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Incorporating multiple SVMs for automatic image annotation
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Abstract

In this paper, a novel automatic image annotation system is proposed, which integrates two sets of support vector machines (SVMs),
namely the multiple instance learning (MIL)-based and global-feature-based SVMs, for annotation. The MIL-based bag features are
obtained by applying MIL on the image blocks, where the enhanced diversity density (DD) algorithm and a faster searching algorithm
are applied to improve the efficiency and accuracy. They are further input to a set of SVMs for finding the optimum hyperplanes to
annotate training images. Similarly, global color and texture features, including color histogram and modified edge histogram, are fed
into another set of SVMs for categorizing training images. Consequently, two sets of image features are constructed for each test image
and are, respectively, sent to the two sets of SVMs, whose outputs are incorporated by an automatic weight estimation method to obtain
the final annotation results. Our proposed annotation approach demonstrates a promising performance for an image database of 12 000
general-purpose images from COREL, as compared with some current peer systems in the literature.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Image annotation refers to the labeling of images with
a set of predefined keywords. It is mainly used for visual
information management and can be applied in a variety
of domains such as entertainment, commerce, education,
biomedicine, military, web image classification and search,
etc. In particular, image annotation can aid in image retrieval
since annotated keywords greatly narrow the semantic gap
between low-level features and high-level semantics.

Automatic image annotation is a challenging task due to
various imaging conditions, complex and hard-to-describe
objects, a highly textured background, and occlusions. In
general, most approaches use learning-based techniques to
train manually categorized images and test the uncategorized
images based on the training results. Because the selected
training images are usually very limited and cannot represent
all the aspects of real life, automatic annotation may not
achieve high accuracy using the current computer vision and
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image processing technologies [1]. The relevance feedback
approach [2] is believed to be more effective by refining the
initially assigned labels via several rounds of feedback pro-
vided by the user through an interactive interface. However,
relevance-feedback-based annotation systems may be a bur-
den to users, especially when more information is required
than just Boolean feedback (relevant or not-relevant). In this
paper, we exclusively focus on the techniques for automatic
image annotation without using the relevance feedback to
refine the labeled images.

Our proposed system utilizes an automatic weight
estimation method to fuse the results from two complemen-
tary sets of support vector machines (SVMs) for automatic
annotation. One set of SVMs is obtained by training the
bag features of the image blocks using the multiple instance
learning (MIL) technique. In MIL, each image is a bag and
its segmented regions or sub-images are instances. As a re-
sult, the image features obtained from MIL are referred to as
bag features. In our proposed system, we divide the images
into non-overlapping blocks and apply the MIL technique
upon the block-based color and texture features to extract the
bag features. An enhanced diversity density (DD) method
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and a faster searching algorithm are further employed in the
MIL technique to improve the efficiency and accuracy for
such extraction. These extracted bag features are then fed
into a set of SVMs for finding the optimum hyperplanes to
annotate each training image. More details about MIL and
DD are explained in Section 3.1. To address any inaccu-
racy issues related to the image sub-blocking, another set of
SVMs is obtained by training the global color and texture
features using the color and edge histogram-based technique.
That is, we compute the MPEG-7 scalable color descriptor
(SCD) and the modified MPEG-7 edge histogram descriptor
(EHD) as the global features for the same training images
and send these global features to another set of SVMs to
find the optimum hyperplanes for annotating each training
image. Once these two complementary sets of SVMs are
configured, we can annotate each uncategorized test image
by constructing both bag features of the image blocks and
the global color and texture features and sending these two
features to their respective sets of SVMs. The decision val-
ues yielded from these two sets of SVMs are then mapped
to the likelihood values, which are further incorporated by
a novel automatic weight estimation method to obtain the
final annotation results.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly reviews the related work. Section 3 describes
the general framework of our proposed annotation system.
Section 4 illustrates the experimental results. Section 5 con-
cludes with a brief discussion of our approach and some
proposed directions for future work.

2. Related work

Many automatic image annotation systems have been de-
veloped since the early 1990s. In these systems, the images
are represented by either global features, or block-based lo-
cal and spatial properties, or region-based local features.
Several relevant image annotation systems are briefly re-
viewed here.

2.1. Global-feature-based image annotation

Global image features have been widely used in image
annotation. Huang et al. [3] categorize images by using a
classification tree, which captures the spatial correlation of
colors in an image. In [4], the k-nearest neighbor classifier
on the color histogram is used to discriminate between in-
door and outdoor images. Chapelle et al. [5] apply SVMs
on the global 16 × 16 × 16-bin HSV color histograms to
categorize images. Gdalyahu and Weinshall [6] use the lo-
cal curve matching method for the shape silhouette classi-
fication, where objects in an image are represented by their
contours. Vailaya et al. [7] use Bayesian classifiers on the
color and edge direction histograms to, respectively, classify
sunset/forest/mountain images and city/landscape images.
Chang et al. [8] extract color features (i.e., dominant colors,

color histograms, color means, and color variances), shape
features (i.e., elongation and spreadness), and wavelet-based
texture features for each image and use SVMs and Bayes
point machines (BPS) for automatic image annotation. These
global features are easy to compute and effective for cer-
tain tasks. However, they have several major drawbacks as
follows:

1. They lack information about the spatial feature distribu-
tion. Color correlogram [9] adds certain spatial informa-
tion to address this issue. However, they are very limited
in terms of the spatial layout of the objects.

2. They are sensitive to intensity variations and distortion.
3. They fail to narrow down the semantic gap, i.e., the

difference between users’ high-level semantic concepts
and the low-level visual features, due to their limited
descriptive power based on objects.

2.2. Block/region-based image annotation

To address these issues associated with the global fea-
tures, a number of block-based and region-based methods
have been exploited. In block-based systems, the image is
divided into sub-blocks and features for each block are ex-
tracted. Gorkani and Picard [10] first divide the image into
16 non-overlapping equal-sized blocks and compute domi-
nant orientations for each block. The image is then classi-
fied as city or suburb according to the majority orientations
of the blocks. In [11], a one-dimensional hidden Markov
model (HMM) trained on vector-quantized color histograms
of image blocks is used for the indoor/outdoor classification.
Li and Wang [12] propose an automatic linguistic indexing
of pictures (ALIP) system which uses the two-dimensional
multi-resolution HMM on features of image blocks for clas-
sification. Murphy et al. [13] build four graphical models
to relate block-based features to objects and perform joint
scene and object recognition. Cusano et al. [14] divide the
image into a fixed number of partially overlapping subdi-
visions (tiles) and apply a multi-class SVM to classify the
image into one of the seven predefined categories.

In region-based systems, an image is first segmented into
homogeneous regions and features for each region are then
extracted. Modestino and Zhang [15] use a Markov random
field model to capture the spatial relationships between
regions and apply a maximum a posterior rule to interpret
images. Minka and Picard [16] develop a system to gen-
erate several groups of possible regions based on different
feature combinations. The best feature combinations for
representing the sample semantic categories are discovered
via the supervised learning of various parts of the images.
Smith and Li [17] annotate images by applying a composite
region template descriptor matrix on the spatial orderings
of regions, whose attributes are represented by symbols in a
finite pattern library. Barnard and Forsyth [1] apply a hier-
archical statistic model on semantically meaningful regions
to generate keywords for annotation. Brank [18] proposes
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an annotation system by applying the SVM to the sparse
vectors, whose elements indicate the possibilities of all the
clustered regions in each training image. In addition, Brank
presents another annotation system by applying the SVM
to a generalized kernel converted from a similarity measure
between the segmented images. Jeon et al. [19] use the
cross media relevance model to predict the probability of
generating a word given the regions in an image. Barnard
et al. [20] apply the probabilistic modeling techniques on
multi-modal data sets to automatically categorize images or
image regions with relevant keywords by learning a joint
distribution over each region of the training images and its
corresponding text annotations. Their proposed modeling
techniques combine a number of related statistical ap-
proaches with a variety of latent variable models. The image
regions are segmented by the normalized cut method.

2.3. MIL-based image annotation

Recently, MIL has been applied for automatic image an-
notation. MIL was originally studied by Dietterich et al. [21]
in the area of drug activity prediction and has recently re-
ceived much attention in machine learning. In MIL, each
image is a bag and its segmented regions or sub-images are
instances. A bag is labeled positive if at least one instance
is positive and is labeled negative if all instances are neg-
ative. The goal of the MIL is to generate a hypothesis to
accurately predict the labels of unknown bags. Maron and
Ratan [22] apply the MIL framework for the natural im-
age classification. They use the DD algorithm to learn the
user’s concept based on a collection of positive and nega-
tive examples. The learning results are then used for image
classification. Zhang and Goldman [23] develop the expec-
tation maximization-diverse density (EM-DD) algorithm to
improve the annotation speed and facilitate the scale-up to
large data sets. However, the MIL is degraded to a “single
instance learning” since EM only estimates one instance that
is responsible for the label of the bag. Andrews et al. [24]
propose an MI-SVM approach for annotation. The instance-
based (i.e., region-based) image features are iteratively fed
into SVMs until no updates for all the positive training im-
ages. The converged instance-based features are then used
to annotate an image. In both DD and EM-DD algorithms,
an optimum point in the feature space with a global max-
imum DD value is used to represent the object of interest.
However, this optimum point may not correctly represent
the object of interest due to the imperfect or incorrect image
segmentation. To address this issue, Chen and Wang [25]
propose the DD-SVM method for image annotation. This
method constructs the SVMs by using bag-based image fea-
tures as inputs. These bag-based features consist of multiple
local maxima obtained by employing the EM-DD method
on image regions. Experimental results [24,25] demonstrate
that the DD-SVM method achieves the best annotation ac-
curacy and the MI-SVM method achieves better annotation
accuracy than both EM-DD and DD methods.

2.4. Summary

In spite of their successes, all these annotation systems
have their shortcomings. The global-feature-based systems
cannot precisely represent the semantics of an image. The
region-based systems often break an object into several re-
gions or put different objects into a single region due to inac-
curate image segmentation. The block-based and MIL-based
systems have the similar problems as the region-based sys-
tems. To our knowledge, the DD-SVM method [25] is the
only one that makes an effort to partially address the inac-
curate segmentation issues. However, this approach is com-
putationally expensive in terms of both image segmentation
and system training. In this paper, we propose an efficient
and effective automatic annotation system which addresses
both inaccurate segmentation and expensive training issues.
Specifically, several complementary non-overlapping sub-
block schemes are exploited to represent possible objects of
interest. An improved MIL technique, which combines an
enhanced DD method and a faster searching algorithm, is
then applied to obtain the bag features for the SVMs to an-
notate an image. The global-feature-based SVMs are further
incorporated to compensate any inaccuracy issues associated
with the sub-blocking schemes and the MIL-based SVMs.
As a result, the proposed annotation system provides more
robustness against any issues associated with the shortcom-
ings of the peer systems.

3. Proposed approach

3.1. MIL-based SVMs

3.1.1. Image sub-blocking and block feature extraction
It is well known that automatic image segmentation is

an open problem in computer vision [26,27] and no system
achieves perfect segmentation results. In addition, it is com-
putationally expensive. Therefore, segmentation is not per-
formed on our proposed system. Instead, we divide the image
into blocks. Several block representation schemes were thor-
oughly studied and experiments have been performed on
each scheme. Fig. 1 shows the final layout of the blocks
chosen in our system, which has been proven to be efficient
and effective. As shown in Fig. 1, each image is divided
into five non-overlapping blocks. In general, this number of

Fig. 1. Image sub-blocking.
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blocks (i.e., 5) is close to the number of segmented regions
for a majority of images. During image sub-blocking, each
image is first horizontally divided into three blocks since
the orientations of the objects in most images are horizon-
tal. The middle block is further evenly divided into three
sub-blocks to magnify the details of the main objects since
they are usually located in the center. Even though the pro-
posed sub-blocking system may divide an object into dif-
ferent blocks or put multiple objects into one block, which
is likely for images whose main objects are not located in
the center or whose orientation is vertical, our proposed
MIL-based SVMs and global-feature-based SVMs will par-
tially resolve this issue. That is, multiple local maxima are
found by our enhanced MIL technique to represent the pos-
sible objects of interest. Moreover, global features are ex-
tracted independent of the sub-blocking scheme to represent
the overall color and texture of the image. This integration
makes the proposed system more robust against the inaccu-
rate image sub-blocking issue. As a result, the annotation
accuracy is not affected by the nature of the images in terms
of the location of the main objects and the orientation of the
images.

For each block, the mean and standard deviation in the
LUV color space are computed as the color feature. The
texture feature is calculated by the average energy in each
high-frequency subband after applying two level wavelet
decompositions on the luminance component of the image.
Therefore, the length of the feature vector for each block is
12 (i.e., 6 color features and 6 texture features).

3.1.2. Multiple instance learning (MIL) and bag features
In MIL, the user labels the bag (i.e., image), which usu-

ally contains many instances (i.e., regions), as positive or
negative. The goal of the MIL is to find what is common in
all positive images, but not in any negative images. Maron
and Ratan [22] develop the DD method to solve the MIL
problem by converting this goal to a maximization problem.
That is, with the assumption of n labeled bags and the hy-
pothesis t, the DD value is calculated as

DD(t) =
n∏

i=1

Pr(Bi, li |t) =
n∏

i=1

(1 − |li − Label(Bi |t)|),

Label(Bi |t) = max
j

{
exp

[
−

m∑
d=1

(sd(Bijd − td ))2

]}
, (1)

where Bi denotes the ith bag, li denotes the actual label
(0 or 1) of the ith bag, Bij denotes the jth instance of bag i,
Bijd denotes the feature value of instance Bij on dimension
d, Sd denotes the value of feature weight vector S on dimen-
sion d, td denotes the value of t on dimension d, n denotes
the number of instances, and m denotes the number of fea-
tures. The maximization of Eq. (1) is to find the optimum
t that leads to the maximum DD value for representing the
user’s interest in the feature space.

Two observations can be easily made by analyzing
Eq. (1). That is

• If any instance in one negative bag Bi is close to t,
Label(Bi |t) will be close to 1 and therefore Pr(Bi, li |t)
(i.e., the probability of the image being negative under
the hypothesis t) will be close to 0.

• If all instances in one positive bag Bi are away from t,
Label(Bi |t) will be close to 0 and therefore Pr(Bi, li |t)
(i.e., the probability of the image being positive under
the hypothesis t) will be close to 0.

These two observations adversely drop the DD value close
to 0 even though all the other instances in negative bags are
far away from t and all the other positive bags fit t very well.
As a result, we modify Eq. (1) so the DD value will not
be drastically affected by several aforementioned abnormal
instances. The enhanced definition of DD is

DD(t) =
n∑

i=1

Pr(Bi, li |t). (2)

By substituting multiplication in Eq. (1) with addition in
Eq. (2), a robust DD method, which is more resistant to the
presence of outliers, is obtained.

This enhanced DD method is further combined with the
EM method [23] to speed up the searching process for find-
ing the maximum DD value. That is, given the initial hypoth-
esis t, the EM method selects one representative instance
B∗

ij from each bag Bi by

B∗
ij = arg max

j

(
exp

[
−

m∑
d=1

(sd(Bijd − td ))2

])
. (3)

This selected instance most likely corresponds to the anno-
tation label of the image. Consequently, one chosen repre-
sentative instance instead of all instances from each bag is
used for calculating the DD value as follows:

DD(t) =
n∑

i=1

Pr(Bi, li |t) =
n∑

i=1

(1 − |li − Label(Bi |t)|),

Label(Bi |t) = exp

[
−

m∑
d=1

(sd(B∗
ijd − td ))2

]
. (4)

In our proposed system, a simplex search method [28] is
applied on Eq. (4) to locate the optimum point t which
yields the local maximum DD value. This method is faster
than the gradient-based method as used in other peer sys-
tems [22,23,25] since it is a direct search without using any
numerical or analytical gradients. As a result, the time for
searching the optimum point t is greatly shortened and the
DD value is more resistant to the outliers, which ensure that
our proposed enhanced EM-DD algorithm is more scalable
and robust.

The bag feature of an image is further constructed by us-
ing the instance prototypes (IPs) which consist of all the
appropriate local maxima and their weights. In order to find
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each local maximum and its corresponding weight, we start
the search from every instance of all positive bags with the
same initial weights. The local maximum and its weight are
automatically updated upon each search. Once all local max-
ima are found, the IPs are obtained by replacing clumped
local maxima with their average and removing local max-
ima whose DD values are too small. These IPs {(x∗

k , w∗
k ) :

k = 1, . . . , n} approximately represent all the possible ob-
jects of interest and are used to construct the bag feature
�(Bi) of each image Bi = {xij : j = 1, . . . , Ni}:

�(Bi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp

(
min

j=1,...,Ni

‖xij − x∗
1‖w∗

1
/30

)

exp

(
min

j=1,...,Ni

‖xij − x∗
2‖w∗

2
/30

)
...

exp

(
min

j=1,...,Ni

‖xij − x∗
n‖w∗

n
/30

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where x∗
k ’s are the feature values of the kth IP, w∗

k ’s are the
weights of the kth IP, n is the number of IPs, xij is the jth
block features of image i, Ni is the block numbers (i.e., 5)
in image i, and ‖‖w∗ is the weighted Euclidean distance.
The exponential function is used here to properly scale the
values of the bag features to the range between 0 and 1.

The detailed construction of the image bag feature is sum-
marized in Fig. 2 in an algorithmic view. The input to the
algorithm is a set of labeled training images whose block-
based features are extracted according to Section 3.1.1. The
output is a set of feature vectors, where each vector corre-
sponds to the bag feature of a training image.

3.1.3. Support vector machines (SVMs)
Once the bag features for all training images are obtained

using Eq. (5), they are further fed into SVMs, which will find
a hyperplane that separates the training data by a maximal
margin. That is, given m training data {xi, yi}’s, where xi ∈
Rn and yi ∈ {−1, 1}, SVMs need to solve the following
optimization problem:

min
�,b,�

(
1

2
�T� + C

l∑
i=1

�i

)

s.t. yi(�
T�(xi) + b) > 1 − �i , �i > 0, (6)

where C is the penalty parameter of the error term, � is
the coefficient vector, b is a constant, �i is a parameter for
handling non-separable data, and K(xi, yi)=�(xi)

T�(xj ) is
the kernel function. The non-linear SVMs with the Gaussian
radial basis function (RBF) kernel are used in our system
since they yield excellent results compared with linear and
polynomial kernels [29]. This RBF kernel is defined as

K(xi, yi) = exp(�‖xi − xj‖2), � > 0. (7)

As a result, two SVMs related parameters C and � need to be
predetermined. We combine the 3-fold cross-validation and

1. Initialize IP to be an empty set

2. For each instance p in all positive training images

2.1 Set the hypothesis vector x to be p

2.2 Set its associated weight vector w to be all 1’s

2.3 Repeat

  2.3.1 Select the representative instance for each

training image using Eq. (3)

  2.3.2 Find the optimal hypothesis and weight
pair (x,w) that maximizes the DD value
in Eq. (4) by using the simplex search method 

Until the hypotheses from the current and 

previous iterations converge or the maximum

iteration is achieved 

2.4 Add (x,w) in to IP

Endfor

3. For each (x,w) in IP

3.1 If (its DD value < a predefined threshold)

 3.1.1 Remove it from IP

3.2 Else

3.2.1 Set simIP to be an empty set

3.2.2 Find all (x’,w’)’s inIP that are close to  

(x,w)

3.2.3 Put (x,w) and all (x’,w’)’s into simIP and  
remove all (x’,w’)’s from IP

3.2.4 Replace (x,w) with the average of simIP

Endif

Endfor

4. For each training image

4.1   Calculate its bag feature using Eq. (5) 

Endfor

Fig. 2. The algorithmic view of the steps to construct the image bag
features.

grid-search algorithms [30] to find the best C and � for the
image annotation task by testing exponentially growing se-
quences of C=2−5, 2−3, . . . , 215 and �=2−15, 2−13, . . . , 23

on several sets of prelabeled training images. The pair that
gives the minimum 3-fold cross-validation error is selected
as the optimal parameters and is used in our proposed image
annotation system.

Since the SVMs are designed for the binary classifica-
tion, an appropriate multi-class method is needed to handle
several classes as in image annotation. Two common ap-
proaches are “one against one” (i.e., apply pairwise com-
parisons between classes) and “one against the others” (i.e.,
compare a given class with all the others put together). We
use “one against the others” in the proposed system as it
achieves comparable performance with a faster speed than
“one against one”. That is, n SVMs will be generated for n
categories to accomplish the annotation task.

In order to obtain the likelihood for an unknown image to
be in each predefined category, the outputs (i.e., decision val-
ues) from each corresponding SVM, which are real values
in the range of [−∞, +∞], will be mapped into probabil-
ities by training the parameters of a sigmoid function [31].
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This sigmoid function is defined as

P(y = 1|f ) = 1

1 + exp(Af + B)
, (8)

where P is the mapped probability, y is the actual categorical
label, f is the output from SVMs, and A and B are two
parameters estimated from a set of (fi, yi)s. For simplicity,
these (fi, yi)s are generated as follows:

1. Generate 10 SVMs by applying the “one against the
others” scheme on the global color and texture features of
1000 images from 10 predefined categories, where each
category contains 100 images.

2. Feed the same 1000 training images as inputs to the 10
SVMs generated in step 1 to produce 10 sets of (fi, yi)s.

The maximum likelihood estimation method [31] is then
applied on these 10 sets of (fi, yi)s to estimate 10 pairs of
(A, B)s. Consequently, 10 sigmoid functions can be gener-
ated based on these 10 estimated pairs of (A, B)s. Fig. 3
illustrates the relationship between the decision values ob-
tained from 10 SVMs and the mapping probability values
computed by using 10 sigmoid functions along with their
associated (A, B)s.

Since the 10 sigmoid functions are clumped together
as shown in Fig. 3, we decided to use one representa-
tive sigmoid function to map the output from each SVM
to the likelihood of the input image to be in each as-
sociated predefined category. To this end, we use the
average of 10 probability values as the mapping proba-
bility value for any corresponding given decision value.
A grid-searching algorithm [30] is then applied to find
the best-fit (A, B) pair by testing on linearly growing se-
quences of A = {−4, −3.95, −3.9, . . . ,−1.05, −1} and
B = {0.2, 0.22, . . . , 0.62, 0.64} where the ranges of A and
B are obtained from the 10 sigmoid functions. The pair
that gives the minimum validation error is selected as the
optimal parameters and is used consistently to map the
output of each SVM to the probability. The final represen-
tative sigmoid function with the optimal parameters, i.e.,
(A, B) = (−3, 0.28), is also shown in Fig. 3 as the thick
black line.

3.2. Global-feature-based SVMs

Inaccurate image segmentation/blocking may make the
IPs-based bag feature representation imprecise and therefore
decrease the annotation accuracy of the MIL-based SVMs
approach. Chen and Wang [25] address this issue by negat-
ing the labels of all bags and starting the search from every
instance in all negative bags. This additional reverse proce-
dure improves the annotation accuracy by around 2.2% for
the 10-category database of 1000 images. However, it takes
at least 9 times longer for the 10-category training compared
with the scheme without negation. In our proposed system,
we add global-feature-based SVMs, which require almost
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Fig. 3. Sigmoid-based probability functions by using different pairs of
(A, B)s.

no additional computational cost, to address the inaccurate
image sub-blocking issues.

In order to compensate the limitations associated with the
specific color and texture representations, we construct the
global features in a different manner as used in creating the
regional features. To this end, two MPEG-7 descriptors are
adopted in our system.

The SCD is one of the four MPEG-7 normative color de-
scriptors [32]. It uses the HSV color histograms to represent
an image since the HSV color space provides an intuitive
representation of color and approximates human’s percep-
tion. We directly adopt the 128-bin SCD in our system.

The EHD is one of the three normative texture descriptors
used in MPEG-7 [32]. It captures the spatial distribution of
edges in an image. Five types of edges, namely, vertical, hor-
izontal, 45◦ diagonal, 135◦ diagonal, and non-directional,
have been used to represent the edge orientation in 16 non-
overlapping sub-images. The normative EHD is therefore a
total of 5×16 histogram bins, which represent the local edge
distribution for each sub-image. Based on the EHD, we con-
struct a gEHD (global EHD) to partially address the rotation,
scaling, and translation related issues. This gEHD represents
the edge distribution of the entire image and therefore has
five bins. So the total length of our global features is 133,
i.e., 128-bin SCD and 5-bin gEHD. This length is similar to
the length of our MIL-based bag features.

After the global features of all the training images are
obtained, they are fed into another set of SVMs to find
optimum hyperplanes to distinguish one category from the
others. This set of SVMs is designed by the same approaches
used in the MIL-based SVMs.

3.3. Fusion approach

The fusion approach combines the outputs from the MIL-
based and global-feature-based SVMs to obtain the final
annotation results. For each test image, two sets of image
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features are constructed and sent to the corresponding
SVMs. The probability values computed from the MIL-
based SVMs and the global-feature-based SVMs are further
combined to obtain the final probability vector �p,

�p = �w ∗ �pm + (1 − �w) ∗ �pg , (9)

where �pm is the probability vector obtained from the MIL-
based SVMs, �pg is the probability vector obtained from the
global-feature-based SVMs, ∗ denotes the inner product op-
eration, and �w determines the contribution from the MIL-
based SVMs and is automatically estimated by applying the
likelihood normalization method [33], which is adapted to fit
our annotation system. The length of all these vectors equals
the number of predefined categories. Specifically, each ele-
ment in �pm and �pg indicates the probability of a test image to
be classified as each corresponding category by using MIL-
based and global-feature-based SVMs, respectively. Each el-
ement in �w indicates the category-based contribution from
the MIL-based SVMs. As a result, each element in �p indi-
cates the final probability of a test image to be classified as
each corresponding category.

In our proposed system, we independently estimate the
weights contributed from the MIL-based and global-feature-
based SVMs. Two matrices, namely the MIL-based like-
lihood matrix Lm and the global-feature-based likelihood
matrix Lg , are first created by testing the same training im-
ages on the corresponding sets of SVMs. The size of both
matrices is N ×K , where N is the number of testing images
and K is the number of predefined categories. Each value
Lm(n, c) indicates the probability of image n to be classi-
fied as category c by using the MIL-based SVMs. Similarly,
each value Lg(n, c) indicates the probability of image n to
be classified as category c by using the global-feature-based
SVMs. The MIL-based weight vector �wm and the global-
feature-based weight vector �wg are then computed as

�wm = [wm,1, wm,2, wm,3, . . . , wm,K−1, wm,K ],
�wg = [wg,1, wg,2, wg,3, . . . , wg,K−1, wg,K ], (10)

where wm,k and wg,k , k = 1, 2, . . . , K, are the normal-
ized output likelihood for category k by using MIL-based
and global-feature-based SVMs, respectively. They are com-
puted as

wm,k = (1/NK)
∑N

n=1
∑K

c=1Lm(n, c)

(1/N)
∑N

n=1Lm(n, k)
,

wg,k = (1/NK)
∑N

n=1
∑K

c=1Lg(n, c)

(1/N)
∑N

n=1Lg(n, k)
, (11)

where each denominator is the average of likelihood ob-
tained from the respective SVMs for category k, and each
numerator is the average likelihood over all K categories for
the respective SVMs. That is, the output likelihood for ev-
ery category is normalized in accordance with the average
of the probability values calculated over all testing images.

Once both �wm and �wg are estimated, the final weight
vector �w in Eq. (9) can be obtained by

�w = �wm/( �wm + �wg), (12)

where / denotes the element-wise division operation.

4. Experimental results

We have tested our annotation algorithm on 120 categories
from the COREL database. Each category has 100 images.
The 60 categories, which have distinct semantic topics such
as Horse, Beach, and the like, are further selected. The im-
ages from the remaining categories form a more difficult set
as the content of each category is not distinct, such as Eng-
land, Japan, and so on. To correctly evaluate the annotation
performance on these difficult categories, manual adjustment
is necessary. Therefore, we only report the performance on
the 60 categories that have distinct semantic topics.

4.1. Evaluation of image sub-blocking scheme

To evaluate the effect of image sub-blocking, a total of
16 alternative sub-blocking schemes are studied. The block
representations of these schemes are shown in Fig. 4. Basi-
cally, we evenly divide an image into nine non-overlapping
blocks as shown in Scheme 7 of Fig. 4. As the main ob-
jects are usually located around the middle of the image, the
center block 5 is shifted to the left, right, up, or down by a
half block to accommodate the possible shifts of the main
objects (refer to S3.2 and S3.3 of Fig. 4). In addition, three
horizontal groupings ({1, 2, 3}, {4, 5, 6}, {7, 8, 9}) and three
vertical groupings ({1, 4, 7}, {2, 5, 8}, {3, 6, 9}) are consid-
ered for the possible wide or tall objects and their shifts
(refer to scheme 1 and scheme 2 of Fig. 4). Finally, 16 dif-
ferent sub-blocking schemes are obtained by the different
combinations of the above blocks.

These 16 alternative sub-blocking schemes together with
our proposed sub-blocking scheme (shown in Fig. 1) are
tested on the first 10 categories including African People
and Villages, Beach, Historical Buildings, Buses, Dinosaurs,
Elephants, Flowers, Horses, Mountains, and Food. For each
category, 50 images are randomly selected as training im-
ages for the MIL-based SVMs and the remaining 50 images
are used as test images. We repeat the above procedure 5
times and calculate the average annotation accuracy, which
is shown in Fig. 5 by the diamonds connected via a blue line.
It is clearly observed that the annotation accuracy increases
in general as the number of blocks increases. The highest
annotation accuracy is yielded when the number of blocks
is the maximum (i.e., scheme 16 with 19 blocks). Specifi-
cally, the annotation accuracy obtained from the MIL-based
SVMs increases from 75.1 to 84.3% when the number of
blocks increases from 3 to 19. Our proposed sub-blocking
scheme achieves an annotation accuracy of 82.1%, which
differs from the highest accuracy by 2.2%.
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Fig. 4. A total of 16 alternative sub-blocking schemes.
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The average annotation accuracy of our proposed system,
which combines both MIL-based and global-feature-based
SVMs, is shown in Fig. 5 as the squares connected by a
purple line. Two observations can be easily made:

• The addition of the global-feature-based SVMs con-
sistently improves the performance of the MIL-based
SVMs. In specific, it, respectively, improves the
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Fig. 6. Average training time for different sub-blocking schemes.

annotation accuracy from 82.1 to 88.8% and from 84.3 to
88.9% for our proposed sub-blocking scheme and scheme
16.

• The addition of the global-feature-based SVMs stabilizes
the annotation fluctuations associated with MIL-based
SVMs, which are mainly caused by the inaccurate image
sub-blocking. That is, the difference between the highest
and lowest annotation accuracy is 4.1% and 9.2% for our
proposed fusion approach and the MIL-based approach,
respectively.

Consequently, we experimentally prove that our fusion ap-
proach not only improves the overall annotation accuracy but
also partially addresses the inaccurate sub-blocking issues.

Fig. 6 shows the average time for training one binary MIL-
based SVM using different sub-blocking schemes, where
the time is measured in minutes on a Pentium IV 3.06 GHz
PC running the Windows XP professional edition and
Matlab 7.0. It clearly shows that the training time increases
in general as the number of blocks increases. In specific, the
longest versus the shortest training time is 5.44 against 0.92.
However, the corresponding annotation accuracy is 88.9%
and 85.8%. Compared with these two extreme sub-blocking
schemes, our proposed scheme takes about 1.62 min in
training and yields 88.8% accuracy in annotation. The rela-
tively short training time and comparable accuracy validates
our chosen scheme as the best compromise in terms of
efficiency and accuracy for a large-size image database.

4.2. Annotation results

To measure the effectiveness of our annotation system,
the training procedure mentioned in Section 4.1 is repeated
on 6000 images from the COREL database. Specifically,
Table 1 shows the average annotation results of images from
the first 10 categories, which have distinct semantics and
have been widely used in the peer retrieval or annotation sys-
tems. This experiment demonstrates the following: (1) The
overall annotation accuracy is 88.8%. (2) The accuracy of
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Table 1
The confusion matrix of the proposed annotation system, where each row lists the average percentage of the images in one category classified into each
of the 10 categories

Africa Beach Building Buses Dinosaur Elephant Flower Horse Mountain Food

Africa 0.808 0.012 0.04 0.012 0.012 0.068 0 0.008 0.012 0.028
Beach 0.024 0.772 0.028 0.024 0.004 0.012 0.004 0.008 0.112 0.012
Building 0.048 0.048 0.804 0.012 0.004 0.024 0.012 0 0.02 0.028
Buses 0 0 0 0.996 0 0 0 0 0 0.004
Dinosaur 0 0 0 0 1 0 0 0 0 0
Elephant 0.012 0 0.008 0 0 0.916 0 0.024 0.02 0.02
Flower 0.004 0 0 0 0 0 0.98 0.012 0 0.004
Horse 0 0.016 0 0 0 0 0 0.984 0 0
Mountain 0.004 0.156 0.044 0.012 0 0.036 0.008 0.004 0.732 0.004
Food 0.028 0.008 0.004 0.004 0.04 0 0.016 0.004 0.012 0.884

Numbers on the diagonal show the categorization accuracy for each category. The off-diagonal numbers indicate the classification errors.

Beach 1 Beach 2 Beach 3

Beach 6Beach 5Beach 4

Mountain 1 Mountain 2 Mountain 3

Mountain 6Mountain 5Mountain 4

Fig. 7. Sample images from Beach and Mountain categories, where all
listed beach images are misclassified as mountain and vice versa.

4 categories, namely Buses, Dinosaur, Flower, and Horse,
is equal or close to 100%. (3) Eight categories achieve an
average annotation accuracy of above 80.4% with the ex-
ception of Beach and Mountain categories, whose average
annotation accuracy is about 75%. In these two categories,
11.2% of Beach is misclassified as Mountain and 15.6%
of Mountain is misclassified as Beach. This misclassifica-
tion is mainly caused by the fact that Beach and Mountain
categories are semantically similar, i.e., most mountain and
beach images have blue sky and similar textures. Moreover,
some beach images may contain mountain and some moun-
tain images may contain beach as well. Fig. 7 further illus-
trates the above observations using the misclassified beach
and mountain images.

Table 2
Comparisons of three systems

Accuracy (%) Feature length Training time

HistSVM 79.8 4096 ∼1
DD-SVM 81.5 ∼150 ∼15
Proposed 88.8 ∼200 ∼1.5

The proposed system is also compared with the DD-SVM
system [25] and our implemented HistSVM system [5] using
images from the first 10 categories. Table 2 summarizes the
performance of these three systems in terms of the overall
average annotation accuracy, the estimated feature length,
and the approximate average training time in minutes for
one binary SVM. It clearly shows that our proposed system
performs the best. It outperforms the HistSVM system by
11.28% in the overall accuracy. In addition, its feature length
is about 20 times shorter than that of HistSVM. Our system
also improves the accuracy by 8.96% over the DD-SVM
system, which is about 10 times slower than our system for
the case of 10 categories as discussed in Section 3.2.

The average annotation accuracy for each of the first 10
predefined categories by using the above three systems is
further plotted in Fig. 8. It clearly illustrates that the pro-
posed system achieves the best average accuracy in all cate-
gories except category 1, where HistSVM performs the best.
This is mainly due to the distinct colors of the most images
(e.g., African People and Villages) in category 1, which make
the color-based systems, such as the HistSVM system, more
effective.

To validate the proposed automatic weight estimation
method and the proposed fusion approach, the overall aver-
age annotation accuracy for the first 10 categories obtained
by assigning different weights to the global-feature-based
and MIL-based SVMs is plotted in Fig. 9, where G and
M , respectively, represent global and MIL weights. For
simplicity, it is assumed that each category contributes
the same to each element in any given global-feature-
based weight vector �wg and MIL-based weight vector �wm.
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Fig. 9. Average annotation accuracy by assigning different weights to
global and regional features.

That is, the two weight vectors will be �wg=[0.2, 0.2, . . ., 0.2]
and �wm = [0.8, 0.8, . . . , 0.8] if G : M = 2 : 8. Under
this simplification, the system achieves the best annota-
tion accuracy of 88.7% when G : M = 6 : 4 as shown in
Fig. 9. This accuracy is 0.1% less than the accuracy yielded
from the proposed automatic weight estimation method,
which approximates the actual contribution from each cat-
egory based on the normalized likelihood. As a result, the
effectiveness of the proposed automatic weight estimation
method is experimentally confirmed. It is also observed
from Fig. 9 that either our global-feature-based SVMs
system (i.e., G : M = 10 : 0) or our MIL-based SVMs
system (i.e., G : M = 0 : 10) alone achieves the respective
average accuracy of 85.8% or 82.1%, which is better than
both DD-SVM and HistSVM systems. Moreover, it clearly
shows the efficacy of the fusion approach as it improves
the global-feature-based and MIL-based SVMs systems by
3.5% and 8.2%, respectively.

4.3. Sensitivity to the number of categories

The scalability of the method is tested by performing
image annotation experiments over data sets with different
number of categories. Two experiments are performed.
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Fig. 10. Comparison of the two methods on the robustness to the number
of categories.

In the first experiment, a total of 11 data sets are created.
The number of categories in a data set varies from 10 to
20. These data sets are arranged in the same manner as in
Ref. [25] for fair comparisons. That is, the first 10 categories
used in our previous experiments form the first data set; the
first 11 categories, including the first 10 categories plus the
Dog category, form the second data set; etc. The overall
average annotation accuracy and the 95% confidence inter-
vals of our system and the DD-SVM system are shown in
Fig. 10 by running both systems 5 times on each data set.
We observe a decrease in average annotation accuracy in
both systems as the number of categories increases. In spe-
cific, when the number of categories doubles (i.e., increases
from 10 to 20 categories), the decrease in average annota-
tion accuracy of our proposed system versus the DD-SVM
system is from 88.8 to 74.8% against from 81.5 to 67.5%,
respectively. However, our method consistently outperforms
the DD-SVM method in all the 11 data sets by 8.9%, 10.0%,
14.1%, 12.6%, 13.4%, 14.1%, 13.7%, 15.1%, 12.5%, 9.4%,
and 10.8%, respectively. Since the accuracy improvement
from the second to the eleventh data set is always higher
than the improvement from the first data set containing the
least number of categories, the proposed system is certainly
less sensitive to the increasing category numbers.

In the second experiment, the proposed block-based fu-
sion approach is compared with the segmentation-based
fusion approach. For the latter one, an image is first seg-
mented into homogeneous regions by applying the unsuper-
vised k-means algorithm on colors. The image bag features
are extracted in the same manner as our block-based MIL
method. The same fusion approach is also applied to ensure
fair comparisons. Fig. 11 shows the overall average annota-
tion accuracy of both block-based and segmentation-based
fusion approaches upon the 11 data sets used in the first
experiment. It clearly shows that our block-based approach
achieves a little bit better accuracy than the segmentation-
based approach in all 11 data sets. Furthermore, it takes
almost no time for our block-based approach to divide an
image into 5 blocks when comparing with the time spent in
segmentation. The training time for both block-based and
segmentation-based systems is comparable due to the fact
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Fig. 12. Comparisons of the average annotation accuracy of three methods
on different number of categories.

that the average number of regions obtained from image
segmentation (i.e., 4.4) is similar to the number of blocks
obtained from the proposed sub-blocking scheme (i.e., 5).
Our proposed block-based fusion approach is therefore em-
pirically validated in terms of both accuracy and efficiency.

To further verify the robustness of the proposed system,
six additional data sets are created where the number of
categories in a data set varies from 10 to 60 with a step
size of 10 (i.e., the number of categories equals to 10, 20,
30, 40, 50, 60). Fig. 12 plots the overall average annota-
tion accuracy of the proposed system, global-feature-based
SVMs system (Global), and MIL-based SVMs system (MIL)
for each of the six data sets. The expected decrease in av-
erage accuracy is clearly observed. In particular, average
accuracy drops from 88.8 to 65.7% when the number of
categories increases from 10 to 60. This reasonable accuracy
decrease indicates the scalability and robustness of the pro-
posed system. Fig. 12 also demonstrates the validity of the
fusion approach as it consistently improves the MIL-based
and global-based systems. For instance, the fusion approach,
respectively, improves the global-based and MIL-based sys-
tems by 10.3% and 61.4% for 60 categories. Three inter-
esting observations are: (1) The average accuracy of both
fusion and MIL-based approaches increases a bit when the
number of categories increases from 20 to 30. (2) The av-
erage accuracy of the MIL-based approach drastically de-
creases when the number of categories increases from 30 to

40. (3) The average accuracy of the global-based approach
stays very stable as the number of categories increases. The
first two “abnormal” observations are mainly caused by the
fact that images in categories 21–30 are more distinct and
the possibility for image blocks from two categories to be
similar is greatly increased for a large-size image database.
However, the last observation demonstrates the effectiveness
of the extracted global features.

4.4. Sensitivity to the diversity of training images

To test the performance of the proposed system as the
diversity of training images varies, we created four data
sets, each containing 1000 images from 10 categories.
Among these four data sets, one consists of distinct cate-
gories, including Antique, Bus, Dinosaur, Fashion, Flower,
Food, Horse, Owls, Snow-mountain, and Sunset; one is
composed of similar semantics, including Beach, Building,
Snow-mountain, Ski, Waterfall, Subsea, Space, Minerals,
Firework, and Sunset; the other two data sets are the combi-
nations of the first two data sets, i.e., 5 out of 10 categories
have distinct semantics and the remaining 5 categories have
similar semantics. Specifically, two groups of similar cate-
gories are separately generated for the third and fourth data
set. The first group consists of images from Beach, Build-
ing, Snow-mountain, Ski, and Waterfall, where both beach
and building images contain blue sky; both mountain and
ski images contain snow; all mountain and ski images and
some beach and waterfall images contain mountain; and
both beach and waterfall images contain water. The second
group consists of images from Subsea, Space, Minerals,
Firework, and Sunset, where subsea, space, and minerals
images have very dark background with some objects of
different shape or color in the center; firework and sunset
images have some bright color scattered in the dark back-
ground. Some sample images from these 18 categories are
shown in Fig. 13.

The overall annotation accuracy by applying the proposed
system on the above four data sets is summarized in Table 3.
As expected, the proposed system achieves a high annotation
accuracy of 93.5% for the first data set with distinct cate-
gories. A relatively low annotation accuracy (i.e., 74.4%) is
yielded for the second data set with similar categories. Com-
parable annotation accuracy (i.e., 81.6% vs. 85.8%) is ob-
tained for the two data sets with the combination of similar
and dissimilar categories. This experimental result clearly
demonstrates the robustness of the proposed system to the
diversity of training images.

4.5. Speed

The proposed annotation system has been implemented
using Matlab 7.0 on a Pentium IV 3.06 GHz PC running
Windows XP operating system. Training one binary MIL-
based SVM using 500 images takes about 1.5 min as shown
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Category 1: Bus

Category 3: Fashion

Category 5: Food

Category 7: Owl

Category 9: Building

Category 11: Snow-mountain

Category 13: Firework

Category 15: Space

Category 17: Sunset

Category 2: Dinosaur

Category 0: Antique

Category 4: Flower

Category 6: Horse

Category 10: Ski

Category 8: Beach

Category12: Waterfall

Category 14: Mineral

Category 16: Subsea

Fig. 13. Sample images from 18 categories with similar and dissimilar semantics.
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Table 3
Average accuracy of the proposed system on diverse data sets

Data set Accuracy (%)

Distinct categories 93.5
Similar categories 74.7
Combination1 81.6
Combination2 85.8

in Table 2. However, most time is spent on searching the hy-
potheses with the maximum DD values, which can be easily
reduced to at least one-twentieth if the searching algorithm
is implemented by C language. In general, the training time
linearly increases with the number of training images since
each image contains 5 blocks. Training the global-feature-
based SVMs takes almost no extra time when comparing
with the MIL-based SVM training.

The time complexities of other non-training related oper-
ations are summarized below:

• Sub-blocking images takes O(C ∗ N) with N being the
number of images in the database and C being the number
of blocks for each image.

• Calculating the block-based color features takes O(C ∗
N ∗ d1) with d1 being the dimensionality of the block-
based color feature.

• Calculating the block-based texture features takes O(N ∗
Row ∗ Col) with Row and Col being the dimensionality
of the image itself.

• Calculating the global color features takes O(N∗d2) with
d2 being the dimensionality of the global color feature.

• Calculating the global edge features takes O(N ∗ e) with
e being the total number of edge types.

• Sorting the annotation results for one testing image takes
O(Cat∗log Cat) with Cat being the number of categories
to be annotated.

For the COREL database, we have N =6000, C =5, d1=6,
d2 = 128, e = 5, and Cat = 60.

5. Conclusions

In this paper, we present an efficient and effective auto-
matic image annotation system, which combines MIL-based
SVMs and global-feature-based SVMs. The main contribu-
tions are:

• Using novel block-based features, instead of the expensive
segmentation-based features, for MIL.

• Employing more robust DD definition in MIL.
• Applying a faster search algorithm (i.e., a simplex search

method) to speed up the process of finding the maximum
DD values.

• Combining the IPs-based bag features with SVMs to ap-
proximately represent all possible objects of interest.

• Integrating the global-feature-based SVMs with the MIL-
based SVMs to address the inaccurate image sub-blocking
related issues.

• Proposing a novel and fast automatic weight estimation
method, which applies the likelihood normalization for
weight optimization.

• Constructing the global and block features in a different
manner to compensate the limitations associated with the
specific color and texture representations.

• Using multi-category SVMs to classify images by a set
of probability values for each category.

The proposed system has been validated by testing 6000
general-purpose images with 60 semantically distinct cat-
egories. The experimental results indicate that our system
outperforms peer systems (e.g., the DD-SVM system and
the HistSVM system) in the literature in terms of accuracy,
efficiency, robustness, and scalability.

The proposed system can be easily integrated into the
image retrieval system, where both annotated keywords and
the query image(s) can be combined as the query.
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