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On Generating FCFuzzy Rule Systems
from Data Using Evolution Strategies

Yaochu Jin,Member, IEEE,Werner von Seelen, and Bernhard Sendhoff

Abstract—Sophisticated fuzzy rule systems are supposed to
be flexible, complete, consistent and compact (FC3). Flexibility,
completeness and consistency are essential for fuzzy systems to
exhibit an excellent performance and to have a clear physical
meaning, while compactness is crucial when the number of
the input variables increases. However, the completeness and
consistency conditions are often violated if a fuzzy system is
generated from data collected from real world applications.

In an attempt to develop FC3 fuzzy systems, a systematic design
paradigm is proposed using evolution strategies. The structure
of the fuzzy rules, which determines the compactness of the
fuzzy systems, is evolved along with the parameters of the fuzzy
systems. Special attention has been paid to the completeness and
consistency of the rule base. The completeness is guaranteed
by checking the completeness of the fuzzy partitioning of input
variables and the completeness of the rule structure. An index
of inconsistency is suggested with the help of a fuzzy similarity
measure, which can prevent the algorithm from generating rules
that seriously contradict with each other or with the heuristic
knowledge. In addition, soft T-norm and BADD defuzzification
are introduced and optimized to increase the flexibility of the
fuzzy system. The proposed approach is applied to the design of
distance controller for cars. It is verified that a FC3 fuzzy system
works very well both for training and test driving situations,
especially when the training data are insufficient.

Index Terms—Compactness, completeness, consistency, evolu-
tion strategies, flexibility, fuzzy rule systems.

I. INTRODUCTION

FUZZY logic has proved to be a very powerful technique
in the discipline of system control, especially when the

controlled system is hard to be modeled mathematically, or
when the controlled system has large uncertainties and strong
nonlinearities. Since the last decade, fuzzy control systems
have experienced a great success in the fact that not only a
lot of successful industrial applications have been found, but
concrete theoretical conclusions are also achieved in some im-
portant aspects, to name a few, the stability and approximation
properties [4], [25], of the fuzzy systems. However, fuzzy
systems are by no means perfect. It is criticized that fuzzy
control rules are not capable of expressing deep knowledge [6]
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because they are often established on the basis of experience
and intuition of human beings.

With the emergence of the techniques called soft computing
[29] or computational intelligence [19], fuzzy control has
obtained a new impetus. Backpropagation networks [16], RBF
neural networks [9], hybrid pi-sigma networks [11], B-spline
networks [8] and neuron-like structures [3] are applied to the
adaptation of the fuzzy membership functions and the con-
sequent parameters. On the other hand, counter-propagation
networks [30] and BAM [20] are utilized to determine the
number of the fuzzy subsets for each input variable. These
methods are successful in that it is no longer necessary to
determine exactly the parameters of fuzzy rules and the fuzzy
partitioning of the input variables in advance.

Genetic algorithms (GA’s) have also been employed to
design fuzzy systems. Since the first attempt to vary some
parameters of a fuzzy rule base using genetic algorithms [13],
several efforts have been made to exploit the advantages of
GA’s for the design of fuzzy systems [18], [21]. It is found
that GA’s are more flexible because they are capable of
optimizing the parameters and the rule number simultaneously
[14]. Furthermore, the structure of the fuzzy rules can also be
optimized by GA’s so that a compact fuzzy rule system can be
obtained [10]. One problem that appears in this methodology
is the choice of genetic coding. If the conventional coding
scheme is used, the length of the chromosome increases
significantly with the number of inputs and the number of their
fuzzy partitioning. This will no doubt harm the efficiency of
the genetic searching. To solve this problem, chromosomes
with variable length [5] and context dependent coding [15]
have been suggested and proved to exhibit considerable im-
provements over the fixed length chromosomes.

Relative fewer efforts have been made to date to design
fuzzy systems using evolution strategies (ES). We believe that
ES are quite suitable for the design of fuzzy systems due to
their direct coding scheme and their simple way of handling
constraints. In [27], evolution strategies are used to adjust the
parameters of the fuzzy rules, and then genetic algorithms
are utilized to optimize the structure of the fuzzy rules base.
However, since the optimal values of the rule parameters and
rule structure depend on each other, it is easy to conceive that
it would be better to evolve them simultaneously.

A common problem concerning adjustment of the member-
ship parameters is that the shape of the membership functions
is adjusted so drastically that either some of the fuzzy subsets
lose their corresponding physical meanings, or the fuzzy
subsets do not cover the whole space of the input variable.
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In the latter case, the fuzzy partitioning is called incomplete,
i.e., the fuzzy system takes no action if the value of the
variable falls in the uncovered region. Besides, no sufficient
research work has been carried out to keep the consistency of
the fuzzy rules in generating fuzzy rules from data. In most
cases, only the rules that have the same antecedent but different
consequent are considered to be inconsistent. In [26], a degree
of belief is assigned to each generated rule and only the one
with a maximal degree will be accepted if two rules have the
same IF part but different THEN parts. In [10], the priority is
given to the rule that first appears. As a matter of fact, rules
that have different IF parts might also be inconsistent, either
with other rules or with the human heuristics.

To cope with the above mentioned problems, an ES based
methodology for generating fuzzy systems is proposed in this
paper. It focuses mainly on the completeness, consistency and
compactness of the fuzzy systems. Another feature of this work
is that the fuzzy operators, including T-norms and BADD
defuzzification, are also optimized. It is demonstrated with
an example of distance control that the proposed approach is
advantageous over the other methods in the following respects.
1) The fuzzy system is compact and efficient because the
number of the fuzzy rules is greatly reduced; 2) The fuzzy
system is complete and no seriously conflicting rules will
be generated, which contributes to the improvement of the
generalization ability of the fuzzy system and guarantees that
the knowledge acquired by the fuzzy rules is physically sound,
and 3) The fuzzy system is expected to exhibit a better
flexibility because soft fuzzy operators [28] are incorporated
and optimized.

In the next section, the definition of FCfuzzy systems,
including the concept of soft T-norm, BADD defuzzification,
completeness, consistency and compactness are provided. In
Section III, design of an FCfuzzy system using evolution
strategies is given in detail. An application example of distance
control is described in Section IV. Various simulations are
carried out to show that an FCfuzzy system exhibits excellent
training and test performances even if the training data are
insufficient. Finally, a summary of the paper is given in
Section V.

II. FC FUZZY SYSTEMS

A. Basic Formulas of Fuzzy Systems

Until now, two main types of fuzzy systems, namely,
the Mamdani type and the Takagi–Sugeno type, have been
developed. The main difference between these two types of
fuzzy systems lies in the fact that the consequent part of
Takagi–Sugeno rules are concrete values instead of fuzzy sets.
Since a multi-input multi-output fuzzy system can always be
separated into a group of multi-input single-output (MISO)
fuzzy systems, we discuss here only the MISO fuzzy systems
without the loss of generality. For an MISO fuzzy system with

input variables, the Mamdani type fuzzy rules are expressed
in the following form:

(1)

where

input variables;
output of the fuzzy system;

and linguistic terms defined by cor-
responding membership functions

and

For a conventional fuzzy system, if each variable is divided
into fuzzy subsets, then the total rule number is
It is noticed that for such a fuzzy system, the number of rules
increases exponentially with the number of input variables.
According to the Mamdani fuzzy implication method, the
fuzzy relation of the th rule can be expressed by

(2)

which is a fuzzy set whose membership function is described
by

(3)

where means the T-norm operator. Based on sup-star
composition, the overall fuzzy relation of the fuzzy system
in terms of membership function can be written as follows:

(4)

where is the maximum operator. Suppose is normal, i.e.,
the maximum value of is 1.0, where is the point at
which reaches its maximum, and the center of gravity
(COG) defuzzification method is adopted, then the crisp output
of the Mamdani fuzzy system is obtained by

(5)

If Takagi–Sugeno type fuzzy rules are used, then the fuzzy
rules have the following form:

(6)

It is observed that the consequent part of the Takagi–Sugeno
rules is a crisp value and usually a function of the input
variables instead of a linguistic variable. The output of a
Takagi–Sugeno rule system is in the following form:

(7)

If is a linear function in the form of

(8)
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where are constant
coefficients, then the rule structure can be determined with
a search algorithm and the parameters of the rules can be
identified using the least-square method or gradient method
[24]. If a more complex combination of the input variable is
needed, then it can be handled with a pi–sigma neural network
[11].

In practice, the consequent part of the Takagi–Sugeno rules
is often simplified to a constant, in which case the output of
the Takagi–Sugeno rules can be written as follows:

(9)

From (5) and (9), it is easy to notice that the same conclusion
is derived from Mamdani rules and Takagi–Sugeno rules.

In the following subsections, the definition of an FCfuzzy
system in the context of this paper will be provided in detail
and the reasons to construct such fuzzy systems are given.

B. Flexible Fuzzy Operators

In the above fuzzy systems, the fuzzy operators, including
T-norm and defuzzification method, are conventional T-norms
and COG defuzzifier. Although several T-norms have been
proposed, they have not been shown to play an important role
in improving the performance of the fuzzy control systems
[7], [12]. On the other hand, which defuzzification method
should be selected is in fact problem-related [22]. In these
respects, the so-called soft T-norm and BADD defuzzifier are
very flexible [28]. They can be expressed in the following
form:

-

(10)

(11)

where and It is noticed that if is
1.0, then the soft T-norm reduces to the conventional T-norm.
If is 0, then the soft T-norm is equivalent to computing a
mean value. It is argued in [12] that such a soft T-norm is more
promising in improving the performances of the fuzzy systems
than the combination of different T-norms. On the other hand,
the BADD defuzzifier is equivalent to the center of gravity
(COG) method and the mean of maximum (MOM) method
when and , respectively. If varies from 1 to

BADD defuzzifier is able to reach a possible compromise
between COG and MOM defuzzifiers. In this way, the hard
task to make a choice among the different fuzzy operators can
be spared and the fuzzy system is flexible.

(a) (b)

Fig. 1. Overfitting of the membership functions. (a) Incomplete fuzzy par-
titioning and (b) lack of distinguishability.

C. Completeness of the Fuzzy Systems

The discussion of completeness is necessary if a fuzzy
system is generated automatically from data. In order to
discuss the completeness of the fuzzy system, it is desirable
to provide a definition of the completeness. In this paper, a
fuzzy system is said to be complete if

1) fuzzy partitioning of each input variable is complete;
2) rule structure of the fuzzy system is complete.

If one of the above conditions is violated, the fuzzy rule system
is incomplete, which implies that the fuzzy system will provide
no output in some cases. Although it is suggested to output a
value of zero or some other values in case no rules are fired,
it will be shown in this work that incompleteness of the fuzzy
systems should be avoided.

We first discuss the completeness of the fuzzy parti-
tionings of the input variables. Suppose input variable

is partitioned into fuzzy subspaces represented by
on the universe of discourse

then the partitioning is considered to be complete if the
following condition holds:

(12)

It is often the case that the fuzzy partitionings of some input
variables are no longer complete after the fuzzy membership
functions have been optimized. This is quite easy to understand
because all the optimization algorithms try to adjust the
distribution of the membership functions according to the
distribution of the given data. Such optimizations, however,
will give rise to the problem of “overfitting” of the fuzzy
membership functions, when the presented data distribute
irregularly. The overfitting of the fuzzy membership functions
results in the following consequences:

1) fuzzy partitionings become incomplete;
2) physical meaning of some fuzzy subsets may be blurred,

that is to say, the fuzzy subsets lack distinguishability
(see Fig. 1).

If the membership functions are realized, say, by neural
networks, they may become neither unimodal nor normal. All
these phenomena might be beneficial to improve the training
performance, but will usually deteriorate the generalization
quality of the fuzzy systems.

In order to avoid overfitting of the membership functions,
certain measures must be taken in the process of parameter
optimization or rule generation. One practical measure is
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to limit the adjustable range of the parameters so that the
completeness of the fuzzy partitioning will be kept and the
distinguishability of different fuzzy sets will be preserved.
Another method is to add or merge some fuzzy subsets in the
process of optimization if needed. In this paper, we suggest a
new possibility to deal with these problems with the help of
fuzzy similarity measures.

A fuzzy similarity measure indicates the degree to which
two fuzzy sets are equal. It has been used in structure learning
of fuzzy systems [17]. In their work, the fuzzy similarity mea-
sure is used to add new membership functions for the output
variable so that proper fuzzy partitioning of the output space
can be obtained. In our approach, the fuzzy similarity measure
is used to preserve the completeness of the fuzzy partitionings
of the input variables and to preserve the distinguishability of
the fuzzy subsets. For any two fuzzy setsand the fuzzy
similarity measure is defined by:

(13)

where is called the size of fuzzy set and can be
calculated as follows:

(14)

It is noticed that if and only if
and if and only if and do not overlap.
In other cases, varies from 0 to 1. Therefore, if
the fuzzy similarity measure of any two neighboring fuzzy
sets is controlled properly, the incompleteness of the fuzzy
partitioning can be avoided and the distinguishability of the
fuzzy sets can be preserved. Calculation of the fuzzy similarity
measure in the case of triangular membership functions and
Gaussian membership functions are provided in Appendix I.

It should be pointed out that the completeness of the fuzzy
partitionings does not necessarily guarantee the completeness
of the fuzzy systems, in other words, a fuzzy rule system may
still be incomplete even if the fuzzy partitionings of the input
variables are complete. This happens when the rule structure
is incomplete, i.e., some of the fuzzy subsets are not used by
the rule system, which is often the case in the course of rule
structure optimization (see Fig. 2). The completeness of the
rule structure will be explained further when we discuss the
compactness of the fuzzy systems.

D. Consistency of the Fuzzy Systems

The problem of consistency of the fuzzy rules is usually
thought to be trivial if the rules are extracted from expert
knowledge. However, if the rules are automatically generated
from a set of data affected by noise, this problem can become
serious. We discuss here not only the consistency among the
fuzzy rules in the generated rule base, but also the consistency

(a) (b)

Fig. 2. Rule structures of a two dimensional fuzzy system. A shaded area
represents a fuzzy rule. (a) Complete rule structure. (b) Incomplete rule
structure.

of the rules with the intuition and common sense of human
beings. Therefore, fuzzy rules are regarded as inconsistent, if

• They havevery similarpremise parts, but possessrather
different consequents, and

• They conflict with the expert knowledge or heuristics.

It is noticed that the concept of consistency is not concrete
and can only be described by a value of degree. Moreover, the
discussion of consistency is sensible only if the premise parts
of the rules are very similar, if not necessarily the same. That
is to say, two fuzzy rules may contradict with each other even
if they do not have the same premise, on the other hand, it
is hard to say that two rules are inconsistent if their premise
parts have little similarity. Suppose there are two rules in the
following form:

where “NB,” “ZO,” “PS,” and “PB” represent negative big,
zero, positive small and positive big respectively. Despite that
the antecedents of the two rules are not the same, they seem
to be inconsistent because they have very similar premises,1

but rather different consequents. However, if the two “ZO’s”
in rule are replaced by “NB,” then these two rules are quite
consistent even if their consequents are completely different.

Therefore, it is necessary to provide a proper definition of
consistency, which can embrace the aforementioned consid-
erations. Before we discuss the definition of the consistency,
we first provide the definition ofthe similarity of rule premise
(SRP) andthe similarity of rule consequent(SRC) again with
the help of fuzzy similarity measure. Consider two rules in
the rule base:

If is and is and and

is in then is

If is and is and and

is then is

Then SRP and SRC of these two rules are defined as follows:

(15)

1Of course, it depends on the definition of the membership functions.
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(16)

where is the total number of the input variables and
is the fuzzy similarity measure of fuzzy sets and as
defined in (13). Then the consistency of rule and
is defined by:

(17)

The above definition of consistency has two fundamental
characteristics. One characteristic is that the degree of consis-
tency tends to be high when the SRP and SRC of two rules
is in proportion, provided that the SRP of the two rules is
high. Particularly, if the rules have the same premise and the
same consequent, the degree of consistency reaches its highest
value of 1. If the premises are the same but the consequents are
different, then the consistency ranges from 0 to 1.0. The other
characteristic is that the degree of consistency is always high if
the SRP of two rules is very low, no matter how the relation of
SRP and SRC changes. This is concordant with the assumption
that two rules will always be considered to be consistent if they
have very different premises. It can be seen that our definition
of consistency is a soft criterion, which is in good agreement
with the philosophy of fuzzy set theory. Nevertheless, this
definition is constructed from the point of application and has
to be subject to strict theoretical examinations.

One further fact that needs to be pointed out is that the
consistency definition is generally suitable for Mamdani fuzzy
systems. If the consequent part of the Takagi–Sugeno fuzzy
systems is reduced to a constant, then it is also applicable
because an output in the form of fuzzy singleton can always
be extended to a normal fuzzy set. However, if the consequent
part of the Takagi–Sugeno rule is a function of the input
variables, it is generally difficult to evaluate the consistency
of two fuzzy rules, because a consequent variable expressed
in terms of a real function does not exhibit clear physical
meanings.

Apart from the consistency checking among the rules, it is
also important to investigate the consistency of the generated
rules with the human intuition or prior knowledge. If the
human intuition or prior knowledge is expressed in fuzzy rules,
then the consistency checking can also be implemented using
the definition provided above. The prior knowledge required
here is fundamental, which can be normally obtained from
common sense and intuition. Take driving situations as an
example, the following rule is easily available:

Although such rules are very simple, they are critical to the
performance of fuzzy systems. Despite that fuzzy systems are
believed to be able to tolerate some inconsistent rules to a
certain degree, rules that seriously contradict with the others
or with the human heuristics definitely lower the performance
of the fuzzy systems.

(a) (b)

Fig. 3. Fuzzy sets at the two ends of the partition (described with dotted
lines) can be discarded. (a) Before discard. (b) After discard.

E. Compactness of the Fuzzy Systems

The number of fuzzy rules needed to represent a physical
system also depends on the structure of the fuzzy rules. If a
fuzzy system has inputs and each input variable is partitioned
into subspaces, there will be rules in a fuzzy system
with a standard structure. The standard structure is usually
not optimal and therefore not compact [10]. A compact fuzzy
system is very desirable when the number of input variables
increases, especially for Takagi–Sugeno fuzzy systems with
general consequent forms.

Some measures should be taken to guarantee the complete-
ness of the fuzzy rule system in optimizing the rule structure.
If some of the fuzzy subsets are not used, the rule structure will
be incomplete. However, it is against our aim if we require that
all fuzzy subsets must be used by the fuzzy system. A way out
of this dilemma is that we allow the fuzzy system to discard
the fuzzy subsets at the two ends of the fuzzy partitioning;
however, a subset inside the fuzzy partitioning must be used
(see Fig. 3).

III. GENERATION OF FC FUZZY SYSTEMS

BASED ON EVOLUTION STRATEGIES

A. Algorithm of Evolution Strategies

Evolution strategies (ES) are used to optimize the co-
efficients of the soft T-norm and BADD defuzzifier, the
parameters of the fuzzy membership functions as well as the
structure of the fuzzy rules. Evolution strategies, instead of
genetic algorithms are used in this paper due to the following
two considerations. One is that the coding of ES is direct
for real valued parameter optimization and consequently the
length of the string increases just linearly with the number of
variables. Comparative studies on ES’s and GA’s have been
carried out in [2] and better results have been obtained by
using ES’s in the case of real valued parameter optimization.
Because the rule structure will be evolved together with
the parameters of the membership functions, the number of
variables to be optimized increases significantly. If a binary



834 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 6, DECEMBER 1999

genetic algorithm is used, the length of the string will grow
drastically, which no doubt affects the searching efficiency
seriously. To alleviate such difficulties, either the range of
the parameters needs to be limited, or special coding methods
should be developed. The other reason is that ES deals with the
constraints quite conveniently, which enables the algorithm to
search a wider parameter space. However, this does not imply
that ES is superior to GA, or vice versa.

Presently, several ES algorithms are available. The two most
widely used algorithms are noted as -ES and -
ES. The former selects the bestindividuals from both of
the parents and offsprings as the parents of the next
generation, while the latter selects the bestparents only from
the offsprings. It is believed that the -ES outperforms
the -ES because -ES is less likely to get stuck
in local optima. The numbers of parents and offsprings are
recommended to be at a ratio of [23].

Since both real and integer numbers are involved in the
optimization, a slightly modified version of -ES [1] is
used here. An ES algorithm that is capable of dealing with
mixed optimization can be described by the following notation:

- (18)

where is a string of real or integer numbers representing
an individual in the population, and are the numbers
of the parents and offsprings respectively;is the parameter
to control the step size, represents the mutation operator,
which is the main operator in the mechanism of ES. In ES
algorithms, not only the variables, but also the step-size control
parameter are mutated. In (18), parameterstands for the
selection method and in this case, the parents will be selected
only from the descendants; is the objective function to
be minimized, and is the constraining function to which the
variables are subject. The variables to be optimized and the
step-size control parameter are mutated in the following way:

(19)

(20)

(21)

where and are normally distributed random
numbers with mean of zero and variance of 1, is the
total number of variables to be optimized, is the number
of real variables and naturally denotes the number
of the integer variables, and “ ” is the maximal integer
smaller than In our case, the parameters representing the
fuzzy operators and membership functions are encoded with
real variables, while the rule structure parameters are encoded
with integer numbers. and are two global step control
parameters.

Similar to genetic algorithms, a lot of strategy parameters
of ES, which have great influence on the performance of
the algorithm, must be fixed manually. These include the
population size and the global step control parameters
and and the initial values of step-size The optimization
problems in the real world normally have a lot of suboptima,

in which a standard evolution strategy can get trapped. To
acquire a solution as good as possible, it is desired to improve
the performance of the standard ES. In this paper, a minor
modification is made and, nevertheless, is proved to be effec-
tive. In practice, we find that the process of evolution stagnates
when the step-size controlconverges to zero prematurely. To
prevent the step-size from converging to zero, we re-initialize
it with a value of, say, 1.0, when becomes very small. This
enables the algorithm to escape from the local minima on the
one hand, on the other hand, gives rise to some oscillations of
the performance. Therefore, it is important to record the best
individual which has been found so far. However, this best
individual does not take part in the competition of selection if
it does not belong to the current generation.

B. Coding of the Fuzzy Rule Parameters

The genetic coding of the variables for the fuzzy operators
and fuzzy membership functions is very direct. Only the
constraints of the variables need to be addressed. In our case,
the soft coefficient for T-norm covers the range between 0 and
1.0. Theoretically, the coefficient of BADD defuzzification can
vary from 0 to infinity, however, an upper bound is imposed in
our implementation. Without loss of generality, the following
Gaussian membership functions are used:

(22)

Therefore, each membership function has two parameters,
namely, center and width In order that all the subsets of a
fuzzy partitioning can distribute as freely as possible provided
that the completeness condition is satisfied, the centers of
each fuzzy membership function can move on the universe of
discourse of the corresponding variable, which is limited by
the physical system. Of course, all the fuzzy subsets should
be ordered according to their centers so that the checking of
completeness can be done and that the mechanism of the rule
structure optimization works properly. As for the widths of the
membership functions, they are loosely limited so that they are
greater than zero and naturally, not wider than the whole space.
In fact, they will be subject to the completeness conditions and
the distinguishability requirements.

C. Coding of the Rule Structure

The rule structure coding is important because the size of a
fuzzy system is fully specified by the rule structure. Suppose
each input variable has a maximal number of fuzzy subsets

then the rule base has at most
fuzzy rules if there are input variables. Thus, the premise
structure of the rule system can be encoded by the following
matrix:

(23)

where
The integer numbers of represent

the corresponding fuzzy subsets of while indicates
that variable does not appear in theth rule. It is argued
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that the assumption of the largest number of fuzzy partitioning
will not harm the compactness of the rule system, because
the redundant subsets will be discarded automatically by the
algorithm due to the checking of distinguishability. Similarly,
the structure of the consequents can be encoded with a vector
of positive integers:

(24)

where supposing that the
consequent variable has at mostfuzzy subsets. This works
both for Mamdani type rules and Takagi–Sugeno fuzzy rules
whose consequents are constants. If the Takagi–Sugeno rules
have a real function of input variables as consequents, the
coding of the consequent structure is not necessary.

D. Completeness and Consistency Checking

The completeness checking consists of the fuzzy partition-
ing checking and the rule structure checking. At first, the
completeness of the fuzzy partitioning of each input variable is
examined using the fuzzy similarity measure. One advantage
of using fuzzy similarity measure (FSM) is that by regulating
the grade of FSM, the degree of the overlapping of two subsets
can be properly controlled. If FSM of two neighboring fuzzy
subsets is zero or too small, it indicates that either the fuzzy
partitioning is incomplete or they do not overlap enough. On
the other hand, if FSM is too big, then it means that the
two fuzzy subsets overlap too much and the distinguishability
between them is lost. To keep the fuzzy membership functions
in a proper shape, the fuzzy similarity measure of any two
neighboring membership functions is required to satisfy the
following condition:

(25)

where and are two neighboring fuzzy sets, FSM
and FSM are the desired lower and upper bound of the
fuzzy similarity measure, respectively. If this condition is not
satisfied, the fitness index of the generated fuzzy system will
be assigned to a very large value so that the corresponding
individual can hardly survive. In our case the optimization
task is minimization, therefore a lower fitness value is better.
The label “fitness” here simply represents the cost function
and has nothing to do with its biological notation.

Although a consistency index is given in Section II, it can
not be directly applied in our evolutionary algorithms. To
solve this problem, a degree of inconsistency of a rule base is
suggested based on the consistency index provided in the last
section. At first, a degree ofinconsistencyfor the th rule is
calculated as follows:

(26)

where and denote the rule base generated from data
and the rule base extracted from prior knowledge,and
are the rule numbers of and respectively. The degree

Fig. 4. Control diagram of the driving system.

of inconsistency of each rule is then summed up to indicate
the degree of inconsistency of a rule base:

(27)

which can be incorporated in the objective function of the
evolutionary algorithm.

Note that no special measures are taken to reduce the
number of the fuzzy rules. In practice, it is found that the
evolutionary algorithm tends to select a more compact system
rather than a standard system. This implies that a standard
fuzzy system normally has a worse performance than a com-
pact system.

IV. A PPLICATION EXAMPLE

Fuzzy systems play a unique role in control systems where
a human controller is an essential part. This is true for driving
a car. A skilled driver can control a car successfully according
to the situation he is in. However, it is almost impossible
to describe the driving behavior using an exact mathematical
model because not only physical variables but also personal
experience and habits are involved. In this section, we try to
generate a fuzzy rule system to simulate the driving behavior
based on the collected data using the proposed method.

A. Description of the Distance Control System

A diagram of the distance control system is illustrated in
Fig. 4, where and are the velocities of the controlled
car and of the car in front of it, is the distance between the
two cars, denotes the relative speed, and

is the normalized safety distance, which is calculated
as follows:

(28)

where is called the safety distance. It is found that is
basically in proportion to the speed however, it seriously
depends on the driver. Not only different drivers have different
views on safety distance, but the same driver also makes
various decisions. Our task is to design a fuzzy distance
controller that is able to produce a correct acceleration based
on the data collected from different drivers in different driving
situations. In this paper, data from five driving situations are
used.

B. Simulations and Discussions

Before we carry out the simulations, we first discuss the
selection of the fitness function so that correct fuzzy rules can
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TABLE I
RULE BASE (WITHOUT CHECKING, SITUATION 1)

0 1 2 3 4 5
0 * * * 3 * *
1 * 2 3 * 2 6
2 * 2 3 2 4 5
3 * 2 2 2 * 6
4 * 2 3 6 7 7
5 * * 3 6 7 *

TABLE II
INCONSISTENCY INDEXES (WITHOUT CHECKING, SITUATION 1)

0 1 2 3 4 5
0 * * * 0.00 * *
1 * 0.24 0.37 * 1.37 0.096
2 * 0.22 0.54 1.00 1.17 0.53
3 * 0.20 0.87 1.03 * 0.27
4 * 0.27 0.21 1.99 1.99 0.49
5 * * 0.20 0.20 0.10 *

be generated. Three candidates, namely, speed, acceleration
and normalized distance, can be used as an index to evaluate
the performance of the fuzzy controller. However, it is found in
practice that only the speed index is able to evaluate the fuzzy
rules effectively. Therefore, the following objective function
is adopted:

(29)

where is the total number of sampled data andis the target
velocity. Combining the completeness and inconsistency in-
dices, the quality of a generated fuzzy rule system is evaluated
with the following objective function:

(30)

where and are provided in (27) and (29), re-
spectively, is a penalty term for the rule system if
the completeness condition in (25) is not satisfied or the rule
structure is incomplete; is a weighting constant to control
the consistency level. In general, once the rule system is
found to be incomplete, the penalty term is so large
that the individual is not able to survive. That is to say, the
evolutionary algorithm tolerates some degree of inconsistency,
but allows no incomplete fuzzy systems.

Based on the collected data, the meaningful range of nor-
malized safety distance relative speed and the
acceleration are selected as and
respectively. As mentioned before, the centers of all the fuzzy
membership functions are allowed to vary over the whole
space of the corresponding variables. We suppose both
and have a maximum of five fuzzy subspaces andhas
maximally eight fuzzy subspaces. Therefore, the fuzzy system
has at most 25 fuzzy rules.

(a)

(b)

Fig. 5. Training results (without checking, situation 1). (a) Acceleration and
(b) speed.

The following two rules are used as the prior knowledge
in our research.

No doubt, such prior knowledge is quite straightforward and
is easy to obtain. Nevertheless, they play an important role in
checking the rules produced from data.

Prior knowledge can not only be used in checking the
consistency of the fuzzy system, but also be incorporated in
the initialization of the evolutionary algorithm. For example,
some individuals can be initialized with the parameters of a
standard fuzzy rule system, while the others are initialized
with randomly generated numbers.

In the beginning, we generate the fuzzy rule control system
using 316 groups of data collected in driving situation 1. In
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(a)

(b)

Fig. 6. Membership functions (without checking, situation 1). (a)nsd and
(b) vr:

order to make comparisons, fuzzy rule systems are generated
with and without completeness and consistency checking. A
fuzzy rule base is first generated without checking its com-
pleteness and consistency.2 The rule base and its inconsistency
indices are provided in Tables I and II, respectively, and the
speed and acceleration tracking results are illustrated in Fig. 5.
In Fig. 5, the dotted lines denote the acceleration and speed
measured in the experiment, and the solid lines describe the
results produced by the fuzzy controller. In Fig. 5(a), the
curve of the measured acceleration looks unsteady due to the
discretization of the measurement. Therefore, the fuzzy con-
trolleris not aimed to approximate the measured acceleration
to every detail. This is true for the measured acceleration in
the whole simulation. Taking this fact into account, we think
the fuzzy controller behaves very well for the training data.
The mean errors of acceleration and speed are 0.105 msand
0.085 ms respectively. That is to say, the fuzzy controller

2Nevertheless, rules with the same IF part but different THEN parts are
also avoided to assure the fairness of the comparisons.

(a)

(b)

Fig. 7. Test results (without checking, situation 2). (a) Acceleration and (b)
speed.

TABLE III
RULE BASE (WITH CHECKING, SITUATION 1)

0 1 2 3 4 5
0 * 3 4 * * *
1 4 * * * 4 7
2 * 2 2 3 * 3
3 5 7 6 * 3 3
4 * 6 * 6 * *
5 * * * * 4 3

TABLE IV
INCONSISTENCY INDEXES (WITH CHECKING, SITUATION 1)

0 1 2 3 4 5
0 * 0.001 0.001 * * *
1 0.001 * * * 0.086 0.129
2 * 0.046 0.010 0.064 * 0.019
3 0.001 0.010 0.005 * 0.024 0.029
4 * 0.067 * 0.080 * *
5 * * * * 0.033 0.024
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(a)

(b)

Fig. 8. Membership functions (with checking, situation 1). (a)nsd and (b)
vr:

has imitated the given driving behavior very well. This can
be attributed to the fact that the rule parameters and the rule
structure are optimized simultaneously and the fuzzy operators
are flexible. However, a fuzzy system that exhibits smart
performance for training data does not necessarily perform
equally well on the test data. Before we check the fuzzy
system with test data, we first have a look at the membership
functions (see Fig. 6). We notice that some fuzzy sets of
lack distinguishability, while the fuzzy partitioning of is
incomplete.3 This implies that over-fitting of the membership
functions has occurred. We notice further that the total degree
of inconsistency is 13.4, which seems quite large. Now we
evaluate the fuzzy system with 276 groups of data obtained
in driving situation 2. The results are presented in Fig. 7. The
mean errors of acceleration and speed are 0.233 msand
1.044 ms We note that both errors are quite large.

3Theoretically, the value of Gaussian functions never becomes zero. In
practice, it will become zero due to the precision limit.

(a)

(b)

Fig. 9. Training results (with checking, situation 1). (a) Acceleration and
(b) speed.

The rule base generated with completeness and consistency
checking is listed in Table III, and the inconsistency indices
are provided in Table IV. Note first that the fuzzy partitioning
of the two input variables (see Fig. 8) are now complete
and the distribution of the membership functions seems to be
more reasonable. The acceleration and speed tracking results
for the training data are demonstrated in Fig. 9 with mean
errors of 0.107 ms and 0.090 ms respectively. Compared
to the fuzzy rule system generated without consistency and
completeness checking, the performance for the training data is
quite the same. Now we will evaluate it with the test data from
driving situation 2. The test results are presented in Fig. 10
with mean errors of 0.216 ms and 0.552 ms respectively.
It is noticed that the mean speed error has been significantly
reduced.

We also notice from Table IV that the total inconsistency
index of the rule base is only 0.63. This is quite hard to believe
if we do not associate the rule base with the distribution of
the premise and consequent membership functions.
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(a)

(b)

Fig. 10. Test results (with checking, situation 2). (a) Acceleration and (b)
speed.

From the above simulations, we see that a fuzzy system
generated with completeness and consistency checking out-
performs the fuzzy system generated without checking for test
data. To confirm this conclusion, another simulation is carried
out, in which the data from driving situations 3 and 4 are used
as training and test data. The membership functions, training
and test results of the fuzzy system generated without com-
pleteness and consistency checking are given in Figs. 11–13,
respectively. The mean training errors for acceleration and
speed are 0.210 ms and 0.194 ms however, the mean
test errors are as large as 0.348 msand 1.635 ms The
fuzzy partitioning of is again incomplete, and the total
inconsistency index is 34.9, which denotes that the quality
of the rules is not so satisfying despite the good training
results. As a comparison, the membership functions, training
and test results of the fuzzy system generated with complete-
ness and consistency checking are provided in Figs. 14–16,
respectively. In this case, the mean errors of acceleration and
speed are 0.209 ms and 0.843 ms on the test samples.

(a)

(b)

Fig. 11. Membership functions (without checking, situation 3). (a)nsd and
(b) vr:

These values are considerably lower than those of the fuzzy
system without completeness and consistency checking . The
total inconsistency index reduces to 3.04.

Until now, we have shown that a FCfuzzy system is
superior to a conventional fuzzy system in its generalization
ability if relatively few data are provided for training. In
the following, we will briefly describe the simulation results
when more training data are available. 1512 groups of data
collected from five different driving situations are used to
generate the fuzzy rule base. Similarly, we generate two
fuzzy systems without and with completeness and consistency
checking. The two rule bases have 17 and 15 fuzzy rules
respectively. It is not surprising that no large differences are
observed from training and test results of these two fuzzy
systems. For the fuzzy system without completeness and
consistency checking, the mean training and test errors are
0.20 ms 0.51 ms and 0.26 ms 0.65 ms For the
fuzzy system with completeness and consistency checking,
the mean training and test errors are 0.18 ms0.4 ms
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(a)

(b)

Fig. 12. Training results (without checking, situation 3). (a) Acceleration
and (b) speed.

and 0.22 ms 0.57 ms This is in concordance with the
fact that the generalization ability of the fuzzy systems will
be better if sufficient training data are available. However,
the distributions of the membership functions produced
without completeness and consistency checking (Fig. 17)
seem to be less promising than those of the membership
functions produced with checking (Fig. 18). Moreover, the
total inconsistency indexes of the checked and unchecked
systems are 3.7 and 16.0, respectively. This explains possibly
the reason why the test results of the unchecked system are
slightly worse than the checked system. The training and test
results will not be illustrated here due to space limit.

In all of these fuzzy systems, the soft T-norm and BADD
defuzzification play an important role too. For example, the
optimized soft coefficient and the BADD coefficient in the
first training example (with checking) are 0.83 and 5.23. If they
are fixed to 1.0, different degrees of performance deterioration
are observed in training and testing. This is true for all of the
other cases.

(a)

(b)

Fig. 13. Test results (without checking, Situation 4). (a) Acceleration and
(b) speed.

Finally, we discuss the compactness of the fuzzy systems.
Although no penalty function for rule complexity is introduced
in the process of rule generation, the number of fuzzy rules in
all cases is reduced. This implies that a compact fuzzy system
has normally better performance than a standard system.
Moreover, the structures of the rule bases are all complete,
although we have experienced incomplete rule structure in
other cases.

V. CONCLUSIONS

A methodology for generating flexible, complete, consistent
and compact fuzzy rule systems from data using evolution
strategies is proposed in this paper. All the components of
the fuzzy systems, including the parameters of the member-
ship functions, the structure of the rule base and the fuzzy
inference mechanisms, are encoded in a unified frame and
optimized with evolution strategies. In order to evaluate the
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(a)

(b)

Fig. 14. Membership functions (with checking, situation 3). (a)nsd and (b)
vr:

completeness and consistency of a fuzzy system, indices for
completeness and consistency are proposed with the help of
the fuzzy similarity measure. These indices are integrated into
the objective function so that the generated fuzzy systems are
complete, and the rules are more consistent with each other
and with the prior knowledge. Comparative simulation studies
have been carried out to show that the fuzzy systems generated
with completeness and consistency checking are advantageous
over the fuzzy systems generated without completeness and
consistency checking, especially when insufficient training
data are available.

Flexibility of the fuzzy system is realized by optimizing
the soft T-norm and the BADD defuzzifier. This alleviates
the arduous task to select better fuzzy operators for a given
problem. Since the rule structure is also evolved by the
algorithm, the generated fuzzy system has always fewer rules
than the standard rule system. This is imperative if the fuzzy
system has more than two input variables.

(a)

(b)

Fig. 15. Training results (with checking, situation 3). (a) Acceleration and
(b) speed.

APPENDIX

In order to compute the fuzzy similarity measure, it is neces-
sary to calculate For any two fuzzy sets described
with triangular membership functions in the following form:

if

if

if

if

(31)

and if we suppose and i.e., the situation of
no overlap will not be considered, then there are nine total
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(a)

(b)

Fig. 16. Test results (with checking, situation 4). (a) Acceleration and (b)
speed.

possible overlapping cases in total, namely:

1)
2)
3)
4)
5)
6)
7)
8)
9)

It is noticed that these nine cases can again be classified into
four situations:

1) One intersection (noted between the right
side of and left side of when

This is true in the above case 1, 3, 4, and 5.
2) Two intersections (noted as

between the right side of and the
both sides of when This holds
for the above cases 2 and 6.

(a)

(b)

Fig. 17. Membership functions (without checking, situations 1–5). (a)nsd

and (b) vr:

3) Two intersections (noted as
between the both sides of and

the left side of if This is true
for the above cases 7 and 9.

4) Three intersections (noted as
and between the both sides

of and if and See the
above case 8.

In this way, can be calculated according to these
four cases.

1) Case 1 (Fig. 19):
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(a)

(b)

Fig. 18. Membership functions (with checking, situations 1–5). (a)nsd and
(b) vr:

Thus,

(32)

2) Case 2 (Fig. 20):

and are the same as in case 1, and

Fig. 19. Case 1.

Fig. 20. Case 2.

Similarly,

(33)

3) Case 3 (Fig. 21):

and are the same as in case 1. Then we have,

(34)
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Fig. 21. Case 3.

Fig. 22. Case 4.

4) Case 4 (Fig. 22).

All the coordinator values of the intersection points are now
available, and consequently, is calculated by

(35)

If the membership functions are Gaussian functions, they
can be approximated by isosceles triangular membership func-
tions [16] for the sake of computational simplicity. Given two
Gaussian membership functions and where

and are the centers and widths respectively,
then they can be replaced by two triangulars with

It is straightforward that
they can be calculated using one of the equations provided in
case 1, 2, or 3. It is noticed that, case 4 does not happen for
the isosceles triangulars.
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Universiẗat Bochum. He is Professor and Head of the Department of
Theoretical Biology with the Institute of Neuroinformatik, Ruhr-Universität
Bochum, Bochum, Germany, and Director of the Centre for Neuroinformatik.
His current research focuses on system theory, brain research, and a neural
architecture for autonomous systems. He has written numerous research
articles and was the editor/co-editor of several books. He is a member of the
editorial board of the journalNeural Networks.

Dr. von Seelen was President of the German Society of Cybernetics for
three years and is a member of several scientific societies. In 1995, he was
awarded the Kupfm̈uller Ring and, in 1998, the Karl-Heinz Beckurts Prize
for his outstanding scientific contributions in the field of interdisciplinary
research.

Bernhard Sendhoff studied physics at the Ruhr-
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