain objects exist in the above fuzzy
incomplete upper approximations, the next step is done.

Step 14: q ¼ qþ 1 ¼ 2, and Steps 12–14 are repeated. The modi-
fied fuzzy incomplete upper approximations of {SP, DP}
for the three classes are found as:
SP;DP�ðXHÞ ¼ fððObjð3Þ;cÞðObjð5Þ;cÞðObjð8Þ;cÞðObjð9Þ;cÞ;0:1Þ;
ððObjð3Þ;cÞðObjð5Þ;cÞðObjð6Þ;cÞðObjð8Þ;cÞ;0:1Þ;
ððObjð2Þ;cÞðObjð7Þ;cÞ;0:1Þg;
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SP;DP�ðXNÞ ¼ fððObjð3Þ;cÞðObjð5Þ;cÞðObjð8Þ;cÞðObjð9Þ;cÞ;0:1Þ;
ððObjð3Þ;cÞðObjð5Þ;cÞðObjð6Þ;cÞðObjð8Þ;cÞ;0:1Þg;
and

SP;DP�ðXLÞ ¼ fððObjð2Þ;cÞðObjð7Þ;cÞ;0:1Þg:
Step 15: The plausibility measures of the fuzzy incomplete equiv-
alence classes in the fuzzy incomplete upper approxima-
tions are calculated. For example, the plausibility
measure of the fuzzy incomplete equivalence class
fðObjð3Þ; cÞðObjð5Þ; cÞðObjð8Þ; cÞðObjð9Þ; cÞg for class XH is cal-
culated as:
pðSP;DPc
HðObjð3Þ or Objð5Þ or Objð8Þ or Objð9ÞÞÞ

¼ 0:1þ 0:1
0:3þ 0:1þ 0:2þ 0:1

¼ 0:29:
Step 16: Since all the objects in the fuzzy incomplete upper
approximations are certain, the next step is executed.

Step 17: The possible fuzzy rules derived from the fuzzy incom-
plete upper approximations of SP and DP are then
derived as follows:
1. If Systolic Pressure = Normal Then Blood Pressure =

High with plausibility = 0.41, with future effectiveness =
0.1.

2. If Diastolic Pressure = Normal Then Blood Pressure =
High with plausibility = 0.37, with future effectiveness =
0.2.

3. If Diastolic Pressure = Low Then Blood Pressure = High
with plausibility = 0.33, with future effectiveness = 1.

4. If Diastolic Pressure = High Then Blood Pressure = High
with plausibility = 0.62, with future effectiveness = 0.4.

5. If Systolic Pressure = Normal Then Blood Pressure =
Normal with plausibility = 0.49, with future effective-
ness = 0.1.

6. If Systolic Pressure = Low Then Blood Pressure = Normal
with plausibility = 0.5, with future effectiveness = 0.5.

7. If Diastolic Pressure = Normal Then Blood Pressure =
Normal with plausibility = 0.63, with future effective-
ness = 0.2.

8. If Diastolic Pressure = High Then Blood Pressure =
Normal with plausibility = 0.38, with future effective-
ness = 0.4.

9. If Systolic Pressure = Normal Then Blood Pressure = Low
with plausibility = 0.1, with future effectiveness = 0.1.

10. If Systolic Pressure = Low Then Blood Pressure = Low
with plausibility = 0.5, with future effectiveness = 0.5.

11. If Diastolic Pressure = Low Then Blood Pressure = Low
with plausibility = 0.67, with future effectiveness = 1.
The possible fuzzy rules derived from the upper
approximations of attributes {SP, DP} are:

12. If Systolic Pressure = Normal and Diastolic
Pressure = Normal Then Blood Pressure = High with
plausibility = 0.29, with future effectiveness = 0.1.

13. If Systolic Pressure = Normal and Diastolic Pressure =
Low Then Blood Pressure = High with plausibility =
0.33, with future effectiveness = 0.1.

14. If Systolic Pressure = Normal and Diastolic Pressure =
High Then Blood Pressure = High with plausibility = 0.5,
with future effectiveness = 0.1.

15. If Systolic Pressure = Normal and Diastolic Pressure =
Normal Then Blood Pressure = Normal with plausibil-
ity = 0.71, with future effectiveness = 0.1.

16. If Systolic Pressure = Normal and Diastolic Pressure =
Low Then Blood Pressure = Low with plausibility = 0.67,
with future effectiveness = 0.1.
17. If Systolic Pressure = Normal and Diastolic Pressure =
High Then Blood Pressure = Normal with plausibility =
0.5, with future effectiveness = 0.1.
Step 18: Since the condition parts, plausibility measures and
effectiveness measures of the possible fuzzy rules 12,
13, 14 and 16 are more specific and smaller than those
of the fuzzy rules 1, 2, 4 and 11, rules 12, 13, 14 and 16
are thus removed from the possible fuzzy rule set.

Step 19: All the certain fuzzy rules and possible fuzzy rules are
then output as knowledge about the given fuzzy incom-
plete quantitative data set.
8. Conclusions and future work

In this paper, we have proposed a new learning approach to de-
rive fuzzy rules from incomplete quantitative data sets based on
the rough-set theory. The proposed approach is different from oth-
ers in that it can derive fuzzy rules and estimate the missing quan-
titative values at the same time. The fuzzy incomplete lower and
upper approximations have been defined for managing uncertain
objects in fuzzy incomplete data sets. The interaction between data
and approximations helps derive certain and possible rules from
fuzzy incomplete data sets and estimate appropriate unknown val-
ues. An example has been given to illustrate the proposed algo-
rithm in details. The fuzzy rules derived in this way can then
serve as fuzzy knowledge concerning incomplete data sets.

In addition to unknown attribute values, incorrect attribute val-
ues are also commonly seen in real-world applications. Although
possible fuzzy rules can still be generated from an incorrect data
set, other approaches can be adopted to reduce the bad effects.
Ziarko proposed the variable precision rough set model (Ziarko,
1993) to allow for a controlled degree of misclassification. One as-
pect of our future research is thus to extend our method with Ziar-
ko’s model for managing unknown and incorrect data sets.

References

Chmielewski, M. R., Grzymala-Busse, J. W., Peterson, N. W., & Than, S. (1993). The
rule induction system LERS – A version for personal computers. Foundations of
Computing and Decision Sciences, 18, 181–212.

Dubois, D., & Prade, H. (1992). Putting rough sets and fuzzy sets together. Intelligent
Decision Support Handbook of Applications and Advances of the Rough Sets Theory,
203–232.

Germano, L. T., & Alexandre, P. (1996). Knowledge-base reduction based on rough
set techniques. The Canadian Conference on Electrical and Computer Engineering,
278–281.

Graham, I., & Jones, P. L. (1988). Expert systems – Knowledge, uncertainty and decision.
Boston: Chapman and Computing. pp. 117–158.

Grzymala-Busse, J. W. (1988). Knowledge acquisition under uncertainty: A rough
set approach. Journal of Intelligent Robotic Systems, 1, 3–16.

Hong, T. P., & Chen, J. B. (1999). Finding relevant attributes and membership
functions. Fuzzy Sets and Systems, 103(3), 389–404.

Hong, T. P., Kuo, C. S., & Chi, S. C. (1999). Mining association rules from quantitative
data. Intelligent Data Analysis, 3(5), 363–376.

Hong, T. P., & Tseng, S. S. (1997). A generalized version space learning algorithm for
noisy and uncertain data. IEEE Transactions on Knowledge and Data Engineering,
9(2), 336–340.

Hong, T. P., Wang, T. T., & Wang, S. L. (2000). Knowledge acquisition from
quantitative data using the rough-set theory. Intelligent Data Analysis, 4,
289–304.

Klir, G. J., & Folger, T. A. (1992). ‘‘Fuzzy sets”, uncertainty and information. New Jersey:
Prentice Hall. pp. 4–14.

Kryszkiewicz, M. (1998). Rough set approach to incomplete information systems.
Information Science, 112, 39–49.

Liang, J., & Xu, Z. (2000). Uncertainty measures of roughness of knowledge and
rough sets in incomplete information systems. In The third world congress on
intelligent control and automation (pp. 2526–2529).

Lingras, P. J., & Yao, Y. Y. (1998). Data mining using extensions of the rough set
model. Journal of the American Society for Information Science, 49(5), 415–422.

Nakamura, A. (1992). Applications of fuzzy-rough classifications to logics Intelligent
Decision Support. Handbook of Applications and Advances of the Rough Sets
Theory, 233–250.

Orlowska, E. (1994). Reasoning with incomplete information: Rough set based
information logics. Incompleteness and uncertainty in information systems. New
York: Springer-Verlag. pp. 16–33.



T.-P. Hong et al. / Expert Systems with Applications 37 (2010) 2644–2653 2653
Pawlak, Z. (1982). Rough set. International Journal of Computer and Information
Sciences, 341–356.

Pawlak, Z. (1996). Why rough sets? The Fifth IEEE International Conference on Fuzzy
Systems, 2, 738–743.

Slowinski, R., & Stefanowski, J. (1989). Rough classification in incomplete
information systems. Mathematical and Computer Modelling, 12, 1347–1357.

Slowinski, R., & Stefanowski, J. (1994). Handling various types of uncertainly in the
rough set approach. In W. Ziarko (Ed.), Rough sets fuzzy sets and knowledge
discovery (RSKD’93). Berlin: Springer.

Zadeh, L. A. (1988). Fuzzy logic. IEEE Computer, 83–93.
Zhong, N., Dong, J. Z., Ohsuga, S., & Lin, T. Y. (1998). An incremental probabilistic
rough set approach to rule discovery. The IEEE International Conference on Fuzzy
Systems, 2, 933–938.

Ziarko, W. (1993). Variable precision rough set model. Journal of Computer and
System Sciences, 46, 39–59.

Zimmermann, H. J. (1987). Fuzzy sets decision making and expert systems. Boston:
Kluwer Academic Publishers.

Zimmermann, H. J. (1991). Fuzzy set theory and its applications. Boston: Kluwer
Academic Publisher.


	Mining from incomplete quantitative data by fuzzy rough sets
	Introduction
	Review of the rough-set theory
	Review of the related fuzzy-set concepts
	Incomplete data sets
	Notation and definitions
	The proposed algorithm for incomplete quantitative data sets
	An example
	Conclusions and future work
	References


