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Abstract

This paper studies an application of hybrid systematic design in multiobjective market problems. The target problem is suggested

as unstructured real world problem such that the objectives cannot be expressed mathematically and only a set of historical data is

utilized.

Obviously, traditional methods and even meta-heuristic methods are broken in such cases. Instead, a systematic design using the

hybrid of intelligent systems, particularly fuzzy rule base and neural networks can guide the decision maker towards noninferior

solutions. The system does not stay in search phase. It also supports the decision maker in selection phase (after the search) to

analyze various noninferior points and select the best ones based on the desired goal levels. In addition, numerical examples of real

crude oil markets are provided to clarify the accuracy and performance of the developed system.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Market structures are fundamental to the analysis of
marketing activities. The number and power of sellers/
buyers, the nature of products and goals are among the
important factors that dictate the structure of the
market. For frequently purchased packaged goods and
papers, there are numbers of different considerations
conflicting with each other that influence the final
purchasing decisions.
In order to find the best sell/buy orders in these

multicriteria problems, it is necessary to make a
tradeoff between these conflicting tangible and in-
tangible goals (Zeleny, 1998). But finding the best
tradeoff values of the goals is very difficult and also
very different to the single objective optimization
e front matter r 2004 Elsevier Ltd. All rights reserved.
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problems and is so called ‘‘multiobjective decision
making’’ problems.
Although some mathematical methods (Gholamian

and Fatemi Ghomi, 2004a) are developed to solve
multiobjective problems; but generally the applica-
tions are restricted to small and medium size problems.
In contrast, meta-heuristics, specially evolutionary
algorithms have found a substantial growth (Jones
et al., 2002). Popularity, parallel processing and
flexibility of these methods are the main reasons
of this extensive utilization (Jaszkiewicz, 2002). MOGA,
HLGA, NPGA and VEGA (Zitzler and Thiele, 1998)
are the most eminent of the first-generation multi-
objective evolutionary algorithms (MOEA). But unfor-
tunately, some of these methods such as MOGA and
HLGA are progressive ones and others also need
some initial factors such as tournament size, Pareto
spread and sharing value (Zitzler et al., 2003). Table 1
illustrates the set of important MOEA methods

www.elsevier.com/locate/engappai
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Table 1

Classification of multiobjective evolutionary algorithms

MOEA A priori (before) Progressive (during) A posteriori (after)

Plain aggregating approaches Evolutionary weighting HLGA —

Evolutionary GP

Population-based non-pareto approaches Lexicographic selection — VEGA

Non-generational GA

Pareto-based approaches — MOGA NPGA, GRGA

SPEA, SPEA2

Evolutionary co-design PAES, PESA, PESAII

MOMGA, MOMGAII

NSGA, Fast elitist NSGA

Fig. 1. Samples of market patterns.
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classified by the stage of decision making (Tiwari
et al., 2002).
Recently, the second generation methods such as

PEAS II, MOMGA II, NSGA2 and SPEA2 try to
improve MOEA with some additional techniques such
as elitism, crowding measure, partially enumeration and
second population (Zitzler et al., 2002), but the methods
remain with the same complexity O(m2n) (where m is the
population size and n is the number of objectives)
(Coello et al., 2002).
In addition, MOEA methods are developed on

deterministic decision making (i.e. mathematical struc-
ture) while generally in the market, the decisions are
made based on inadequate information and under the
pressure of time (Benton, 1991) in uncertain conditions.
In fact, the market models are generally unstructured or
semi-structured models that objectives or constraints
may be difficult to express mathematically. In such
cases, MOEA methods have found lack in application;
because there are not quite the mathematical model to
be used in MOEA algorithms (Gholamian and Fatemi
Ghomi, 2004b).
Besides, mathematical models are very rigid and

decision analysis even with MOEAs are entailed with
high computational burden. It seems market decision
making using the market entities (i.e. with mathematical
models) is not simple at all.
Now, let us suppose the market as an integrated set

and study the market with this new vision. It seems this
unique set follows some trends. Sometimes, it is said that
the market is backwardation or flat or contango. There
are trends that explain the market situation. Bull and
Bear markets are the resultant of these trends. When
these trends are repeated sequentially, some structural
patterns are shaped that the markets seem to be imitator
of them. In other words, instead of paying attention to
the market entities, the market behavior is achieved
from the market totality as integrated set.
The patterns which represent the market behaviors

are experientially extracted and employed by the market
analyzers and brokers (Morphy, 1999). ‘‘Cup &
Handle’’, ‘‘Double Bottom’’, ‘‘Head & Shoulder’’ and
so on, are some of well-known patterns in the market
context, as shown in Fig. 1.
Successful brokers and exchangers are those who

recognize these patterns and know which patterns are
activated and with which degree of truthness. In fact, the
patterns act as rules of the market and knowledge base
of market system is constituted with these rules (Martin,
2001). Then, instead of developing the mathematical
models with all mentioned difficulties, a systematic
design (Gholamian et al., 2004) can be generated with
this knowledge base to make multicriteria decisions in
market problems.
The resultant system developed in this paper, includes

a knowledge base with the rules which are related to
such market patterns. But as mentioned above, the
market behaviors accompany with uncertainty; so fuzzy
logic is used in knowledge base to support this nature.
At the result, a knowledge base is designed with the
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fuzzy rules which are fired as a matter of degree of
compatibility.
It is not the first time that the intelligent systems have

found applications in the market problems, specially, in
generating trading rules (Leigh et al., 2002). While the
generation of trading rules is performed traditionally
with stochastic and dynamic programming methods
(random walk) (Li and Lam, 2002), some recent works
are performed with intelligent agents (Skouras, 2001),
neural networks (Fernandez-Rodrýguez et al., 2000),
genetic algorithm (Allen and Karjalainen, 1999) and
genetic programming (Potvin et al., 2004). Specially,
neural networks are more attended (Jasic and Wood,
2003). But all mentioned methods are single objective,
while in the real markets, various objectives such as
maximizing profit and minimizing risk of loss are
attended.
The aim of the paper is the development of an

intelligent system (i.e. fuzzy rule-based system) for such
multiobjective problems. The system is constructed on
the noninferior region and maps the decision space (Z)
into the solution space (X). In fact, the rules maps what
the decision maker knows to what the decision maker
wants. The following are samples of the linguistic
interpretation of such rules:

IF Profit is Low AND Risk is High Then

Pos:1 ¼Medium Low AND Pos:2 ¼ Low

AND Pos:3 ¼ None;

IF Price is Medium AND Volume is Low

Then Pos:1 ¼ High AND Pos:2 ¼ Low

AND Pos:3 ¼ Low:

The system supports the traders to make deci-
sions based on the desired level of the goals and also
analyze various solutions without any additional com-
putation cost (Turban et al., 2004). The stages of the
system generation will be described in the next sec-
tions after small description of the multiobjective
concepts. The paper is convoyed with the real numerical
examples of crude oil market, which the system is
designed and applied on them and finally, recommenda-
tions for the future studies are devoted in the last
section.
2. Basic definitions

Let f iðx; yÞ ði ¼ 1; . . . ; pÞ: fO;Fg ! L be objective
functions related to the goals, where x ¼ ½x1;x2; . . . ;xn�

and y ¼ ½y1; y2; . . . ; yn� are respectively continuous and
discrete solution vectors from some universes O and F
(i.e. x 2 O ^ y 2 F).
Then, the standard multiobjective problem is for-
mulated as follows:

Maximize Fðx; yÞ ¼ ðf 1ðx; yÞ; f 2ðx; yÞ . . . f pðx; yÞ

Subject to giðx; yÞp0 i ¼ 1; 2; . . . ;m;

x 2 < & y ¼ �1; 0; 1:

(1)

In general, there is no solution that maximizes all of
the objective functions simultaneously. Thus, the trade-
off solutions must be found to satisfy all of the objectives
as well as the possible (Zeleny, 1998). These solutions are
called noninferior points. In order to describe noninfer-
iority, suppose the following definitions:

Definition 1. The solution ðx
_
; y
_
Þ 2 fO;Fg is said to

dominate ð �x; �yÞ 2 fO;Fg iff ðx
_
; y
_
Þ  ð �x; �yÞ38i9j:

f iðx
_
; y
_
ÞXf ið �x; �yÞ ^ f jðx

_
; y
_
Þ4f jð �x; �yÞ i; j ¼ 1; 2; :::; p:
Definition 2. The solution ðx̂; ŷÞ 2 fO;Fg is said to be
noninferior or nondominated if no solution ðx; yÞ 2
fO;Fg can be found such that ðx; yÞ  ðx̂; ŷÞ:

In fact, a point is said to be noninferior if, at that point
any attempt of improvement in one of the objective
functions from its current value would cause at least one of
the other objective functions to deteriorate from its current
value (Lai and Hwang, 1994). Naturally, in contrast with
the optimization problems, the noninferior points are not
single and there are sets of these points which constitute
the noninferior regions. So, finding all of the solutions with
traditional methods is very difficult. Instead, the fuzzy rule
base is developed in this region and so, the decision maker
can observe all noninferior solutions and their related
objective values simply.
3. System development

As mentioned above, the hybrid decision support
system must be built on the noninferior region.
Following is the big picture of system construction
stages (Fig. 2):
In the following subsections, each step of the ‘‘system

construction’’ flowchart is described.

3.1. Set initial population

Since the knowledge base must be built on the
noninferior region as the first step, an estimated subset
of noninferior points should be provided. Since the
market occurrences are not regular, globally the market
objectives (i.e. f iðx; yÞ (i ¼ 1 . . . p)) cannot be extracted
with the stochastic and regression methods (Leigh et al.,
2002); instead, only a set of historical data may be used
as a subset of the real world information. Hence, a
simple procedure is used in this historical data to
generate such initial noninferior population. The outline
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procedure is brought as follows:
Parameters:
 n: Size of target population,
C
: Set of inferior population,

U
: Set of noninferior population
Generate

initial

information:
F
 ¼ ½f 1ðx; yÞ; f 2ðx; yÞ; . . . ; f pðx; yÞ� 2 L j ðx; yÞ 2

fO;Fg&jFj ¼ n;

S
et C ¼ +; U ¼ ½F; x; y�;
Noninferiority

checking:
F
or each F ¼ ½f 1f 2; . . . ; f p� from 1 to n–1,
I
f FeC

F
or each F 0 ¼ ½ f 0

1; f
0
2; . . . ; f

0
p� from |F| to n
I
f F 0eC

I
f f 1o ¼ f 0

1 & f 2o ¼ f 0
2 &y& f po ¼ f 0

p

U ¼ U� fFg; C ¼ Cþ fFg;

E
lse if f 0

1o ¼ f 1 & f 0
2o ¼ f 2 &y& f 0

po ¼ f p
U ¼ U� fF 0g; C ¼ Cþ fF 0g;

e
nd
e
nd
e
nd
e
nd
e
nd.
1) Set the initial population of
noninferior points as the estimation of
noninferior region  

2) Clustering noninferior
solutions with the ART neural 
networks

3) Fuzzy rule generation based on
the specified clusters 

4) System construction based on 
obtained rules in Mamdani 
structure

5) Testing 

area

the system with a set of grid point 
related to the activated decision 

7) Project the solutions in decision
area to illustrate the system
performance

Feasible

Fig. 2. The flowchart of s
The procedure designed is very simple which produces

noninferior population rapidly. It must be attended that
this population produced with historical data, is an
estimation of the real noninferior population which is
used in construction of the fuzzy rule base.
3.2. Clustering

Now, a set of noninferior points is obtained; but
because the points are scattered in the population, it is
necessary that the points are clustered based on the
distance parameters. In this study, specially designed
‘‘adaptive resonance theory’’ (ART) neural networks
(Frank et al., 1998) is used for the clustering process.
Fig. 3 illustrates the structure of the network.
The network inputs and outputs are defined as

follows:

Oj ¼
I j� ; I j� ¼ min

n

i¼1
fI ig

0 else

8<
: I i ¼ jj½x; y� �Wijj; (2)

while the vigilance test determines the winner neuron as
follows:

Oj� ¼ jj½x; y� �Wj� jjor
6) Feasibility achievement with an 
exterior movement towards the
feasible region

Infeasible

ystem construction.
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Fig. 3. ART network structure.
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¼
1

2n

Xn

i¼1

Xn

j¼1

jj

iaj

½xi; yi�jj � jj½xj ; yj �jj

� cosh½xi; yi�; ½xj ; yj�i: ð3Þ

Consequently, the weights are updated as follows:

Wj� ¼
½x; y� þWj� � sizeðWj� Þ

1þ sizeðWj� Þ
: (4)

Obviously, Wj� vectors are cluster centers which are
updated with any new member. Finally, the network
gives the cluster centers as the output of the network.
The number of clusters is related to spread of the
population and vigilance value (r).
3.3. Fuzzy rule generation

Now, the cluster centers are used to generate the fuzzy
rules. In defining the fuzzy rules, various membership
functions may be offered; but since in general cases,
most of the membership functions are converged to
typical smooth ones (i.e. sigmoid, Gaussian and p)
(Durkin and Durkin, 1998) in this study, Gaussian
membership functions are used as follows:

micðxÞ ¼ exp
�ðx � xicÞ

2

2s2c

� �
; x 2 O;

i ¼ 1; 2; . . . ; jxj; c ¼ 1; 2; . . . ; nc; ð5Þ

where xic8 i; c are cluster centers and sc is defined as
follows:

sc ¼

P
i

x2icmicðxÞ

nc

�

P
i

xicmicðxÞ

nc

0
@

1
A
2

0
B@

1
CA
1=2

;

xic 2 <c ¼ ^
nc

i¼1
ðxiÞ; _

nc

i¼1
ðxiÞ

� �
; c ¼ 1; 2; . . . ; nc; ð6Þ

where nc is the number of clusters.
Then, the fuzzy rules R: A-B are defined as follows
(Zimmmermann, 1996):

Aj ¼

Z
f ðx;yÞ2L

ðmjcðf ðx; yÞÞjf ðx; yÞÞ j ¼ 1; 2; . . . ; p; (7)

Bi ¼

Z

x 2 O

y 2 F

ðmicðx
!yÞjx!yÞ i ¼ 1; 2; . . . ; n; (8)

where x!y means x in the direction of y; which is related
to market concepts that y is representative of sell or buy
orders and x is the value of ordered trades.

3.4. System construction

In this stage, Mamdani inferencing system is used on
developed rules to constitute the fuzzy rule base. Let z as
the input vector of decision space, then the rule Rc is
fired as follows:

ac ¼ ^
p

j¼1
m

cj

j ðzÞjA
cj

j ; A
cj

j ¼

Z
z2L

m
cj

j ðzÞjz

0
@

1
A � Aj : (9)

Then, the inferred consequences are obtained as
follows:

mConsc ðxÞ ¼ ac ^ m
cj

j ðxÞjB
ci
i ; B

ci
i ¼

Z
x2O

mci
i ðxÞjx

0
@

1
A � Bi:

(10)

Finally, the aggregation is performed as follows:

mConsðxÞ ¼ _
nc

c¼1
mConsc ðxÞ: (11)

The t-norm and t-conorm operators either may be
simple, such as standard, product, drastic and bounded
operators or may be parametric such as Yager class,
Schweizer & Sklar classes, Hamacher class and Dubois
class (Wang, 1997). As an alternative, neuro-fuzzy systems
can be used to obtain slick operators and membership
functions (Kosko, 1997); although the complexity cost
should also be attended. It must be noted that the aim is
not development of a controller but the social model is
attended and so, the same complexity cost must be paid.
Finally, the solutions must be defuzzified to obtain

crisp trading values. In this part also parametric and
nonparametric methods can be used. Specially, SLIDE
generalized defuzzification method (Yager and Zadeh,
1994) is applied as follows:

x� ¼
ð1� bÞ

R
i2L

xmaðxÞdx þ b
R

i2H
xmaðxÞdx

ð1� bÞ
R

i2L
maðxÞdx þ b

R
i2H

maðxÞdx

a 2 ½0;Height½mðxiÞ� and b 2 ½0; 1�; ð12Þ

where L ¼ fi=mðxiÞoag and H ¼ fi=mðxiÞXag:
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x1

y1

yn

xn

gm(x,y)

∑ L (g(x, y))

g1(x,y)

gj(x,y)

:

:

:

:

:

Fig. 4. Coupled neural network and penalty function method.
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Similarly, y’s are determined based on the direction of
related x’s. Now, the system is prepared to be used.

3.5. Testing

As mentioned in the previous section, the system
supports the decision maker to analyze noninferior
solutions. Simply, the decision maker can pick over the
desired objective levels and observe related solutions in
the noninferior region without any additional computa-
tion. To analyze various solutions, it is only sufficient to
slide moving the goal levels. So, the system is derived as
rapid and powerful analyzer of the market trading
problems; similar to an oscillator (Gholamian and
Fatemi Ghomi, 2004c).
In order to test the system, the activated area of the

decision space is divided to the tiny grid points and then
the ordered set points are given to the system. The
results must be noninferior solutions.
The activated area can be obtained by optimization of

each objective individually and then application of
ranking methods (TOPSIS, ELECTRE and so on) on
the resultant payoff table. But as mentioned in the first
section, the market problems are suggested unstructured
(i.e. without any mathematical objectives) and so, the
range of noninferior historical data can be used as
estimation of the activated area.
When grid points are given to the system, the system

generates the noninferior (x, y) solutions. The solutions
may be repetitive; so, an equality checking is performed
to eliminate the repetitious solutions and save the
nonrepetitive list.
Then, the feasibility of solutions are checked by

replacing the solutions in the constraints. The solutions
may or may not be feasible. In latter case, the following
step must be performed to reach the feasible solutions.

3.6. Feasibility achievement

If the solutions are infeasible, they must be led to the
boundaries of noninferior region with an exterior
movement. In fact, opposite to all traditional methods
which try to get the noninferior boundaries with an
interior movement, in this system the boundaries are
acquired with an exterior movement.
If the constraints are not so complex, simply the

penalty function method can be used as follows:

Min Lðgðx; yÞÞ

¼
X
i2I

fmax ½0; giðx; yÞ�g
2 þ

X
j2J

g2j ðx; yÞ; ð13Þ

where I ¼ fi=giðx; yÞp0g and J ¼ fj=gjðx; yÞ ¼ 0g:
But if the constraints are sufficiently complex,

mathematical methods cannot be used successfully. An
offer may be application of multilayer feedforward
neural network along with the penalty function method,
such as shown in Fig. 4 (Gholamian and Fatemi Ghomi,
2004b):
The network is designed with n (number of decision

variables) output nodes which are concluded to the gates
of penalty function. The target is satisfaction of the
value of penalty function and the output is evaluated by
the convergence test. If the convergence criterion is met,
training will be stopped; since the feasible solution is
obtained. Otherwise, the convergence error is back-
propagated to the networks to modify the weights. The
number of inputs and hidden layers are arbitrary, but
the initial inputs and weights must be adjusted such that
the initial infeasible solutions are generated in the
output nodes. Finally, when the training is terminated
constraints are satisfied and the feasible solutions are
extracted from the network.
3.7. Projection

Now, the feasible solutions are obtained; directly or
indirectly with exterior movement, which are claimed to
be noninferior. This claim can be illustrated by
projection of resultant solutions in the decision space.
If the objective functions are explained mathemati-

cally, this work is performed simply by replacing
solutions in the objective functions. But in the un-
structured cases, this operation is impossible. Instead
again, neural networks are applied. Neural networks are
very powerful in knowledge acquisition; specially neural
networks are able to approximate noise-free functions
with a high degree of accuracy (Smith, 1999). Hence,
initially a supervised feedforward multilayer network is
trained with a set of historical data. Fig. 5 illustrates
such network structures; where the inputs (Pj) are the
solution values and the outputs (ai) are the objective
values.
When the training is terminated, the network will play

the role of objective functions and so giving the feasible
noninferior points to the network, derives the projection
values in the decision area. The obtained values are
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Fig. 5. Feedforward neural network for function approximation.
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comparable with the other goal values which must be
suited in the northeast–east part of the decision space.
4. Numerical examples

In this section, four real examples are provided to
show the accuracy of the developed system. The
examples are selected from the crude oil market and
historical data included ‘‘the crude oil prices’’ and
‘‘current/future position prices’’ for each working day
between June 2, 1998–November 30, 2000 and July 15,
1988–December 29, 2000, respectively. Consequently,
for each set of historical data, two real problems are
suggested and each problem encouraged with a
systematic design. Then, the systems are tested to
illustrate the performance of the system. Finally, the
comparison discussions are provided for similar cases.
The examples are developed by MATLABInc software
used under Pentium IV personal computer (PC).

Problem F1. Suppose the following multiobjective pro-
blem

Max ZHIran ¼ f 1ðxDubai;xBrent;xWTIÞ;

Max ZLIran ¼ f 2ðxDubai;xBrent;xWTIÞ;

subject to

xDubai;xBrent;xWTIX30; ð14Þ

where ZHIran and ZLIran are respectively the prices of heavy
and light crude oil of Iran and the variables are the index
crude oil prices. The aim is to control maximum
national crude oil prices, based on the regional and
international prices in the paper trading markets.

The historical data contains 751 data points which are
firstly evaluated with the noninferiority procedure to
extract noninferior points. The process is performed at
0.01 s and 13 noninferior points are extracted.
Then, the points are clustered with ART2 network.
ART2 network is specially designed for the continuous
problems. The network is produced eight clusters with
vigilance rate r ¼ 1:3 after 50 iterations and in the time
0.07 s. Based on the range of noninferior solutions, the
membership functions are distributed in the following
activated areas:

28pZH;LIranp36; 28pxDubaip35;
30pxBrentp40; 33pxWTIp38:

The rules are defined based on these membership
functions and noninferior points, in Mamdani system
structure as shown in Fig. 6.
Now, in order to test the system, the activated area is

divided to grid points with the rate 0.025 and all 103041
generated couple points are given to the system as an
input vector. Simultaneously, the system produces
solutions as an output vector. Obviously, most of the
solutions may be repetitive; so, the solutions are
compared with each other and the repetitious ones are
eliminated. The equality checking is performed in 0.691 s
and 100 nonrepetitive solutions are obtained. Then, the
feasibility checking is performed and consequently, 97
(97%) solutions have been found feasible and others are
discarded. The obtained solutions demonstrate high
accuracy of the system when the resultant range is
compared with the range of initial noninferior solutions.
Following illustrates the absolute differences of these
two ranges:
xBrent
 xDubai
 xWTI
Min
 0.03
 0.01
 0

Max
 0.01
 0.03
 0.01
The solutions can be illustrated in decision space by
projection process. A feedforward neural network with
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Fig. 6. Fuzzy rule base system of Problem F1.

Fig. 7. The projection neural network of Problem F1.
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Fig. 8. The results of Problem F1.
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one hidden layer and 80 neurons is designed (Fig. 7) and
then is trained with the set of feasible solutions as subset
of historical data. Then, the solutions are given to the
trained network and the projection values are obtained
at 0.01 s.
The projected values are portrayed with historical

data solutions. The result was wonderful as illustrated in
Fig. 8. The upper chart of Fig. 8 shows the historical
solutions of Problem F1 whereas the lower chart
indicates achieved noninferior solutions, which is
located exactly in the noninferior region. This projection
is achieved while the input was an area fragmented to set
of the grid points.
As an overview to the Problem F1, the numerical

results are collected in Table 2.

Problem F2. Previous example is designed with the same
products (i.e. crude oil) while the prices are affected with
the supplementary and even refinery products. Hence, in
the following example a supplementary product (natural
gas) and an oil product (gas oil) are used as solution
variables:

Max ZHIran ¼ f 1ðNatGas; GasOilÞ;

Max ZHIran ¼ f 2ðNatGas; GasOilÞ;

subject to

NatGasX20;

GasOilX300; ð15Þ

where NatGas and GasOil are respectively the prices of
natural gas and gas oil in IPE market.

Similar to the previous example, 751 data points are
evaluated and 13 noninferior points are extracted at
0.01 s. Then, the points are clustered and six cluster
points are generated with ART2 network.
In the next stage, the membership functions
are defined based on the cluster centers in the
range 28pZH,LIranp36, 15pNatGasp35 and 300p
GasOilp350 and thereby, the above rule base is
obtained (Fig. 9):
Similar to the previous example, the system is tested

with the same grid points. The numerical results of
Problem F2 is given in Table 3:
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Table 2

Numerical results of Problem F1

Reference Initial noninferior Clustering Testing Exterior method Projection

Equality Feasibility

Parameters 06/02/98 to 11/30/2000 — r ¼ 1:3 Grid. range: [28–36]2 — Net #hid.layer: 1

# Itr ¼ 50 Grid. rate: 0.025

Grid. No: 103041

# Points 751 13 8 100 97 (97%) — Net #neuron: 80

CPU time (s) — 0.01 0.07 0.691 E0 — 0.03

Fig. 9. Fuzzy rule base system of Problem F2.
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In comparison of the range of 69 obtained solutions
and initial noninferior solutions, the following result (as
absolute difference) is obtained.
NatGas
 GasOil
Min
 0.079
 0.0435

Max
 0.087
 0
Fig. 10 represents the projection of solutions in the
decision space. The results indicate the system capability
in mapping the solutions to noninferior region. This
means that all noninferior solutions are in hand; as
graphical user interface (Fig. 9) and the decision maker
can analyze various points with only sliding red bars
(Figs. 6 and 9) without any additional computation. The
system supports the decision makers to select the desired
objective price levels based on the national policies and
then try to control the markets by moving towards the
related solution price. It is important since in most cases
the influence of traders and exchangers in crude oil
markets is more than OPEC decisions. In addition, some
national leverage such as natural gas and refinery
products exist which can be used as invisible control
methods.
As importance difference of systematic design and

traditional methods is that the traditional methods have
only found the noninferior solutions and do not help the
decision maker in the selection phase; while as observed,
the systematic design not only finds the noninferior
solutions but also helps the decision maker in selection
phase by providing an analytical device (Gholamian et
al., 2004).
Comparison of the results of two examples demon-

strates although both systems have provided describable
results, Problem F1 seems to be capable to present few
better results. However, the results are not competitive
and can be used together in the decisional analysis.

Problem F3. The above examples are defined in the
current date (position1) prices; while the financial
markets are forward and future markets which trade
in the future positions. This is the risky contract;
because the actual prices may fall or rise. In the
following example, the aim is to control maximum price
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Fig. 10. The results of Problem F2.

Table 3

Numerical results of Problem F2

Reference Initial noninferior Clustering Testing Exterior method Projection

Equality Feasibility

Parameters 06/02/98 to 11/30/2000 — r ¼ 5 Grid. range: [28–36]2

# Itr ¼ 21 Grid. rate: 0.025 — Net # hid.layer: 1

Grid. No: 103041

# Points 751 13 6 69 69 (100%) — Net # neuron: 80

CPU time (s) — 0.01 0.03 0.521 ¼ 0 — 0.03
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of the future positions based on the quadruple indices of
current prices. The study is performed in ‘‘Brent North
Sea’’ prices with a set of 12 year historical data. The
problem is formulated as follows:

Max Z
POSð2Þ
B ¼ f 1ðxhigh;xlow; xclose; xopenÞ;

Max Z
POSð3Þ
B ¼ f 2ðxhigh;xlow; xclose; xopenÞ;

Max Z
POSð4Þ
B ¼ f 3ðxhigh;xlow; xclose; xopenÞ;

subject to

xclosepxlow þ 3:5;

xhighp1:07xclose;

0:94p
xclose

xopen
p1:01;

xhigh;xlow;xclose;xopenX30; ð16Þ

where Z
POSðkÞ
B are the future prices and variables are the

current high, low, close and open prices.
The historical data contains 2900 data points which
are firstly evaluated by the noninferiority procedure in
position values. The process is performed at 0.01 s and
five noninferior points are extracted. The points are
directly used in the rule generation process. The
membership functions are defined based on the range
of noninferior points in the following activated area:

30pZ
POSðkÞ
B p40 k ¼ 2; 3; 4

25pxsp45 S ¼ fhigh; low;open; closeg

Finally, the following rule base is generated in the
noninferior region (Fig. 11):
Similar to the previous examples, a set of grid points

are given to the system to test the efficiency of the
system. Following Table illustrates the numerical results
of Problem F3.
Such as shown in Table 4, the number of infeasible

points is not less (22.8%) and so an exterior method
must be used to reach the feasible solutions. Since the
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constraints are not such complex, simply the penalty
function method is used as follows:

Min L ¼
X
i2S

fmaxð0; 30� xiÞg
2

þ fmaxð0;xclose � xlow � 3:5Þg2

þ fmaxð0;xhigh � 1:07xcloseÞg
2

þ fmaxð0;xclose � 1:1xopenÞg
2

þ fmaxð0; 0:94xopen � xcloseÞg
2: ð17Þ

Specially, BFGS quasi-Newton method with a mixed
quadratic and cubic line search procedure is used as
penalty method. The vector of solutions is converged to
the feasible region quickly in 2.133 s. As the range
comparison of current solution and initial solution, the
following absolute difference is obtained:
Table 4

Numerical resul

Parameters

# Points

CPU time (s)
ts of Problem F

Reference

07/15/88 to 1

2900

—

3

In

2/29/2000 —

5

0

Fig. 11. Fuzz

itial noninferior

.01
xhigh
 xlow
 xclose
 xopen
Min
 0.1
 0.05
 0.01
 0.02

Max
 0.1
 0
 0.12
 0
Unfortunately, apart from two previous examples, the
difference range is future observed in this example.
Specially, xclose (as the index of position) and xopen have
remarkable differences. These differences will affect the
y rule base sy

Testing

Equality

Grid. ra

Grid. ra

Grid. N

1079

2.844
projection results. Although the projection results are
not quite adjusted to the noninferior points, but the
noninferior region is correctly and satisfactory recog-
nized by the system. Fig. 12 illustrates the comparison of
feasible and noninferior regions in the decision space:
Problem F4. In the previous example, only the market
prices are suggested for the future prices; while general
market entities such as market volume of trades and
market turnover also seems to have remarkable influ-
ence. In the following example, effects of such para-
meters in the future prices are studied:

Max Z
POSð2Þ
B ¼ f 1ðxV;xIOÞ;

Max Z
POSð3Þ
B ¼ f 2ðxV;xIOÞ;

Max Z
POSð4Þ
B ¼ f 3ðxV;xIOÞ;

subject to :

0:18xIOpxVp0:26xIO;
0:90xIOpxVp0:95xIO; ð18Þ

where xV and xIO are respectively the volume of trades
and the market input/output in the dimensions of 1000
units. Since the noninferiority is only made in the
positions, the same process is performed and the
following fuzzy rule base is obtained (see Fig. 13):
stem of Problem F3.

Exterior method Projection

Feasibility

nge: [30–40]3 Penalty function method

te: 0.25 Net # hid.layer: 1

o: 68921

833 (72.2%) 246 Net # neuron: 100

0.01 2.133 0.06
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The numerical results of problem are brought in
Table 5:
Similar to the previous example, since 17.3% of the

solutions are infeasible, the penalty function method is
used as follows:

Min L

¼

fmaxð0;xV � 0:26xIOÞg
2 þ fmaxð0; 0:18xIO � xVÞg

2

if xVo
xIO
2
;

fmaxð0;xV � 0:95xIOÞg
2 þ fmaxð0; 0:90xIO � xVÞg

2

if xVX
xIO
2
:

8>>>>>><
>>>>>>:

ð19Þ

All of the solutions converge to the feasible region
only at 0.18 s; but in spite of the previous example, the
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Fig. 12. The results

Fig. 13. Fuzzy rule base sy
comparison in the range of current and initial points
seems to be more attainable:
30
32 34

sitions

30
32 34

of Problem F3.

stem of Problem F4.
36
38

POS 2

36
38POS 2
xV
 xIO
Min
 0.171
 0.132

Max
 0.096
 0.062
However, the projection of obtained solutions is

brought in Fig. 14:
As observed in the above two examples, the decision

maker can set the future prices based on current market
entities. Interestingly, all future positions are suggested
which assure the interrelation effects; the subject which
is not attended in optimization works.
On the other hand, while it is proved that ‘‘there is no

way of making an expected profit by extrapolation past
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Table 5

Numerical results of Problem F4

Reference Initial noninferior Testing Exterior method Projection

Equality Feasibility

Parameters 07/15/98 to 12/29/2000 — Grid. range: [30–40]3 Penalty function method

Grid. rate: 0.25 Net # hid.layer: 1

Grid. No: 68921

# Points 2900 5 185 153 (82.7%) 32 Net # neuron: 80

CPU time (s) — 0.02 0.511 E0 0.18 0.03
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Fig. 14. The results of Problem F4.
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Fig. 15. The comparison of Problems F3 (right) and F4 (left).
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changes in future prices by chart or any esoteric device
of magic and mathematics’’ (Leigh et al., 2002), the rule
base can support the trader to make the best decisions in
the future prices.
In addition, the rule bases can be used as mecha-

nism of the market control; specially when the large
contracts are suggested. The rule bases give information
about the future prices which are controlled by the
current prices and volume. Hence, the government
trader with high contracts can adjust the market
parameters so that the desired levels of the future prices
are satisfied.
Although the systems can be used as complementary

of each other, the performance comparisons indicates
that F3 has generated better results than Problem F4.
Fig. 15 illustrates this subject clearly.
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Table 6

Fundamental factors of energy markets

Economic Geographical Political Comparative Background

Production/consumption Pipeline/shipping Cartel/trade agreements Preference shift Market developments

Storage availability/costs Localized weather reports Global events Transaction costs Types of oil and gas

Insurance costs Seasonality Taxation/trade tariffs Alternative commodities

Interest rates Locality Regulation/legislation Production yields

Transportation Environmental pressures Relative quality

Currency rates
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5. Recommendations for future studies

The multiobjective market model can be expanded
with the factors which fundamentally affects the market
entities. The factors can be defined in various aspects
such as shown in Table 6:
However, some of these factors are social and

qualitative which would not be explained mathemati-
cally. But the fuzzy system can define these variables
linguistically and accept a set of linguistic values as
historical data and also generate the linguistic solutions.
As another remark for the future studies, the system

can be developed in the other market problems such as
option pricing, triggers, swaps, CfDs and EFPs.
On the other hand, the fuzzy rule based system can be

developed using technical trading rules, charting pat-
terns, trading strategies to produce buy and sell orders
timely and quantitatively. In fact, the system instead of
supporting the traders, works in place of the trader by
generation of buy and sell signals and determination the
best width of trading days.
Finally, case based systems can be used instead of rule

based systems. The market behaviors can be recognized
using specific features. Since the market transitions are
repetitive, each market behavior could be saved as a case
in knowledge base and then the decisions are made with
an analogical deduction of current situation and
historical cases.
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