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Abstract

In many modeling problems that are based on input–output data, information about a plethora of variables is available. In these cases, the

proper selection of explanatory variables is very critical for the success of the produced model, since it eliminates noisy variables and possible

correlations, reduces the size of the model and accomplishes more accurate predictions. Many variable selection procedures have been

proposed in the literature, but most of them consider only linear models. In this work, we present a novel methodology for variable selection

in nonlinear modeling, which combines the advantages of several artificial intelligence technologies. More specifically, the Radial Basis

Function (RBF) neural network architecture serves as the nonlinear modeling tool, by exploiting the simplicity of its topology and the fast

fuzzy means training algorithm. The proper variables are selected in two stages using a multi-objective optimization approach: in the first

stage, a specially designed genetic algorithm minimizes the prediction error over a monitoring data set, while in the second stage a simulated

annealing technique aims at the reduction of the number of explanatory variables. The efficiency of the proposed method is illustrated

through its application to a number of benchmark problems.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Due to the always increasing computational power and

the reducing cost for collecting and storing information,

many modeling problems nowadays depend on the analysis

and proper manipulation of available data. The most typical

examples are the so-called Distributed Control Systems

(DCS) that are utilized by most modern industries, which

enable them to store frequent measurements of hundreds or

even thousands of variables that are involved in the various

manufacturing processes. Information about large numbers

of explanatory variables is also available in many other
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scientific areas, such as chemometrics, Quantitative Struc-

ture Activity Relationship (QSAR) analysis, decision

sciences, pattern recognition, etc. A common feature of all

the aforementioned paradigms is that usually only a small

subset of the recorded variables carries essential information

for building a mathematical model of the system. It is

feasible to build models including all the variables but there

are many reasons to avoid this:

! Irrelevant variables may add extra noise which deterio-

rates the accuracy of the model.

! They can cloud meaningful relationships that exist

between important variables.

! They may provide unreliable parameter estimates for the

model since the number of observations should be

greater than the number of variables.

! They increase the complexity and number of parameters

of the model.
ory Systems 75 (2005) 149–162
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! Due to the possible correlation between some variables,

redundant information may pass through the model.

Investigations have clearly shown the degradation of the

prediction results when correlation is present [1].

Therefore, in order to build a model that can predict a

specific process output, it is desirable to select a subset of

variables that are truly relevant to this output. This

procedure is typically called variable selection, and it

corresponds to finding a subset of the full set of recorded

variables that exhibits good predictive abilities.

A solution to the variable selection problem could be the

utilization of prior knowledge in order to screen out the

irrelevant variables. However, in most cases, the large

number of variables and the complexity of the process

dictate the application of more sophisticated methods. A

more advanced approach is to consider the variable

selection problem as an optimization procedure, where the

objective is to minimize the error between the true values

and the model predictions of the explained (output)

variables, by selecting the proper explanatory (input)

variables. Thus, a variable selection methodology is

composed of three ingredients [2]:

(1) A search algorithm.

(2) An objective function.

(3) An algorithm that models the relationship between the

input and output variables.

The first ingredient defines the procedure that is utilized

to search the space of possible solutions, which is in essence

an optimization algorithm. This category of problems is

classified as NP-hard, because the complexity increases

exponentially with the number of variables. For problems

involving a small number of candidate variables, it is

possible to evaluate all possible combinations. However,

this approach is unattainable for problems where the number

of variables is large, given that the possible combinations

are 2N�1, where N is the number of variables. The NP-

hardness of the problem indicates the need of employing

approximation algorithms for its solution.

Several approaches for variable selection have been

introduced in the literature. These techniques can be

grouped in three categories [3], according to the search

method they employ. The first category is called dimension-

wise selection and the distinctive feature of these algorithms

is that they add each predictor progressively according to

some criterion. These methods include forward selection

[4], interactive variable selection (IVS-PLS) [5], automatic

variable selection (AVS-PLS) [6], cyclic subspace regres-

sion [7], the successive projections algorithm [8], etc.

The second category includes the model-wise elimination

algorithms which perform the inverse procedure: The

regression model initially takes into account all the

variables, and then, unimportant variables are pruned

according to some criterion. Algorithms that belong to this
category are backward elimination [4], uninformative

variable elimination in PLS modeling (UVE-PLS) [9],

iterative predictor weighting PLS (IPW-PLS) [3], etc.

Though the most frequently applied variable selection

techniques so far are forward selection and backward

elimination, these methods share a common disadvantage:

they fail to select those input variables that seem to be of no

value when applied alone, but offer useful information

combined together. The forward selection method adds

variables until either a specific criterion has been minimized

or all the variables have been selected, but once a variable

has been included in the model, it may not be removed.

Hence, the search space is not sufficiently explored and this

method cannot guarantee the optimality of the subset of

variables. The same drawback characterizes the backward

elimination method, where once a variable is removed from

the model, it cannot be reinserted.

This serious disadvantage is eliminated by the third

category of algorithms, called subset selection algorithms.

The general procedure followed by these algorithms is to

create different subsets of variables and evaluate their

performance. Based on this evaluation, new subsets are

generated from the existing ones. Most techniques that

belong to this class [10–13] employ genetic algorithms

(GAs) [14,15] or simulated annealing (SA) [16] as a search

algorithm.

As far as the second ingredient (objective function) of

different methodologies is concerned, a variable selection

problem inherently involves two conflicting objectives: the

minimization of the prediction error and the minimization of

the number of selected variables. This means that the

optimization algorithm must compromise between the

model accuracy and parsimony. The simplest approach is

to include two terms that express in some way each one of

the aforementioned objectives, in the same objective

function [17,18]. However, the strategy of combining

multiple conflicting objectives into a single objective

function may not yield the optimum results. Thus, specif-

ically tailored multi-objective optimization techniques have

been developed in order to identify the solution to such

problems [19].

The last component of a variable selection methodology

is the algorithm that models the correlation between the

input and output variables. The model parameters are fitted

to a set of training data and the model is usually evaluated

on a different set. Given that this procedure is repeated

several times, the speed of the modeling algorithm is very

crucial for the efficiency and performance of the variable

selection methodology.

Multiple linear regression (MLR), partial least squares

(PLS) and principal component regression (PCR) [20] are

some typical modeling techniques. They have been widely

applied in chemometrics, especially in spectroscopic anal-

ysis (UV–Visible or near-infrared spectrometry) and QSAR

studies. However, these are linear methods and thus are

unable to model possible nonlinearities of the system under
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investigation. The fact that the majority of the industrial

processes is nonlinear has led many researchers to propose

some other methods, like nonlinear PLS [21,22] and

nonlinear-PCA [23–25]. However, in most conventional

nonlinear modeling techniques, the main disadvantage is

that the type of nonlinearity must be predefined. This

problem has been faced successfully by artificial neural

networks (ANNs), which are generic frameworks that have

shown great capabilities in modeling highly nonlinear

systems.

ANNs are considered to be global nonlinear approx-

imators. This means that provided that the network structure

is sufficiently large, any continuous function can be

approximated within an arbitrary accuracy by carefully

choosing the parameters of the network. Feedforward neural

networks (FNNs) constitute the most popular ANN

architecture and have been used in variable selection

methodologies [26,27]. In Ref. [26], model-wise elimina-

tion methods like modified version of Hinton diagrams

(magnitude approach), weight saliencies estimation, var-

iance propagation and partial modeling approach were

applied using feedforward neural networks as process

models. In Ref. [27], a special genetic algorithm is

developed for the selection of time points for quantitative

analysis of ternary mixtures. The authors employ multilayer

feedforward neural networks as a modeling technique. The

structure of the network (number of hidden nodes) is

assumed to be fixed and the scaled conjugate gradient

(SCG) is employed as a training method.

The main drawback of the FNN architecture is the lack of

fast training algorithms, since variations of classical non-

linear optimization techniques (such as the backpropagation

method) are usually utilized to train these networks. Radial

Basis Function (RBF) neural networks form a different class

of ANNs which has certain advantages, including better

approximation capabilities, simpler network structures and

faster learning algorithms. Surprisingly, very few publica-

tions can be found in the literature that apply RBF networks

on the variable selection problem [28].

This paper presents a new variable selection method-

ology that employs the RBF neural network architecture and

the fuzzy means training algorithm [29] in order to model

nonlinear correlations between the input and output varia-

bles. The ability of the fuzzy means algorithm to determine

both the structure and the parameters of the network,

combined with the inherent speed of the method, enhances

the variable selection procedure, which is completed in two

steps: in the first step, the prediction error is optimized using

a specially designed genetic algorithm, and in the second,

the number of variables is minimized using the simulated

annealing concept. Thus, the problem of compromising two

different goals in the same objective function is avoided.

The methodology, which is recommended especially for

large-scale problems, is illustrated by the application to

three real world benchmark variable selection problems

found in the literature [30] and to a simulated variable
selection example where the true input–output relationship

is known.

The rest of this paper is organized as follows: In the next

section, we present some theoretical aspects of the RBF

network architecture, the fuzzy means training algorithm,

genetic algorithms and simulated annealing, which are all

ingredients of the variable selection method that is proposed

in this work. The complete variable selection framework is

presented in details in Section 3, followed by the application

of the methodology to benchmark variable selection

problems. The paper concludes by outlining the advantages

of the proposed approach.
2. Theoretical background

2.1. The RBF neural network architecture

An RBF network can be considered as a special three-

layer neural network, which is linear with respect to the

output parameters after fixing all the radial basis function

centers and nonlinearities in the hidden layer. The typical

structure of an RBF network is shown in Fig. 1.

The input layer distributes the inputs to the L nodes of

the hidden layer. Each node in the hidden layer is associated

with a center, equal in dimension with the number of input

variables. Thus, the hidden layer performs a nonlinear

transformation and maps the input space onto a new higher-

dimensional space. The output of the RBF network is

produced by a linear combination of the hidden node

responses, after adjusting the weights of the network

appropriately.

The standard algorithm decomposes the training problem

in two steps: in the first step, the parameters of the basis

functions of the nodes are obtained using the k-means

algorithm [31], which is an unsupervised clustering method;

the second step involves the determination of the output-

layer weights by linear least squares regression.

However, the k-means algorithm has three major draw-

backs:

! Several passes of all training examples are required. This

iterative procedure increases the computational effort,

especially when a large database is available.

! The number of hidden nodes must be predefined by the

user. This means that a trial and error procedure must be

followed in order to obtain the optimum number of

hidden nodes.

! It depends on an initial random selection of center

locations, so that different sets of centers are obtained for

different runs of the same network structure.

It is obvious that this technique lacks two basic features

that are needed in order to incorporate it in a variable

selection procedure: It is neither fast enough nor repetitive.

In order to overcome these problems, we employed the



Fig. 1. Standard topology of an RBF neural network.
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novel fuzzy means training algorithm [29], which is

presented in the next subsection.

2.2. The fuzzy means algorithm

The fuzzy means algorithm is in essence an alternative

to the k-means algorithm for determining the structure and

the parameters of the hidden layer in an RBF network.

Based on a fuzzy partition of the input space, the number

and the locations of the hidden layer centers are automati-

cally obtained in a single step, using only one pass of the

training examples. Thus, the fuzzy means algorithm

requires very short computational times, while at the same

time it always produces the same results since it does not

depend on an initial random selection of the center

locations. A short description of the algorithm is given

below, while the interested reader is referred to Ref. [29]

for more details.

Assuming a system with N input variables, the universe

of discourse (domain) of each variable xi, ia1,. . ., N is

partitioned into li triangular fuzzy sets:

Ai;1;Ai;2 N ;Ai;li

� �
; 1ViVN ð1Þ

Supposing that ai,j is the center element of the fuzzy set

Ai,j, and dai is half of the respective width, the membership

function lAi, j
(xi(k)) of the input xi(k) to the fuzzy set Ai,j is

defined as:

lAi; j
xi kð Þð Þ¼ 1� jxi kð Þ � ai; jj

dai
; if xi kð Þa ai;j � dai; ai;j þ dai

� �
0; otherwise

8<
:

ð2Þ
By employing the principle of fuzzy partitioning to the

entire input space, we can dismember it into M fuzzy

subspaces, where:

M ¼j
N

i¼1
li ð3Þ
Each fuzzy subspace Am (1VmVM) can then be defined

as a combination of N particular fuzzy sets and is

represented as:

Am ¼ ½Am
1; j1

;Am
2; j2

; N ;Am
N ; jN �

¼ ½am1; j1 ; am2; j2 ; N ; amN ; jN �; ½da1; da2; N ; daN �
o
Z

n
ð4Þ

Am ¼ am; dagf ð5Þ

An example is shown in Fig. 2, which represents a fuzzy

partition in the two-dimensional input space that defines 25

fuzzy subspaces. The particular fuzzy subspace A is defined

by the fuzzy sets A1,3, A2,3.

The idea of the membership function can be expanded

similarly to multiple dimensions, by introducing the notion

of the multidimensional membership function lAm (x(k)) of

an input vector x(k) into Am:

lAm x kð Þð Þ ¼ 1� rdm x kð Þð Þ; if rdm x kð Þð ÞV1
0; otherwise



ð6Þ

where rdm(x(k)) is the Euclidean relative distance between

Am and the input data vector x(k):

rdm x kð Þð Þ ¼
½ PN
i¼1

ðami;ji � xi kð ÞÞ2�1=2
½ PN
i¼1

ðdaiÞ2�1=2
ð7Þ

The value produced by the membership function

lAm(x(k)) for a given input vector x(k) is called multi-

dimensional membership degree of x(k) into Am. The notion

of the multidimensional membership function can be used to

determine the closest fuzzy subspace to the vector x(k). It

can be easily proved that this fuzzy subspace is defined as

the combination of fuzzy sets in each dimension that assign
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the maximum membership degrees to the particular inputs

x1(k), x2(k),. . ., xN(k).
After the fuzzy partitioning of the input space has been

accomplished, the fuzzy means algorithm considers all the

fuzzy subspaces as potential hidden node centers in the

produced RBF network. The final hidden node centers are

selected so that for each input training vector, there is at

least one fuzzy subspace that assigns a nonzero multi-

dimensional membership degree.

2.3. Genetic algorithms

Genetic algorithms are probabilistic optimization tech-

niques which are based on the principles of genetics and

natural selection [14,15]. They form a class of general

purpose (domain independent) search methods, which

strike a remarkable balance between exploration and

exploitation—two apparently conflicting objectives in any

optimization method. There are certain differences between

GAs and conventional optimization methods: GAs manip-

ulate coded versions of the problem parameters instead of

the parameters themselves; they do not use any auxiliary

information about the objective function such as deriva-

tives; they operate in parallel on a population of solutions

instead of the classical approach of searching from a single

point. Hence, GAs are considered to be efficient and

robust optimization methods that are able to escape from

local optima. Not surprisingly, GAs have been used

successfully for the variable subset selection problem,

where the search domain is quite large and many local

optima exist.
GAs comprise of the following five components:

! A genetic representation of potential solutions to the

problem

! A formula for building the initial population of candidate

solutions

! An objective function that measures the fitness of the

chromosomes

! Genetic operators that guide the algorithm into new areas

of the search space

! Parameter values that need to be determined by the user

(population size, probabilities of applying genetic

operators, etc.)

2.4. Simulated annealing

Simulated annealing is a threshold accepting optimiza-

tion method that imitates the physical annealing process of a

solid. The basic ideas on which simulated annealing is based

were founded by Metropolis et al. in 1953 [32]. In order to

simulate the annealing process of metals, he considered the

material as a system of particles. The probability of a

particle being in a specific energy level is expressed by the

Boltzmann probability distribution. Virtually, Metropolis’s

algorithm simulates the changes in the energy of the system

during the cooling process, until it converges to a steady

state, where it is frozen.

Kirkpatrick et al. [16] first incorporated these ideas into

an optimization method. They created a variation of the

classical local search method with an important difference:

detrimental moves are accepted according to some proba-
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bility function p, which decreases as the algorithm

progresses. As a probability function, Kirkpatrick et al.

used the Boltzmann probability distribution.

Initially almost all detrimental moves are accepted so

that the algorithm performs a random search. However, as

the temperature decreases, less detrimental moves are

accepted but the algorithm still has the ability to escape

from local optima. During the last iterations, where the

temperature approaches zero, the solution is dfrozenT to its

final state. This modification allows the algorithm to reach

global optima. However, the performance of SA strongly

depends on the selection of a proper cooling schedule.

Some empirical techniques have been developed for the

determination of the cooling schedule, but they are

subjective to the nature of the problem and require a lot

of trial and error procedures.

Generalized simulated annealing (GSA) [33] is a

modification of the conventional simulated annealing

algorithm, where the probability function is given by:

p ¼ exp � b
fnew � fcur

f bsf � fcons

�
ð8Þ

In this equation, the temperature is substituted by the

term ( fbsf�fcons) where fnew, fcur and fbsf are the new (not

yet approved), current and best so far values of the

objective function, respectively, and fcons represents a

guess of the expected global optimum. The only parameter

that needs to be defined is the constant b. The authors in

Ref. [34] suggest that b should be selected so that, at the

initial stages of the method, the ratio Ra/d of accepted

detrimental moves to rejected detrimental moves lies

between 0.5 and 0.7.
Fig. 3. An overview of the GASA-RBF algorithm.
3. The proposed algorithm

Variable selection problems can be classified according

to their size. To be more specific, a variable selection

problem is small scale, medium scale or large scale if the

total number of input variables belongs to [0, 19], [20, 49]

or [50, l], respectively [35]. Most of the variable selection

problems that appear in the process industry, in chemo-

metrics and in QSAR analysis are medium- or large-scale

problems. The proposed GASA-RBF algorithm (acronym of

the words Genetic Algorithm Simulated Annealing Radial

Basis Function) is specifically designed in order to take care

of the large number of variables that appear in these special

classes of variable selection problems. To be more specific,

the proposed approach decomposes the variable selection

procedure in two stages:

! The first stage employs a specially designed GA in

order to find the combination of input variables that

produces the best model, as far as the prediction error is
concerned. During this stage, different combinations of

input variables are coded as chromosomes. In each

generation, an RBF network is trained for each

chromosome using the fuzzy means algorithm. The

networks are then validated on a different set of data, in

terms of their prediction error. The combinations of

input variables that correspond to the networks with the

smallest prediction error are more likely to survive in

the next generation. Then, a number of genetic

operators are applied, including crossover and mutation.

The final solution, which represents the optimum

combination of input variables, together with the

prediction error of the respective network is carried

over to the second stage.

! At the second stage, GSA is used to minimize the

number of input variables. The algorithm is initialized

with the solution that resulted from the first stage and

tries to reduce the number of variables. However,

during the different moves of the GSA algorithm, the

error of the produced model is not allowed to climb

significantly above the threshold imposed by the out-

come of the first stage.

Following this qualitative presentation of the method, a

more detailed description of the two stages, which are

graphically represented in Fig. 3, is given next. It is

assumed that a set of input–output examples [X, y] is

available. The dimensionality of the input matrix X is

K�N, where K denotes the number of the available

examples and N the total number of input variables. y is

a K�1 vector which stores the values of the output y.

Before the algorithm proceeds with the first stage, the set of

input–output data must be split into a training set of K1

examples, a monitoring set of K2 examples and a validation

set of K3 examples.
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3.1. First stage: Minimization of the prediction error using

a GA

The objective of the first stage is to optimize the

prediction error, regardless of the number of selected input

variables. This is accomplished by employing a specifi-

cally designed GA, which uses a hybrid coding of genes

containing both binary and integer values. More specifi-

cally, each potential input variable is coded by a binary

gene, while the last gene of the chromosomes is an

integer and represents an essential parameter for training

the RBF network. Thus, the length of each chromosome is

equal to the number of total variables N plus one. The

binary coding is used to denote whether a variable is

present in the model (the gene has the value 1) or not (the

gene has the value 0), while the integer coding of the last

gene of the chromosome denotes the number of fuzzy sets

used by the fuzzy means training algorithm. Following

this hybrid coding, each chromosome j represents a

potential solution of the variable selection problem and

it can be written as:

sGAj ¼ vGAj ; lGAj

ih
ð9Þ

where vj
GA is a binary vector of length N denoting the

input variables that are selected in the chromosome and

lj
GA is the respective number of fuzzy sets. Fig. 4 depicts

an example of a chromosome with 11 genes: The first 10

genes correspond to 10 potential input variables while the

last one denotes the number of fuzzy sets used in fuzzy

partitioning of the input space. For the particular example,

variables 2, 6, 7 and 10 are selected and the input space

of each one of them is partitioned into 5 fuzzy sets.

Before the execution of the GA, a number of operational

parameters must be defined, which are:

! The size of the population, P, which represents the total

number of chromosomes

! The total number of generations, G

! The probability of crossover, pc
! The probabilities of uniform mutation, pum, and nonuni-

form mutation, pnum
! The parameters lmin

GA, lmax
GA and bGA, which are associated

with the nonuniform mutation operator and will be

explained later in this section

The first step is to select an initial population of

chromosomes. This is randomly created, giving an equal

probability for each gene to be coded as d1T or d0T. Then
the algorithm proceeds with calculating the fitness of the
Fig. 4. Representation of a chromosome.
initial generation of chromosomes. For each chromosome

that contains a specific sequence of input variables and an

integer number, the algorithm creates an RBF network.

The fuzzy means algorithm is employed to train each

network by assigning the integer gene of the associated

chromosome to the number of fuzzy sets. It should be

noted that only the training data set is used by the fuzzy

means algorithm in order to calculate the parameters of

the RBF networks. When this is complete, the perform-

ance of each network is evaluated using the monitoring

data set. To be more specific, the root mean square error

(RMSEP) is used as a measure of the fitness of the

chromosomes:

RMSEPGA
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK2

i¼1

ðŷyi;j � yiÞ2

K2

vuuut
; j ¼ 1; 2; N ;P ð10Þ

where ŷi,j is the prediction of the jth network for the ith

example. The fitness Ej of each chromosome j is then

expressed as:

Ej ¼
1

RMSEPj

; j ¼ 1; 2; N ;P ð11Þ

since the GA is tailored to maximize the fitness function.

Based on the calculated fitness of the chromosomes, the

algorithm proceeds with the natural selection process,

which must assure the reproduction of the fittest chromo-

somes in the next generation. In the present study, the

reproduction is implemented as a linear search through a

roulette wheel. Each chromosome is allocated a slot on the

roulette, with size proportional to its fitness. A random

number is generated and a copy of a chromosome passes

to the mating pool only if the random number falls in the

slot corresponding to the particular chromosome. This

procedure is repeated P times in order to select P

chromosomes for the next generation. It is possible that

some chromosomes may be selected more than once in

accordance to the schema theorem: the best chromosomes

get more copies, the average stay even and the worst die

off [14].

The genetic operators that are applied after the creation

of the new generation are crossover and mutation. The

crossover operator is employed to exchange genes between

two chromosomes. For the specific GA, a one-point

crossover scheme is utilized, where after some pairs of

chromosomes are randomly selected based on the proba-

bility of crossover pc, they exchange strings of genes.

During the crossover operation, the last integer string is

treated in the same manner as the binary strings and it is

exchanged as well.

However, the different nature of the last string makes it

necessary to treat it specially during the mutation operation.



Fig. 5. Schematic description of the first stage.
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Thus, uniform flip bit mutation is applied to the binary

genes and nonuniform mutation is used for altering the

integer genes that represent the number of fuzzy sets. The

probability for each binary gene to be selected for mutation

is pum, while the probability for the integer genes to undergo

the nonuniform mutation operator is pnum. The flip bit

mutation simply inverts the value of the chosen gene (0

becomes 1 and vice versa). Nonuniform mutation is

implemented through the use of the following equations:

lGAnew ¼ f lGAold þ ðlGAmax � lGAold Þð1� r 1�g=Gð Þb
GAÞ if a random digit is 0

lGAold þ ðlGAold � lGAminÞð1� r 1�g=Gð Þb
GAÞ if a random digit is 1

ð12Þ

where lold
GA is the old number of the fuzzy sets, lnew

GA is the

number of the fuzzy sets that results from the nonuniform

mutation, lmin
GA and lmax

GA are lower and upper bounds on the

number of fuzzy sets, r is a random number between 0

and 1, g is the number of the current generation, and bGA

is a parameter which determines the degree of depend-

ency on the generation number. In Eq. (12), the result is

rounded to the nearest integer. Nonuniform mutation has

been selected for altering the number of fuzzy sets, since it

has the ability to search the space uniformly initially, while

as the number of iterations approximates the maximum

number of generations, it is forced to perform a more local

search.

After the genetic operators have been implemented, the

algorithm evaluates the fitness of the new chromosomes and

produces a new generation, until the maximum number of

generations has been achieved. The chromosome sb
GA that

produces the smallest prediction error RMSEPb
GA during the

whole procedure is finally selected. The combination of

input variables vb
GA and the number of fuzzy sets lb

GA

contained in this chromosome, together with RMSEPb
GA

and the number of selected input variables nb
GA, are carried

over to the second stage. A detailed schematic description of

the GA is shown in Fig. 5.

3.2. Second stage: Minimization of the number of input

variables using GSA

The outcome of the first stage is a subset of input

variables that produces an RBF model with minimum

prediction error. However, it is possible that an equal or

almost equal prediction error could be achieved with a

smaller number of variables. The objective of the second

stage is to investigate this possibility, using the GSA

algorithm. GSA has also been used for variable selection

in [34], where the size of the variable subset was predefined

and an integer coding was used for the representation of

each variable. However, in the proposed approach, we

employ the same coding as the one used in the implemen-
tation of the first stage. Thus, the solution at iteration j is

represented as:

sSAj ¼ vSAj ; lSAj

ih
ð13Þ

where vj
SA denotes the subset of selected variables and lj

SA is

the number of fuzzy sets. The objective function of the GSA

algorithm is the number of selected variables nSA. The

operational parameters that are associated with the second

stage and must be defined before its execution are:

! The total number of iterations, T

! A guess of the expected number of variables, ncons
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! The GSA parameter, b
! The maximum number of binary digits that can be

perturbed in each iteration, dc
! The parameters a, llow

SA, lhigh
SA and bSA, which will be

explained later in this section.

The subset of variables vb
GA and the number of fuzzy

sets lb
GA that resulted from the first stage are used as an

initial solution in the GSA. Then, during each iteration,

the algorithm executes a perturbation in the subset of

variables vcur
SA of the current solution scur

SA, by flipping

some of the binary values in the current solution. Thus, a

new subset of variables vnew
SA is created. At the first

iterations the maximum number dc of digits that can

change is given relatively large values, but as the

algorithm progresses this number reduces, so that in the

last iterations only one flip is allowed. It should be noted

that the perturbation is biased, as there is greater chance

for 1’s to become 0’s than the opposite. This is reasonable

since the objective is to minimize the number of

variables.

A different kind of perturbation is applied to the number

of the fuzzy sets, which is represented by the last digit of the

solution. At each iteration the algorithm uses the following

equations to calculate a lower bound lmin
SA and an upper

bound lmax
SA for the number of fuzzy sets, with respect to its

current value lcur
SA:

lSAmin ¼ lSAcur � lSAcur � lSAlow
�

1� r 1�t=Tð Þb
SA���

lSAmax ¼ lSAcur þ lSAhigh � lSAcur

�
1� r 1�t=Tð Þb

SA���
ð14Þ

where T is the maximum number of iterations, t is the

number of current iteration, llow
SA and lhigh

SA are the predefined

minimum and maximum allowed values for the number of

fuzzy sets, bSA is a parameter which determines the degree

of dependency on the iteration number and r is a random

number between 0 and 1. In the above equations, the results

are rounded to the nearest integers.

Using the new subset of variables vnew
SA, the proposed

methodology tests the different numbers of fuzzy sets that

belong to the limits defined by Eq. (14), by creating an RBF

network for each one of them with the fuzzy means

algorithm. The number of fuzzy sets lnew
SA which gives the

smallest RMSEP in the validation data set is selected and

incorporated in the new solution snew
SA .

In order to evaluate the new solution, the algorithm

checks whether its RMSEP is equal or smaller than a

threshold value RMSEPt. The threshold value is a function

of RMSEPb
GAwhich is transferred from the first stage. Since

RMSEPb
GA approximates the global optimum, there is a

great chance that GSA will not be able to find a subset of

fewer variables that produces equal or smaller RMSEP.
Hence, RMSEPb
GA is multiplied by a number a that is

greater than unity:

RMSEPt ¼ aRMSEPGA
b ð15Þ

In other words, we sacrifice some of the accuracy of the

network predictions in order to achieve a considerable

reduction of the number of selected input variables. In the

case that RMSEP is equal or smaller than the threshold

value, then the new solution snew
SA is forwarded for further

processing. Otherwise, it is rejected and a different random

perturbation of the current solution scur
SA is performed. If the

new solution snew
SA has passed the threshold accepting test, the

algorithm checks the associated number of utilized input

variables nnew
SA. In case this number is smaller compared to

the number of variables ncur
SA involved in the current solution,

then snew
SA substitutes scur

SA. However, this is allowed to happen

even in the opposite case, using the probability function (Eq.

(8)), which for the specific problem can be expressed as

follows:

p ¼ exp � b
nSAnew � nSAcur
nSAbsf � nSAcons

�
ð16Þ

More precisely, the new solution snew
SA is accepted if p is

greater than or equal to a random number between 0 and 1.

In the above equation, nbsf
SA represents the number of

variables in the best so far solution and ncons
SA is a guess

for the number of variables in the final solution. For this last

parameter, the algorithm initially uses a conservative guess,

but if during the execution of the algorithm a better solution

(with less number of variables) is obtained, the value of

ncons
SA is reduced accordingly [34]. Obviously a higher value

of the probability function gives more chances of accepting

a non-improving solution. Finally, in case the current

solution scur
SA has changed, the algorithm checks if the new

accepted solution is the best solution obtained so far and

continues with the next iteration.

The final outcome of the second stage is the solution sb
SA

that is close to the global optimum as far as the prediction

error is concerned, while at the same time it contains a

minimum number of input variables. A descriptive flow-

chart of the second stage is given in Fig. 6.

The neural network model associated with the solution

sb
SA is finally tested on the validation data set, which has not

been utilized during the entire training procedure.

Remark. It should be noted that the number of fuzzy sets,

which is a parameter that ultimately controls the size of the

produced RBF network, is included in the optimization

procedure as a free variable, in both stages of the algorithm.

Though the objective of the employed optimization algo-

rithms is only to find a suitable set of input variables, the

necessity for including the number of fuzzy sets can be

justified considering the nature of the fuzzy means

algorithm: The fuzzy means algorithm picks the RBF

centers from a grid that is defined in the input space. As



Fig. 6. Schematic description of the second stage.
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the number of input variables increases, the number of

nodes in the grid increases as well, leading to more potential

RBF centers and consequently more complex RBF network

structures. On the other hand, it is known that more RBF

centers are needed in order to describe complex and

nonlinear systems. In case of such a system, the optimiza-
tion procedure would tend to create models with more RBF

centers, in order to reduce the prediction error. However, if

the number of fuzzy sets was fixed during the optimization

procedure, the only way to increase the number of RBF

centers would be to increase the number of selected input

variables. Thus, the algorithm would be biased to select



Table 2

Values for the operational parameters of the first stage of the GASA-RBF

method

Parameter Value

Population size, P 20

Maximum number of generations, G 300
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models with more input variables. In order to avoid this, the

number of fuzzy sets has been added as a free variable, so

that the algorithm can manipulate it for determining the

proper number of RBF centers, without increasing unneces-

sarily the number of input variables.
Crossover probability, pc 0.75

Mutation probability, pum 0.01

Nonuniform mutation probability, pnum 0.1

Lower bound of the number of fuzzy sets, lmin
GA 3

Upper bound of the number of fuzzy sets, lmax
GA 21

Freezing parameter, bGA 2
4. Results and discussion

The first three data sets (ADPN, LATEX, SPIRA) used in

this study for the evaluation of the GASA-RBF variable

selection methodology are taken from Ref. [30] and they

offer useful benchmarks for comparing the method with

other variable selection techniques. For a more thorough

examination of the performance of the proposed method as

far as successful variable selection and accurate prediction

are concerned, a fourth simulated data set was constructed

from an intrinsically nonlinear relationship. Further descrip-

tion of the first three data sets is given in the original paper of

Gauchi and Chagnon [30]. For the construction of the

artificial data set, 600 input examples of dimension 100 were

generated, where each component was selected as a

uniformly distributed number ranging between 1 and 6.

The respective output examples were calculated using a

deterministic nonlinear function of a subset of the input

variables f(x)=f(x3, x5, x16, x19, x30, x33, x44, x50, x57, x88,

x90) where normally distributed noise was added. More

specifically, for each input example, the output response was

calculated as follows:

y ¼ ð20x219=x88 þ 50logðx90=x33Þ þ 2x30x
2
5 þ 4x33=x16

þ 200e�
ðx44�4:5Þ2

2 þ 400e�
ðx50�3:5Þ2

2

þ 500e�
ðx57�4:5Þ2

2 Þ 1þ gð Þ ð17Þ

where D is a normally distributed random variable with 0

mean and 0.05 standard deviation.

The four data sets together with the total number of

variables, the total number of observations, the number of

observations used for training the model and the number of

observations used for evaluation can be found in Table 1.

Obviously, all four variable selection problems belong to the

class of large-scale problems, which makes them suitable for

testing the proposed methodology.

The GASA-RBF method was applied to the four data sets

with the operational parameters shown in Tables 2 and 3, for

the first and second stage, respectively. The results are
Table 1

Description of the four data sets

Data Set Total number of variables Total number of observations

ADPN 100 71

LATEX 117 262

SPIRA 96 145

Artificial 100 600
presented in Tables 4–7, which depict separately for each

stage of the algorithm the number of selected variables, the

RMSEP for the training, monitoring and validation data sets

and the parameters of the produced RBF network.

In order to test the efficiency of the proposed approach, a

comparison was performed for the first three problems,

between the results of the GASA-RBF method and the

results produced by the Backward Qcum
2 (BQ) method,

which is selected by Gauchi and Chagnon [30] as the best

among the 20 algorithms they tried. Qcum
2 is a cross-

validated prediction criterion, which is defined precisely in

Ref. [30]. The comparison is made using the RTo,p
2 criterion

(the squared correlation coefficient of the regression line of

the observed–predicted pairs of the validation set, multiplied

by 100). The comparative results are summarized in Table 8,

which shows the values of the RTo,p
2 coefficient and the

number of selected variables for the two methods.

For the last variable selection problem, the proposed

approach was compared to a well established method, the

Forward Selection PLS (FS-PLS). The FS-PLS scheme

employs PLS as a modeling technique, forward selection as

a search algorithm and cross-validated RMSE as the

selection criterion. More specifically, multiple out cross-

validation was used, by considering the first 500 data and

performing 50 random splits into 250 training data and 250

monitoring data. The proposed methodology was compared

to the FS-PLS method on the same external validation data

set comprised of 100 objects. Comparative results for the

last problem are shown in Table 8.

Tables 9 and 10 depict the indices of the selected

variables for all four data sets, where indices in bold indicate

the common selections. Based on these results the following

remarks can be made:

(1) The GASA-RBF is significantly more accurate com-

pared to the BQ and FS-PLS methods; as in all test
Size of training set Size of monitoring set Size of validation se

29 28 14

105 105 52

58 57 30

400 100 100
t



Table 4

Results for the ADPN data set

Parameter First stage Second stage

Number of total variables 100 45

Number of selected variables 45 28

Number of fuzzy sets 5 5

Number of centers 20 18

RMSE for the training set 1.024 1.2570

RMSE for the monitoring set 1.2099 1.2552

RMSE for the validation set 4.3046 2.6523

Table 6

Results for the SPIRA data set

Parameter First stage Second stage

Number of total variables 96 36

Number of selected variables 36 5

Number of fuzzy sets 5 10

Number of centers 6 34

RMSE for the training set 0.2281 0.1222

RMSE for the monitoring set 0.1666 0.1697

RMSE for the validation set 0.1600 0.2455

Table 7

Results for the simulated data set

Parameter First stage Second stage

Number of total variables 100 33

Number of selected variables 33 5

Number of fuzzy sets 11 9

Number of centers 400 200

RMSE for the training set 20.12 105.01

RMSE for the monitoring set 172.28 170.95

RMSE for the validation set 203.75 140.59

Table 8

Comparison of the GASA-RBF and BQ, FS-PLS methods in terms of the

Table 3

Values for the operational parameters of the second stage of the GASA-

RBF method

Parameter Value

Total number of iterations, T 5000

GSA parameter, b 2

Initial estimate of global optimum, ncons
SA 5

Multiplier for the threshold value, a 1.05

Maximum number of binary digits that can be perturbed, dc 5

Minimum allowed value for the number of fuzzy sets, l low
SA 3

Maximum allowed value for the number of fuzzy sets, lhigh
SA 21

Freezing parameter, bSA 2
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cases it produces a higher RTo,p
2 value. This is probably

due to the nonlinear relations that are present between

the input and the output data in the four data sets.

Nonlinearities are easily described by an RBF net-

work, but cannot be captured by the BQ and the FS-

PLS methods, which are based on the linear PLS

methodology.

(2) As far as the number of selected variables is

concerned, the GASA-RBF selects more variables

for the ADPN data set while it selects significantly

less variables for the LATEX, SPIRA and the

simulated data set. For the simulated data set,

GASA-RBF selects only five true variables and

makes no wrong choices, while FS-PLS selects—

among 12 variables—9 out of the 11 true variables. It

should be mentioned here that in this particular

example, an RBF network that uses all the correct

input variables increases the RTo,p
2 value by only 2%,

showing that the inclusion of the rest of the true

parameters does not considerably improve the accu-

racy of the produced nonlinear model. The results

show that the GASA-RBF is superior to the BQ

method. The results also illustrate the good perform-
Table 5

Results for the LATEX data set

Parameter First stage Second stage

Number of total variables 117 53

Number of selected variables 53 12

Number of fuzzy sets 8 11

Number of centers 56 88

RMSE for the training set 0.4174 0.2031

RMSE for the monitoring set 0.4456 0.4618

RMSE for the validation set 0.4985 0.5798
ance of the FS-PLS method as far as the selection of

the correct variables is concerned in the highly

nonlinear fourth case.

(3) The most surprising result is that there are a lot of

different variables selected by the different methods,

especially in the first three data sets. This can be

explained in two ways. The first is concerned with the

nature of the algorithms (linear vs. nonlinear). Alter-

natively, this disagreement can be explained by

assuming that there exist strong correlations between

the explanatory variables.

Since there are several parameters involved in both

stages of the method, it would be interesting to examine the

sensitivity of the method with respect to the values of these

parameters. A first indication of the robustness of the

method is given by the fact that exactly the same set of

parameters was used in all four variable selection problems.

In order to further examine the issue of robustness, we

performed a set of experiments on the simulated data set by

changing two parameters, one in each stage, namely the

crossover probability in the first stage and the multiplier for
number of selected variables and the root mean square error for the

validation set

Data set Method Number of selected variables RTo,p
2

ADPN GASA–RBF 28 76

BQ 13 71

LATEX GASA-RBF 12 67

BQ 24 60

SPIRA GASA–RBF 5 54

BQ 15 45

Artificial GASA-RBF 5 77

FS-PLS 12 49



Table 11

Sensitivity of the GASA-RBF method with respect to the design variables

(simulated data set)

pc a RTo,p
2 Number of

selected variables

Number of selected

true variables

Table 9

Indices of selected variables for the GASA-RBF and BQ methods

Data set GASA-RBF BQ

ADPN (71�100) 7 8 11 13 26 33 11 29 31 42 44 46

42 44 46 48 52 58 68 69 72 86 90 95

59 62 66 68 71 78 100

79 80 81 83 88 89

93 94 95 100

LATEX (262�117) 8 34 51 53 58 90 2 4 5 26 32 34

95 96 98 104 109 111 51 53 54 55 57 64

74 83 84 90 95 96

97 98 101 110 115 116

SPIRA (145�96) 19 49 71 74 77 26 31 32 49 56 61

65 67 71 72 75 76

77 78 80

A. Alexandridis et al. / Chemometrics and Intelligent Laboratory Systems 75 (2005) 149–162 161
the threshold value a in the second stage. These are the most

critical parameters, since probability of crossover deter-

mines to a great extent the variability of each generation

related to its preceding generation, while the value a

controls the deterioration of accuracy in favor of variable

elimination. The results are summarized in Table 11, where

the importance of the parameter a can be observed. When

the value of a is close to 1, the importance of the second

stage of the algorithm is obviously limited. The result is a

very accurate model as far as the training and monitoring

sets are concerned, but the prediction performance of the

model deteriorates when it is tested on the validation data

set. Table 11 shows that a good choice for a is 1.05, i.e., the

value we used in all four data sets. On the other hand, the

performance of the method does not seem sensitive with

respect to the parameter pc. It is interesting to note that in

two experiments, the prediction accuracies of the produced

models were better, compared to the nominal case.

Another interesting issue on the proposed method

concerns the execution times. The most time-consuming

part is the inversion of the matrix containing the responses

of the hidden layer nodes, in order to calculate the weights

between the hidden layer and the output layer of each

network. This means that there is a great variation on the

computational times depending on the size of the training

data. For the four particular examples, training times

ranged from 1.5 h for the ADPN data set to 5 h for the

simulated set in a Pentium IV 1400 MHz processor running

Matlab. These times are much larger compared to the ones

needed by linear variable selection techniques, but this is

the price we pay for improving the accuracy of the

produced model. It should be mentioned, however, that if

a different neural network architecture or training method-
Table 10

Indices of selected variables for the GASA-RBF and FS-PLS methods

Data set GASA-RBF FS-PLS

Artificial

(600�100)

3 5 19 50 3 5 16 19

57 30 33 44 57

60 67 80 88

0.55 1.15 74 8 6

0.75 1.15 78 8 7

0.95 1.15 77 9 7

0.55 1.05 76 6 5

0.75 1.05 77 5 5

0.95 1.05 78 7 6

0.55 1.01 73 15 6

0.75 1.01 75 11 7

0.95 1.01 72 15 9
ology was applied, the computational times would be

orders of magnitude larger.
5. Conclusions

This work presents a novel variable selection method that

has the ability to produce nonlinear models between the

input and output variables. The method decomposes the

optimization problem into two subproblems: in the first

subproblem, the objective is to minimize the prediction

error, while in the second the objective is to minimize the

number of input variables. In both stages, stochastic search

techniques (a specially designed genetic algorithm and

simulated annealing) are utilized to perform the optimiza-

tion task. The correlation between the input and output data

is modeled based on the fuzzy means algorithm, which is

utilized to train RBF neural network models. The particular

training methodology exhibits small computational times

compared to utilizing other neural network architectures and

makes feasible the combination of neural networks with

stochastic search techniques. It should be mentioned,

however, that the computational effort is larger and the

produced model is more complicated compared to standard

linear techniques, indicating that the method is particularly

valuable when nonlinear relationships exist between the

input and output data.
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The GASA-RBF methodology was tested in four

variable selection benchmark problems and produced very

satisfactory results. Comparisons with other algorithms

found in the literature demonstrated the efficiency of the

proposed method.
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