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This paper proposes a new approach based on missing value pattern discovery for classifying

incomplete data. This approach is particularly designed for classification of datasets with a small

number of samples and a high percentage of missing values where available missing value treatment

approaches do not usually work well. Based on the pattern of the missing values, the proposed approach

finds subsets of samples for which most of the features are available and trains a classifier for each

subset. Then, it combines the outputs of the classifiers. Subset selection is translated into a clustering

problem, allowing derivation of a mathematical framework for it. A trade off is established between the

computational complexity (number of subsets) and the accuracy of the overall classifier. To deal with

this trade off, a numerical criterion is proposed for the prediction of the overall performance. The

proposed method is applied to seven datasets from the popular University of California, Irvine data

mining archive and an epilepsy dataset from Henry Ford Hospital, Detroit, Michigan (total of eight

datasets). Experimental results show that classification accuracy of the proposed method is superior to

those of the widely used multiple imputations method and four other methods. They also show that the

level of superiority depends on the pattern and percentage of missing values.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Missing value is a common problem in real-world data
processing and pattern recognition. Management of missing
values becomes critical when the number of available samples
is small [1]. Modifying an algorithm primarily designed to work
on complete datasets to work on incomplete datasets is a
challenge. In general, an appropriate strategy based on the
ultimate processing goal may be developed. However, in the case
of datasets with a small number of samples, not only the final goal
but also the percentage and the distribution of missing values
should be considered in algorithm development [2,3].

Traditional missing value management methods are based on
the preprocessing of the data independent of the final goal and the
associated processing scheme. In these methods, the missing
values are estimated or the deficient samples are removed [1].
Although in this approach the data processing algorithm does not
need to change, the data is not efficiently used, especially when a
large portion of the samples have missing features. Modern
missing value management methods are designed for specific
ll rights reserved.
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applications and associated processing schemes where missing
value management is integrated into the processing scheme [4].
These algorithms either apply multiple data processing stages,
e.g., multiple imputations or somehow avoid the unknown values
in the processing scheme, e.g., decision trees.

Although modern algorithms are shown to be successful in
different applications, their proposed solutions are not designed
to deal with a high percentage of missing features or a large
number of systematic missing values that are frequent scenarios
in some data categories such as medical datasets [1]. The main
challenge arises from insufficient statistical power after the
missing values are imputed. In this situation, the following
questions arise:
�
 How to measure the complexity of the missing values?

�
 How to work with the missing values when imputation of the

missing values is inappropriate?

�
 How to manage the missing values when the same features are

missing in the test and training samples?

This paper proposes a new approach, named selection–fusion,
based on the subspace classification method. In the proposed
approach, missing value management is integrated not only in the
training but also in the testing of the classifier. To this end, a set of
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classifiers are trained on the subspaces of the original feature
space and then clustered using a distance metric. The best
classifiers in each cluster, depending on the testing data, are
combined to construct the overall classifier and estimate the
final output.

The proposed approach is compared with the multiple
imputations method as the most similar incomplete data proces-
sing method. Our major contributions can be summarized as
follows:
�
 As part of the algorithm, we define a quantitative measure for
the complexity of the missing values. Based on this measure,
the usefulness of the algorithm for a particular dataset can be
evaluated.

�
 We consider missing values in both of the training and the

testing datasets without filling the missing values.

�
 We show that the proposed approach can be efficiently

implemented for the support vector machine classifiers.

The rest of the paper is organized as follows. In the next section,
we review the state-of-the-art for incomplete data processing.
Details of the proposed selection–fusion method and its applica-
tion to missing value management are described in Section 3. In
this section, we address the above three challenges using multi-
classifier fusion. We describe how each classifier is selected and
how the results are combined to boost up the performance. The
experimental results are presented in Section 4. We highlight the
application areas of the new method and also discuss its
limitations in Section 5 and conclude the paper in Section 6.
2. Related work

In a missing value problem, considerable portions of the data
fields may be incomplete. To describe the seriousness of the data
deficiency, the primary question in a typical missing value
problem is ‘‘the missing value pattern.’’ For example, in
Pneumonia data described in [6], on average 6.3% of the feature
values are missing while one individual feature is missing for 61%
of the cases. On the other hand, in C-Section problem [6], only
1.2% of the feature are missing, while 27.9% of the cases have at
least one missing feature. However, these figures do not provide
clear ideas about the complexity of these problems. In fact,
despite a smaller percentage of the missing values, the second
problem is more complicated than the first.

To describe the complexity of a missing value pattern, some
statistical models are used in the literature. Missing completely at

random (MCAR) and missed at random (MAR) are the models most
frequently used in the database literature. Although due to their
simplicity, they are not always realistic models for the real-world
problems, they provide relative measures of complexity. The
missing value for a random variable X is MCAR if the missing
probability is independent of the actual value of X or the values of
the other features. The missing value is called MAR if the missing
probability is independent of the value of X after controlling the
other variables. Missing values due to equipment malfunction is
an example of the MCAR well-described pattern. However, in
many real-world applications, MAR is a more realistic model than
MCAR [2].

Generally speaking, there are five classes of well-established
strategies to deal with the missing values: (1) discard the
incomplete samples (e.g., pairwise deletion [2]); (2) avoid the
missing features by dynamic decisions (e.g., decision trees such as

CART [7]); (3) recover unknown values from the similar samples
(e.g., Expectation Maximization (EM) [8]); (4) insert possible values
for the missing features, classify after each insertion and combine
the classification results (e.g., Multiple Imputations (MI) [9]); and
(5) design multiple classifiers on the subsets of the data and
combine the classification results (e.g., ensemble classifiers [17]).

Discarding the incomplete samples and filling the missing
values are very simple but undesirable methods for a dataset with
a small number of samples and a large percentage of missing
values. The former approach may discard significant amount of
information when the number of samples is limited and the latter
approach may add considerable distortion to the data when the
percentage of the missing values is high.

Recovering the missing values form the other samples, also
called single imputation, is the traditional approach for the
treatment of incomplete datasets with a small number of samples.
Many single imputation methods have been proposed over the
years. Decision tree imputation [7], nearest neighbor imputation
[10], and mean value substitution [11,12] are examples of
classical imputation methods. These methods are only valid
under specific assumptions such as MCAR assumption for the
mean value substitution approach or dense sampling for the
nearest neighbor imputation approach. Bayesian missing value
treatment is a modern approach that replaces the missing values
with the most probable values [8].

From the classification point of view, there is a common
problem in all traditional missing value treatment methods: they
provide a solution independent of the ultimate goal. Multiple
imputations (MI) method [1,9] is an alternative solution that uses
Monte Carlo simulation to generate more than one imputation of
the missing values. However, the MI usually implies several
assumptions on the data distribution such as joint normality [13]
and regression relationships [14]. Application of MI is particularly
favorable when the number of samples is relatively small (100
cases or less). Markov Chain Monte Carlo (MCMC) method is a
successful MI method for datasets with a small number of
samples [13–15].

Recently, ensemble classifiers technique has been shown to be
a valuable tool for missing value management. In this approach,
the results of multiple weak classifiers are combined to boost-up
the performance. Different groups have shown effectiveness of
this approach for general classification problems [16,17]. Re-
cently, it has also been applied to the missing value problem [18].
Despite its advantages, this approach suffers from two major
limitations in its application to the missing value problem: (1)
lack of mathematical framework for the selection of the weak
classifiers and (2) handling of the missing values in the testing
data. In this paper, we overcome both of these limitations.

From the performance point of view, the most effective
ensemble approach in the literature utilizes fusion. In this
approach, outputs of a s et of inaccurate classifiers are combined
to generate highly accurate classification results. A simple
implementation of this idea, also known as selection–fusion
(SF), trains each classifier on a random subset of data [19]. This
implementation is shown to be effective for small datasets and
improve the performance compared with traditional methods.
However, in the large datasets, since the number of possible
classifiers increases quickly, this implementation of fusion would
not work well. A systematic method to find an optimal set of
classifiers, as proposed in the paper, solves the problem using a
manageable number of classifiers. In addition, when there are
missing values in the data, as is the case in this paper, random
selection of the subsets is inapplicable.

In general, both of the testing and training datasets may have
missing values. When a feature is missing in the testing data,
filling the missing value is the most common approach [19,20].
The advantage of the filling method has been mostly discussed
under certain conditions like the MCAR model and a sufficient
sample size. Apparently, the performance degrades if these
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assumptions are invalid [21,22]. Dealing with the missing value in
the testing phase may be completely different from the training
phase. In the statistical methods, these two phases are not
necessarily separated. However, in the classification and machine
learning methods, they are separated.

In summary, the conventional missing value treatment algo-
rithms either estimate the unknown values or remove the
deficient samples. Estimation of the unknown values needs
particular assumptions about the data distribution. Obviously,
any unrealistic assumptions may bias the results. On the other
hand, removal of samples form the training pool reduces the
statistical power of the classification process. Therefore, both
approaches are suboptimal.
3. Proposed method

3.1. Classification of a dataset with missing values

We use the ensemble classifiers idea to overcome the
limitations discussed in the previous section. We use a pool of
classifiers each trained using a portion of the original data called a
subset. In other words, a subset is a collection of the samples that
have complete data for a specific subset of features. As such, each
subset is identified by a set of samples and a set of features. The
subsets are selected such that each subset has no missing values
and a collection of the subsets includes all of the samples in the
original data. By training multiple classifiers using the data in the
individual subsets, a set of completely trained but weak classifiers
are constructed. If the subsets are selected properly, the results of
the weak classifiers may be combined to build a strong classifier.
This step is called fusion (see Fig. 1).

Selection of the subsets is the most challenging part of the
proposed selection–fusion algorithm. Each subset is defined as a
set of samples and a set of features from the original data. Since a
large number of samples are always desirable for classifier
training, given a feature set, it is desirable to find the largest
number of samples for each subset. We refer to such subsets as
the complete subsets. Each subset of the original features
corresponds to an empty or a unique complete subset. Therefore,
there are at most 2n(F)

�1 non-empty complete subsets for a data
with n(F) features.

There is a trade off between the set of features and the set of
samples in a subset. Adding a new feature may cause removal of
some samples from the subset and vice versa. On one hand, a
small sample size does not allow efficient training of the classifier.
Fig. 1. Selection–fusion approach: Overall view of the proposed two stage classification

spaces (subsets). In the fusion stage, the results of the classifiers of the selection stage
On the other hand, a small number of features limit the classifier
accuracy. However, by balancing the feature set versus the sample
set, the performance of the classifier may be optimized.

Moreover, the fusion performance depends not only on the
performance of the individual classifiers but also on the diversity
of the classifiers. The performance of the final classifier will
depend on the way the subsets are selected and the way the
results of the weak classifiers are combined. Variation in
the performance of the classifiers that are combined can improve
the performance of the ensemble classifiers [5]. For example, in
the case of two primary classifiers, if the first one works
significantly better in one part of the feature space and the
second one works significantly better in another part of the
feature space, classifier aggregation has the potential to improve
the classification performance by selecting the first classifier in
the former part of the feature space and the second classifier in
the latter part of the feature space. Of course, achieving this limit
needs additional information on the relative performance of the
classifiers which is not always available. In other words, good
performance is achieved when the individual classifiers are
trained on specific but disjoint parts of the feature space. It is
also desirable to have at least one good classifier for each part of
the feature space.

To formulate the missing values, assume S represents the
original data and n(S) represents the total number of samples.
Define a n(S)�n(F) binary matrix M whose elements are

Mi;j ¼
0 the jth feature is missing in the ith sample;

1 otherwise

�
ð1Þ

and a 1�n(F) binary vector h whose ith element is 1 if the set
includes the ith feature. Also, define Sh to refer to the complete
subset from S associated with the h subset. A simple scenario with
just one missing value (the ith sample and the jth feature) is
demonstrated in Fig. 2. In this case, two complete subsets cover all
of the samples.

Since there are multiple classifiers, a notation is needed to
distinguish different classifiers. To this end, G(x; O) is used to
show the result of a classifier trained by O dataset for a test
sample x. Here, G is a function from the sample space to the class
label space (Rn(F)-N) where N is the set of natural numbers.
When a feature is missed in x, G imputes the missed value with
the average value of the feature. In the case that all features used
by G are missed, the output is set to an out-of-range value so that
it is discarded later. Although the proposed approach can be
extended to the multiclass classification, for the sake of simplicity,
we present the method as applied to the two-class classification.
approach. In the selection stage, a set of classifiers are trained on different feature

are combined.
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Selection of the subsets and combination of the results are
nontrivial problems as they directly impact the performance of
the ultimate classifier. These two problems are addressed in the
following sections.
3.2. Selection of the subsets

Generally speaking, it is desirable to cover the entire data with
as few subsets as possible. Each subset should be large enough
(with enough number of samples) to train a classifier. Also, the
classifiers need enough features in each subset to make a good
decision about the class labels. Obviously, certain subsets such as
those with all features but a small number of samples or those
with a small number of features even with a large number of
samples are not desirable.

Using the above notations, the proposed selection–fusion
classification is formulated as follows: In the first step (selection
step), a set of m feature subsets {h1,y,hm} corresponding to a
set of complete subsets {Sh1,y,Shm} is selected. After training a
classifier for each subset, the results are denoted by {G(x;
Sh1),y,G(x; Shm)}. Using these class labels in the fusion step, a
decision is made about the most likely class label for each data
sample.

It has been shown that for a constant average performance, the
maximum achievable performance in the ensemble classification
is achieved when the variance of the results of the primary
classifiers are at a maximum [5]. In other words, the best
performance is obtained when

P
i;j;k½Gðxj; ykÞ�Gðxj; yiÞ�

2 is max-
imized under the constraint that

P
i;jEr½yj;Gðxj; yiÞ� is a constant

where Er[U] is the error function and yj is the correct class label for
xj. The lowest achievable error for the ultimate selection–fusion
classifier is

P
jminiðEr½yj;Gðxj; yiÞ�Þ if meta information is available

about the best primary classifier for a test data. However, since
the best classifier for a specific test sample is not predictable, this
limit is not achievable.

Based on the above, the proposed method starts with a pool of
complete subsets represented by B¼ ½h

_

1 . . . h
_

nðBÞ�
T . The pool size,

n(B), can be relatively large even close to 2n(F)
�1 (maximum

number of complete subsets). Having this set of subsets, each
element of a so-called co-accordance binary matrix A is defined as

Ai;j ¼
1 jth sample is in Syi

0 jth sample is not in Syi

(
ð2Þ
where A is a binary matrix that shows the inclusion of particular
samples in particular subsets. The diversity of two subsets relates
to the number of their common samples. The more common
samples they have, the less diversity they have. On the other
hand, independencies of the samples and a small number of
common samples result in high diversity. Next, a symmetric
similarity matrix C is defined as

C ¼ AAT ð3Þ

Here, C includes the number of common samples between each
two subsets. To generate a similarity metric, a normalized version
of C is defined as

C i;j ¼
Ci;j

maxðCi;i;Cj;jÞ
ð4Þ

The similarity between each two subsets is a scalar between 0 and
1 and the self similarity of each subset is 1. From the maximum
variance rule for ensemble classification, the choice of the subsets
should maximize the diversity between each pair of the subsets.
This choice is a difficult NP-complete problem [12] and is not
well-studied [10]. To translate this problem into a well-studied
clustering problem, a dual difference matrix D is defined as

Di;j ¼
1�C i;j

1þC i;j

ð5Þ

Using this distance measure, the selection problem can be solved
from a different point of view: the well-known clustering
methods. Each cluster is a collection of similar subsets with small
distances or almost identical information. The kth cluster is
represented by a set of subset indices Lk. By selecting the best
subset from each cluster, a set of subsets that satisfies the
maximal diversity criterion while maximizing the overall perfor-
mance can be obtained.

3.3. Quality measure for the selection step

Now that subset selection is translated into a clustering
problem, we apply the well-known k-means clustering algorithm.
Then, to evaluate the quality of the resulting clusters, we apply
the following Cluster Validity Index (CVI):

CVI¼ Ek

P
i;jALk

Di;jP
i;j ALk

j=2Lk

Di;j

8<:
9=; ð6Þ
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where Ek(.) represents expectation over k and Lk is a set showing
subsets in the kth cluster.

In the clustering context, this cluster validity index shows
whether there are significant clusters in the data or not. When
clusters are completely separated, CVI is very small, near 0. In the
worse case, when there are no distinct clusters, CVI is around 1. In
our application, this index shows whether a specific collection of
subsets represents a complex or simple missing value pattern.
Simple missing value patterns correspond to well-separated
subset clusters and consequently smaller CVI. We use 1/CVI on a
linear scale to generate a clear separation when CVI is small. The
more samples per feature are found by the clustering algorithm,
the better the generalization of the classifiers would be. Thus,
there is a direct relationship between the quality of the clustering
results and the ultimate performance of the classification process.

Once the subsets are chosen, a classifier is needed for each
subset. Selection of the best classifier for each subset is discussed
in [8,10]. In this work, as a widely-used and generally well-
performed method, we use the support vector machine (SVM)
classifier in all of the experiments. Note that the focus of this
paper is not on the optimal classifier design for the subsets.

3.4. Fusion step

Similar to the traditional multiple imputations approach, the
fusion step in the selection–fusion algorithm combines the results
of the individual classifiers to boost-up the overall classification
accuracy. In multiple imputations, the results are combined in a
simple fashion:

GMIðxÞ ¼
1

q

Xq

i ¼ 1

Gðx; IiÞ ð7Þ

where Ii is the ith imputation of the incomplete data and q

represents the number of imputations. The number of required
imputations is estimated by the Rubin’s imputation efficiency law
quantified by [12]

efficiency¼
1

ð1þg=qÞ0:5
ð8Þ

where g is the fraction of the missing values in the data. The
efficiency is a value between 0 and 1 and shows the performance
of q imputations compared with the infinite number of imputa-
tions. When q is small compared with g, increasing q improves the
efficiency. However, when q is large enough, its further incre-
ments do not improve the efficiency considerably. This criterion
may be used to select appropriate number of imputations.

The fusion step in the proposed selection–fusion method is
different. Here, the distribution of the missing values in the
feature space is used to improve the performance. In contrast to
the multiple imputations where all imputations have the same
weight, in the proposed approach, the classification accuracy of
each classifier for a given testing sample is used to weigh the
outputs. Since a subset of samples and features, not the whole
data, is involved in the training of each classifier, a specific subset
may be advantageous depending on the sample being tested.
Thus, in the fusion step, the aggregation step is the weighted
combination:

GBBðxÞ ¼
1P

i1=ji;x

XnðBÞ
i ¼ 1

1

ji;x

Gðx; Syi
Þ ð9Þ

where ji;x is the relative inaccuracy or expected error of Gðx; Syi
Þ

estimated at x which depends on the accuracy of Gð:; Syi
Þ around x

and the number of features used in the classifier.
Two factors are important in determining the classifier’s

expected error ji;x for a specific sample: (1) general accuracy of
the classifier and (2) similarity between the features of the
samples in the training set and those of the testing sample. Thus,
the local accuracy of the classifier should be calculated for each
individual testing sample based on two factors: (1) the number of
samples in the training set that are in the neighborhood of the
testing sample and (2) the similarity between the subset features
(hi) and the existing features for the testing sample.

Now, we explain our approach to estimate the similarity
between the training and testing samples. If all features are
identically informative, the similarity between the missing value
patterns in a subset and the testing sample can be characterized
by byT

xj
yi where ŷxj

and yi are the feature sets available for the
testing sample xj and the ith subset, respectively. To take the
relative quality of the features into account, the similarity is
written as yT

xj
Kyi where K is a diagonal matrix to weigh the

features based on their information level.
We calculate ji;x using

ji;x ¼ ðGðx; Syi
Þ�YðxÞÞ2f ðyT

xj
KyiÞ ð10Þ

where Y(x) is the label of x. When there is no ranking of the
features, K is equal to the identity matrix. Here, f is a non-
increasing function that calculates the effect of similarity between
the feature spaces of the classifier and the testing sample. For
simplicity, we define f(u) as 1/u. When there are no common
features, f removes the effect of the classifier from aggregation. On
the other extreme, when all features are present, f does not
change the error measure.

Eq. (10) can be calculated for the training data. However, for a
testing sample, it needs to be estimated since Y(x) is unknown. To
estimate ji;x easily, we use all of the training samples in the
vicinity of the testing sample:

~ji;x0 ¼
1

Zx0

X
xATraining

disðx; x0Þji;x ð11Þ

where

ðdisðx; x0ÞÞ2 ¼ Jx�x0J2f ðyT
x Kyx0 Þ ð12Þ

Zx0 ¼
X

xATraining

disðx; x0Þ ð13Þ

Note that the distance between the two samples is modulated
by their common features through the second term in Eq. (12).

3.5. Pruning step

In the previous sections, the primary assumption was that
when the number of common samples between the training sets
of different classifiers is small, they would have a different
performance. However, this assumption is not always true as
discussed below. We use a pruning step to deal with this issue.

Our observations show that in addition to the desirable
subsets, a few useless subsets may be generated at the end of
the selection process due to the simplified assumptions about the
diversity. In some cases, these subsets have poor performance for
almost any testing dataset. In other cases, different subsets do not
have additional information and their corresponding classifiers
have almost identical outputs.

For the former case, assume a problem with three features
where the first two features are more informative than the last
one. Also, assume that the first feature is missing in the first half
and the second feature is missing in the second half of the
samples. A clustering algorithm in this case will obtain three
clusters: (1) with just the third feature; (2) with the third and first
features; (3) with the third and second features. However, since
the third feature is not very informative, the subset from the first
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1.Selection 
a. Given minimum and maximum number of subsets, generat binary maxtrix B 
b. For a training set, generate matrix M 
c. Calcuate A, C, and D matrices 
d. Run the clustering algorithm for matrix D and find CVI 
e. For each cluster, find the best subset 

2. Pruning 
a. Find irrelevant features based on the best subsets 
b. Update matrix D after omitting irrelevant features 
c. If CVI changes significantly, go back to 1d 

3. Fusion 
a. For the testing sample find �i, xj

~

b. Calcualte ΓBB (x)

Fig. 3. Selection–fusion algorithm for missing value management: B is the set of all subsets, M is the missing value matrix as defined in Eq. (1), A is the co-accordance

binary matrix as defined in Eq. (2), C is the subset similarity matrix as defined in Eq. (3), D is the distance matrix as defined in Eq. (5), CVI, is the cluster validity index as

defined in Eq. (6), xj is the testing sample, ~j i;xj
is the fusion weight as defined in Eq. (11), and GBBðxÞ is the classification result for the testing sample x as defined in Eq. (9).
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cluster will not contribute significantly in the fusion step due to
its poor performance, despite its large number of samples. In fact,
the remaining two subsets are sufficient for this scenario.

For the latter case, assume the above scenario but this time
just the third feature is missing in the first half of the samples.
There are two significant subsets in the data: one subset with all
features (second half of samples) and one subset with the first and
second features (all samples). These two subsets are certainly in
two different clusters. Since the third feature is not informative,
the two clusters represent the same information and combination
of the two classifiers is not useful.

As described in the selection step, the CVI is a good
performance measure if the diversity of the subsets is high. When
two clusters are separated by a set of informative and relevant
features, this is the case. However, when a large portion of the
features are irrelevant, it is likely to get a couple of clusters with
similar information separated by the unimportant features.

The pruning step is designed to solve the above problems by
removing weak clusters and combining similar clusters. During
the feature selection step, the irrelevant features are identified
and the distance metric of the clusters with the irrelevant features
[Dij] are modified accordingly. The overall process, including the
pruning step, is summarized in Fig. 3. In the worst case, all
clusters are combined after m�1 iterations. Although the pruning
step does not always have a large impact on the performance, it
may reduce the computational complexity.

One important remaining point about the proposed algorithm
is the initial condition for the primary subset pool B. If we
eliminate some of very unlikely subsets before running the
algorithm, the execution time of algorithm will be reduced. As
discussed, the primary subsets pool can be as large as 2n(F)

�1.
However, for the sake of computational cost, we limit the size of
the subsets pool. We reduce the size of the subsets pool by putting
lower and upper bounds on the number of features in each subset.
According to the discussion about the desirable subsets, the
number of the features in each subset should be large enough to
get a reliable determination of the class label. A lower bound can
be obtained using a simple feature reduction technique; for
details see [9,10].
4. Experimental results

To support the hypotheses in the previous sections and to
evaluate the proposed method and compare it with the previous
methods, we have conducted a variety of experiments using a
wide range of real-world datasets. Seven datasets from the
University of California, Irvine and our epilepsy dataset (a total
of eight datasets) have been used in these experiments. Details of
the datasets are given in Table 1. The algorithms have been
applied to the original data as well as datasets with additional
missing values generated by randomly deleting some of the
values from the datasets. All algorithms are run on Intel 3.0 GHz
CPU with 2 GB of RAM.

In the comparison study, the proposed method is compared
with five well-known missing value management algorithms: (1)
pairwise deletion; (2) decision tree (CART); (3) expectation
maximization (EM) single imputation; (4) multiple imputations
(MI) with EM; and (5) ensemble classifier (voting selection–fusion
(SF) with random selections). The support vector machine (SVM)
is used for classification in all of the methods. Each dataset is
divided into 6 equal parts, 1 part for the testing phase and 5 parts
for the training phase. The training and testing parts are permuted
and the experiments are repeated for cross-validation. The
execution time of each permutation depends on the size of the
dataset and the number of clusters, ranging from 125 sec for
database number 1 (Breast Cancer) to 20 sec for database number
8 (HBIDS). All of the algorithms are run on the 8 datasets (Table 1).
To evaluate the effect of the percentage of the missing values,
some of the values are randomly removed from both of the testing
and training datasets using the MAR missing value pattern. This is
repeated 20 times and the means and standard deviations of
the correct classification percentages are calculated and presented
in Table 2.

Generally speaking, the results show that the proposed
algorithm outperforms the other methods when either the
percentage of the missing values is large (more than 20%) or
the number of samples in the dataset is small. On the other hand,
the EM single imputation and MI with EM methods outperform
the other methods when the number of the samples is large and
the percentage of the missing values is small.

In particular, the proposed method outperforms the previous
methods in their applications to the target problem of our
research, i.e., epilepsy surgery candidate selection (HBIDS). This
problem can be considered as a prototype of the common medical
diagnosis problems such as breast cancer staging or leukemia
genome expression, where a non-MAR missing value pattern and
a small number of samples are the most common limitations for
the recovery of the missing values. The human brain image
database system (HBIDS) is developed for epilepsy patients at
Henry Ford Hospital, Detroit, MI [23,24]. The system will examine
surgical candidacy among temporal lobe epilepsy patients based
on their brain images and other data modalities. It is expected to
discover relatively weak correlations between symptoms, medical
history, treatment planning, outcome of the epilepsy surgery, and
the brain images.
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Table 1
Specifications of the datasets used in the study.

Number Name Number of

samples

Original missing

values percentage

1/CVI Number of

classes

1 Breast Cancer 699 9.6 9.52 2

2 Pima Diabet 768 0.0 0.00 2

3 Tic Tac Toe 958 0.0 0.00 2

4 Sonar 208 7.2 15.24 2

5 Votes 435 2.2 6.85 2

6 Iris 150 0.0 0.00 2

7 Wine 178 0.0 0.00 2

8 HBIDS 55 8.3 18.26 2

Table 2
Means and standard deviations of the correct classification percentages of the experiments done on 8 datasets using 6 different methods.

Additional missing

value percentage

Pairwise

deletion

Decision

tree (CART)

EM single

imputation

Multiple

imputations

with EM

Voting selection–fusion

with random selections

Proposed

selection–fusion

method with CVI

UCI Dataset 1: Breast Cancer

0 94.7 94.7 94.7 95.9 95.3 92.4

10 91.170.1 90.370.1 91.270.1 90.470.1 91.970.1 92.270.1

20 84.470.3 89.770.1 90.870.1 89.170.2 82.870.2 90.170.1

30 66.470.6 77.470.6 83.670.1 82.570.2 81.070.3 85.270.2

UCI Dataset 2: Pima Diabet

0 76.5 76.6 76.1 77.3 74.8 75.1

10 72.370.1 74.170.1 74.170.2 74.270.1 71.270.1 73.570.1

20 69.770.1 71.470.1 72.270.1 70.370.1 67.270.1 71.870.1

30 59.970.9 62.470.8 67.670.4 65.270.3 67.270.5 70.370.2

UCI Dataset 3: Tic Tac Toe

0 99.3 99.3 99.3 98.9 98.9 98.3

10 94.470.1 95.270.1 97.570.1 94.270.1 92.870.2 95.470.1

20 83.670.1 86.570.1 90.670.1 94.270.1 87.670.1 90.370.2

30 70.170.5 80.770.3 90.270.3 90.370.3 86.670.3 89.470.4

UCI Dataset 4: Sonar

0 83.7 83.8 83.7 83.9 81.0 82.9

10 78.870.1 77.170.1 79.070.1 80.170.1 77.970.1 81.370.1

20 63.070.1 69.470.1 70.470.1 72.770.1 74.270.1 78.370.1

30 58.370.2 65.370.3 62.770.3 69.170.1 71.270.2 76.970.2

UCI Dataset 5: Votes

0 95.8 95.8 95.8 94.3 94.7 95.9

10 88.470.2 91.270.1 89.270.1 93.570.1 91.670.1 92.270.1

20 85.370.3 88.270.2 85.270.1 87.170.1 87.670.1 89.270.1

30 71.270.4 77.370.2 84.670.2 86.370.2 81.470.2 89.170.3

UCI Dataset 6: Iris

0 89.4 89.4 89.4 92.1 94.3 93.2

10 74.270.1 75.270.2 78.370.2 81.370.1 81.270.1 81.470.1

20 62.370.1 69.270.2 69.570.2 72.370.1 72.270.1 77.470.1

30 53.170.2 62.470.3 65.170.3 69.570.1 69.570.2 75.170.3

UCI Dataset 7: Wine

0 85.2 85.2 85.2 90.1 89.1 89.1

10 72.670.1 74.570.2 78.170.1 82.570.1 78.270.2 81.370.1

20 62.670.1 65.570.2 68.270.1 72.670.1 69.470.2 78.270.1

30 59.370.2 62.370.3 65.770.3 64.370.1 62.270.2 72.470.2

HBIDS

0 74.570.5 72.170.3 66.770.3 76.470.5 69.570.4 79.370.5

10 72.271.7 65.771.9 62.171.2 68.271.0 62.170.9 76.470.8

20 65.171.9 64.871.5 59.471.8 65.271.2 59.372.8 72.870.9

Note that our proposed method with CVI outperforms other approaches when applied to the datasets with a small number of samples and a high percentage of missing

values.
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At the time of this investigation, the HBIDS contains a 40-
dimensional feature space and 55 samples. Our examination of
the database shows that the missing values do not follow the MAR
or MCAR models [12,24–28]. Thus, the missing value patterns are
not easily predictable. Therefore, a complex probabilistic model is
necessary. Also, there are a large number of missing values that
are non-random. Moreover, the missing values may have
dependencies in contradiction to the usual assumptions [13].
The complex probabilistic model and the large percentage of the
missing values limit the performance of the previous methods like
expectation maximization (EM) and multiple imputations (MI)
[1,12].



ARTICLE IN PRESS

M. Ghannad-Rezaie et al. / Pattern Recognition 43 (2010) 2340–2350 2347
In the second experiment, the relationship between the
proposed index (CVI) and the performance of the selection–fusion
algorithm is evaluated. To this end, some of the samples are
randomly removed from 3 of the datasets (Breast Cancer, Pima
Diabet, HBIDS) to generate datasets with different patterns and
percentages of the missing values. Then, the CVI and the accuracy
of the four missing value treatment algorithms (SF, EM, MI, CART)
are evaluated for each condition. The results are presented in
Fig. 4. This figure compares the accuracy of the four methods
when 1/CVI changes from 1 to 40 for the 3 datasets. The results
illustrate that although the relationship between the accuracy and
the 1/CVI depends on the pattern of the missing values, our
approach (SF) is always superior when 1/CVI is larger that 20. Also,
as 1/CVI increases further, the superiority of the SF approach to
the other methods becomes more pronounced.

In the third experiment, to evaluate the effect of the number of
samples in the dataset and the percentage of the missing values on
the CVI, some of the features are removed from the Breast Cancer
dataset, using the MAR, MCAR, and systematic missing value
models. For each of the resulting datasets, 1/CVI is calculated and
plotted in Fig. 5 versus the number of the samples (sample space
size) and the percentage of the missing values. The results show that
the relationships between the 1/CVI and the missing value
Fig. 4. Performance of missing value management methods versus cluster validity ind

human brain image database system (HBIDS), respectively (refer to Table 1). The selec

CART methods are compared. 1/CVI increases as the percentage of missing values incre
parameters depend on the pattern of the missing values, although
it is always a monotone function. For example, a 1/CVI of 20 equals
23%, 25%, and 40% missing values for the systematic, MAR, and
MCAR models, respectively (Fig. 5b). Thus, for example, for a dataset
with the MAR missing value pattern, the selection–fusion algorithm
is superior when more than 23% of the data is missing. Based on
Fig. 5a, the same argument can be made for the sample size. Fig. 5
also shows that the systematic missing value pattern is more
sensitive to the percentage of the missing values and the sample size
compared with the MAR and MCAR models. In the systematic
pattern, the 1/CVI increases from 20 to 40 when the missing values
increase about 10%, while in the MCAR model, this requires at least
20% more missing values.

In the fourth experiment, the effect of the number of subsets on
the performance of the proposed method is evaluated by applying
the method to the original HBIDS dataset and additional datasets
generated by randomly removing some of the features from the
original dataset. The results are graphed in Fig. 6a. Note that with 10%
missing values, 5 subsets yield the maximum performance. In this
case, the performance does not improve much by increasing the
number of subsets beyond 5. On the other hand, with 30% missing
values, at least 8 subsets are required to get the maximum
performance.
ex: (a)–(c) the results of the UCI Breast Cancer and Pima Diabet datasets, and the

tion–fusion (SF), expectation maximization (EM), multiple imputations (MI), and

ases. Note the overall superiority of the SF method especially when 1/CVI is large.
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Note that when 1/CVI is large, classifiers with more diverse performance can be

found. This is due to the fact that we select one classifier from each cluster and

thus the distance between selected pairs of classifiers is large (i.e., they are

diverse) when 1/CVI is large.
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do not seem to improve the performance. (b) Receiver operating characteristic

(ROC) curves for the surgery candidate selection problem. The selection–fusion

(SF) and multiple imputation (MI) methods are compared. Note the superiority

of SF.
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In the fifth experiment, the performance of the proposed
approach is compared with the multiple imputation method by
estimating their receiver operating characteristic (ROC) for the
HBIDS dataset. The results graphed in Fig. 6b show that our
approach has higher sensitivity and specificity. The area under the
ROC curve of the proposed method for the dataset with 20%
missing values is about 5% larger than that of the multiple
imputations.
5. Discussion

Clustering is a well-established field and many of its results are
applicable to the missing value problem. The optimal number of
subsets in our application has a close relationship with the
number of clusters in the clustering algorithms [11,12]. When the
number of clusters is unknown, the elbow criterion [12] is a
common rule of thumb to determine the number of clusters. Also,
as shown in the clustering literature, determining the number of
clusters is an NP-Complete problem [12] but many fast
suboptimal methods are proposed for it [11].

Since we use a weighted combination algorithm in the
fusion step, the number of subsets may not be very important.
However, more subsets are not always desirable because the
number of parameters that need to be estimated in the fusion
stage depends on the number of subsets. With a small
number of subsets, the parameters can be estimated more
reliably using a limited number of samples. In addition,
although for the weak classifiers, the weight is small,
accumulation of a large number of weak subsets may deterio-
rate the overall performance.

The sample size and the percentage of the missing values are
two important parameters of the data but these parameters are
not necessarily the most appropriate measures for the quantifica-
tion of the complexity of the missing values. Our experimental
results (Fig. 4) show that the superiority of the selection–fusion
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method almost always improves as the CVI decreases. This
confirms that this index describes the complexity of the missing
value problem appropriately.

The relationship between the complexity of the missing value
problem and the CVI is nonlinear and depends on parameters
other than the sample size and the missing value percentage.
However, our experiments using three databases show that the
relationship is monotone (Fig. 5). When the sample size decreases,
the 1/CVI increases but the rate of its increase depends on the
missing value pattern. When the data is MCAR, the CVI does not
change as much as the other models as the sample size changes.

The impact of the diversity of the classifiers on the perfor-
mance of the proposed method is also explored through the
evaluation of the CVI (Fig. 5). When 1/CVI is large, classifiers with
more diverse performance can be found. This is due to the fact
that we select one classifier from each cluster and thus the
distance between the selected pairs of classifiers is large (i.e., they
are diverse) when the 1/CVI is large. A large 1/CVI corresponds to a
small sample size and a large missing value percentage. Thus, we
can conclude that more missing values in the data for a fixed
sample size produce more clusters and therefore more subsets
(Fig. 6a). Comparing the performance of our approach with the
multiple imputations in their applications to the HBIDS dataset
shows that our approach has higher sensitivity and specificity
(Fig. 6b).

A comprehensive analysis using 8 datasets with different
sample sizes and different data models show that our selection–
fusion approach is superior to the previous approaches when
there are at least 20% missing values added with the MAR model.
This difference is more pronounced in the Sonar, Iris, Wine, and
HBIDS datasets. These four datasets have smaller sample sizes and
therefore, the 1/CVI increases faster with the missing values. In
particular, in the HBIDS dataset, the presence of systematic
missing values makes the 1/CVI more sensitive to the large
percentages of the missing values.

In summary, the proposed selection–fusion algorithm is
applicable to the problems with a small CVI. This usually happens
in the datasets with a small number of samples and a large
percentage of missing values.
6. Conclusion

Evaluation of the proposed selection–fusion algorithm on
different types of datasets shows that it can improve the
classification performance on datasets with missing values. Our
study shows that the estimation of the missing values by the EM
method works fine when the percentage of the missing values is
small. However, as the percentage of the missing values increases,
its performance deteriorates such that in some cases (like HBIDS),
the pairwise deletion approach may offer a superior solution. The
selection–fusion approach maintains an acceptable performance
when the percentage of the missing values is small, at the expense
of more computational complexity in the classifier training and
application.

The results of the surgery candidate selection problem (HBIDS)
show that the selection–fusion algorithm outperforms the other
approaches. Also, the results of the Sonar and some other UCI
datasets agree with this observation. While the limitations in the
surgery candidate selection such as a large percentage of the
missing values, a non-MAR missing value pattern, and a small
number of samples are the challenging problems in the medical
record analysis, the proposed selection–fusion approach is an
appropriate solution to these problems. The results show that the
proposed approach outperforms the EM and MI methods in this
type of missing value patterns with a small CVI. In addition, we
observe that this index decreases when the sample size decreases
or the percentage of the missing values increases. Based on
these two observations, we conclude that the proposed missing
value management method is most appropriate when the number
of samples is small and the percentage of the missing values is
large.
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