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On Generating FEFuzzy Rule Systems
from Data Using Evolution Strategies

Yaochu Jin,Member, IEEE,Werner von Seelen, and Bernhard Sendhoff

Abstract—Sophisticated fuzzy rule systems are supposed to because they are often established on the basis of experience
be flexible, complete, cqnsistent and compact (FQ. Flexibility, and intuition of human beings.
completeness and consistency are essential for fuzzy systems to With the emergence of the techniques called soft computing

exhibit an excellent performance and to have a clear physical - . .
meaning, while compactness is crucial when the number of [29] or computational intelligence [19], fuzzy control has

the input variables increases. However, the completeness andobtained a new impetus. Backpropagation networks [16], RBF

consistency conditions are often violated if a fuzzy system is neural networks [9], hybrid pi-sigma networks [11], B-spline

generated from data collected from real world applications. ~ networks [8] and neuron-like structures [3] are applied to the
In an attempt to develop FC' fuzzy systems, a systematic design adaptation of the fuzzy membership functions and the con-

paradigm is proposed using evolution strategies. The structure .
of the fuzzy rules, which determines the compactness of the S€QUent parameters. On the other hand, counter-propagation

fuzzy systems, is evolved along with the parameters of the fuzzy Networks [30] and BAM [20] are utilized to determine the
systems. Special attention has been paid to the completeness anchumber of the fuzzy subsets for each input variable. These

consistency of the rule base. The completeness is guaranteedmethods are successful in that it is no longer necessary to

by checking the completeness of the fuzzy partitioning of input  geiermine exactly the parameters of fuzzy rules and the fuzzy
variables and the completeness of the rule structure. An index e . . .
partitioning of the input variables in advance.

of inconsistency is suggested with the help of a fuzzy similarity k A
measure, which can prevent the algorithm from generating rules ~ Genetic algorithms (GA’s) have also been employed to
that seriously contradict with each other or with the heuristic design fuzzy systems. Since the first attempt to vary some
knowledge. In addition, soft T-norm and BADD defuzzification parameters of a fuzzy rule base using genetic algorithms [13],
are introduced and optimized to increase the flexibility of the <o\ aral efforts have been made to exploit the advantages of
fuzzy system. The proposed approach is applied to the design of , . .
distance controller for cars. It is verified that a FC? fuzzy system GA's for the design of fugzy systems [18], [21]. It is found
works very well both for training and test driving situations, that GA’s are more flexible because they are capable of
especially when the training data are insufficient. optimizing the parameters and the rule number simultaneously
Index Terms—Compactness, completeness, consistency, eVOlu[14]. Furthermore, the structure of the fuzzy rules can also be
tion strategies, flexibility, fuzzy rule systems. optimized by GA'’s so that a compact fuzzy rule system can be
obtained [10]. One problem that appears in this methodology
is the choice of genetic coding. If the conventional coding
scheme is used, the length of the chromosome increases
UZZY logic has proved to be a very powerful techniqusignificantly with the number of inputs and the number of their
in the discipline of system control, especially when thizzy partitioning. This will no doubt harm the efficiency of
controlled system is hard to be modeled mathematically, tite genetic searching. To solve this problem, chromosomes
when the controlled system has large uncertainties and stravith variable length [5] and context dependent coding [15]
nonlinearities. Since the last decade, fuzzy control systeimgve been suggested and proved to exhibit considerable im-
have experienced a great success in the fact that not onlpravements over the fixed length chromosomes.
lot of successful industrial applications have been found, butRelative fewer efforts have been made to date to design
concrete theoretical conclusions are also achieved in some faezy systems using evolution strategies (ES). We believe that
portant aspects, to name a few, the stability and approximatiB8 are quite suitable for the design of fuzzy systems due to
properties [4], [25], of the fuzzy systems. However, fuzzsheir direct coding scheme and their simple way of handling
systems are by no means perfect. It is criticized that fuzzpnstraints. In [27], evolution strategies are used to adjust the
control rules are not capable of expressing deep knowledge [@lrameters of the fuzzy rules, and then genetic algorithms
are utilized to optimize the structure of the fuzzy rules base.
However, since the optimal values of the rule parameters and
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In the latter case, the fuzzy partitioning is called incompletghere
i.e., the fuzzy system takes no action if the value of the z;(j=1,2,---,n) input variables;

variable falls in the uncovered region. Besides, no sufficient,, output of the fuzzy system;
research work has been carried out to keep the consistency ofi;; and B; linguistic terms defined by cor-
the fuzzy rules in generating fuzzy rules from data. In most responding membership functions
cases, only the rules that have the same antecedent but different Aqj(z;) and B;(y).

consequent are considered to be inconsistent. In [26], a degeEde 5 conventional fuzzy system, if each variable is divided
of belief is assigned to each generated rule and only the qpg, ps fuzzy subsets, then the total rule numbefis= M™.

with a maximal degree will be accepted if two rules have thejs noticed that for such a fuzzy system, the number of rules
same IF part but different THEN parts. In [10], the priority i§ncreases exponentially with the number of input variables.

given to the rule that first appears. As a matter of fact, r“'%cording to the Mamdani fuzzy implication method, the
that have different IF parts might also be inconsistent, eithﬁfzzy relation of theith rule can be expressed by
with other rules or with the human heuristics.

To cope with the above mentioned problems, an ES based Ry = (Aig X Aig X -+ X Aip) X B; (2)
methodology for gen_erating fuzzy systems is propo_sed in tr\'/{ﬁa'ch is a fuzzy set whose membership function is described
paper. It focuses mainly on the completeness, consistency
compactness of the fuzzy systems. Another feature of this wo
is that the fuzzy operators, including T-norms and BADD Ri(x1,%2,",Tn,¥)
defuzzification, are also optimized. It is demonstrated with = A (21)T Aio(x2)T -+ T Asn(2,)T Bi () (3)
an example of distance control that the proposed approach is
advantageous over the other methods in the following respedt§i€re 7 means the T-norm operator. Based on sup-star
1) The fuzzy system is compact and efficient because tRgMpPosition, the overgll fuzzy relation of t.he fuzzy system
number of the fuzzy rules is greatly reduced; 2) The fuzzZ{ terms of membership function can be written as follows:
system is complete and no seriously conflicting rules will N
be generated, which contributes to the improvement of the  R(z1,z2,---,2n,¥y) = \/ Ri(xy, 22, ,2n,y) (4)
generalization ability of the fuzzy system and guarantees that i=1

the knowledge acquired by the fuzzy rules is physically soungherev is the maximum operator. SuppoBe is normal, i.e.,
and 3) The fuzzy system is expected to exhibit a bett@fe maximum value of3;(y) is 1.0, wherey; is the point at
flexibility because soft fuzzy operators [28] are incorporateghich B, (y) reaches its maximum, and the center of gravity
and optimized. (COG) defuzzification method is adopted, then the crisp output

In the next section, the definition of BQuzzy systems, of the Mamdani fuzzy system is obtained by

including the concept of soft T-norm, BADD defuzzification, N

completeness, consistency and compactness are provided. In Z{Tn Aii(a) - i)

Section I, design of an FCfuzzy system using evolution i

strategies is given in detail. An application example of distance y=""= . (5)
control is described in Section IV. Various simulations are ZT'n—1Aij(37j)

carried out to show that an BQuzzy system exhibits excellent —~

training and test performances even if the training data are .
. 2 . L . If Takagi—Sugeno type fuzzy rules are used, then the fuzzy
insufficient. Finally, a summary of the paper is given in

Section V. rules have the following form:
R;: If x1is Ajjand x2 is Az and -+ and x, is Ay,
Il. FC? Fuzzy SYSTEMS then y; = fi(z1, 22, -, ) i=1,2--- N.
(6)

Until now, two main types of fuzzy systems, namely',t is observed that the consequent part of the Takagi—Sugeno

the Mamdani type and the Takagi-Sugeno type, have bd&lfS is a crisp value and usually a function of the input
developed. The main difference between these two types'@fiables instead of a linguistic variable. The output of a
fuzzy systems lies in the fact that the consequent part GRkedi—Sugeno rule system is in the following form:

A. Basic Formulas of Fuzzy Systems

Takagi—Sugeno rules are concrete values instead of fuzzy sets. N
Since a multi-input multi-output fuzzy system can always be S AT Aig(wy) - filwr, 22, 20) }
separated into a group of multi-input single-output (MISO) y ==L 7)
fuzzy systems, we discuss here only the MISO fuzzy systems N
without the loss of generality. For an MISO fuzzy system with ZTjilAij ()
n input variables, the Mamdani type fuzzy rules are expressed =1
in the following form: If f(-) is a linear function in the form of
R;: If x1is A;; and z2is A;» and --- and x,, is Ay, filz1, 20, - - 2p) = pio + pirx1 + DisZo + - + Pinn

then y is B;; t1=1,2,--- N 1) (8)
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wherep;; (¢ = 0,1,2,---,N;5 = 1,2,---,n) are constant A Ax)
coefficients, then the rule structure can be determined wi

a search algorithm and the parameters of the rules can pe
identified using the least-square method or gradient methgd
[24]. If a more complex combination of the input variable i
needed, then it can be handled with a pi-sigma neural netwar

[11].
In practice, the consequent part of the Takagi—Sugeno rulges
is often simplified to a constant, in which case the output of X %
the Takagi—Sugeno rules can be written as follows: (@ (b)
: Fig. 1. Overfitting of the membership functions. (a) Incomplete fuzzy par-
n titioning and (b) lack of distinguishability.
> AT Aij(;)pio’ gand ® ’ y
N ) ©) C. Completeness of the Fuzzy Systems
ZTJZlAU(”ﬁ) The discussion of completeness is necessary if a fuzzy

=1 system is generated automatically from data. In order to

From (5) and (9), it is easy to notice that the same conclusidiscuss the completeness of the fuzzy system, it is desirable
is derived from Mamdani rules and Takagi—Sugeno rules. to provide a definition of the completeness. In this paper, a
In the following subsections, the definition of an¥fizzy fuzzy system is said to be complete if

system in the context of this paper will be provided in detail 1) fuzzy partitioning of each input variable is complete;
and the reasons to construct such fuzzy systems are given. 2) rule structure of the fuzzy system is complete.

) If one of the above conditions is violated, the fuzzy rule system
B. Flexible Fuzzy Operators is incomplete, which implies that the fuzzy system will provide
In the above fuzzy systems, the fuzzy operators, includimg output in some cases. Although it is suggested to output a
T-norm and defuzzification method, are conventional T-nornvglue of zero or some other values in case no rules are fired,
and COG defuzzifier. Although several T-norms have bedrwill be shown in this work that incompleteness of the fuzzy
proposed, they have not been shown to play an important relstems should be avoided.
in improving the performance of the fuzzy control systems We first discuss the completeness of the fuzzy parti-
[7]1, [12]. On the other hand, which defuzzification methotionings of the input variables. Suppose input variable
should be selected is in fact problem-related [22]. In thege is partitioned into M fuzzy subspaces represented by

respects, the so-called soft T-norm and BADD defuzzifier aré (¢), A2(x), -+, Ay (x) on the universe of discourst,
very flexible [28]. They can be expressed in the followinghen the partitioning is considered to be complete if the
form: following condition holds:
Soft T-norm: 'j'(xl, Za,- - ,]}n) _ (1 _ a)l sz VacCUEllﬁzﬁ]\lAz(-T) >0. (12)
niz It is often the case that the fuzzy partitionings of some input
+aT (1,22, , %) variables are no longer complete after the fuzzy membership

(10) functions have been optimized. This is quite easy to understand
because all the optimization algorithms try to adjust the
Z{ Aij(z)pio} distribution of the membership functions according to the
distribution of the given data. Such optimizations, however,

BADD defuzzifier: y = N (11) will give rise to the problem of “overfitting” of the fuzzy
Z[ij;lAij(xj)]é membership functions, when the presented data distribute
i=1 irregularly. The overfitting of the fuzzy membership functions

wherea € [0,1] and§ € [0,00). It is noticed that ifa is results in the following consequences:

1.0, then the soft T-norm reduces to the conventional T-norm.1) fuzzy partitionings become incomplete;

If o is 0, then the soft T-norm is equivalent to computing a 2) Physical meaning of some fuzzy subsets may be blurred,
mean value. It is argued in [12] that such a soft T-normis more  that is to say, the fuzzy subsets lack distinguishability
promising in improving the performances of the fuzzy systems  (see Fig. 1).

than the combination of different T-norms. On the other hant, the membership functions are realized, say, by neural
the BADD defuzzifier is equivalent to the center of gravitynetworks, they may become neither unimodal nor normal. All
(COG) method and the mean of maximum (MOM) methothese phenomena might be beneficial to improve the training
whené = 1 and§ — oo, respectively. If§ varies from 1 to performance, but will usually deteriorate the generalization
o, BADD defuzzifier is able to reach a possible compromisguality of the fuzzy systems.

between COG and MOM defuzzifiers. In this way, the hard In order to avoid overfitting of the membership functions,
task to make a choice among the different fuzzy operators azertain measures must be taken in the process of parameter
be spared and the fuzzy system is flexible. optimization or rule generation. One practical measure is
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to limit the adjustable range of the parameters so that th

completeness of the fuzzy partitioning will be kept and thg |:| |:| |:| |:| D

distinguishability of different fuzzy sets will be preserved,

Another method is to add or merge some fuzzy subsets in t |:| |:| |:|

process of optimization if needed. In this paper, we suggest

new possibility to deal with these problems with the help o |:| |:|

fuzzy similarity measures.
A fuzzy similarity measure indicates the degree to whic |:| |:|

two fuzzy sets are equal. It has been used in structure learni—5

of fuzzy systems [17]. In their work, the fuzzy similarity mea- (@) (b)

sure is used to add new membership functions for the outp. 2. Rule structures of a two dimensional fuzzy system. A shaded area

variable so that proper fuzzy partitioning of the output spadepresents a fuzzy rule. (a) Complete rule structure. (b) Incomplete rule

can be obtained. In our approach, the fuzzy similarity measut&' "

is used to preserve the completeness of the fuzzy partitionings

of the input variables and to preserve the distinguishability of the rules with the intuition and common sense of human

the fuzzy subsets. For any two fuzzy setsand B3, the fuzzy beings. Therefore, fuzzy rules are regarded as inconsistent, if

similarity measure is defined by: * They havevery similarpremise parts, but possesgher
different consequentand
A M(ANB) » They conflict with the expert knowledge or heuristics.
5(4.B) = M(AUB) It is noticed that the concept of consistency is not concrete
M(ANB) and can only be described by a value of degree. Moreover, the

= M(A) + M(B) — M(AN B) (13)  discussion of consistepc_y is §ensib|e only if.the premise parts
of the rules are very similar, if not necessarily the same. That
is to say, two fuzzy rules may contradict with each other even
if they do not have the same premise, on the other hand, it
is hard to say that two rules are inconsistent if their premise
parts have little similarity. Suppose there are two rules in the

where M (A) is called the size of fuzzy seft and can be
calculated as follows:

+oo .
M(A) :/ A(z) do (14) following form:
I R;.  If error is PS and change of error is ZO,
It is noticed thatS(A,B) = 1 if and only if A = B then change of control is PB
and S(A, B) = 0 if and only if A and B do not overlap. Ry If error is ZO and change of error is ZO,
In other casesS(A, B) varies from 0 to 1. Therefore, if then change of control is NB

the fuzzy similarity measure of any two neighboring fuzz e o e e . .
sets is controlled properly, the incompleteness of the fuz ere NB 20," *PS, an_d_ PB_ represer_1t negatlve_ big,
partitioning can be avoided and the distinguishability of thge"0: Positive small and positive big respectively. Despite that
fuzzy sets can be preserved. Calculation of the fuzzy similarify€ ntecedents of the two rules are not the same, they seem
measure in the case of triangular membership functions dbe |ncon§|stent because they have very .S|m||ar prerhises,
Gaussian membership functions are provided in Appendixﬁ?m rlather d|ffer(|ent caogse“quegtsﬁ HO\;]vever, if thel two *ZO's

It should be pointed out that the completeness of the fuzﬂ/ru,ek are rep ‘T’:{Ci oy NB,” then these two :u eis ariqute
partitionings does not necessarily guarantee the completer@daSistent even if their consequents are completely different.
of the fuzzy systems, in other words, a fuzzy rule system ma Th_erefore, it is necessary to provide a proper_deflnltlon qf
still be incomplete even if the fuzzy partitionings of the inpu?ongstency,f which cda_n embrr?cedtr]le_qforelrehntmneq consid-
variables are complete. This happens when the rule structGfgtions- Before we discuss the definition of the consistency,
is incomplete, i.e., some of the fuzzy subsets are not used'$ first prowde' th.e d_ef|n|t|on ahe similarity of rule premise
the rule system, which is often the case in the course of nj@RP) andhe similarity of rule consequeBRC) again with

structure optimization (see Fig. 2). The completeness of tfi¢ Nelp of fuzzy similarity measure. Consider o rules in
rule structure will be explained further when we discuss tH8¢ "ule base.. .
compactness of the fuzzy systems. Ri: I zyis Agi(z1) andxzy is Ajp(z2) and -- - and
xy 1S Ajp(zy), theny is B;(y)
D. Consistency of the Fuzzy Systems Ry: If xqis Agi(x1) andzy is Aga(x) and - - - and
The problem of consistency of the fuzzy rules is usually Ty IS Apn(xn), theny is By(y)

thought to be trivial 'f. the rules are extracte_d from eXPeHhen SRP and SRC of these two rules are defined as follows:
knowledge. However, if the rules are automatically generated n

from a set of data affected by noise, this problem can become SRP(4, k) = min S(A;;, Ax;) (15)
serious. We discuss here not only the consistency among the =t

fuzzy rules in the generated rule base, but also the consistencyof course, it depends on the definition of the membership functions.
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SRC('L, k) — S(B“ Bk) (16) ‘ 'Before‘discard' ‘ ' ‘Afterd'\scard'

wheren is the total number of the input variables afig4, B)
is the fuzzy similarity measure of fuzzy sets and B as
defined in (13). Then the consistency of rukéi) and R(k)

is defined by:
. 2
<SRP(L,k) 3 1.0)

Cons(R(1), R(k)) = exp { — SROG, ¥) o

(wem) |
an -

The above definition of consistency has two fundamental
characteristics. One characteristic is that the degree of consis:|
tency tends to be high when the SRP and SRC of two rules
is in proportion, provided that the SRP of the two rules is o
high. Particularly, if the rules have the same premise and the
same consequent, the degree of consistency reaches its highest

. ig. 3.
value of 1. If the premises are the same but the consequents“g%g ca
different, then the consistency ranges from 0 to 1.0. The other
characteristic is that the degree of consistency is always hightif compactness of the Fuzzy Systems
the SRP of two rules is very low, no matter how the relation of
SRP and SRC changes. This is concordant with the assumptio

that two rules will always be considered to be consistent if th : X . . "
zy system has inputs and each input variable is partitioned

have very different premises. It can be seen that our definiti 1M sub th il bl rules in a f ¢
of consistency is a soft criterion, which is in good agreemeWt0 subspaces, there wi rules in a fuzzy system

with the philosophy of fuzzy set theory. Nevertheless th}glth a standard structure. The standard structure is usually

definition is constructed from the point of application and hz{EOt optimal and therefore not compact [10]. A compact fuzzy

to be subject to strict theoretical examinations system is very desirable when the number of input variables
One further fact that needs to be pointed out is that tlj]%creases, especially for Takagi-Sugeno fuzzy systems with

consistency definition is generally suitable for Mamdani fuzzg/eneral consequent forms.

systems. If the consequent part of the Takagi—-Sugeno fuzz omfetrrre?sures SIhOUIdt be t_akent_to_g_uarft;lr?tee Ithetcon:plete-
systems is reduced to a constant, then it is also applica SS o the fuzzy rule system in optimizing the rule structure.

because an output in the form of fuzzy singleton can alwa ome of the fuzzy subsets are not used, the rule structure will
be extended to a normal fuzzy set. However, if the consequ incomplete. However, it is against our aim if we require that
part of the Takagi—Sugeno rule is a function of the inplif"tI I;]J_ZZB(;_ISUbsetS. m::]sttbe usﬁd b){;heffuzzy sy?tem;[ A(;’Yay 0(;”
variables, it is generally difficult to evaluate the consistenc IS dilemma IS that we afiow the luzzy system fo discar

of two fuzzy rules, because a consequent variable expres % fuzzy subsets "f‘t t_he o ends of th_e fL.JZZy partitioning;
in terms of a real function does not exhibit clear physic owever, a subset inside the fuzzy partitioning must be used

0.8- 0.8r

0.8

0.4r

0.2r

(b)

Fuzzy sets at the two ends of the partition (described with dotted
n be discarded. (a) Before discard. (b) After discard.

A’he number of fuzzy rules needed to represent a physical
stem also depends on the structure of the fuzzy rules. If a

meanings. see Fig. 3).
Apart from the consistency checking among the rules, it is IIl. GENERATION OF FC3® FuzzYy SYSTEMS
also important to investigate the consistency of the generated BASED ON EVOLUTION STRATEGIES

rules with the human intuition or prior knowledge. If the
human intuition or prior knowledge is expressed in fuzzy ruled: Algorithm of Evolution Strategies
then the consistency checking can also be implemented usin@volution strategies (ES) are used to optimize the co-
the definition provided above. The prior knowledge requiresfficients of the soft T-norm and BADD defuzzifier, the
here is fundamental, which can be normally obtained froparameters of the fuzzy membership functions as well as the
common sense and intuition. Take driving situations as atructure of the fuzzy rules. Evolution strategies, instead of
example, the following rule is easily available: genetic algorithms are used in this paper due to the following
two considerations. One is that the coding of ES is direct
for real valued parameter optimization and consequently the
length of the string increases just linearly with the number of
Although such rules are very simple, they are critical to theariables. Comparative studies on ES’s and GA’s have been
performance of fuzzy systems. Despite that fuzzy systems asgried out in [2] and better results have been obtained by
believed to be able to tolerate some inconsistent rules tausing ES’s in the case of real valued parameter optimization.
certain degree, rules that seriously contradict with the othéBgcause the rule structure will be evolved together with
or with the human heuristics definitely lower the performandbe parameters of the membership functions, the number of
of the fuzzy systems. variables to be optimized increases significantly. If a binary

If the distance is very small and the speed is

very high,then the acceleration should be negative.
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genetic algorithm is used, the length of the string will groun which a standard evolution strategy can get trapped. To
drastically, which no doubt affects the searching efficien@cquire a solution as good as possible, it is desired to improve
seriously. To alleviate such difficulties, either the range dfie performance of the standard ES. In this paper, a minor
the parameters needs to be limited, or special coding methaagdification is made and, nevertheless, is proved to be effec-
should be developed. The other reason is that ES deals with tive. In practice, we find that the process of evolution stagnates
constraints quite conveniently, which enables the algorithm w¢hen the step-size contrelconverges to zero prematurely. To
search a wider parameter space. However, this does not impigvent the step-size from converging to zero, we re-initialize
that ES is superior to GA, or vice versa. it with a value of, say, 1.0, when becomes very small. This
Presently, several ES algorithms are available. The two mésiables the algorithm to escape from the local minima on the
widely used algorithms are noted s + \)-ES and(y, A)- one hand, on the other hand, gives rise to some oscillations of
ES. The former selects the bestindividuals from both of the performance. Therefore, it is important to record the best
the 1, parents and\ offsprings as the parents of the nexindividual which has been found so far. However, this best
generation, while the latter selects the hegarents only from individual does not take part in the competition of selection if
the X offsprings. It is believed that thg:, A)-ES outperforms it does not belong to the current generation.
the (1« + A\)-ES becausép, A)-ES is less likely to get stuck
in local optima. The numbers of parents and offsprings ake Coding of the Fuzzy Rule Parameters

recommended to be at a ratio pf A ~ 1/7 [23]. The genetic coding of the variables for the fuzzy operators
Since both real and integer numbers are involved in thed fuzzy membership functions is very direct. Only the
optimization, a slightly modified version df:, A)-ES [1] is constraints of the variables need to be addressed. In our case,
used here. An ES algorithm that is capable of dealing withe soft coefficient for T-norm covers the range between 0 and
mixed optimization can be described by the following notatior:.0. Theoretically, the coefficient of BADD defuzzification can
(11, A-ES = (I, i, \;m, 5,05 £, 9) (18) Vvary from O to infinity, however, an upper bound is imposed in

. . . . our implementation. Without loss of generality, the following
where I is a string of real or integer numbers representing . <cian membership functions are used:

an individual in the populationy and A are the numbers 5

of the parents and offsprings respectivelyis the parameter A(z) = exp {_@} (22)

to control the step sizen represents the mutation operator, w

which is the main operator in the mechanism of ES. In EBherefore, each membership function has two parameters,
algorithms, not only the variables, but also the step-size contfmely, centee and widthw. In order that all the subsets of a
parametera are mutated. In (18), parameterstands for the fUZZy partitioning can distribute as freely as pOSSibIe prOVided
selection method and in this case, the parents will be selectBat the completeness condition is satisfied, the centers of
only from the A descendantsf is the objective function to each fuzzy membership function can move on the universe of
be minimized, and is the constraining function to which thediscourse of the corresponding variable, which is limited by
variables are subject. The variables to be optimized and ti§ Physical system. Of course, all the fuzzy subsets should

step-size control parameter are mutated in the following wai§e ordered according to their centers so that the checking of
, completeness can be done and that the mechanism of the rule
o, =o0; -exp (11 - N(0,1) + 72 - N;(0, 1)),

structure optimization works properly. As for the widths of the
i=1,2---.Q (19) membership functions, they are loosely limited so that they are
Il =1, + o} - N;(0,1), i=1,2,-, (20) greater than zero and naturally, not wider than the whole space.
I =1 + |0} - Niy(0,1)], In fac.t, t_hey.wnl b(.e.subject.to the completeness conditions and
i the distinguishability requirements.
Z:Q1+17Q1+27"'7Q (21)
where N(0,1) and N;(0,1) are normally distributed random C. Coding of the Rule Structure

numbers with mean of zero and variance of @,is the 14 e structure coding is important because the size of a
total number of variables to be optimized; is the number ,;,\ system is fully specified by the rule structure. Suppose
of real variables and naturall) — @ denotes the number gacp, input variable; has a maximal number of fuzzy subsets
of the integer variables, and|4|” is the maximal integer a; then the rule base has at mogt— My x Myx -+ x M,

. (3] — n
smaller thanz. In our case, the parameters representing the,,y ryles if there ares input variables. Thus, the premise

fuzzy operators and membership functions are encoded wiffacture of the rule system can be encoded by the following
real variables, while the rule structure parameters are encogigghrix:

with integer numbersr; and r» are two global step control

i air 412 QA1n
parameters. |G @2 - a2

Similar to genetic algorithms, a lot of strategy parameters StrtCpremiee = | 15 B (23)
of ES, which have great influence on the performance of aN1 an2 - GNn

the algorithm, must be fixed manually. These include thehere a;; € {0,1,2,---,M;},j = 1,2,--- N;i =

population size: and A, the global step control parametets 1,2,---,n. The integer numbers of,2,---, M, represent
and, and the initial values of step-size The optimization the corresponding fuzzy subsetsagf while ¢;; = 0 indicates
problems in the real world normally have a lot of suboptimdhat variablex; does not appear in thgh rule. It is argued



JIN et al. DATA USING EVOLUTION SYSTEMS 835

that the assumption of the largest number of fuzzy partitioningi - al) ——— . d(
will not harm the compactness of the rule system, because; 1 P cocleration o>
the redundant subsets will be discarded automatically by ft = 7] Controller Controller Model

Vi) v(t)

algorithm due to the checking of distinguishability. Similarlyy®
the structure of the consequents can be encoded with a vector
of positive integers:

Fig. 4. Control diagram of the driving system.
T
StruCconsequent it [cla C2," ", C]\T] (24)

wherec; € {1,2,---, K},j =1,2,---, N, supposing that the of inconsistency of each rule is then summed up to indicate
consequent variable has at mdstfuzzy subsets. This works the degree of inconsistency of a rule base:

both for Mamdani type rules and Takagi—Sugeno fuzzy rules

whose consequents are constants. If the Takagi—Sugeno rules N

have a real function of input variables as consequents, the Frncons = Z Incons(7) (27)
coding of the consequent structure is not necessary. el

which can be incorporated in the objective function of the
D. Completeness and Consistency Checking evolutionary algorithm.

The completeness checking consists of the fuzzy partition-Note that no special measures are taken to reduce the
ing checking and the rule structure checking. At first, theumber of the fuzzy rules. In practice, it is found that the
completeness of the fuzzy partitioning of each input variable @0lutionary algorithm tends to select a more compact system
examined using the fuzzy similarity measure. One advantagéher than a standard system. This implies that a standard
of using fuzzy similarity measure (FSM) is that by regulatin§/zzy system normally has a worse performance than a com-
the grade of FSM, the degree of the overlapping of two subs®@ct system.
can be properly controlled. If _FSM_of two neighboring fuzzy IV. APPLICATION EXAMPLE
subsets is zero or too small, it indicates that either the fuzzy ) .
partitioning is incomplete or they do not overlap enough. On FUZzy systems play a unique role in control systems where
the other hand, if FSM is too big, then it means that th%human cpntrolle_)r is an essential part. This is true for dr|V|_ng
two fuzzy subsets overlap too much and the distinguishabiligycar- A skilled driver can control a car successfully according
between them is lost. To keep the fuzzy membership functioffs the situation he is in. However, it is almost impossible
in a proper shape, the fuzzy similarity measure of any tw@ describe the driving behavior using an exact mathematical

neighboring membership functions is required to satisfy tfjaodel because not only physical variables but also personal
following condition: experience and habits are involved. In this section, we try to

B N generate a fuzzy rule system to simulate the driving behavior
FSM™ < 5(Ai, Aiy) < FSM (25)  based on the collected data using the proposed method.
where A4, and A;; are two neighboring fuzzy sets, FSM e )
and FSM are the desired lower and upper bound of th@- Description of the Distance Control System
fuzzy similarity measure, respectively. If this condition is not A diagram of the distance control system is illustrated in
satisfied, the fithess index of the generated fuzzy system wiiD. 4, whereu(t) andwv, (¢) are the velocities of the controlled
be assigned to a very |arge value so that the Correspondm and of the car in front of |d(t) is the distance between the
individual can hardly survive. In our case the optimizatioBVO cars,v,.(t) = v1(t) — v(t) denotes the relative speed, and
task is minimization, therefore a lower fitness value is bettersd(?) is the normalized safety distance, which is calculated
The label “fitness” here simply represents the cost functigi$ follows:
and has nothing to do with its biological notation.
Although a consistency index is given in Section II, it can nsd(t) = dat) — s(t) (28)
not be directly applied in our evolutionary algorithms. To s(t)
solve this problem, a degree of inconsistency of a rule base is
suggested based on the consistency index provided in the IiBgres(t) is called the safety distance. It is found thsat) is

section. At first, a degree afhconsistencyfor the ith rule is basically in proportion to the speedt), however, it seriously
calculated as follows: depends on the driver. Not only different drivers have different

N _ 1y ol views on safety distance, but the same driver also makes
Incons(i) = Z [1.0 = Cons(F (i), K'(K))] various decisions. Our task is to design a fuzzy distance
1<k<N . .
ki controller that is able to produce a correct acceleration based
_ 1/ p2 ) on the data collected from different drivers in different driving
* I;L[LO Cons(1(0), -()]; situations. In this paper, data from five driving situations are

i=1,2--- N (26) Used

where R* and R? denote the rule base generated from daf Simulations and Discussions
and the rule base extracted from prior knowledgeand L. Before we carry out the simulations, we first discuss the
are the rule numbers dk! and R?, respectively. The degreeselection of the fitness function so that correct fuzzy rules can
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TABLE | '
RULE BASE (WITHOUT CHECKING, SITUATION 1) 0al
0 1 2 3 4 5 02
0 * * * 3 * * ’
1 * 2 3 * 2 6 01
2 * 2 3 2 4 5 ok
3 * 2 2 2 * 6
4 * 2 3 6 7 7 -0ar
5 * * 3 6 7 * ozl

IR R

Wb
. | Gt T
W' ‘“\‘ ‘\\m I gm[”“u“’\‘ 0 i
pt ‘MLJL‘JL ey ey
g ) ! ( L
TABLE Il W N
.5 -

INCONsISTENCY INDEXES (WITHOUT CHECKING, SITUATION 1)

acceleration(ms™)
I
w
T

0 1 2 3 4 5 ! |
0 * * * 0.00 * *
1 * 0.24 | 0.37 * 1.37 | 0.096 1
2 * | 022 054 | 1.00 | 117 | 053 o8 ‘ ‘ ‘ ‘ ‘ ‘
3 * 0.20 0.87 1.03 * 0.27 0 50 100 1?‘?“(9(5) 200 250 300
4 * 0.27 | 0.21 | 1.99 | 1.99 0.49
5 |~ * | 020 ] 020 010 ] ~ @)
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be generated. Three candidates, namely, speed, acceleratioff|
and normalized distance, can be used as an index to evaluate
the performance of the fuzzy controller. However, it is found in =
practice that only the speed index is able to evaluate the fuzzy

rules effectively. Therefore, the following objective function -z
is adopted:

J
fr =\ (w(t) —vi())? 9

30

where/J is the total number of sampled data ands the target N
velocity. Combining the completeness and inconsistency in- © 50 100 ey 250 300

dices, the quality of a generated fuzzy rule system is evaluated
. . 2 o (b)
with the following objective function:

Fig. 5. Training results (without checking, situation 1). (a) Acceleration and
(b) speed.

f = fE + S : fIncons + fIncompl (30)
The following two rules are used as the prior knowledge

where fr and fineonsis are provided in (27) and (29), re-in our research.

spectively, fmeompl IS @ penalty term for the rule system if If nsd is Positive Big and v, is Positive Big,

the completeness condition in (25) is not satisfied or the rule

structure is incompleteg is a weighting constant to control

the consistency level. In general, once the rule system is If nsdis Negative Big and v, is Negative Big,

found to be incomplete, the penalty terffhcompt iS SO large then a is Negative Big

that the individual is not able to survive. That is to say, the

evolutionary algorithm tolerates some degree of inconsisten&y0 doubt, such prior knowledge is quite straightforward and

but allows no incomplete fuzzy systems. is easy to obtain. Nevertheless, they play an important role in
Based on the collected data, the meaningful range of néhecking the rules produced from data.

malized safety distancesd(t), relative speed,.(t) and the  Prior knowledge can not only be used in checking the

acceleratiom(t) are selected gs-1, 5],[—10, 10], and[-3, 3], consistency of the fuzzy system, but also be incorporated in

respectively. As mentioned before, the centers of all the fuzitye initialization of the evolutionary algorithm. For example,

membership functions are allowed to vary over the whokome individuals can be initialized with the parameters of a

space of the corresponding variables. We suppose heth standard fuzzy rule system, while the others are initialized

and v, have a maximum of five fuzzy subspaces anfias with randomly generated numbers.

maximally eight fuzzy subspaces. Therefore, the fuzzy systemin the beginning, we generate the fuzzy rule control system

has at most 25 fuzzy rules. using 316 groups of data collected in driving situation 1. In

then a is Positive Big
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order to make comparisons, fuzzy rule systems are generated
with and without completeness and consistency checking. A
fuzzy rule base is first generated without checking its com-
pleteness and consisterc¥he rule base and its inconsistency
indices are provided in Tables | and I, respectively, and the
speed and acceleration tracking results are illustrated in Fig. 5.
In Fig. 5, the dotted lines denote the acceleration and speed
measured in the experiment, and the solid lines describe the
results produced by the fuzzy controller. In Fig. 5(a), the
curve of the measured acceleration looks unsteady due to the
discretization of the measurement. Therefore, the fuzzy con-
trolleris not aimed to approximate the measured acceleration
to every detail. This is true for the measured acceleration in

RuLE BASE (WiTH CHECKING, SITUATION 1)

TABLE 1l

0

1

2

3

3

4

*

*

*

*

*lw

IEIFNES

2
6
*

()]

*FlWlW([N]| *|O1

a|h(w|N|R|O

*

lo|~NN

*

*

w

TABLE IV

INCONSISTENCY INDEXES (WITH CHECKING, SITUATION 1)

the whole simulation. Taking this fact into account, we think 0 1 2 3 4 5

the fuzzy controller behaves very well for the training data. 0 * 0.001| 0.001| * * *
The mean errors of acceleration and speed are 0.105 arsd 1 10001} * * * 10.086] 0129

. . * *

0.085 ms!, respectively. That is to say, the fuzzy controller 2 0.046] 0.010| 0.064 0.019
3 | 0001|0010 0.005] * 0.024 | 0.029

2Nevertheless, rules with the same IF part but different THEN parts are 4 : 0'967 : 0'980 - -
also avoided to assure the fairness of the comparisons. 5 0.033] 0.024




838 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 6, DECEMBER 1999

0.3 4

0.2

0.1- b

o
T

'
o
T

'

e

h
T

" \H‘\U“”“H".jf‘lfl

[ N I TR TR

Myl I
| iy b

I

Il

RN U]
S

acceleration(ms™)

speed(ms™")

2 ‘ ‘ ‘ ‘ ‘ ‘
o 50 100 150 200 250 300
v time(s)
(b) (b)
Fig. 8. Membership functions (with checking, situation 1).¢&) and (b) Fig. 9. Training results (with checking, situation 1). (a) Acceleration and
Up. (b) speed.

has imitated the given driving behavior very well. This can The rule base generated with completeness and consistency
be attributed to the fact that the rule parameters and the rglgecking is listed in Table Ill, and the inconsistency indices
structure are optimized simultaneously and the fuzzy operateie provided in Table IV. Note first that the fuzzy partitioning
are flexible. However, a fuzzy system that exhibits smasf the two input variables (see Fig. 8) are now complete
performance for training data does not necessarily perfofd the distribution of the membership functions seems to be
equally well on the test data. Before we check the fuzzyore reasonable. The acceleration and speed tracking results
system with test data, we first have a look at the membersh# the training data are demonstrated in Fig. 9 with mean
functions (see Fig. 6). We notice that some fuzzy setssaft) errors of 0.107 n1s2 and 0.090 ms!, respectively. Compared
lack distinguishability, while the fuzzy partitioning of.() is to the fuzzy rule system generated without consistency and
incomplete? This implies that over-fitting of the membershipcompleteness checking, the performance for the training data is
functions has occurred. We notice further that the total degrggite the same. Now we will evaluate it with the test data from
of inconsistency is 13.4, which seems quite large. NOow Wgiying situation 2. The test results are presented in Fig. 10
evaluate the fuzzy system with 276 groups of data obtaingftn mean errors of 0.216 m2 and 0.552 mst, respectively.

in driving situation 2. The _results are presented in Fig. 7. T'F?is noticed that the mean speed error has been significantly
mean errors of acceleration and speed are 0.233°nasid reduced
1 . .
1.044 ms*". We note that both errors are quite large. We also notice from Table IV that the total inconsistency
index of the rule base is only 0.63. This is quite hard to believe
3Theoretically, the value of Gaussian functions never becomes zero. 'fnwe do _nOt associate the rule base W'Fh the Q'St”bu“on of
practice, it will become zero due to the precision limit. the premise and consequent membership functions.
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From the above simulations, we see that a fuzzy systefRese values are considerably lower than those of the fuzzy
generated with completeness and consistency checking ajjfstem without completeness and consistency checking . The
performs the fuzzy system generated without checking for tegta| inconsistency index reduces to 3.04.
data. To confirm this conclusion, another simulation is carried until now, we have shown that a BCluzzy system is
out, in which the data from driving situations 3 and 4 are use@iperior to a conventional fuzzy system in its generalization
as training and test data. The membership functions, trainiggility if relatively few data are provided for training. In
and test results of the fuzzy system generated without coffe following, we will briefly describe the simulation results
pleteness and consistency checking are given in Figs. 11-ABen more training data are available. 1512 groups of data
respectively. The mean training errors for acceleration aggllected from five different driving situations are used to
speed are 0.210 m$ and 0.194 ms', however, the mean generate the fuzzy rule base. Similarly, we generate two
test errors are as large as 0.348 thaind 1.635 ms'. The fuzzy systems without and with completeness and consistency
fuzzy partitioning ofv, is again incomplete, and the totalchecking. The two rule bases have 17 and 15 fuzzy rules
inconsistency index is 34.9, which denotes that the qualitgspectively. It is not surprising that no large differences are
of the rules is not so satisfying despite the good trainingbserved from training and test results of these two fuzzy
results. As a comparison, the membership functions, trainisgstems. For the fuzzy system without completeness and
and test results of the fuzzy system generated with completensistency checking, the mean training and test errors are
ness and consistency checking are provided in Figs. 14-0&0 ms?, 0.51 ms*' and 0.26 ms?, 0.65 ms'!. For the
respectively. In this case, the mean errors of acceleration dndzy system with completeness and consistency checking,
speed are 0.209 mg and 0.843 ms' on the test samples.the mean training and test errors are 0.18 M<0.4 ms!
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and (b) speed. (b) speed.

and 0.22 ms2, 0.57 ms!. This is in concordance with the .
fact that the generalization ability of the fuzzy systems wil Finally, we discuss the_ compactness of th_e f_uz_zy systems.
be better if sufficient training data are available. However Ithough no penalty function fpr rule complexity is mtroduced.
the distributions of the membership functions produceI the process of rule ggngrathn, the number of fuzzy rules in
without completeness and consistency checking (Fig. cases is reduced. This implies that a compact fuzzy system
seem to be less promising than those of the membersl‘i'A s normally better performance than a standard system.
functions produced with checking (Fig. 18). Moreover, the oreover, the structures_of the _rule bases are all complet_e,
p g (Fig

) . . although we have experienced incomplete rule structure in
total inconsistency indexes of the checked and unchecke
systems are 3.7 and 16.0, respectively. This explains possiB}yer cases.
the reason why the test results of the unchecked system are
slightly worse than the checked system. The training and test
results will not be illustrated here due to space limit.

In all of these fuzzy systems, the soft T-norm and BADD A methodology for generating flexible, complete, consistent
defuzzification play an important role too. For example, thend compact fuzzy rule systems from data using evolution
optimized soft coefficient and the BADD coefficient in the strategies is proposed in this paper. All the components of
first training example (with checking) are 0.83 and 5.23. If theyne fuzzy systems, including the parameters of the member-
are fixed to 1.0, different degrees of performance deterioratiship functions, the structure of the rule base and the fuzzy
are observed in training and testing. This is true for all of theference mechanisms, are encoded in a unified frame and
other cases. optimized with evolution strategies. In order to evaluate the

V. CONCLUSIONS
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APPENDIX

completeness and consistency of a fuzzy system, indices fofn order to compute the fuzzy similarity measure, it is neces-
completeness and consistency are proposed with the helpsgfy to calculateV/ (AN B). For any two fuzzy sets described

the fuzzy similarity measure. These indices are integrated iR, triangular membership functions in the following form:
the objective function so that the generated fuzzy systems are

complete, and the rules are more consistent with each other

and with the prior knowledge. Comparative simulation studies 1 ay .

have been carried out to show that the fuzzy systems generated o Vit T — e Iz <my

with completeness and consistency checking are advantageous (@): v 1 v 1

over the fuzzy systems generated without completeness and my — by my — by’

consistency checking, especially when insufficient training 1 az it

data are available. B e — s ma—ay T2
Flexibility of the fuzzy system is realized by optimizing ) 1 5 2

the soft T-norm and the BADD defuzzifier. This alleviates ma — bo mo — by’

the arduous task to select better fuzzy operators for a given (31)

problem. Since the rule structure is also evolved by the

algorithm, the generated fuzzy system has always fewer rules

than the standard rule system. This is imperative if the fuzayd if we supposen; < mo andb; > ao, i.e., the situation of

system has more than two input variables. no overlap will not be considered, then there are nine total

if ©>mq

if £>mo
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possible overlapping cases in total, namely: 3) Two intersections (noted asPii(zi1,ui1), Por
;) = C‘?’zl :bb% (721,701)) between the both sides ofA(z) and
3; oz the left side of B(x), if ay> az, by < b. This is true
1 — @2,V1 23
4) a) <as 131 B bQT for the above cases 7 and 9.
bl - bl . .
5) a1 < as, by < ba; 4) Three intersections (noted asPii(xi1,vy11),Por
6) a1 < ag, by > bo; (21,¥21), and P22, 1y22)) between the both sides
7) a1 >az,b; = by of A(x) and B(x), if a; >az and b; >bs. See the

8)
9)

ap > as, b1 > bg;
a1 > ao, b1 < bs.

above case 8.
In this way, M (A N B) can be calculated according to these

It is noticed that these nine cases can again be classified ifHBr cases
four situations:

1) One intersection (noteh; (x21,y21)) between the right
side of A(z) and left side ofB(z), whena; < az,b; <

1) Case 1 (Fig. 19):

bo. This is true in the above case 1, 3, 4, and 5.
2) Two intersections (noted

as Py (w21, 421), Pa2

blmg — Q211
1 — a2) + (mg —my)’

Tro21 = (b

(z22,y22)) between the right side ofd(z) and the
both sides ofB(x), whena; < ag,b; > by. This holds
for the above cases 2 and 6.

by —

Yo1 =
(

by —ai) + (m2 —my)’
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Fig. 19. Case 1.
wx)
Ax) Bx)
Py
X
ap @ my Xy mp Xp by by

Fig. 20. Case 2.

Similarly,

21 1
M(AﬂB):/ < g —2 )da:
as m2 — a2 mz — a2
T22 1 bl )
+ T — dx
/3;21 <m1 — by my — by

b 1 by
— d.
+/ac <m2—b2x m2—b2> *

22

Fig. 18. Membership functions (with checking, situations 1-5)n(&j and . 1 (bl — a2)2
(b) Ure - 2 (bl — CLQ) + (mg — ml)
1 (by — by)?
- = . 33
Thus, 2 (by — b)) + (ma — my) (33)
3) Case 3 (Fig. 21):
MAA B = T21 1 ao 4 £ = aimo — a2My
( )_/02 mg—agx_mg—ag * (al_a2)+(m2_ml)
- a; — as
N S L M ) £y )
2oy \TU — b1 my — by o1 andys; are the same as in case 1. Then we have,
T11 1
. 1 (b1 - CL1)2 (32) M(A n B) = / < T — o ) dz
_2(b1—a2)+(m2—m1)' a1 mp —ay m; —ay
/1‘21 < 1 a9 )
+ T — dz
Mo — @ Mo — &
2) Case 2 (Fig. 20): s 21 2 ; ?
) +/ < T — L )da:
o1 andyo; are the same as in case 1, and v, \ 1 — b1 my — by
blmg — mlbg 1 (bl - a2)2
Too = , [
22 (bl +m2) +(m2 —ml) 2(b1 —a2)+(m2 —ml)
b= by I

P2 = oy =)+ (ma — ) 2 (ay — az) + (ma — my)
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(1]

(2]
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Fig. 21. Case 3. &
4
hx) “
A(x) B(x) (5]
(6]
(7]
(8]

p
11g (9]
H : : X

a 4 Xy My X1 My Xp by By [10]
Fig. 22. Case 4. [11]
4) Case 4 (Fig. 22). [12]

All the coordinator values of the intersection points are now3]
available, and consequently/ (A N B) is calculated by

[14]
M(A A B) B /'1‘11 1 _ ay d
B a1 my — alaj mp —a ‘ [15]
T2l 1
e
2y \M2—az M2 — a2
T22 1 bl
— 17
—i_/gw1 <m1_blx ml—bl>dﬂj (]
b [18]
2 1 bo
+/9022 <m2 - b2x Cmg — b2> e
_1 (b — a2)* [19]
2 (bl — CLQ) + (mg — ml) [20]
_1 (a1 — ap)?
2 (a1 — az2) + (mg — mq) [21]
1 (by — bo)?
- = . 35
2 (by — be) + (ma —mq) (33) [22]

If the membership functions are Gaussian functions, theys
can be approximated by isosceles triangular membership func-
tions [16] for the sake of computational simplicity. Given twd?*
Gaussian membership functiofs ,w;) and (¢z,ws), where
c1,c2, and wy,wo are the centers and widths respectivelyi25]
then they can be replaced by two triangulars with = [26]
c; — wi/m,b; = ¢; +wiy/m,1 = 1, 2. Itis straightforward that
they can be calculated using one of the equations provided in
case 1, 2, or 3. It is noticed that, case 4 does not happen [Fo7|]
the isosceles triangulars.
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