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Abstract

This article presents a new system for automatically constructing and training radial basis function networks based on original

evolutionary computing methods. This system, called Genetic Algorithm Radial Basis Function Networks (GARBFN), is based on two

cooperating genetic algorithms. The first algorithm uses a new binary coding, called basic architecture coding, to get the neural

architecture that best solves the problem. The second, which uses real coding, takes its inspiration from mathematical morphology theory

and trains the architectures output by the binary genetic algorithm. This system has been applied to a laboratory problem and to breast

cancer diagnosis. The results of these evaluations show that the overall performance of GARBFN is better than other related

approaches, whether or not they are based on evolutionary techniques.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

One of the main fields of artificial intelligence research is
the development of self-adaptive systems capable of
transforming to solve different problem types [17]. On
account of their pattern-based learning, data generalization
and noise filtering capabilities [18,23], neural networks are
commonly used within artificial intelligence to perform
real-world tasks.

Radial basis function networks (RBFN) are a type of
network that is very useful for pattern classification
problems [27]. This is because, unlike the multilayer
perceptron (MLP) [23] whose output is generated by the
action of all the neurons in the network weighted by the
weights of its connections, the output of a RBFN is mainly
influenced by the hidden layer neuron, whose centre is
closer to the input pattern. Therefore, RBFNs are
local approximators, whereas MLPs are global approxi-
mators [13].
e front matter r 2005 Elsevier B.V. All rights reserved.
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The benefits of using a RBFN are: (i) local data
approximation uses few hidden units for any input; (ii)
the hidden and output layer parameters can be trained
separately using a hybrid algorithm, and (iii) only one,
non-linear, hidden layer is used, whereas the output is
linear. As only one hidden layer is used, they converge
faster than a MLP with several hidden layers [27].
Despite the advantages of RBFNs, the design of an

optimal architecture to solve a particular problem is far
from being a straightforward matter [15]. Additionally,
RBFNs trained according conventional gradient descent
methods have been shown to be more likely to get trapped
in local optima, and they are, therefore, less accurate than
when applied to MLPs [4]. This is because, as far as
RBFNs are concerned, apart from finding a set of weights
for connections that best solve the problem, the centres of
the radial basis functions of the hidden layer neurons have
to be searched.
Several research papers have, therefore, focused on

designing new approaches based on different search
and optimization techniques to choose the best neural
architecture to solve a given problem and to speed up
the training process. Some of these studies deal with the
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so-called incremental algorithms [26], which start from a
predefined neural architecture and then dynamically add
and remove neural connections during the training process.
The performance of these algorithms is low and they tend
to converge prematurely depending on the original
architecture chosen. They cannot, therefore, guarantee a
good solution [22].

To surmount the problem of trapping in local optima
and improve the accuracy of the results of applying
gradient backpropagation to RBFN, research has been
conducted aimed at building hybrid training algorithms [7].
These algorithms combine an unsupervised search of the
hidden layer neuron centres using clustering algorithms,
such as k-means, or improved versions, like moving
k-means, with gradient backpropagation to get the
weights of the connections [19]. However, these approaches
are still beset by the very same weakness of local optima
trapping, because they use derivatives-based optimization
methods.

Other more promising studies originate from the
identification of synergies between evolutionary algorithms
and artificial neural networks that can be combined in
various ways. These include works related to the genetic
adaptation of the internal structure of the network
[3,16,25]. Genetic algorithms have also been used to
partially replace the network learning method, first
applying genetic algorithms to accomplish global search
until a point near the solution is reached and then running
a local search with classical gradient descent methods to get
the optimum solution [5,27]. Other numerical approaches,
like regularized orthogonal least squares can also be used
[6] instead of gradient descent methods. The snag with all
these approaches is that it is not known what is the best
time to switch from global to local search.

For any chosen evolutionary optimization approach, the
way in which the neural networks that make up the search
space are encoded is a crucial step in automatic network
design [14]. Therefore, several approaches have been
developed to produce efficient codifications of artificial
neural networks, and specifically RBFNs. The first of these
is the direct binary encoding of network configuration [10],
where each bit determines the presence or absence of a
single connection. There are two major problems with this
approach. First, convergence performance is degraded as
the number of neurons in the hidden layer increases
because the search space is much larger. Second, direct
encoding methods cannot prevent illegal points in the
search space (architectures that are not permitted for a
RBFN). At the other end of the scale from the direct
encoding methods are other approaches to RBFN codifica-
tion, where there is no direct correspondence between each
bit of the string and each connection of the neural
architecture. These are called indirect encoding methods,
of which the graph generation system is the method for
which the best results have been reported [16]. This
approach is based on the binary codification of grammars
that describe the architecture of the network and prevent
the codification of illegal neural architectures. The problem
here is that a one-bit variation in a string results in a totally
different network. This degrades the convergence process
of the genetic algorithm that uses this codification.
Training RBFNs can be seen as an optimization

problem, where the mean square error has to be minimized
by adjusting the values of the weights of the connections
and the centres of the neurons in the hidden layer.
Evolutionary algorithms are therefore a suitable option
for dealing with this problem. Michalewicz states that if a
problem is real-valued in nature, then a real number
genetic algorithm is faster and more precise than a binary
encoded genetic algorithm [20]. Therefore, genetic algo-
rithms using real number codification to represent the
weights of the neural network can be expected to yield the
best results. There is a variety of techniques for handling
real-coded genetic algorithms. Radcliffe’s flat crossover
chooses parameters for an offspring by uniformly picking
parameter values from (inclusively) the two parents’
parameter values [24]. BLX-a was then proposed [11] to
work around the premature convergence problems of this
operator. BLX-a uniformly picks values that lie between
two points that contain the two parents and may extend
equally on either side of the interval defined by the parents.
This new method, however, is very slow at approximating
to the optimum because the extension of the interval
defined by the parents is determined by a static, user-
specified parameter a set at the start of the run. Another
important crossover technique for real-coded genetic
algorithms is UNDX [21], which can optimize functions
by generating offspring using the normal distribution
defined by three parents. The problem here is the high
computational cost required to calculate the normal
distribution. Other research combines statistical methods,
pruning and real-coded genetic algorithms [13], although
the problem is, again, the computational cost of calculating
the Bayesian regularization on which this algorithm is
based.
This paper presents a new evolutionary system, called

Genetic Algorithm Radial Basis Function Networks
(GARBFN), which automatically designs and trains
RBFNs to solve a given problem stated as a set of training
patterns. The work presented here is the basis for
automatically building RBFN-based self-adaptive intelli-
gent systems. GARBFN consists of a binary-coded genetic
algorithm that searches for neural architectures in combi-
nation with a hybrid training method that employs a k-
mean clustering algorithm to ascertain the centres of the
neurons in the hidden layer, and a real-coded genetic
algorithm rather than any of the other conventional
methods to adjust the weights of the connections.
The binary-coded genetic algorithm employs the basic

architectures codification method [3], which has been
adapted to work on radial basis function architectures. A
specialized binary crossover operator—the RBFN cross-
over (RBFN-X)—has also been designed to work with the
proposed codification method. This operator outperforms
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other conventional binary crossover operators in searching
for radial basis function architectures.

The real-coded genetic algorithm is an extension and
adaptation of RBFNs from the Mathematical Morphology
Crossover Operator (MMX) [2]. It employs a specific
crossover operation (known as real crossover operator)
that is based on mathematical morphology theory [8,9] and
typically works for image processing. Specifically, this
operator is based on the morphological gradient, adapted
to give a measure of genetic diversity. This feature allows
the genetic algorithm to dynamically focus or generalize
the search for the optimum, thereby achieving balanced
exploitation and exploration capabilities that make trap-
ping in local optima less likely, while getting a high
convergence speed.

Experimental lab tests have been run on the basic
architectures codification method applied to RBFN, work-
ing together with the RBFN crossover. Results are
compared to other codification methods and binary cross-
over operators, showing that performance is better for the
proposed approach. Another battery of tests were chosen
to show that the real crossover operator is able to train
faster converging RBFNs that are less likely to get trapped
in local optima than other related crossover operators and
the gradient descent method.

Both designs, binary and real-coded genetic algorithms,
were deployed to work together as a system that
automatically constructs self-adaptive intelligent systems
with RBFNs from a set of training patterns. This system
has been successfully applied to a real-world problem:
breast cancer diagnosis, consisting on analysing suspicious
masses and microcalcifications in breast tissue suspected of
being carcinomas. The training and test patterns have been
extracted from a database of real patients stored at a
Madrid hospital.
1.1. Radial basis function networks: theoretical background

A RBFN [12] is composed of three connected layers that
do not necessarily have to be but generally are fully
connected. The first layer does not process the input data at
all, it just sends them to the hidden layer. These data are
mapped non-linearly by a radial basis function in the
hidden layer. Finally, the data are sent to the output layer
through weighted connections. The H neurons of this layer
have a linear threshold activation function that provides
the network output as follows:

yi ¼
XH

j¼0

wij � jjðxÞ for
wi0 ¼ yi;

j0ðxÞ ¼ �1;

(

W11 W21 ... WO1 W12 W22 ... WO2 ...

Fig. 1. Genotype of the individuals in
where yi is the threshold for i, wij is the connection weight
between the hidden neuron j and the output neuron i and
jj(x) is the radial basis function applied at neuron j of the
hidden layer to input x.
Although there are several radial basis functions, the

Gaussian function provides the best results for pattern
classification [25]:

jðrÞ ¼ exp �
r2

2s2

� �
for some s40 and r 2 <,

where s is the standard deviation, which represents how
wide the function j(x) is, and r ¼ kx2ck, with J � J denotes
a generally Euclidean norm, in which x is the network
input variable and c is the centre (mean) of the Gaussian
function.
2. Training radial basis function networks with genetic

algorithms

First, the k-means clustering algorithm is employed to
find the centres of the neurons in the hidden layer. Then, a
specifically designed genetic system to employ real number
encoding is used to train the RBFN. The individuals
(chromosomes) of the population are strings of real
numbers that represent the weights of the connections
between the hidden and output layers, and their respective
thresholds. Given a fully connected RBFN with H neurons
in the hidden layer and O neurons in the output layer, the
chromosome contains, first, the weights of the connections
between these two layers and, second, the thresholds of the
output neurons. Fig. 1 shows an individual in the
population with the meaning of each of its genes: Wij,
i ¼ 1; . . . ;O; j ¼ 1; . . . ;H represents the weight of the
connection between the jth neuron of the hidden layer
and the ith neuron of the output layer and y1; y2; . . . ; yO are
the thresholds of the output neurons.
The genetic algorithm that uses this code employs the

roulette-wheel method as the selection algorithm. Mutation
involves replacing one of the individual’s genes chosen at
random by another real number that is also picked at
random. The new individuals of the offspring engendered
by the crossover operator replace the worst individuals of
the population (a particular implementation of the ready-
state genetic algorithm). This algorithm applies the real

crossover operator, especially designed for real-number
encoding to train the radial basis networks. So, the goal of
the real-coded genetic algorithm is to find a combination of
weights and thresholds (an individual) that minimizes the
mean square error for the set of training patterns.
W1H W2H ... WOH θ 1 θ 2 ... θ O

the real-coded genetic algorithm.
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2.1. The real crossover operator

Let D< be a point in the search space, which is
represented by the string s ¼ ða0; a1; . . . ; al�1Þ, where
ai 2 <. The real crossover operator works on each of the
parents’ genes independently to get the respective gene for
the two descendants. To do the crossover, an odd number n

of strings are taken from the population. These form the
progenitor matrix X, of dimensions n by l, where l is the
chromosome length. X is defined as

X ¼

a10 a11 � � � a1l�1

a20 a21 � � � a2l�1

..

. ..
. . .

. ..
.

an0 an1 � � � anl�1

0
BBBB@

1
CCCCA;

where ðai0; ai1; . . . ; ai;l�1Þ ¼ si; for i ¼ 1; . . . ; n.
Each of the columns f i ¼ ða1i; a2i; . . . ; aniÞ of matrix X is

processed to get genes oi and o0i. So, the two descendants
engendered from the application of this operator are o ¼

ðo0; o1; . . . ; ol�1Þ and o0 ¼ ðo00; o
0
1; . . . ; o

0
l�1Þ, where o and

o0 2 D<. The calculation of these two descendants is a
three-step process:
1.
 Calculate the genetic diversity gi, for each gene ai:
The morphological gradient operator, gb(fi): Dfi ! <, is
applied to each vector (column) f i; i ¼ 0; 1; . . . ; l21,
with a structuring element b: Db ! <, defined as
bðxÞ ¼ 0, 8x 2 Db, Db ¼ f�Eðn=2Þ;�Eðn=2Þ21; . . . ;
0; . . . ;Eðn=2Þg, and E(x) being the integer part of x.
With these premises, gi is calculated as: gi ¼

gbðfiÞðEðn=2Þ þ 1Þi 2 f0; 1; ; l21g. So, the genetic diver-
sity of the ith gene is the value of the morphological
gradient applied to the component located in the centre
of the column vector fi of the progenitor matrix.
The results yielded by the morphological gradient have
been reinterpreted from its usual application to digita-
lized images. In this case, it provides a measure of
‘‘similarity’’ among the components of vector fi. If these
components are similar, then gi is near to zero. On the
other hand, if this value is higher (the maximum value is
one), the components of fi are scattered. As the
individuals within matrix X are chosen from the actual
population, fi can be considered as a sample of the
values for the ith gene in the population. Therefore, gi is
taken to be a measure of the heterogeneity of the ith
gene in the population. If this value is high, then the
population is scattered, and more exploration capabil-
ities are needed to find the solution. If gi is near to zero,
then this gene is converging, and more exploration
capabilities may be needed to make trapping in local
optima less likely. The morphological gradient is
interpreted as an on-line measure of the genetic diversity
of the population at very low computational cost.
2.
 Calculate the crossover interval:
Let j be a function defined in the range [0,1] as j:
< ! <. Let gimax be the maximum gene, defined as
gimax ¼ maxðf iÞ2jðgiÞ. And let gimin be the minimum
gene, defined as gi min ¼ minðf iÞ þ jðgiÞ. The maximum
and minimum genes determine the bounds of the
crossover interval: Ci ¼ ½gi min; gimax�, from which the ith
genes oi and o0i will be taken in step 3. The function j
dynamically (at genetic algorithm runtime) controls the
range of the crossover interval Ci, depending on the
genetic diversity gi. This function is designed to reduce
the range of the crossover interval with respect to the
reference values min(fi) and max(fi) when the individuals
to be crossed are diverse (for high values of gi). This
way, the genetic algorithm focuses the search for the
optimum within the crossover interval, speeding up this
process.
On the other hand, the range of the crossover interval is
wider than the reference interval [min(fi), max(fi)] when
genetic diversity falls, because the genetic algorithm is
converging. Therefore, the ith genes of the offspring oi

and o0i could fall outside the reference interval. This
way, the reference interval can be fully explored, making
trapping in local optima less likely.
The function j is defined as two straight-line equations
according to four parameters a, b, c and d:

gi
c
¼

jðgi Þ�a

b�a
; if gipc;

gi�c

1�c
¼

jðgi Þ

d
; if gi4c;

equivalent to :

8<
: jðgiÞ ¼

ðb�aÞ�gi
c
þ a; if gipc;

d�gi�c�d

1�c
; if gi4c:

8<
:

Parameters a, b, c and d define the behaviour of
function j and, therefore, depend on the problem type.
However, a binary genetic algorithm was used to find
the best values for these parameters to achieve the
highest convergence speed, while making trapping in
local optima less likely, for the actual task of training
radial basis networks to solve some benchmark tests.
The best results were achieved for a ¼ 20:001,
b ¼ 20:133, c ¼ 0:54 and d ¼ 0:226. Consequently, the
analytical expression for function j is as follows:

jðgiÞ ¼
�ð0:25 � giÞ � 0:001 if gip0:54;

ð0:5 � giÞ � 0:265 if gi40:54:

(

This function does only one multiplication per gene.
The crossover operator is, therefore, very efficient, as it
only needs l multiplications to generate two new
descendants (the length of the individuals).
3.
 Generate offspring:
For each crossover interval Ci calculated in the previous
step, two new descendants, o ¼ ðo0; . . . ; ol�1Þ and
o0 ¼ ðo00; . . . ; o

0
l�1Þ, are generated as follows:
�
 Each gene oi belonging to o is randomly chosen from
within Ci.

�
 o0i, belonging to o0 is calculated from oi using the

following formula:
�
 o0i ¼ minðf iÞ þmaxðf iÞ � oi.

These two new genes, oi and o0i, are symmetric with
respect to the central point of the crossover interval,
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which is a desirable rule:

oi þ o0i ¼ minðf iÞ þmaxðf iÞ ¼ gimin þ gimax.

3. Designing radial basis function networks with genetic

algorithms

The automatic design of radial basis neural architectures
is accomplished by a genetic algorithm that employs a new
binary encoding for networks like these. The goal of this
genetic algorithm is to search for the best architecture for
solving a classification problem given a set of training
patterns. The RBFN crossover operator has been specifi-
cally designed to work with this encoding. The RBFN-X is
based on the same principles as the real crossover operator,
although, this time, applied to binary encoding. Therefore,
it shares the benefits of this operator.

3.1. Encoding RBF architectures
Definition 1. A RBFN architecture is considered as a set of
input, hidden and output neurons and a set of connections
between input and hidden neurons or hidden and output
neurons. Formally, a RBFN architecture r with I input
neurons, H units in only one hidden layer and O output
neurons is defined as r � ðĪ � H̄Þ [ ðH̄ � ŌÞ, where Ī ¼

fi1; i2; . . . ; iIg denotes the set of I input neurons, H ¼

fh1; h2; . . . ; hHg is the set of H units in the hidden layer and
¯̄O ¼ fo1; o2; . . . oOg is the set of O output neurons. If
(a,b)Ar, then the neuron a is connected to the neuron b.
The Cartesian product of input and hidden neurons is
Ī � H̄, which represents the set of all possible connections
from the input layer to the hidden layer and H̄ � Ō is the
set of all connections from the hidden layer to the output.

The set of all RBF architectures with a maximum of I

input neurons, H hidden units and O output units is
denoted by RI,H,O. There is a special case, the null
architecture, defined as n ¼+, where there are no
connected neurons.
Definition 2. Of the set of RBFN architectures, we are
concerned with the valid neural networks: if there exists a
connection between an input and hidden neuron, then
there has to be a connection from this hidden neuron to
any output neuron. So, a RBFN architecture v 2 RI ;H;O

with v � ðĪ � H̄Þ [ ðH̄ � ŌÞ is called a valid RBFN, and
hence v 2 VRI ;H;O, if and only if for all ðir; hsÞ 2 Ī � H̄ \ v,
there exists op 2 Ō such that ðhs; opÞ 2 H̄ � Ō \ v and,
reciprocally, for all ðhs; opÞ 2 H̄ � Ō \ v, there exists ir 2 I

such that ðir; hsÞ 2 Ī � H̄ \ v. From this it follows that the
null architecture n 2 VRI ;H;O is also a valid RBFN
architecture.

Definition 3. Let v, v0 2 VRI ;H ;O, then the superimposition
operation between v and v0 is defined as v� v0 ¼ v [ v0.
Thanks to the above definitions, the set VRI ;H;O of valid
RBF architectures, with the superimposition operation �
(internal composition law in VRI ;H ;O), can be said to
form the algebraic structure of Abelian semi-group
with neutral element (the null radial basis architecture),
denoted as (VRI ;H;O;�). Hence, the result of the super-
imposition operation between two valid RFBN architec-
tures is another valid RFBN architecture composed
of all the neurons and connections there are in the original
two.

Definition 4. A neural network within the set of valid
RBFNs is also called basic if it is the null net or has exactly
two connections: one from an input to a hidden neuron
and the other from this hidden neuron to any output
neuron. Formally, a valid RBF architecture b 2 VRI ;H;O is
called basic radial basis function architecture, and hence,
b 2 BRI ;H;O, if and only if #b ¼ 2 or #b ¼ 0. #b denotes the
cardinal of the set b. If #b ¼ 2, then b ¼ fðir; hsÞ; ðhs; opÞg

with ðir; hsÞ 2 Ī � H̄ and ðhs; opÞ 2 H̄ � Ō. If #b ¼ 0, then
b ¼+, which is the null RBF architecture. The subset
BRI ;H ;O � VRI ;H;O, composed of all the basic RBF archi-
tectures, has the property of being able to define any valid
RBF architecture from the superimposition of these simple
structures.

Definition 5. Let v 2 VRI ;H ;O and B ¼ fb1; ; bkg � BRI ;H;O. If
v ¼ b1 � � � � � bk then B is called decomposition of v, thus
the decomposition of a given network is the set of basic
RBFNs needed to produce this network using the super-
imposition operation.

Theorem 1. 8v 2 VRI ;H ;O there exists at least one subset B ¼

fb1; ; bkg � BRI ;H ;O such that B is a decomposition of v. That

is, any valid RBF architecture is composed of the super-

imposition of elements of BRI,H,O.

Proof. Let v 2 VRI ;H ;O with v � ðĪ � H̄Þ [ ðH̄ � ŌÞ. As
shown in the definition of valid RBF architectures
(Definition 2), each pair of sets b ¼ fðir; hsÞ; ðhs; opÞg is also
a basic RBF architecture with #b ¼ 2. The decomposition
of the null RBF architecture v ¼+ is itself. Therefore, v

may be expressed as the superimposition of all basic RBF
architectures as fðir; hsÞ; ðhs; opÞg such that ðir; hsÞ 2 Ī � H̄ \

v and ðhs; opÞ 2 H̄ � Ō \ v. &

Corollary 1. If B ¼ fb1; ; bkg � BRI ;H;O and B0 ¼ fb01; ; b
0

k0 g �

BRI ;H ;O are decompositions of v 2 VRI ;H;O, then B [ B0is

another decomposition of v.

Definition 6. 8v 2 VRI ;H ;O, the decomposition M � BRI ;H ;O

is called maximum decomposition, if and only if
M ¼ B1 [ B2 [ � � � [ Bn, B1; ;Bn � BRI ;H ;O are possible
decompositions of v.
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Remark 1. According to the above definition, we find that
8v 2 VRI ;H ;O and there exists one and only one maximum
decomposition of v.
b1 → 1, 0, 0, 0 

b2 → 0, 1, 0, 0 

I H

O

b3 → 0, 0, 1, 0 

I H

O

I H
3.2. The cardinal of set of basic RBF architectures

To encode the valid RBF architectures VRI ;H ;O, the
cardinal of the set BRI ;H ;O, #BRI ;H;O, subset of VRI ;H ;O, first
needs to be calculated. If #b ¼ 2, then there are connec-
tions between the input and hidden neurons and between
the hidden neurons and the output neurons. Therefore,
there are I �H �O possible combinations. Taking into
account that the null architecture is also basic, #b ¼ 0,
the cardinal of BRI ;H;O is #BRI ;H ;O ¼ I �H �Oþ 1.
b4 → 0, 0, 0, 1 
O

Fig. 2. Binary encoding for BR2;2;1.
3.3. Binary encoding of the set of valid RBF architectures

It has been shown that any valid RBF architecture
belonging to VRI ;H ;O can be built from the set of basic
architectures BRI ;H;O that contains exactly I �H �O+1
elements. As the null architecture cannot build other valid
architectures, there are I �H �O basic RBF architectures
that can be combined to build more complex architectures.
The set of basic RBF architectures, excluding the null net is
denoted by BR ¼ fb0; . . . ; bI �H�Og. These architectures can
be combined in 2I �H �O different ways to build valid RBF
networks. It follows from the above that there exists a one-
to-one correspondence between the set of all possible
decompositions of all valid RBF architectures and the set
VRb

I ;H;O, composed of all binary strings of length I �H �O

that encode each decomposition of valid architectures.
From all these premises, it follows that the encoding of

all points in the search space VRI ;H ;O is based on the
codification of all basic RBF architectures BRI ;H ;O ¼

fb0; b1; b2; . . . ; bi; . . . ; bI �H �Og, with binary strings of length
I �H �O bits. Table 1 shows the correspondence table
between binary strings and basic RBF architectures.

The elements b1; b2; . . . ; bi; . . . ; bI �H�O can be ordered in
any way, taking into account, however, that the same
ordering always has to be used and that the null network is
always encoded as a string of I �H �O zeros. Fig. 2 shows
the chosen ordering for the basic RBF architectures that
encode the set VR2,2,1.
Table 1

Correspondence table: binary encoding of the basic RBFN architectures

of length I�H�O bits

Binary codification Notes

b0 ! 0, 0; . . . ; 0; . . . ; 0 Null RBFN architecture

b1 ! 1, 0; . . . ; 0; . . . ; 0
b2 ! 0, 1; . . . ; 0; . . . ; 0
y

bi ! 0, 0; . . . ; 1; . . . ; 0 The 1 is set in the ith position

y

bI �H�O ! 0, 0; . . . ; 0; . . . ; 1
Having encoded the basic architectures, any valid RBF
network in VRb

I ;H ;O can be built by applying the binary
operator OR (3) to the encoded basic nets, yielding binary
strings that belong to the set VRb

I ;H;O. Therefore, the binary
encoding of any element v of the set VRI ;H;O can be output
straightforwardly by calculating one of the possible
decompositions of v and, starting from a string of zeros,
changing the ith bit of the string to 1 if the basic RBF
architecture appears in the ith position of the correspon-
dence table and in the decomposition of v. Fig. 3 shows an
example of a valid RBF architecture encoding.
The process of decoding a string of bits in an RBF

architecture is also straightforward: superimposition op-
erations should be applied to the basic architectures
represented by 1 s in the ith positions of the string of bits
to be decoded. Fig. 4 shows an example of how to decode a
string in a neural architecture.
This encoding has three important advantages. First, any

string of length I �H �O bits represents a possible solution
to the problem, as it is a RBF architecture that belongs to
the set VRI,H,O. Therefore, there are no encodings with
illegal architectures. Second, according to Theorem 1, there
are different ways of decomposing a valid architecture into
basic architectures. Therefore, there are several encodings
for the same RBF architecture, which means that there is
more than one solution in the genetic algorithm search
space to the same problem. Consequently, the solution is
more likely to be found, and the process is, therefore,
faster. Third, the result of changing just one bit of a binary
string is another string that represents a RBF architecture
that is very similar to the original one. The only difference
between the two is the presence or absence of one basic
RBF architecture. Therefore, similar genotypes represent
similar phenotypes, which is a very interesting feature that
improves the chances of local search success.
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3.4. The radial basis function network crossover

This crossover operator has been developed to work in
conjunction with the basic architectures binary encoding
method to enhance the three above-mentioned benefits.
Like the real crossover operator, RBFN-X calculates the
genetic diversity of the actual population, working in this
case with binary strings. If genetic diversity is low, that is,
individuals are similar, the crossover operator provides a
greater probability of the offspring being less like their
progenitors. On the other hand, if diversity is high, the
offspring generated by the operator will be more like their
parents, encouraging a reduction in diversity in the
forthcoming iterations.

RBFN-X calculates the genetic diversity employing
the concept of Hamming distance dH. Given two binary
strings s ¼ ða0; a1; . . . ; al�1Þ and s0 ¼ ða00; a

0
1; . . . ; a

0
l�1Þ of

length l and ai, a0i 2 f0; 1g, the Hamming distance dH(s,s
0)

is given as

dHðs; s
0Þ ¼

Xl�1
i¼0

ai 	 a0i,

where 	 represents the binary exclusive-OR function.
Given the set G ¼ fs1; s2; . . . ; slg, composed of l pro-

genitor strings picked at random from the population,
three steps are applied to get the offspring o and o0. Let us
suppose, by way of an example to better illustrate the steps
taken by the proposed crossover operator, that the set G is
composed of four binary strings of length 7, each
corresponding to a RBFN:

G ¼ fs1 ¼ ð1; 0; 0; 0; 0; 0; 0Þ; s2 ¼ ð0; 1; 1; 1; 0; 0; 0Þ,

s3 ¼ ð0; 1; 1; 1; 1; 0; 0Þ; s4 ¼ ð0; 1; 1; 1; 1; 1; 0Þg.
1.
 Calculate the maximum Hamming distance h between
the progenitor strings of G: if smin and smax 2 G are
such that dHðsmin; smaxÞXdHðsi; sjÞ 8si; sj 2 G, then
h ¼ dHðsmin; smaxÞ.
In this example, the maximum Hamming distance is h ¼

6 between s1 and s4, so smin ¼ ð1; 0; 0; 0; 0; 0; 0Þ and
smax ¼ ð0; 1; 1; 1; 1; 1; 0Þ.
2.
 Calculate the measure of genetic diversity g of the
population: g ¼ h=l, where g 2 ½0; 1�. The value of g is
6/7 for this example. In this case, the genetic diversity
can be said to be high.
3.
 Generate offspring: the operator acts adaptively accord-
ing to the calculated measure of genetic diversity g. If
the values of g are close to zero, the population is
converging, for which reason the operator increases
genetic diversity to make trapping in local optima less
likely. On the other hand, if the values of g are high,
indicating that the population is very scattered (this is
the case illustrated in the example), the operator
generates offspring that encourage a reduction in
diversity, thereby increasing the local search capability.
As in the real crossover operator, the function j: < ! <
is employed to do this. The function j provides the
maximum number of bits, n, that have to be modified in
the two offspring as follows:
n ¼ E½jðgÞ � l�, where E[x] is the integer part of x. Using
the function j defined in Section 2.1, n ¼ 1 for the
proposed example.
Given h ¼ dH(smin, smax), the minimum strings set Gmin

is defined as the set of binary strings at a Hamming
distance |n| from smin and h–n of smax:

Gmin ¼ fs1; . . . ; syg; dHðsmin; siÞ ¼ jnjy,

dHðsmax; siÞ ¼ h� n; 8si 2 Gmin.

In our example, Gmin is composed of all the binary
strings at a Hamming distance 1 from (1,0,0,0,0,0,0)
and 5 from (0,1,1,1,1,1,0), which is satisfied by two
strings:

Gmin ¼ fð0; 0; 0; 0; 0; 0; 0Þ; ð1; 0; 0; 0; 0; 1; 0Þg.

Similarly, the maximum strings set, denoted as Gmax,
is defined as the set of binary strings at a Hamming
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distance jnj from smax and h2n of smin:

Gmax ¼ fs
0

1; . . . ; s
0

yg; dHðsmax; s
0

iÞ ¼ þjnjy,

dHðsmin; s
0

iÞ ¼ h� n; 8s0i 2 Gmax.

In the proposed example: Gmax ¼ fð0; 1; 1; 1; 1; 0; 0Þ;
ð1; 1; 1; 1; 1; 1; 0Þg. The crossover interval is bounded by
Gmin and Gmax, and the offspring cannot be outside this
interval (Hamming distance).
The offspring set Om ¼ fo1; . . . ; opg, where m 2 f0; . . . ;
h22ng, is defined as the set of binary strings
such as

8s 2 Gmin; 8s
0 2 Gmin : dHðoi; sÞ ¼ m,

dHðoi; s
0Þ ¼ h� 2n�m; with oi 2 Om; or

8s 2 Gmin; 8s
0 2 Gmin : dHðoi; sÞ ¼ h� 2n�m,

dHðoi; s
0Þ ¼ m; with oi 2 Om.

m 2 f0; 1; 2; 3; 4g for our example. If m ¼ 0, then O0 is
composed of strings at a Hamming distance 0 from any
of the strings within Gmin and 4 from any of the strings
within Gmax or vice versa. Taking the first option, O0 is
the offspring set that contains the strings within just one
of the bounds of the crossover interval: O0 ¼ Gmin.
Taking the second option, O0 is the opposite
bound Gmax.
Having calculated the offspring set Om ¼ fo1; . . . ; opg,
the symmetric offspring set, denoted as O0m ¼

fo01; . . . ; o
0
qg, is defined by the set of binary strings

such that

If for any string s00 2 Gmin, dHðoi; s00Þ ¼ m, with
oi 2 Om, then 8s 2 Gmin, 8s

0 2 Gmax:dHðo
0
i; sÞ ¼

h22n2m, dHðo
0
i; s
0Þ ¼ m, 8o0i 2 O0m.

If for any string s 2 Gmin, dHðoi; sÞ ¼ h22n2m,
with oi 2 Om, then 8s2Gmin, 8s

0 2 Gmax: dHðo
0
i; sÞ ¼

m, dHðo
0
i; s
0Þ ¼ h22n2m, 8o0i 2 O0m.

If O0 ¼ Gmin is calculated in the previous step, then
the Hamming distance between the strings from O0

and Gmin is m ¼ 0, which is how the first equation
of this step is calculated. O00 is calculated as the
strings at a Hamming distance 4 from Gmin and 0
from Gmax. Hence, O00 ¼ Gmax, which is the exact
opposite bound to Gmin. Actually, Gmin and Gmax

contain symmetric points, as they are the crossover
interval bounds. If O0 ¼ Gmax is calculated, then
we would get O00 ¼ Gmin.
Finally, the operator picks a string from the set Om

as the first offspring at random. The second string
is also chosen at random from the symmetric
set O0m.
Fig. 5 shows how the crossover intervals widen or
narrow depending on the genetic diversity in the
Hamming crossover operator to generate the offspring.
For clarity’s sake, this is illustrated on the straight line of
real numbers.
4. Cooperation between binary and real-coded genetic

algorithms to design and train radial basis function networks

Traditionally, the neural architecture was designed by
trial and error taking a set of training patterns. It was then
trained to find out whether the training algorithm
converged and, if so, whether the mean square error was
low enough to solve the problem, taking special care not to
choose an architecture that was so big as to lose the neural
network’s generalization capability.
The binary and real-coded genetic algorithms presented

above can cooperate to work together as a system that
automatically constructs self-adaptive intelligent systems
with RBFNs. This system is called Genetic Algorithm
Radial Basis Function Networks (GARBFN ¼ Binary
RBFN Encoding+RBFN-X+Real Crossover Operator).
As in the traditional case, the minimum RBF architecture
that gets a mean square error less than a previously
established value can be generated taking the set of training
patterns that adequately describes the problem, in this case
automatically, without external intervention.
The structure of GARBFN is illustrated in Fig. 6. It

consists of two subsystems that work in parallel. The
binary genetic algorithm subsystem employs the modified
version of the basic architectures codification, adapted to
RBFNs as presented in this paper and combined with the
RBFN-X crossover operator. This subsystem is responsible
for generating RBF architectures in search of the optimum
architecture that is capable of solving the problem. The real
genetic algorithm subsystem receives a binary-coded RBF
architecture with I input, H hidden and O output neurons,
generated by the binary genetic algorithm subsystem, for
evaluation after a decoding process. The real genetic
algorithm encodes the weights and biases of the neuron
connections between hidden and output layers using a
chromosome of length O �H þO real numbers (after the k-
means clustering algorithm has been run to find the centres
of the neurons in the hidden layer). This genetic algorithm
employs the real crossover operator to evolve the popula-
tion in search of the best combination of weights and
biases that minimizes the mean square error. The mean
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square error is employed to calculate the fitness (f) of
the RBF architecture using the following expression:
f ¼MSEitðCa=CtÞ, where Ca is the number of connections
existing in the actual neural network and Ct is the
maximum number of connections allowed by the codifica-
tion. MSEit is the mean square error output by the network
after running ‘‘it’’ real genetic iterations. This fitness is
returned to the binary genetic algorithm for use in handling
and evolving the population in search of a better RBF
architecture.

5. Results

The results of the experiment run to test the GARBFN
system are related to convergence speed, size of the
networks built, as well as the accuracy of the output of
the network solution. We ran two types of test. The first is
a laboratory example based on pattern classification. The
second is composed of two tests for diagnosing breast
cancer from two types of breast lesion: microcalcifications
and masses. This second test examines specificity, sensitiv-
ity and accuracy, which are very commonly used in
medicine for diagnosing the two lesions. Also the results
yielded by the RBFN output by GARBFN are compared
with the diagnoses given by two expert radiologists called
Doctor A and B.

The lab and the breast cancer diagnosis tests run are
both analysed for comparison with other important related
approaches. These analyses demonstrate the performance
and accuracy of the real crossover operator for training
RBFNs, as well as the quality of the problem-solving
architectures and the speed of convergence of the proposed
binary RBFN codification together with the RBFN cross-
over operator.

The real crossover operator proposed for use in the
GARBFN system to train the RBFNs is compared with the
blend crossover, BLX-a, as well as the traditional method
for training this type of neural networks, the backpropaga-
tion algorithm. These comparative tests show the mean
convergence speed of each algorithm after 100 runs each.
In all the tests run, the weights of the connections and
biases are bound within the interval [�25,25]. As the
computational cost of one iteration of a genetic algorithm
using the real crossover operator and of one backpropaga-
tion iteration is not the same, convergence speed is
measured as a function of the number of floating point
operations (FLOPS) required by each algorithm for the
RBFN being trained to achieve a given mean square error
for a given training set.
Supposing that the real crossover operator works with

strings of length l, l floating point multiplications
(FLOMS) for each algorithm iteration, plus S ¼ l � ð2nþ

6Þ floating point additions, where n is the number of
progenitors selected by the operator, the total number of
FLOPS would be:

FLOPS ¼ l þ l � ð2nþ 6Þ. (1)

The number of FLOPS in the BLX-a case would be:

FLOPS ¼ l þ SBLX�a ¼ l þ l. (2)

Finally, the number of FLOPS employed in each back-
propagation iteration would be as follows:

FLOPS ¼ ð6 � Pþ 3Þ � l þ l; (3)

P being the number of training patterns.
When the cardinal of the set of training patterns is

greater than 17, the number of sums employed by each
backpropagation iteration is always greater than the sums
used by the real and BLX-a crossover operators. As
RBFNs are usually trained with a lot more than 17
patterns and because the computational load for doing a
FLOM is greater than for doing a sum, the algorithms are
compared as to the number of FLOMS only, neglecting the
number of floating comma sums. Table 2 shows the
number of FLOMS employed in each iteration of each of
the three algorithms.
The genetic algorithm population is composed of 30

individuals. The real crossover operator employs five
progenitors, and factor a is set at 0.1 for BLX-a. A
learning rate of 0.3 is used for the backpropagation
algorithm, while its momentum factor is set at 0.5. All
these values are calculated empirically and are the ones that
yield the best results for each algorithm. The fitness of each
individual (the set of values for all the weights and biases of
the RBFN to be trained) is equal to the mean square error
given by the RBFN for all the patterns in the training set.
The tests run to build the RBFNs with the GARBFN

system are designed to compare the results yielded by
employing the proposed encoding of RBF architectures
with the direct and grammar encoding methods, widely
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used for such problems. The tests run take into account the
use of these three different encoding methods in combina-
tion with the RBFN crossover and generalized crossover
[1] operators. The results output by the direct encoding
method and generalized crossover operator, however, are
not shown because this combination tend to generate
illegal individuals, leading to non-convergence of the
genetic algorithm.

Each test was run 100 times, examining the mean
convergence speed for each combination of different cross-
over operators and encoding methods. The final mean size
of the neural architectures output as solutions is calculated.

The different neural architectures that are output by the
genetic algorithms as possible solutions are trained using
the real crossover operator within a real-coded genetic
algorithm, which is, as we found, the one that yields the
best results and is used by GARBFN. Again in this test set,
the weights and thresholds are established within the [�25,
25] interval.

The fitness of the individuals in the binary genetic
algorithm is calculated by means of the following evalua-
tion function:

Fitness ¼ ð1� wÞ �
CA

CMAX

þ w � Error; (4)

where w is the efficiency/effectiveness ratio of the network,
whose value is between 0 and 1. CA is the number of
Table 2

FLOMS employed in each training algorithm iteration

Training algorithm FLOMS

Real crossover l

BLX-a l

Backpropagation ð6 � Pþ 2Þ � l
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Fig. 7. Training patter
connections there are in the network, CMAX is the
maximum number of possible connections in the network
and Error is defined by

Error ¼
MSE

O
,

MSE being the mean square error output in the network
training process and O is the number of output neurons
that it has.
5.1. Laboratory test

This test involves building and training RBFNs to
classify linearly inseparable patterns (points in 3D). Five
groups composed of 52 points are proposed as shown in
Fig. 7. Each pattern consists of a vector composed of an
input, namely, the point’s three coordinates, and an
output, which is the cluster to which the point belongs.
5.1.1. Training radial basis function networks

The RBFN to be trained is fully connected and has three
neurons in the input layer (one per each coordinate of the
point to be classified), five neurons in the hidden layer (one
per group), and one neuron in the output layer.
From the above architecture, we get that the length l of

the individuals in the genetic algorithms is six. Table 3
shows the number of FLOMS per iteration of each training
algorithm of this network in the knowledge that there is a
training set of P ¼ 52 patterns (3D points).
Fig. 8 is a graph plotting the mean convergence speed of

each of the three RBFN training algorithms, measuring the
fall in the mean square error of the network depending on
the number of iterations used up to iteration 2500.
Table 4 contains the mean number of FLOMS required

by each training algorithm to achieve different mean
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ns for the lab test.
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Table 3

FLOMS employed in each training algorithm iteration for the 3D-point

classification problem

Training algorithm FLOMS

Real crossover 6

BLX-a 6

Backpropagation 1884
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Table 4

FLOMS employed by each training algorithm to achieve different mean

square errors

Training

algorithm

MSE FLOMS Success rate

(%)

Real crossover 6� 10�3 15,000 76.92

BLX-a 1.75� 10�2 15,000 55.77

Backpropagation 3.5� 10�2 4.71� 106 21.15
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square errors and the success rate for the classification
problem that the trained network has to achieve.

From Fig. 8 and Table 4, it is clear that the real
crossover has a greater speed of convergence than the other
methods, where backpropagation is the method that yields
the worst results. The highest success rate is for the real
crossover operator, and the backpropagation method
again performs worst here. Likewise, the backpropagation
method has need of a very high number of FLOMS to train
the RBFN for this problem, although it achieves the lowest
MSE. For the same number of FLOMS, the real crossover
operator yields a much lower MSE than BLX-a.

5.1.2. Constructing radial basis function networks with

GARBFN

This test involves automatically generating RBFNs with
three input neurons, one output neuron and a maximum of
10 neurons in the hidden layer to classify 52 points in 3D,
as shown in Fig. 7. To run these tests, we take a value of
w ¼ 0:9 to calculate the fitness (formula 4) of the neural
networks that the genetic algorithm generates. The MSE of
the neural architecture is calculated after 10,000 iterations
of the real-coded genetic algorithm.
Fig. 9 shows the mean convergence speed of the

combinations of encoding methods and crossover opera-
tors after having executed each one 100 times.
As we can see from Fig. 9, the grammar encoding

method combined with the generalized or RBFN crossover
operators yields much lower mean convergence speeds than
GARBFN or the proposed binary RBFN encoding
method combined with the generalized crossover. This is
because there is no correspondence between the encoding
type used and the crossover operator that handles the
progenitor genotypes to engender offspring whose pheno-
types should be somewhat similar to their parents’. This
leads to a notable expansion in the search space and makes
the genetic algorithm exploration capabilities too powerful
and convergence less likely. On the other hand, being based
on the Hamming distance, the RBFNs crossover generates
two offspring whose phenotypes bear a resemblance to
their progenitors’. The direct encoding method plus the
RBFNs crossover does not achieve a high convergence
speed either. This is because this encoding type does not
rule out illegal architectures whose fitness can be of no
guidance for the genetic algorithm in the search for the best
solutions. Additionally, this type of codification handles
binary strings of length greater than 91 bits, as opposed to
the 30 bits used by the proposed encoding method.
The only two encoding and crossover operator combina-

tions that achieve an MSE of 0.015 for this problem are:
GARBFN and the proposed encoding method plus the
generalized crossover. The first takes 182 iterations,
whereas as the second needs 912. In both cases the RBFN
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solution is a not fully connected architecture with eight
hidden neurons.

5.2. Breast cancer diagnosis

GARBFN is employed to diagnose masses or micro-
calcifications present in breast tissue suspected of being
carcinomas. This application is part of a larger project for
automatically detecting and diagnosing breast pathologies.
The input for the system built so far is a complete set of
views of digitalized mammograms from both patients’
breasts, which it uses to search for microcalcifications and
suspicious masses, the two main abnormalities that can be
detected by mammography. The output is a set of
characteristics for each abnormality found. These char-
acteristics are stored in a database containing the lesions of
real 25- to 79-year-old patients at a Madrid hospital. All
these cases are diagnosed by two expert radiologists, the
results of which are compared with the results of the
biopsy, which is also available. These clinical data is used
to run the tests, designing one set of training and test
patterns to diagnose microcalcifications and another for
masses.

For both types of lesions, microcalcifications and
masses, diagnosis involves classifying the abnormality as
either: benign or malignant. The following characteristics
are used for diagnosis: patient’s age; breast in which the
lesion is located, whose possible values are right and left;
location of the lesion, whose values, central, bilateral,
subareolar and auxiliary tail, match each of the sections
into which the breast is divided lengthways; and, finally,
depth, which matches each of the cross-sections of the
breast and its permitted values are central, middle, poster-
ior and subareolar.

For the case of microcalcifications diagnosis, apart from
the above-mentioned characteristics, we take into account
the following:
�
 Size of the lesion. Microcalcifications usually appear as
clusters. This characteristic is established by the widest
diameter of the cluster, whose value ranges from 1 to
77mm.

�
 Number of microcalcifications that appear in the cluster.

Its possible values are: from 1 to 5, from 6 to 10 and
over 10.

�
 Distribution. This represents how the microcalcifications

are grouped: diffused, grouped, linear, regional or
segmental.

�
 Type.This represents the appearance of the microcalci-

fications after visual examination. This characteristic
has three possible values: typically benign, intermediate
and typically malignant. Typically benign microcalcifi-
cations may have the following values: coarse, eggshell
or rim, large rodlike, milk of calcium, lucent centred,
punctate, round, or void if the microcalcifications is not
typically benign. The possible values for intermediate
microcalcifications are as follows: amorphous, indistinct
or void. Finally, the possible values for typically
malignant microcalcifications are as follows: fine
branching, fine linear, heterogeneous or void.

To build the set of training and test patterns, 184 cases in
which microcalcifications were present were selected at
random, half of which were malignant and the other half
benign cases. Each pattern is composed of a total of eight
inputs—age, breast, location, depth, size, number, dis-
tribution and type—and just one output—the diagnosis
with two possible values: benign or malignant.
For the case of masses, the following specific character-

istics were taken into account to make the diagnosis:
�
 Size. This represents the size of the mass, measured as
the widest diameter in millimetres.

�
 Morphology of the mass. This has four possible values:

architectural distortion, lobulated, oval, round and
irregular.

�
 Margins. This characteristic describes the external limits

of the mass. It has five possible values: circumscribed,
ill-defined, microlobulated, spiculated and obscured.

�
 Density. It represents the texture of the tissue inside the

mass. The possible values are: high, equal, low and fatty.

In this case, to build the set of training and test patterns,
a total of 315 cases are selected in which the breast tissue
contains abnormal masses. Of all these, 138 are malignant
cases and the other 177 are benign. Each pattern is
composed of a total of seven inputs—age, breast, location,
depth, size, morphology, margins and density—and again
just one output: the diagnosis of the analysed mass.
It is usual practice in the field of medicine to use three

criteria to report statistical results and for the purpose of
comparisons: accuracy, specificity and sensitivity. Accuracy

is the percentage of correctly over incorrectly diagnosed
cases:

Accuracy ¼
TP þ TN

Number of Instances
,

where TP (True Positive) are the cases diagnosed as
malignant that really are malignant and TN (True
Negative) are the cases diagnosed as benign that are
benign.

Specificity represents the percentage of cases diagnosed
as negative, benign lesions, over the total number of
negative cases:

Specificity ¼
TN

TN þ FP

,

where FP (False Positive) is the number of cases classed as
malignant when they really are benign.
Finally, sensitivity is the percentage of cases diagnosed as

positive, malignant lesions, over the total number of
positive cases:

Sensitivity ¼
TP

TP þ FN

,
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where FN (False Negative) is the number of cases that
classed as benign when they really are malignant.
Table 6

FLOMS employed in masses

Training algorithm MSE FLOMS % correct

Real crossover 7.1� 10�3 3.6� 105 77.14

BLX-a 7.8� 10�3 3.6� 105 66.66

Backpropagation 9.2� 10�3 8.22� 107 62.22
5.2.1. Training radial basis function networks

To compare the three training methods, we used a
RBFN with eight neurons in the input layer (one per lesion
characteristic), 15 neurons in the hidden layer and one
output neuron to provide the diagnosis for both masses
and microcalcifications.

The length of the individuals for the genetic populations
is 16. Table 5 shows the number of FLOMS that each
training algorithm executes in each iteration. P is the
number of training patterns, which is 285 in the case of
masses diagnosis and 166 in the case of microcalcifications.

The mean convergence speeds up to iteration 3000 for
each of the three RBFN training methods for mass
diagnosis are shown on the left-hand side of Fig. 10,
whereas the RBFN training for microcalcifications diag-
nosis is illustrated on the right.

As we can see, both graphs are similar. The training
method that has a faster convergence speed is the genetic
algorithm with real crossover operator. On the other hand,
the convergence speed of the backpropagation method is
lower than for the crossover operators.

Tables 6 and 7 list information similar to Table 4 for the
mass and microcalcifications diagnoses, respectively.

These results clearly show that not only does the real
crossover operator achieve a lower MSE and, therefore, a
higher success rate, but, what’s more, does so in a shorter
time. It can be concluded that this is the best training
algorithm for RBFNs. This is why the GARBFN system
uses this the training algorithm.
Table 5

FLOMS employed in each training algorithm iteration for the breast

cancer diagnosis problem

Training algorithm FLOMS

Real crossover 120

BLX-a 120

Backpropagation 96 � Pþ 32
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Fig. 10. Convergence speed for the b
5.2.2. Constructing radial basis function networks with

GARBFN

The binary genetic algorithm search space is composed
of a set of radial basis function architectures with a
maximum of eight input neurons (one per breast lesion
characteristic), a maximum of 15 hidden neurons and a
single output neuron. A value of w ¼ 0:8 was taken to
calculate the fitness (formula 4) of the neural networks to
be generated by the binary genetic algorithm To train each
RBFN, 1000 iterations of the genetic algorithm with the
real crossover operator were run.
The mean convergence speed for searching the radial

basis function architecture that best solves the problem of
diagnosing mass-type lesions is shown on the left-hand side
of Fig. 11, whereas the same graph for microcalcifications
is shown on the right.
From the graphs in Fig. 11, we find that the system that

yields the best results is GARBFN. It is also noteworthy
that the proposed binary RBFN encoding method yields
very good results even with other crossover operators. The
reason is that the length of the generated individuals is the
shortest of the three encoding methods tested: 120 bits, as
opposed to 276 bits for direct encoding or 210 bits for the
grammar encoding method.
0.07
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0 1000 2000 3000
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reast cancer diagnosis problem.

Table 7

FLOMS employed in microcalcif

Training algorithm MSE FLOMS % correct

Real crossover 7.3� 10�3 3.6� 105 74.45

BLX-a 8.3� 10�3 3.6� 105 66.84

Backpropagation 9.5� 10�3 4.79� 107 59.78
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Table 8

Neural connections for masses

Number of

connections

GARBFN (%) Proposed binary RBFN

codif.+gnrzed. cross. (%)

22 72 5

[23–33] 25 15

[33–43] 3 61

443 0 19

Table 9

Neural connections for microcalcif

Number of

connections

GARBFN (%) Proposed binary RBFN

codif.+gnrzed. cross. (%)

22 69 1

[23–33] 20 9

[33–43] 8 58

443 0 32
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Tables 8 and 9 show how many radial basis function
architecture connections have been calculated to solve the
problem of the masses and microcalcifications diagnosis,
respectively. These tables show the results for GARBFN
and the combination of the proposed binary RBFN
encoding method with the generalized crossover, as they
are the ones that yielded the best results in the tests run.
From these tables, it follows not only that GARBFN has a
higher convergence speed, but also that there is a greater
likelihood of getting a smaller-sized radial basis function
architecture solution than using the other algorithms. This
provides bigger benefits in terms of network generalization
capability and network execution speed, as, having fewer
connections, it needs to make fewer numerical calculations
to output a diagnosis from an input vector of character-
istics.
An interesting fact worth mentioning is that, because
GARBFN looks for the minimal radial basis function
architecture, input neurons can be removed in the final
problem-solving architecture. This means that it is im-
plicitly running a principal component analysis, removing
inputs that really do not influence the output, because, as
we have seen, the MSE of the problem-solving architecture
is low enough to solve the problem with the required
accuracy.
In the case of the masses diagnosis problem, of the eight

original inputs that were taken into consideration to make
the diagnosis, GARBFN removes the three variables that
are related to the position of the mass in the breast in 72%
of the cases (see Table 8): breast (left or right), location and
depth. This result is consistent with reality, as masses can
appear indistinctly anywhere in the breast. In the case of
microcalcifications diagnosis, the inputs removed by
GARBFN in 69% of the cases (see Table 9) are the three
variables related to the position of the microcalcifications
in the breast, plus the number of detected microcalcifica-
tions. That the diagnosis does not depend on the number of
microcalcifications was corroborated by radiologists.
Tables 10 and 11 show the results in terms of accuracy,

specificity and sensitivity of the diagnoses for the set of test
patterns of masses and microcalcifications, respectively,
comparing the results of GARBFN with the combination
of the proposed encoding method and the generalized
crossover and two doctors (called A and B) specialized in
image diagnosis.
Even though GARBFN uses a smaller radial basis

function architecture, it achieves better results than the
proposed encoding method combined with the generalized
crossover operator. The results yielded by GARBFN are
similar to the outcomes for the doctors in terms of
accuracy. GARBFN outperforms the doctors as regards
specificity and is worse for sensitivity. This is because of
how a radiologist makes a diagnosis of a detected breast
lesion: only if the doctor is really very sure is the lesion
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Table 11

Diagnosis for microcalcif

Combination:

codif.–cross.

Accuracy (%) Specificity (%) Sensitivity (%)

GARBFN 74 78 70

Proposed binary

RBFN codif.+gnrzed.

cross.

72 68 76

Doctor A 69 39 78

Doctor B 65 28 77

Table 10

Diagnosis for masses

Combination:

codif.–cross.

Accuracy (%) Specificity (%) Sensitivity (%)

GARBFN 83 83 81

Proposed binary

RBFN codif.+gnrzed.

cross.

79 82 76

Doctor A 75 63 89

Doctor B 69 57 87
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classed benign; if there is any doubt, the lesion is classed as
malignant and a biopsy is done. The GARBFN system has
no such prejudices, which means that it yields better
specificity results.

6. Conclusions

This article presents GARBFN, capable of automatically
building RBFNs to solve a given problem depending on a
set of training patterns. GARBFN is based on two genetic
algorithms that cooperate with each other. The first is
binary; it is responsible for searching radial basis function
architectures within a search space created on the basis of a
new type of encoding that prevents illegal structures from
being encoded and employs short binary strings. This
encoding is supplemented by a new crossover operator
(RBFN-X) based on the concept of Hamming distance.
Thanks to this crossover operator, combined with the
proposed encoding, the phenotype of the offspring can
inherit similar characteristics to what their parents have.

The calculation of the fitness (a parameter to be
minimized) of the neural architectures generated with the
binary genetic algorithm is inversely proportional to the
number of connections and directly proportional to the
MSE output during the network training process. A real-
coded genetic algorithm based on a new real crossover
operator is used to train the RBFNs. This algorithm yields
better results in terms of convergence speed and the
likelihood of trapping in local optima than the traditional
backpropagation training algorithm and other related
crossover operators like BLX.
Based on the synergy between the architecture search
genetic algorithm and the training genetic algorithm,
GARBFN generates a neural network capable of solving
the problem, providing a high convergence speed, small-
sized neural network and optimal results for solving the
classification problem. As GARBFN removes the connec-
tions and neurons that are unnecessary for achieving a
good MSE, it is capable of doing without some input
neurons representing variables that were originally as-
sumed to be useful for the output. What it does, therefore,
is to run a sensitivity analysis of the problem in the
background.
To demonstrate the above-mentioned properties, we

successfully ran a series of classification tests. First, we did
laboratory tests involving the classification of 3D points.
Second, the system was tested on the diagnosis of breast
lesions from a set of patterns. The neural architectures
output for this problem have a high success rate and
potential for use in the construction of an intelligent system
for computer-aided breast cancer diagnosis.
References

[1] D. Barrios, Generalized crossover operator for genetic algorithms

(Operador de cruce generalizado en algoritmos genéticos), Ph.D.
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