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Abstract

Pittsburgh genetic-based machine learning (DeJong, Spears, & Gordon, 1993) is, among oth-

ers (Wilson, 1995; Venturini, 1993), an application of evolutionary computation techniques

(Holland, 1975; Goldberg, 1989a) to machine learning tasks. The systems belonging to this

approach are characterized by evolving individuals that are compete rule-sets, usually variable-

length. Therefore, the solution proposed by these kind of systems is the best individual of the

population.

When using this approach, we have to deal with some problematic issues such as controlling

the size of the individuals in the population, applying the correct degree of generalization

pressure across a broad range of datasets, reducing the considerable run-time of the system,

being able to solve datasets with diverse kind of attributes, etc. All these issues become even

more critical when applied to modern-day data mining problems.

In this thesis we have the general objective of adapting the Pittsburgh model to handle

successfully these kind of datasets. This general objective is split in three: (1) Improving

the generalization capacity of the model, (2) Reducing the run-time of the system and (3)

Proposing representations for real-valued attributes. These three objectives have been achieved

by a combination of four types of proposals, some of them focused only on a single objective,

some others solving partially more than one objective at the same time. All these proposals

are integrated in a system, called GAssist (Genetic clASSIfier sySTem).

An experimentation process including a wide range of data mining problems based on many

different criteria has been performed. The experiments reported in the thesis are split in two

parts. The first part studies several alternatives integrated in the framework of GAssist for each

kind of proposal. The analysis of these results leads us to propose a small number of global

configurations of the system, which are compared in the second part of the experimentation

to a wide range of learning systems, showing how this system has competent performance and

generates very reduced and interpretable solutions.





Resum

L’enfocament de Pittsburgh (DeJong, Spears, & Gordon, 1993) de l’aprenentatge evolutiu

és, entre d’altres alternatives (Wilson, 1995; Venturini, 1993), l’aplicació de les tècniques de

computació evolutiva (Holland, 1975; Goldberg, 1989a) a l’aprenentatge artificial. Els sistemes

que apliquen aquest enfocament es caracteritzen per fer evolucionar individus consistents en

un conjunt de regles, normalment de mida variable. Per tant, la solució proposada per aquests

sistemes és el millor individu de la població.

Quan es fa servir aquest enfocament, cal tractar amb alguns assumptes com el control de la

mida dels individus de la població, l’aplicacio del grau correcte de pressió de generalització per

un espectre ampli de problemes, la reducció del temps de càlcul del sistema, tractar problmes

amb diversos tipus d’atributs, etc. Tots aquests problemes esdevenen encara més cŕıtics quan

es preten solucionar problemes de mineria de dades.

L’objectiu general d’aquesta tesi és adaptar l’enfocament de Pittsburgh de l’aprenentatge

evolutiu per tal de solucionar amb èxit aquest tipus de problemes. Aquest objectiu general

es divideix en tres parts: (1) Millorar la capacitat de generalització, (2) reduir el cost com-

putacional del sistema i (3) proposar representacions per atributs reals. Aquests tres objectius

s’han assolit mitjançant una combinació de quatre tipus de contribucions. Algunes d’aquestes

propostes sols solucionen un dels objectius. D’altres en poden solucionar més d’un al mateix

temps. Totes aquestes propostes estan integrades en un únic sistema anomenat GAssist (Ge-

netic clASSIfier sySTem).

L’experimentació realitzada inclou un ampli ventall de problemes de mineria de dades.

Aquesta experimentació s’ha dividit en dues parts. En la primera part s’ha experimentat amb

diverses alternatives per separat per cada un dels quatre tipus de contribucions fetes en la

tesi. L’objectiu d’aquesta part és la de poder proposar un subconjunt redüıt de configuracions

del sistema que podem considerar que tenen un bon rendiment en general. En la segona

part de l’experimentació de la tesi aquest conjunt de configuracions bones s’ha comparat a

un ampli ventall de sistemes d’aprenentatge, fent servir diversos tipus de representacions del

coneixement, de tècnica d’aprenentatge, etc. Aquests experiments mostren com el sistema

GAssist té un rendiment competitiu i genera solucions compactes i altament interpretables.





Resumen

El enfoque de Pittsburgh (DeJong, Spears, & Gordon, 1993) del aprendizaje evolutivo es, entre

otras alternativas (Wilson, 1995; Venturini, 1993), la aplicación de las técnicas de computación

evolutiva (Holland, 1975; Goldberg, 1989a) a las tareas de aprendizaje artificial. Los sistemas

que aplican este enfoque se caracterizan por hacer evolucionar individuos que consisten en un

conjunto de reglas, habitualmente de tamaño variable. Por lo tanto, la solucion propuesta al

problema a resolver por este tipo de sistemas es el mejor individuo de la población.

Cuando se usa este enfoque es necesario solucionar correctamente algunos asuntos como

el control del tamaño de los individuos de la población, aplicar el grado correcto de presión

de generalización sobre un conjunto amplio de problemas, reducción del coste computacional

del sistema, tratar problemas con tipos de atributo diversos, etc. Todos estos problemas son

todav́ıa más serios cuando se pretende solucionar problemas modernos de mineŕıa de datos.

El objectivo general de esta tesis es adaptar el enfoque de Pittsburgh para solucionar con

éxito este tipo de problemas. Este objetivo general se divide en tres partes: (1) mejorar la

capacidad de generalización, (2) reducir el coste computacional y (3) representaciones para

atributos reales. Estos tres objetivos se han logrado mediante la combinación de cuatro tipos de

contribuciones. Algunas de estas propuestas sólo solucionan uno de les objetivos. Otras pueden

solucionar más de un objetivo al mismo tiempo. Todas estas propuestas están integradas en

el sistema llamado GAssist (Genetic clASSIfier sySTem).

La experimentación realizada incluye un amplio espectro de problemas de mineŕıa de datos.

Esta experimentación está dividida en dos partes. En la primera parte se ha experimentado

con diversas alternativas por separado para cada uno de los cuatro tipo de contribuciones

realizadas en esta tesis. El objetivo de esta parte de la experimentación es poder proponer un

subconjunto reducido de configuraciones del sistema que podamos considerar como “buenas”

en general. En la segunda parte de la experimentación de la tesis este conjunto de configura-

ciones buenas ha sido comparado a diversos sistemas de aprendizaje artificial que representan

diversos tipos de representaciones del conocimiento, de técnicas de aprendizaje, etc. Estos

experimentos muestran como el sistema GAssist tiene un rendimiento competitivo y genera

soluciones compactas y altamente interpretables.
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Chapter 1

Introduction

1.1 Framework

Artificial intelligence (AI), broadly defined, is concerned with intelligent behavior in arti-

facts. Intelligent behavior, in turn, involves perception, reasoning, learning, communicating

and acting in complex environments. AI has as one of its long-term goals the development

of machines that can do these things as well as humans can, or possibly ever better (Nilsson,

1998).

This thesis is focused in the area of AI called machine learning (ML). ML deals with the

question of how to construct programs that automatically improve with experience (Mitchell,

1997). In recent years the number of tasks and specific problems that can be handled with the

techniques belonging to this discipline has risen. Some examples of these tasks are prediction,

decision-support systems, scheduling, automatic classification, etc.

What happens if the experience used by this program to learn starts growing? Can the

standard learning techniques extract useful information from huge volumes of information?

Can the learning process be performed in a reasonable time? The answer to these questions

is a broad discipline called data mining (Witten & Frank, 2000), which includes several kinds

of techniques to preprocess information, extract knowledge from this information (which can

be done with adapted ML techniques) and analyze or post-process the extracted knowledge.

This thesis, as its name indicates, has as its aim the development of ML techniques that can

be used in data mining tasks.

Moreover, the focus of the thesis is one of the sub-categories of ML: supervised learning,

which is defined as the learning process where there is some kind of tutor (automatic or human)

that gives the learner direct feedback about the appropriateness of its performance. This is

usually achieved by providing the learning system with a training set, experience which has
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been labeled with the correct response to it, so that the learning system can adjust itself to

behave correctly.

More specifically, this thesis is focused in a paradigm of supervised ML called evolutionary

learning, or genetic-based machine learning (GBML). This paradigm can be defined as any

kind of learning task which employs as its search engine a technique belonging to the evolu-

tionary computation (Michalewicz, 1996) field. Evolutionary computation (EC) techniques are

optimization 1 tools inspired loosely in certain biological processes like the Darwinian natural

selection or the genetic codification of life forms. Typically, a population of candidate solu-

tions (individuals) are transformed (evolved) through a certain number of iterations of a cycle

containing an almost blind recombination of the information contained in the individuals and

a selection stage that directs the search towards the individuals considered good by a given

evaluation function.

Traditionally, there are two approaches of GBML reported in the literature, called Michigan

approach and Pittsburgh approach. De Jong did a brief general description (De Jong, 1988)

of these two models:

“To anyone who has read Holland (Holland, 1975), a natural way to proceed is

to represent an entire rule set as a string (an individual), maintain a population

of candidate rule sets, and use selection and genetic operators to produce new

generations of rule sets. Historically, this was the approach taken by De Jong and

his students while at the University of Pittsburgh (Smith, 1980; Smith, 1983),

which gave rise to the phrase the Pitt approach.

However, during the same time period, Holland developed a model of cognition

(classifiers systems) in which the members of the population are individual rules

and a rule set is represented by the entire population (Holland & Reitman, 1978;

Booker, 1982). This quickly became known as the Michigan approach and initi-

ated a friendly but provocative series of discussions concerning the strengths and

weaknesses of the two approaches.”

Thus, there is one approach, the Pittsburgh, very close to the essence of EC techniques,

where an individual is a complete solution, and there is a competition between the candidate

solutions in the population, and the search space exploration is made using almost blind

(without knowledge domain) genetic operators. In short, a very simple learning paradigm.

On the other hand, the Michigan approach deals with individuals that are only one part

of the final solution, which is the whole population. Also, the individuals cooperate in the

1Although, like in this case, they can be applied to other kind of tasks beside optimization, like search,
learning or scheduling
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population, instead of compete. Furthermore, some kind of reinforcement learning mechanism

is needed to identify and promote the good individuals and EC techniques are only used, from

time to time, to explore the search space. In short, this is a model with a much more complex

structure than the mentioned above.

These two approaches represent two very different ways of interpreting the contribution

of evolutionary computation to ML. The Pittsburgh model is an optimization tool applied to

learning tasks that uses an EC technique as its main driving force. The Michigan model has

been designed specifically for learning and it is a combination of several modules, one of them

being some EC method.

In recent years there has been much more work reported in the literature on Michigan

systems than on Pittsburgh ones. What is the reason for this? The Pittsburgh model has

some problems and open questions which are difficult to answer, although some of them also

affect the Michigan approach:

• The size of the solutions. As said above, an individual encodes a complete solution to

the learning task. This usually means a set of rules. If this set of rules has fixed size,

some criterion (difficult to set a priori) is needed to set its size. If the individual encodes

a variable-length set of rules, it has to deal with a problem identified as bloat effect

(Soule & Foster, 1998), which consist in the growth without control of the size of the

individuals.

• The run time. Pittsburgh systems have had for a long time the reputation of being very

slow systems. Evaluating an individual means classifying all instances in the training

set, and the cost of classifying an instance depends on the size of the individual. Thus,

if there is no strong control over this size or if the size of the training set is high (as in

data mining tasks), the run-time problem of this model gets even worse.

• The generalization capacity. The main problem of using an optimization tool to perform

learning is to manage the system to learn the concept represented by the training set,

instead of learning the training set itself, that is, to achieve good generalization capacity.

Even if the fitness function is adjusted to cope to some extent with this problem, it is

difficult to automatically adjust the system to perform well over a broad range of domains.

• Representations for real-valued attributes. Most of the traditional GBML systems only

handle nominal attributes. Nowadays, and especially for data mining tasks, it is a basic

requirement to handle real-valued attributes

The objective of this thesis is to answer these questions.
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1.2 Objectives and contributions of this thesis

The contributions presented in this thesis are an answer (but obviously, not the only one)

to these open questions of the Pittsburgh model applied to data mining. The title of the

thesis (“Pittsburgh Genetic-Based Machine Learning in the Data Mining era: Representations,

generalization and run-time”) defines the general objectives of the thesis:

• Reducing the run-time of the system

• Improving the generalization capacity of the Pittsburgh model

• Proposing representations for real-valued attributes

Four kinds of contributions, that correspond to the four central chapters of this thesis,

have been made:

Explicit and static default rule In the encoding used by most of the knowledge representa-

tions in GAssist, the set of rules contained as an individual is interpreted as a decision

list (Rivest, 1987) (an ordered set of rules). If we apply this strategy in the evolutionary

framework, often the system evolves emergently a default rule. Default rules can be

very useful in combination with a decision list because the size of the rule set can be

reduced significantly. With a smaller rule set, the search space is reduced resulting in two

potential advantages: (1) the learner has to learn less rules (representing only the other

classes of the dataset) and (2) with a smaller rule set the system may be less sensitive

to over-learning, potentially increasing the test accuracy of the system. However, per-

formance of the system is strongly tied to the learning system choosing the correct class

for this default rule. This thesis reports the research done on extending the knowledge

representation used in GAssist with an explicit and static default rule, and the policies

studied to choose the correct default class.

Adaptive Discretization Intervals knowledge representation The contributions of this the-

sis to the area of representations for real-valued attributes is a knowledge representation

called adaptive discretization intervals (ADI) rule representation. The approach cho-

sen to handle these attributes is through a discretization process, but in a special way:

the intervals used in the rules are created by joining together some adjacent cut-points

proposed by a discretization algorithm. Also several discretization algorithms are used

at the same time, letting the system choose the most suitable one for each dataset.

With these two characteristics, the proposed representation gains robustness and has an

efficient exploration of the search space.
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Windowing techniques for generalization and run-time reduction With the objective of

reducing the run-time of the system, some windowing techniques, that use only a subset

of the training examples to perform the fitness computations, were studied and tested.

The unexpected observation extracted from these tests was that one of these techniques,

called Incremental Learning with Alternating Strata (ILAS) also generated extra gener-

alization pressure. Thus, in this thesis this study on windowing techniques has been

extended with a double objective: (1) tuning the windowing techniques to maximize

the accuracy performance of the system and (2) achieving the maximum run-time re-

duction possible while maintaining the accuracy of the non-windowed system. Also,

specific strategies have been proposed and tested to deal with small and large datasets.

Moreover, some theoretical models have been developed that can partially predict the

behavior of the system.

Bloat control and generalization pressure methods As stated above, bloat control and

generalization pressure are very important issues in the design of Pittsburgh GBML

systems, in order to achieve simple and accurate solutions in a reasonable time. The

bloat control deals with a problem, identified as bloat effect, related with the unlim-

ited growth of the size of the individuals. The same techniques used to control bloat

if properly adjusted and combined with other techniques can be helpful to introduce

generalization pressure into the system, evolving more accurate but compact solutions

potentially having better test accuracy. A side effect of applying this pressure towards

short individuals is a run-time reduction always desirable in this context. Therefore,

several techniques have been studied in this context.

Thus, we have one contribution completely focused on the generalization pressure: the

default rule mechanisms, one contribution completely focused on representations for real-

valued attributes: the ADI representation, one contribution designed for run-time reduction,

but that also introduces generalization pressure: the windowing mechanism and finally one set

of contributions designed to control the size of the individuals to avoid the bloat effect and to

apply generalization pressure, but with the side effect of some run-time reduction. The three

objectives of the thesis are achieved by combining methods of the four kinds of contributions.

These contributions are all integrated into a single system, called GAssist (Genetic clASSI-

fier sySTem). The system was born (Bacardit & Garrell, 2002d) as a simple reimplementation

of the GABL system (DeJong & Spears, 1991), one of the classical references of the Pitts-

burgh approach, but through the years (Bacardit & Garrell, 2002c; Bacardit & Garrell, 2002a;

Bacardit & Garrell, 2002b; Bacardit & Garrell, 2003d; Bacardit & Garrell, 2003c; Bacardit &

Garrell, 2003a; Bacardit & Garrell, 2004; Aguilar, Bacardit, & Divina, 2004; Bacardit, Gold-
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berg, & Butz, 2004; Bacardit, Goldberg, Butz, Llorá, & Garrell, 2004) it has been extended

gradually to include all the contributions of this thesis, thus creating a competent learning

system for data mining tasks.

1.3 Road Map

The thesis has been structured in three parts. The first part contains an overview of required

background material to draw the context where this thesis is placed. This background material

has been split in two chapters. Chapter 2 is focused on machine learning topics. It is not an

extensive nor complete review of the machine learning field, because its aim is to describe

only the topics closely related to this thesis. It starts with some general machine learning

definitions, paradigms and knowledge representations and then focuses on the specific topics:

rule induction, discretization algorithms, scaling-up techniques and handling missing values.

Next, chapter 3 focuses specifically on evolutionary computation and genetic-based machine

learning (GBML). It starts with a description of general evolutionary computation topics and

then it focuses on GBML. First with a description of the main GBML approaches and then

focusing on specific topics: representations for real-valued attributes, scaling-up of GBML

systems and control of the bloat effect.

The second and central part of the thesis describes the contributions to the Pittsburgh

GBML model presented. It has six chapters. Chapter 4 focuses on the experimental framework

of the thesis. This means two parts: defining the basic mechanism of GAssist that cannot

be considered novel contributions and defining the test design used for the experimentation

in this thesis. The test design includes the datasets chosen, the experimental methodology of

the tests, and the kind of statistical tests used to analyze the results of these tests.

The next four chapters describe the four kinds of contributions made in this thesis. Chapter

5 is focused on the explicit default rule mechanisms. After illustrating the motivation of these

mechanisms, a complete definition of the changes made to the knowledge representation are

presented, together with the basic default class determination policies. Next, some more

sophisticated policies are introduced, and all the alternative options are tested.

Chapter 6 is focused on the ADI knowledge representation for real-valued attributes. The

chapter first defines the representation and all its basic operators. A brief study of the dynamics

of this basic version motivate the addition of another operator. Next, the experimentation

starts by testing each candidate discretization algorithm alone in the framework of ADI. The

results of these tests motivate the proposal of several groups of discretization algorithms, that

are tested in several settings to determine which is the best set of discretization algorithms
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and the best conditions to use it.

Chapter 7 describes the contributions done to windowing techniques for generalization and

run-time reduction. The chapter starts with a description of the development process that

led to the proposal of the ILAS technique used in the rest of the chapter. Next, there is

a description of the models proposed to predict the behavior of ILAS. The experimentation

with ILAS is split in two parts, one for small datasets and the other for large ones. Specific

strategies of the use of ILAS are proposed for each kind of tests.

Chapter 8 describes the contributions on bloat effect and explicit generalization pressure

mechanisms. After illustrating the need of this control, the basic mechanism used to control

the bloat effect is presented and analyzed. Next, the two alternative mechanisms studied to

apply extra generalization pressure are described. Finally, the combinations of these techniques

are tested in several different scenarios.

The experimentation reported in these four chapters has been exclusively inside the frame-

work of GAssist. Chapter 9 contains an extensive comparison of GAssist, using all the previous

four kind of contributions, against several well-known machine learning systems that represent

a broad range of knowledge representations and learning mechanisms. Several conclusions are

extracted from these tests about the strong and weak points of the system used in this thesis.

The third part of the thesis contains the conclusions and further work. Chapter 10 contains

the conclusions. First it summarizes the conclusions extracted from each of the four kinds of

contributions and then, based on these partial conclusions and the results of chapter 9, some

general conclusions are proposed. A similar structure is used for the further work in chapter

11.

The fourth part of the thesis are the appendixes which contain the full results of the

experimentation reported in this thesis.
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Background material
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Chapter 2

Machine learning and rule induction

This chapter presents a general description of the field of application of this thesis: Machine

learning. This chapter does not pretend to be an exhaustive review of the machine learning

topic, but seeks to provide enough background material to be able to place and relate the

contributions contained in this thesis within the machine learning field. For this reason, most

of the chapter will focus on explaining the topics that are closest to our field of application:

rule induction systems, representations for real-valued attributes and discretization techniques,

scaling-up techniques and handling of missing values.

The chapter is structured as follows. First, section 2.1 will provide a brief definition of what

machine learning is , and what its main paradigms are. Next, section 2.2 will focus specifically

on the machine learning task we are dealing with in this thesis, the classification problem, by

defining it and the concepts that are going to be used in the rest of the thesis. Section 2.3 will

describe the main knowledge representations (and the corresponding inference mechanisms)

used to solve the classification problem, focusing especially on rules, the knowledge repre-

sentation investigated in this thesis. Section 2.4 will show some types of learning algorithms

used to generate sets of rules. The next three sections will describe how some specific topics

closely related to this thesis are handled in the machine learning field. These topics are the

discretization process and discretization algorithms in section 2.5, the scaling-up of machine

learning systems, or, how can we handle a large volume of information, in section 2.6 and how

we can deal with missing values in section 2.7. Finally, section 2.8 provides a summary of the

chapter.
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2.1 Machine learning and its paradigms

The field of machine learning is concerned with the question of how to construct programs

that automatically improve with experience (Mitchell, 1997). This field draws on concepts

and results from many fields, including statistics, other paradigms of artificial intelligence, phi-

losophy, information theory, biology, cognitive science, computational complexity, and control

theory, among others. Moreover, Mitchell defines the machine learning process as:

Definition 1 A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks in T , as measured by

P , improves with experience E.

Depending on how E, P and T are defined, we can label the paradigms or families of

paradigms of the machine learning field. Three examples of the application of this formalism

follow:

A checkers learning problem :

• Task T : playing checkers

• Performance measure P : percent of games won against opponents

• Training experience E: practice games against itself

A handwriting recognition learning problem :

• Task T : recognizing and classifying handwritten words within images

• Performance measure P : percent of words correctly classified

• Training experience E: a database of handwritten words with given classifications

A robot driving learning problem :

• Task T : driving on public four-lane highways using video sensors

• Performance measure P : average distance traveled before an error (as judged by

human overseer)

• Training experience E: a sequence of images and steering commands recorded

while observing a human driver

There are many ways to classify the machine learning paradigms. One of them (Langley,

1995) classifies the learning paradigms depending on how do they learn, defining five categories:
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Inductive learning This paradigm employs condition-action rules, decision trees or similar

logical knowledge structures. Information about classes or predictions are stored in the

action sides of the rules or the leaves of the tree. Learning algorithms in the rule-induction

framework usually carry out a greedy search through the space of decision trees or rule

sets, using statistical evaluation functions to select attributes to incorporate into the

knowledge structure.

Instance-based or case-based learning This paradigm represents knowledge in terms of spe-

cific cases or experiences and relies on flexible matching methods to retrieve these cases

and apply them to new situations. One common approach simply finds the stored case

nearest (according to some distance metric) to the current situation, then uses it for

classification or prediction.

Analytic learning This paradigm also represents knowledge as rules in logical form but typ-

ically employs a performance system that uses search to solve multi-step problems. A

common technique is to represent knowledge as inference rules, then to phrase problems

as theorems and to search for proofs. Learning mechanisms in this framework use back-

ground knowledge to construct proofs or explanations of experience, then compile the

proofs into more complex rules that can solve similar problems either with less search or

in a single step.

Connexionist learning This paradigm, also called neural networks, represents knowledge as

a multilayer network of threshold units that spreads activation from input nodes through

internal units to output nodes. Weights on the links determine how much activation is

passed on in each case. The activations of output nodes can be translated into numeric

predictions or discrete decision about the class of the input.

Evolutionary learning This paradigm, as stated previous in the introduction chapter of this

thesis, is defined as any kind of learning task which employs as its search engine a tech-

nique belonging to the evolutionary computation (Michalewicz, 1996) field. Evolutionary

computation techiques are optimization tools inspired loosely in certain biological pro-

cesses like Darwinian natural selection or the genetic codification of life forms. Tipically,

a population of candidate solutions (individuals) are transformed (evolved) through a

certain number of iterations of a cycle containing an almost blind recombination of the

information contained in the individuals and a selection stage that directs the search to-

wards the individuals considered good by a given evaluation function. A broader descrip-

tion of evolutionary computation and evolutionary learning (also known as genetic-based

machine learning) can be found in chapter 3.
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The rationale of this clasification is more historical than scientifical. Actually, we can

consider that the subset of evolutionary learning techniques which deal with rule sets can also

be labeled as inductive learning, because they generate rules, although the transformation

mechanisms of the candidate solutions (as will be seen in chapter 3 are less directed than in

“regular” induction systems.

Another classification, using a more general point of view suggests three main categories:

Supervised learning It is defined as the learning process where there is some kind of tutor

(automatic or human) that gives the learner direct feedback about the apropriateness of

its performance. Relating this definition to the formal machine learning definition, we

must have the performance measure P to perform supervised learning.

Unsupervised learning This kind of learning is caracterized by having no performance feed-

back, that is, no P . In this case, the task of the learning system is to construct some

kind of knowledge based only on the flow of experience E, typically trying to identify

the regularities existing on E.

Reinforcement learning This paradigm could be considered a middle point of the two pre-

vious ones. In this case, the feedback acts in a subtle way, indicating the performance

of the system as a kind of reward, good or bad, instead of informing in a specific way

what is being done correctly of incorrectly.

In this thesis we are dealing exclusively with supervised learning. Therefore, the rest of this

chapter will be focused only on this general paradigm.

2.2 The classification problem

This thesis deals with a kind of supervised learning task called classification. Webster’s

dictionary defines classification as “the act of forming into a class or classes; a distribution

into groups, as classes, orders, families, etc., according to some common relations or affinites.

In our case, the classification process can be formally defined as:

Definition 2 Given a set of instances I = {i1, · · · , in}, each of them labeled with a finite set

of classes C= {c1, · · · , cm}, the task of classification is to create a certain theory T based on I
and C that, given an unlabeled new instance, can give a prediction of the class of this instance

Graphically, the full classification process is represented in figure 2.1. This is a representation

of the two stages of the life cycle of a learning cycle: training and exploitation. However, when
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Figure 2.1: Representation of the learning process for classification tasks
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we are developing and studyng learning systems, we have to simulate the exploitation stage.

This simulation is done by splitting our set of labeled examples into two non-overlapping sets:

the training set and the test set.

The test set is used to validate that the generated theory is correct, that is, that the learning

system has been able to model the concept represented by the instances in the training set,

instead of modelling only the instances themselves. If the learning system has been able to

generate a correct model, when we try to classify the instances in the test set, the rate of

instances for which we are able to predict its class correctly 1 should be equal or only slightly

lower than the accuracy that the theory obtains in the training set.

Definition 3 The capacity of generating a theory that models correctly the concept or con-

cepts represented by the training set is known as generalization capacity. A good perfor-

mance on the test set is a sign of generalization.

The instances that are processed by the learning algorithm have a regular form: each

instance contain a finite and fixed set of elements, called attributes. An attribute is a feature

that characterizes the instance. We can have several types of attributes, but we usually deal

with only three of them:

nominal attributes are the attributes that can take a value from a finite and fixed set

integer attributes are the ones that have a numeric value of type integer, usually with pre-

defined upper and lower bounds. They may be treated as nominal attributes

1The rate of correctly classified instances is known as accuracy
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real-valued attributes are the attributes that take a numerical value of any kind, with no

restrictions

As described previously, each instance has another element: an associated class. The class

can be considered as a nominal attribute, it can only take a value from a discrete and finite

set of values. Sometimes, some of the attributes of an instance are undefined. This is what

we define as missing values, and it is a very important problem, because it can distort the

generation of the theory, and affect the generalization capacity of the learning system. Section

2.7 is focused on techniques to deal with this problem.

Another problem affecting the classification task is noise. We assume that the labels of

all our training instances are correct, but this might not be true. The causes can be several,

such as errors in the knowledge adquisition or processing, but the important point is that if we

have wrongly labeled instances in our training set, the generation of a theory can be distorted.

Therefore, the generalization capacity diminishes. Handling noise correctly is an important

feature for a learning algorithm.

2.3 Knowledge representations and inference mechanisms

In the previous section we defined the task of classification as the construction of a theory

that models the concept or concepts represented by a set of examples. This section deals with

how this theory is, that is, what knowledge representation we use to construct it.

Definition 4 The object of knowledge representation is to express knowledge in computer-

tractable form, such that it can be used to help agents perform well. (Russel & Norvig,

1995)

In this section we will describe some relevant knowledge representations, especially focusing

on rule sets, the representation used in the contributions presented in this thesis. All of these

representations are currently being used. A newcomer to the field may ask why there is not a

clear winner, are all representations equally good? The answer to this question is a concept

called representation bias. Each knowledge representation language restricts the space of

possible solutions because of the limitations of its definition (Langley, 1995). This concept is

very related to another one, the inductive bias.

Definition 5 Consider a concept learning algorithm L for the set of instances X. Let c be

an arbitrary concept defined over X, and let Dc = {〈x, c(x)〉} be an arbitrary set of training

examples of c. Let L(xi, Dc) denote the classification assigned to the instance xi by L after
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training on the data Dc. The inductive bias of L is any minimal set of assertions B that

affect the classification of any input instance (Mitchell, 1997).

That is, the kind of theory that we can generate and the kind of predictions that we can

made are affected by the chosen representation language and the chosen learning algorithm

that builds the theory based on the representation language. This is a fact that affects any

learning algorithm. Can this be considered a negative effect? No, because these introduced

bias make feasible the task of learning, but it means that any learning algorithm and knowledge

representation can be only the best algorithm in a certain subset of problems. This concept is

usually adressed as the selective superiority problem (Brodley, 1993).

The knowledge representations described in the following subsections are:

• Rule sets

• Decision trees

• Sets of instances

• Bayes networks

• Artificial neural Networks

This list can be somewhat confusing, because the name of the knowledge representation is

the same as the learning algorithm applied to it. The aim of this chapter is to focus on the

machine learning issues related to the rest of the thesis. Therefore, we will only show the

minimum details of the learning algorithms of all knowledge representations except the rule

sets, which is our interest. The next section will focus on learning algorithms for rule sets.

2.3.1 Rule sets

Rule sets are the most ancient knowledge representations, and probably the easiest to

understand. Their origins can be tracked back to the ancient Greek philosophers and they

propositional logic. A rule set is a finite set of entities which are labeled rules. Rules can take

very different forms, and also there are many different ways to interpret the rule set in order

to classify an input instance. These two issues are described as follows:

Syntax of a rule

There are many ways to define a rule. From a general point of view, a classification rule

(also known as if-then rule) has the following form:
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If condition Then action

Usually the condition of a rule is a predicate in a certain logic, and the action is an associated

class, meaning that we predict action for an input instance that makes true condition. Most

rule syntax used in learning systems can be reduced to this general form, although the process

might not be completely direct. One example of this is inductive logic programming (Lavrac

& Dzeroski, 1993), a class of inductive learning systems that deal with Horn clauses.

Moreover, a typical definition of this condition is a conjuntion of terms, each of them

related to an attribute of the input instance. Some examples of these terms, for nominal and

real-valued attributes follow:

• attributei is equal to valuej
i

• attributei is equal to valuej1
i or valuej2

i

• attributei is irrelevant

• attributei belongs to the interval [low, high]

• attributei is lower than value

• attributei is higher than value

Classification process

If we have a set of rules, and we are classifying an input instance, it can happen that there

are more than one rules tha tare true for this instance. In this moment we have to use some

kind of mechanism to decide which rule will be used or how to combine the outcome of each

matched rule to produce a prediction. There are several ways to solve it. Three typical ways

are described as follows:

• Decision lists. One of the ways to decide which rule is chosen to classify an input instance

is to define previously an ordering or hierarchy of rules. Within this ordering, the first

rule that is true for the input instance will be used to predict its class. This structure is

usually known as decision list (Rivest, 1987).

• Heuristics based on the previous performance of each rule. If the rule has been used

previously, we know, among other metrics, how accurate it is, how general it is (how often

it has been used). Based on these metrics and others, we can constuct some formulas

to rank the rules and choose the rule in conflict with more ranking based on the desired

formula. A large summary of these heuristic formulas can be found in (Fürnkranz, 1999).

Two of these formulas are shown in figure 2.2.
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Figure 2.2: Heuristic formulas to choose the best rule

Accuracy The simplest approach is to examine the past experience of
the rule and compute its accuracy:

Accuracy = C
T

Where C is the number of correctly classified instances and T
the total number of instances matched by the rule.

Laplace accuracy The previous heuristic does not take into account
the number instances covered. This can lead to promote rules
that cover very few examples although with high accuracy, which
can lead to a loss of generalization capacity. The laplace accuracy
tries to fix this problem by introduce into the accuracy formula
a term that allows some degree of mis-classifications, if the rule
is used frequently:

Laplace Accuracy = C+1
T+NC

Where NC is the number of classes in the dataset. This formula
approximates the previous accuracy one when the rule is highly
covered, but tends to a very low accuracy (1/C) when it is used
very infrequently.

• Voting process. As an alternative to choosing a single rule to classify an instance, we

can combine the outcome of all the rules that match it. As usual there are several

alternatives. The simplest one is to choose the majority class from the matched rules.

Another alternative is to sum, for each class, the number of instances of the class matches

previously by these rules, and then choose the class most covered. This schema is used

in CN2 (Clark & Boswell, 1991).

2.3.2 Decision trees

Decision trees classify instances by sorting them down the tree from the root to some leaf

node, which provides the classification of the instance. Each node in the tree specifies a test

of some attribute of the instance, and each branch descending from that node corresponds

to one of the possible values/range of values for this attribute (Mitchell, 1997). A graphical

display of this knowledge representation is shown in figure 2.3.
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Figure 2.3: Representation of a decision tree
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A decision tree classify an input instance by performing a number of tests, starting from

the root node and following a path in the tree until a leaf node is found. The class prediction

is the label of the leaf. A test of a node of the tree can be named univariate if it affects

only one attribute of the instance (like in the above definition) or multivariate if it affects

more than one (or all) of the attributes of the instance. For real-valued attributes, among

other options, the tests can take the form of a relational operator (value < θ,value > θ

,value ∈ [lower, upper]) in the univariate way, or a lineal combination of the attribute values

in the multivariate way. These two alternatives are also known as ortogonal decision trees

and oblique decision trees, exemplified by the C4.5 (Quinlan, 1993) and CART (Breiman,

Friedman, Olshen, & Stone, 1984) systems, respectively.

2.3.3 Set of instances

This knowledge representation consists of storing a set of instances, either taken from

previous experience of syntetic ones, and classifies input examples, in general, looking for the

k instances from the stored set that are nearest to the input example, based on some distance

metric. When we have selected the k closest instances to this example, the outcome prediction

can be based on a simple voting mechanism, or other more sophisticated techniques. There

are several distance functions, a good review of them can be found in (Wilson & Martinez,
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Figure 2.4: Representation of a bayes network

2000). Maybe the most common one is the Minkowsky distance:

D(x, y) =

(
m∑

i=1

|xi − yi|r
)1/r

(2.1)

With this knowledge representation several questions remain opened to the learning system:

How do we initialize the set of instances? Do we add or substract instances over the time?

Most of these questions are handled in the Case-Based Reasoning (Aamodt & Plaza, 1994)

field.

2.3.4 Bayes networks

This knowledge representation is an example of a learning-related technique inspired by an

external field: statistics, and specifically the Bayes theorem. A bayes network (Pearl, 1988) is

a directed acyclic graph where each node represents a random variable. The arrows conecting

nodes define a dependency relation: the node origin of the arrow influence the pointed node.

These influences are quantified by conditional probabilities. Each variable (node) influenced by

another node has a conditional probability table associated to it. If not, it has an associated

table containing the marginal distribution of the random variable. We can see a bayes network

as the graphical representation of a joint probability distribution of the attributes in the domain,

as shown in figure 2.4 (Mitchell, 1997).

There are many inference mechanisms working on bayes networks, but usually we have one

node associated to each possible class of the domain. We have to compute the probability of

all of these nodes and select the one with highest probability. Because this variable depends

on other variables, we will need to first compute the probability distribution of these variables.
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Figure 2.5: Representation of a perceptron

Once we have them, we can apply the bayes theorem to compute this probability. This process

will be performed backwards for each node until we arrive at a node that depends on nothing.

The probability of this node will be computed from its marginal probability table and the input

instance. There are several algorithms used to construct bayes networks, a very simple but

powerful one is Naive Bayes (Langley, Iba, & Thompson, 1992).

2.3.5 Artificial neural networks

The study of artificial neural networks has been inspired in part by the observation that

biological learning systems are built of very complex webs of interconnected neurons. As a

rough analogy, artificial neural networks are built out of a densely interconnected set of simple

units, where each unit takes a number of real-valued inputs (possibly the outputs of other

units) and produces a single real-valued output (which may become the input to many other

units) (Mitchell, 1997).

Artifical neural networks is one of the oldest areas of study in the artifical intelligence field

(McCulloch & Pitts, 1943), applied to several different types of problem like character, voice

and face recognition (LeCun, Boser, Denker, Henderson, Howard, Hubbard, & Jackel, 1989;

Lang, Hinton, & Waibel, 1990; Cottrell, 1990), or learning to drive (Pomerleau, 1993). As

stated above, a neural network is an interconnection of several small and simple processing

elements, inspired in the neurons. One of the most common of these “artificial neurons” is

called a perceptron. In short, a perceptron receives the input of several other units and performs

a weighted sum of these input values. This sum is the input of an activation function that

decides the output of the perceptron. Figure 2.5 (Mitchell, 1997) shows the representation of

a perceptron.

A perceptron can only solve linearly separable problems. To be able to handle more complex

problems, it needs to be connected into a network. A very common interconnection topology is
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Figure 2.6: Representation of a multi-layer perceptron

called multi-layer perceptron (MLP), because the perceptrons are organized in structured layers,

as represented in figure 2.6. The figure also shows how all connections among perceptrons

go to the next layer, in what is called a feed-fordward network. For a classification problem,

each neuron labeled input would receive an attribute of the instance to classify, and we would

fetch the prediction from the output layer. If we have binary classification problems with

positive/negative examples, a single output perceptron is enough. For problems with more

possible outcomes we need a perceptron for each class in the dataset.

The learning process in such networks consists of adjusting the weights of each perceptron,

after having decided the number of neurons in the hidden layer. A very common weight-

adjusting algorithm is called backpropagation. This algorithm employs a gradient descent to

attempt to minimize the squared error between the network output values and the target values

for these outputs (Mitchell, 1997). It starts by adjusting the weights of the perceptrons in the

output layer and then continues with the previous hidden layer and so on. This is the reason

of the algorithm name, because it adjust the weights from output to input.
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Figure 2.7: The separate-and-conquer meta learning system

Separate-and-conquer algorithm
Input : Examples
Theory = ∅
While Examples 6= ∅

Rule = FindBestRule(Examples)
Covered = Cover(Rule,Examples)
If RuleStoppingCriterion(Rule,Theory,Examples)

Exit while
EndIf
Examples = Examples \ Cover
Theory = Theory ∪Rule

EndWhile
Theory = PostProcess(Theory)
Output : Theory

2.4 Rule induction algorithms

This section describes some algorithms that are used to learn rule sets. We can find in the

literature many rule induction methods. Here we can see two different families of mechanisms

used to induce rule sets, describing for each of them a representative example of learning

system.

2.4.1 Separate-and-conquer

This is probably the most common family of rule induction systems found in the literature.

Basically, the methods following this idea apply an iterative process consisting in first generating

a rule that covers a subset of the training examples and then removing all examples covered

by the rule from the training set. This process is repeated iterativelly until there are no

examples left to cover (although there are more sofisticated policies). The final rule set is the

concatenation of the rules discovered at every iteration of the process. Fürnkranz (Fürnkranz,

1999) did a good review of separate-and-conquer systems, where a meta-algorithm of the

separate-and-conquer methodology is proposed, shown in figure 2.7. Some examples of systems

following this schema are the AQ family of learning systems (Michalski, 1969), CN2 (Clark &

Niblett, 1989) and RIPPERk (Cohen, 1995).

How is the classification process used in the resulting rule sets of these systems? In ancient
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systems with binary classification (positive/negative examples) the system only induces the

rules covering the positive examples. Therefore, the order of the rules is not relevant because

all of them cover the same class. We can consider that exists another virtual rule covering all

negative examples, which is a kind of default class.

If we have classification problems with more than two classes, the most common option is

to use the rule set as a decision list, that is, an ordered rule set. The original CN2 (Clark &

Niblett, 1989) and the AQ family of learning systems (Michalski, 1969) use this approach. A

later version of CN2 (Clark & Boswell, 1991) can encode unordered rule sets, using the voting-

style process based on the previous performance of the rules, described in subsubsection 2.3.1

Another option is to define a general order of classes, and apply the separate-and-conquer

sequencial mechanism to each class (considering the examples belonging to the class as positive

examples and all the other examples as negative). The RIPPERk system uses this approach,

proposing a class ordering based on the proportion of examples of each class in the training set,

starting with the least frequent class and ending with the most frequent one (which creates a

single default rule).

To illustrate the reader with a complete example of a rule induction system, figure 2.8

shows the pseudocode of the ordered CN2 version. In short, the algorithm that induces each

rule maintains a pool of predicates (starting with the most general one, ie, totally irrelevant)

and, iteratively, it tries to specialize each rule by adding a term of the kind attributei = valuej
i ,

until no better predicate can be found. Then, the class most covered by this predicate in the

current set of examples is assigned to the predicate to construct a rule.

2.4.2 Learning all the rules at the same time

As an alternative to the separate-and-conquer strategy we can find sistems that evolve a

whole set of rules in a single iterative process. An example of this strategy is the RISE system

(Domingos, 1994). It presents itself as an hybrid between an instance-based and a rule-based

system. The aim of the system is to model the concepts of the problem using rules, but

maintainig a set of instances for the outlayer and special examples. The algorithm performs

an iterative process of rule refining. The set of training examples is loaded as the initial set

of rules, and the refining process consists in generalizing these rules-instances to cover other

examples of the same class, removing subsumed rules in the process. The produced rules are

unordered and the Laplace accuracy is used to choose the rule that performs the prediction

for an input example. Figure 2.9 shows the algorithm of RISE.
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Figure 2.8: The CN2 rule induction algorithm

Ordered CN2 learning algorithm
Input : Examples, Classes
RuleSet = ∅
Repeat
BestPredicate = FindBestPredicate(Examples)

If BestPredicate 6= ∅
class = most covered class from Classes in Examples
rule = Construct rule “If BestPredicate Then predict class”
RuleSet = RuleSet ∪ rule
Examples = Examples \ Cover(BestPredicate)

EndIf
Until BestPredicate = ∅
Output : RuleSet

FindBestPredicate
Input : Examples
mgc = Most general predicate (“true”)
star = {mgc}
BestPredicate = ∅
While star 6= ∅

newStar = ∅
ForEach pred in star Do

ForEach any attribute test non existent in pred Do
pred′ = specialization of pred adding test to it
If pred′ is better than BestPredicate and pred′ is statistically significant

BestPredicate = pred′

EndIf
newStar = newStar ∪ pred′

If Size(newStar) > maxStar (used defined)
Remove worst condition from newStar

EndIf
EndForEach

EndForEach
star = newStar

EndWhile
Output : BestPredicate
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Figure 2.9: The RISE rule induction algorithm

RISE learning algorithm
Input : Examples
RuleSet = Examples
Compute Accuracy(RuleSet)
Repeat

ForEach rule in RuleSet Do
Find the nearest example ex to rule not already covered by it and

belonging to the same class
rule′= MostSpecificGeneralization(rule,ex)
RuleSet′ = RuleSet replacing rule by rule′

If Accuracy(RuleSet′) > Accuracy(RuleSet)
RuleSet = RuleSet′

If rule′ is identical to another rule in RuleSet
Remove rule′ from RuleSet

EndIf
EndIf

EndForEach
Until Accuracy(RuleSet) cannot be increased
Output : RuleSet

MostSpecificGeneralization
Input : Rule, Example
// Rule1 · · ·Rulen are the tests assigned to each attribute.

// For nominal attributes Rulei is either true (irrelevant) or Rulei = valuej
i .

// For numeric attributes Rulei = [Rulei,lower, Rulei,upper]
ForEach attribute i in the domain Do

If Rulei = true
do nothing

Endif
If attribute i is nominal and Rulei 6= Examplei

Rulei = true
EndIf
If attribute i is numeric and Examplei < Rulei,lower

Rulei,lower = Examplei

EndIf
If attribute i is numeric and Examplei > Rulei,upper

Rulei,lower = Examplei

EndIf
EndForEach
Output : Rule
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2.5 Discretization algorithms

Sometimes, there are learning algorithms that are unable to handle real-valued attributes

or that handle nominal attributes in a much easier way. If such a learning algorithm has to

solve domains with real-valued attributes, a discretization process is needed. A discretization

process transforms continuous-valued attributes into nominal ones by splitting the range of

the attribute values in a finite number of intervals. The so found intervals are then used

for treating continuous-valued attributes as nominal. Most discretization algorithms can be

classified by the following criteria (Liu, Hussain, Tam, & Dash, 2002):

supervised/non-supervised A supervised discretization algorithm uses the class of the train-

ing examples to decide which cut-points it creates in the domain of the real-valued

attributes. A non-supervised discretizer does not take into account the class.

dynamic/static In the context of supervised discretization, dynamic discretizers are the ones

that perform the discretization task while the learing process is being done. On the other

hand, a static discretization is applied before the learning process.

global/local A local discretization is applied only to a certain subset of the instance space,

while a global one is applied to the full instance set to discretize.

splitting/merging The discretization process can be done in two different ways: starting

with any possible cut-point in the domain of the attribute: the midde-points between all

values of the attribute existing in the training set, and then merging some of these cut

points under certain criteria, which is called merging. Splitting is the opposite method,

it starts with a single (therefore irrelevant) attribute and it splits it under certain criteria.

This process is repeated with the created intervals until some stop criterion.

A description of the discretization algorithms that are used in chapter 6 follows, although

there are many more discretizers in the literature (Holte, 1993; Catlett, 1991; Ho & Scott,

1997; Chan, Batur, & Srinivasan, 1991; Liu & Setiono, 1995; Wang & Liu, 1998; Kozlov &

Koller, 1997; Elomaa & Rousu, 2002; Yang & Webb, 2002).

Equal-width This is one of the simplest methods. The domain of the attribute is divided into

n equal sized intervals, where n is a parameter. This is a non-supervised and splitting

algorithm.

Equal-frequency As an alternative to the above discretizer, the n chosen intervals contain

an equal number of values, in order to offer a better set of intervals where the value
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distribution in the attribute domain is non-uniform. It is also non-supervised and of

splitting class.

Id3 (Quinlan, 1986). This discretization algorithm takes its name from the decision tree

learning system of the same name, because the criterion used to decide the cut points

is the same as that used in the learning system to decide the attribute that will be used

to partition the tree: the entropy minimization criteria:

Entropy(X) = −
∑
x

Pxlog2(Px) (2.2)

Px =
|{ins ∈ X|class(ins) = x}|

|X|
(2.3)

The entropy metric (Shannon & Weaver, 1949) is applied to the training examples

belonging to a certain partition of the attribute we are discretizing. The Id3 discretizer

algorithm splits the attribute domain in a recursive way. The cut point chosen in each

recursive call is the one that creates two partitions with minimum entropy as represented

in equation 2.4. S is the interval being split and S1 and S2 are the partitions to the left

and to the right of the tested cut point. The stop criteria is finding an interval where all

contained examples belong to the same class. This is a splitting supervised algorithm.

EntropyPartition(S, S1, S2) = Entropy(S1)
|S1|
|S|

+ Entropy(S2)
|S2|
|S|

(2.4)

The Fayyad & Irani algorithm (Fayyad & Irani, 1993). This algorithm is an extension of

Id3, changing the stop criterion to a most agressive one that usually generates significa-

tively less number of cut-points, this is one of the most popular discretization algorithms

in the literature. The new criterion is based on the Minimum Description Length (MDL)

principle (Rissanen, 1978), a metric inspired in the information transmission field that

balances the accuracy and complexity of a model in a sensible way. Recursive partition-

ing is stopped if the formula in equation 2.5 is true, where ki is the number of classes

defined in partition Si.

Entropy(S)− EntropyPartition(S, S1, S2) < log2
(N − 1)

N
+

∆(S, S1, S2)
N

(2.5)

∆(S, S1, S2) = log2(3k − 2)− [k · Entropy(S)− k1 · Entropy(S1)− k2 · Entropy(S2)] (2.6)

USD (Giráldez, Aguilar-Ruiz, Riquelme, Ferrer, & Rodŕıguez, 2002) divides the continuous

attributes in a finite number of intervals with maximum goodness, so that the average-

goodness of the final set of intervals will be the highest. The main process is divided

in two different parts: first, it calculates the initial intervals by means of projections,
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which will be refined later, depending on the goodnesses obtained after carrying out two

possible actions: to join or not adjacent intervals. It is supervised and of a merging type.

Mantaras discretizer (Cerquides & de Mantaras, 1997). This method is analogous to the

Fayyad & Irani one, but changes the metric used to decide a new partition to the

Mantaras distance (De Mántaras, 1991), another entropy-based metric used previously,

like ID3 to induce decision trees (De Mántaras, 1991):

Dist(S1, S2) = 2− Entropy(S1) + Entropy(S2)
Entropy(S1 ∩ S2)

(2.7)

Entropy(S1 ∩ S2) = −
n∑

i=1

m∑
j=1

Pijlog2(Pij) (2.8)

Pij = Pi × Pj (2.9)

ChiMerge (Kerber, 1992). This discretizer is based on the χ2 statistical test, which performs

a significance test on the relationship between the values of a feature and the class. The

author argues that the class frequencies within an interval, measured by this statistic,

should be different in adjacent intervals. If they are not, the intervals are merged. This

is a supervised merging algorithm, starting with as many intervals as values, that are

merged iteratively based on χ2 until no more merges are possible. This method needs a

parameter: the confidence level of the statistical test. The exact formulation of χ2 is:

χ2 =
2∑

i=1

p∑
j=1

(Aij − Eij)2

Eij
(2.10)

Eij = (Ri × Cj)/N (2.11)

Ri =
p∑

j=1

Aij (2.12)

Cj =
2∑

i=1

Aij (2.13)

N =
p∑

j=1

Cj (2.14)

Where p is the number of classes and Aij is the number of values in the interval i and

class j.
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2.6 Scaling-up of machine learning systems

When the volume of information in the training set starts to increase, the computational

cost of the learning process can be enormous, depending on the theoretical cost of the algo-

rithm. Given this situation, an adaptation of the current or new techniques is required in order

to have a reasonable learning time. As usual, there are several ways to achieve this objective.

Here we focus only on a subset of them: Those that use only a subset of the training examples

to perform the learning process. Only these techniques are described because they are the

closest ones to the contributions in run-time reduction proposed in this thesis:

• Wrapper Methods (Fürnkranz, 1998; Quinlan, 1993; John & Langley, 1996; Skalak,

1994; Sierra, Lazkano, Inza, Merino, Larrañaga, & Quiroga, 2001). These methods build

a layer over the learning process which selects the correct subset of examples by running

iteratively the unmodified learning algorithm. The subset of used training examples

varies through the iterations until the stop criteria is achieved. This stop criteria usually

is based on the estimation that the current subset of examples is similar enough to the

whole set.

• Modified learning algorithms (Fürnkranz, 1998; Maloof & Michalski, 2000; Wilson &

Martinez, 2000). In this category we include the methods that have been modified to

include the incremental learning inside their algorithm or methods that include/discard

training examples based on knowledge-representation specific information.

• Prototype Selection (John & Langley, 1996; Aguilar-Ruiz, Riquelme, & Toro, 2000;

Salamó & Golobardes, 2002). The methods included in this category reduce the training

set before the learning process. Thus, the learning is performed only once, unlike the

two prior categories. It should be remarked that this definition is related to the structure

of the incremental learning system, because the general definition of prototype selection

is much broader than what we have state here. It is obvious that the performance of the

learning system is strongly biased by the behavior of the prototype selection process.

2.6.1 Wrapper methods

A very common wrapper method is named windowing algorithm (Fürnkranz, 1998). This

scheme defines an initial training set size (window) for the initial iteration and also a maximum

increment size: the maximum number of examples that can be added to the previous set of

examples at each iteration. At the end of each iteration the correctly classified examples are
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removed from the window. The C4.5 system (Quinlan, 1993) also follows this scheme for its

windowed version.

The previously described systems stop iterating when the training examples not included

in the window can be classified correctly, using the theory generated in the current iteration.

The dynamic sampling method (John & Langley, 1996) by John and Langley uses a different

approach. This method estimates the accuracy of the whole set and stops adding more

examples to the window when the difference between the accuracy of the current subset and

this estimation falls below a certain threshold. After each iteration, the K examples used to

calculate the current accuracy (acting as a test set) are added to the training set.

The next approaches identify themselves as prototype selection, but they are included here

instead of in the prototype selection category because the selection is achieved by iteratively

running some learning algorithm, instead of using some other technique or heuristic.

First, two methods defined by Skalak (Skalak, 1994) as Sampling and Random Mutation

Hill Climbing. Sampling uses the Monte Carlo statistical tool to select n samples of m examples

from the training set and runs the learning algorithm with each sample. The sample which

produces the theory with best accuracy is selected. The second method defines a binary

string with one bit for each training example which selects/unselects it and uses a local search

method, the Random Mutation Hill Climbing to find a good string. That is, a good subset of

examples.

A similar method was defined by Sierra et al. (Sierra, Lazkano, Inza, Merino, Larrañaga,

& Quiroga, 2001), but instead of Random Mutation Hill Climbing they use Estimation of

Distribution Algorithms.

2.6.2 Modified learning algorithms

In this category we include the systems that either (a) have integrated the incremental part

of the system inside the learning algorithm or (b) are wrapper methods which use knowledge

representation specific information or the partial theory generated to add/discard examples

from the training set for the next iteration.

We find with the name Integrative Windowing, developed by Fürnkranz (Fürnkranz, 1998),

a wrapper method that differs from the general Windowing schema about how the final theory is

generated. It is the union of the partials theories obtained at each iteration of the incremental

learning. This approach is feasible because it uses separate-and-conquer learning algorithm

and this makes easy to merge the partial theories. At the end of each iteration the training

examples that are well covered by the accumulated theory are discarded, reducing the current

window and the computational cost. The author also reports accuracy gain in the use of
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Integrative Windowing and discusses the effect of noise in incremental learning and proposes

a noise-tolerant version of his algorithm (Noise Tolerant Windowing).

A similar system was proposed by Maloof and Michalski (Maloof & Michalski, 2000) named

Partial Memory Learning. This method defines some refined policies to include and forget

examples from the current window (partial memory). These policies use information from the

knowledge representation to detect the relevant and irrelevant examples.

We also include in this category several methods in the Case-Based Reasoning and Instance-

Based Learning fields, usually identified as Case Base Reduction techniques. An extensive

review of these techniques can be found in (Wilson & Martinez, 2000).

2.6.3 Prototype selection

This category includes the methods which reduce the training set before the learning

algorithm is run. Thus, the learning algorithm does not need to be modified and it is only run

once.

A very simple approach in this category is called static sampling (John & Langley, 1996).

This method selects a sample of the training set and uses some statistical tests to determine

if the sample is sufficiently similar to the whole training set. The χ2 hypothesis test is used

for categorical attributes and a large-sample test relying on the central limit theorem is used

for numerical attributes.

Another approach which is suited for axis-parallel knowledge representations is Editing by

Ordered Projection by Aguilar et al. (Aguilar-Ruiz, Riquelme, & Toro, 2000). It is an heuristic

method based on a geometrical projection of the examples.

Finally, we include in this category the Sort-Out Techniques by Salamó and Golobardes

(Salamó & Golobardes, 2002) which uses the data-mining method Rough Sets to reduce a

priori the Case Base for its application to Case-Based Reasoning.

2.7 Handling missing values

Missing data is an important potential threat to learning and classification because it may

compromise the ability of a system to develop robust, generalized models of the concept/s

represented by the training set. Some of the more popular methods for handling missing data

(Roth, 1994) appear below:

Value ignoring Consider as true any test involving a missing value
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Listwise or casewise data deletion If a record has missing data for any one variable used in

a particular analysis, omit that entire record from the analysis.

Mean substitution Substitute a variable mean value computed from available cases to fill

in missing data values on the remaining cases. A more sophisticated version uses the

variable mean of the instances belonging to the same class as the one with the missing

value

Regression methods Develop a regression equation based on complete case data for a given

variable, treating it as the outcome and using all other relevant variables as predictors.

Then, for cases where Y is missing, plug the available data into the regression equation

as predictors and substitute the predicted Y value into the database for use in other

analyses.

Hot deck imputation Identify the most similar case to the case with a missing value and

substitute Y value of this case for the missing case Y value.

Expectation Maximization (EM) An iterative procedure that proceeds in two discrete steps.

First, in the expectation (E) step, the expected value of the complete example set

likelihood is computed. In the maximization (M) step the expected values are substituted

for the missing data obtained from the E step and then the likelihood fuction is maximized

as if no data were missing to obtain new parameter estimates. The procedure iterates

through these two steps until convergence is obtained.

Raw maximum likelihood Use all available data to generate maximum likelihood-based suf-

ficient statistics. Usually these consist of a covariance matrix of the variables and a

vector of means. This technique is also known as Full Information Maximum Likelihood

(FIML).

2.8 Summary of the chapter

This chapter has described some base material of the area of the artifical intelligence

field where this thesis is applied: machine learning (ML). The chapter started with a general

description of the machine learning paradigms and with some definitions related to the learning

task we are solving: classification problems. Later there was a description of some knowledge

representations used in machine learning and the description of some kinds of rule-based

learning algorithms. Finally three specific topics were described: Discretization algorithms,

scaling-up of learning systems and handling of missing data.
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The aim of this description has been to provide enough ML-wise background material to

construct the contributions that will be presented in this thesis over it. This is the reason

this description has not been a complete ML review, but instead it has been biased towards

the techniques used in this thesis: rule-based inductive learning, discretization algorithms,

scaling-up of learning algorithms and missing values.

The next chapter will have a similar structure, but will focus specifically on the machine

learning paradigm used to perform our rule-induction tasks: evolutionary computation.
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Chapter 3

Genetic Algorithms and

Genetic-Based Machine Learning

The last chapter contained an overview of the artificial intelligence area is which this thesis

is placed (machine learning) and the task which is the application of this thesis, classification

problems. In this chapter we focus on the specific machine learning paradigm that is used in the

contributions presented in this thesis: evolutionary learning. Evolutionary learning (also known

as genetic-based machine learning (GBML) ) is the application of evolutionary computation

(EC) to learning tasks. Evolutionary computation is a field that gathers a large collection of

techniques inspired in biological processes such as population-based evolution, natural selection

and genetics. These techniques can be applied to several kind of tasks: search, optimization,

scheduling, and, of course, machine learning.

The chapter is structured as follows: section 3.1 will contain a brief description in general of

the EC field and also a description of the main mechanisms of the most popular EC paradigm:

the genetic algorithms (GA). Next, section 3.2 will show a bit of GA theory and a formal

methodology of the application of GA. The rest of the chapter will be focused specifically on

GBML-related contents. The machine learning contents will start by describing three models

of learning system in section 3.3. After the description of the models the thesis will be focused

on some specific issues that are very related to the contributions presented in this thesis:

representations for real-valued attributes in section 3.4, the scaling up of GBML systems in

section 3.5 and the handling of the bloat effect in section 3.6. Finally, section 3.7 will provide

a summary of the chapter.
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3.1 Introduction to Evolutionary computation and

genetic algorithms

Evolutionary computation (EC) techniques are optimization tools that solve problems using

procedures inspired by natural processes. These techniques usually work by transforming a

population of individuals, being each individual a candidate solution for our problem. This

transformation process consists in the iterative application of a cycle of stages inspired in

natural selection and also in the generation of new individuals by genetic recombination. This

combination of selection and recombination produces a directed exploration of the search

space, converging to the regions of the space where the best solutions are placed. Research

in evolutionary computation started in the 1960’s, and the first major milestone was John

Holland’s book, considered a foundation work in the field (Holland, 1975).

3.1.1 Natural principles

Nature has been always able to solve one kind of task: survival and adaptation to the envi-

ronment. Since life appeared on earth, the existing species have evolved, adapting themselves

to where they live and becoming robust to changes. That is, the species were able to solve

the problem of environment adaptation. In order to understand how the adaptation process of

nature works, the work of Darwin and Mendel must be considered.

Charles Darwin proposed the concept of natural selection: the strongest individuals of a

population (the better adapted to the environment) are the ones that survive. This process

by itself has one problem: If the strong individuals dominate the weak completely, they will

take over the population until all individuals are equal, which stops the adaptation process.

Therefore the concept of diversity is necessary.

Mendel discovered that parents transmit their biological information to the offspring in

the reproduction process. All this information necessary to define an individual is codified at

cellular level in a structure called chromosome. Parts of the chromosome codify hair color,

height, etc. New individuals are created by mixing the genetic information of the parents in a

process called crossover. Therefore, new individuals are a mix of the information of the parents.

However, this does not account for the problem stated above, that is, the crossover of two

identical individuals means producing two identical offspring. A mechanism that introduces

diversity is necessary: mutation.

Mutation can be defined as some small mistakes introduced during the mixing process of

crossover. Thanks to mutation, new information that did not exist in the parents is introduced.
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Sometimes this change creates worse individuals, but sometimes it creates better ones, who

are the next step in the evolutionary process.

How are all these concepts are related to artificial intelligence? They are the source of

inspiration for the processes involved in the evolutionary computation techniques.

3.1.2 Evolutionary computation and its paradigms

These natural principles mentioned above have inspired the techniques gathered with the

name Evolutionary Computation. These techniques share some concepts with their biological

inspiration, but also have some important differences. Using a classical classification, we can

describe four main EC paradigms (Freitas, 2002):

Evolution Strategies (ES) (Rechenberg, 1973). These techniques typically use an individual

representation consisting of a real-valued vector. Early ES emphasized mutation as the

main exploratory search operator, but currently both mutation and crossover are used.

An individual often represents not only real-valued variables of the problem being solved

but also parameters controlling the mutation distribution, characterizing a self-adaptation

of mutation parameters. The mutation operator usually modifies individuals according

to a multivariate normal distribution, where small mutations are more likely than large

mutations.

Evolutionary Programming (EP) (Fogel, 1964). Originally developed to evolve finite-state

machines, but it is now often used to evolve individuals consisting of a real-valued vector.

Unlike ES, in general it does not use crossover. Similar to ES, it also uses normally-

distributed mutations and self-adaptation of mutation parameters.

Genetic Algorithms (GA) (Holland, 1975; Goldberg, 1989a). This is the most popular

paradigm of EC. GAs emphasize crossover as the main exploratory search operator and

consider mutation as a minor operator, typically applied with a very low probability. In

early (“classic”) GAs individuals were represented by binary strings, but nowadays more

elaborate representations, such as real-valued strings, are also used.

Genetic Programming (GP) (Koza, 1992). This paradigm is often described as a variation

of GAs rather than a mainstream EC paradigm in an of itself. Individuals being evolved

in this paradigm are various kinds of computer programs, consisting not only of data

structures but also of functions (or operations) applied to those data structures. These

programs are usually represented using trees.
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Figure 3.1: Main code of a simple genetic algorithm

Genetic Algorithm
t:=0
initialize P(t)
evaluate P(t)
WhileendCondition(P(t)) is not true

t:=t+1
P’(t)=Select a parent population from P(t)
Apply crossover to P’(t)
Apply mutation to P’(t)
Evaluate P’(t)
P(t+1)=Replacement(P(t),P’(t))

EndWhile
Output : best individual of P(t)

In recent years a new paradigm has been developed, which could be added to the previous

list. It is known as estimation of distribution algorithms (EDAs) (Larranaga & Lozano, 2002).

The main difference from the above stated paradigms are the recombination operators used:

An statistical model is created from the individuals of the population, and the offspring are

generated by sampling this model. Thus, the exploration process is less blind than the one

used in the other EC paradigms.

As genetic algorithms are the focus of this thesis, the next subsection will describe GAs

basic mechanisms.

3.1.3 Description of the basic mechanisms of GAs

Algorithmically, we can define GA (Goldberg, 1989a) as represented in figure 3.1.

The concepts that define a genetic algorithm are:

Individual A candidate solution to the problem we are solving

Chromosome The codification of an individual. Usually individuals, unlike in nature, are

codified using a single chromosome

Gene Each of the atomic values of a chromosome

Fitness function The function that indicates the degree of adaptation of an individual to the

environment where it lives. That is, how good is the individual in solving the problem.
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Parent selection The process that chooses the most fitted individuals to the environment

to produce offspring. This process uses the value given by the fitness function to each

individual to decide which are the most fit individuals. There are many selection algo-

rithms, some of them choose individuals based on their proportion of fitness value over

the whole population, other methods are rank based, and only take into account if an

individual is better than another, not how much better it is.

Crossover A process inspired in natural reproduction. Parents mix their chromosomes to cre-

ate the offspring. Usually there is some probability (pc) of a candidate parent producing

offspring. The mix can be performed in several ways. The most classical one, the one-

point crossover, chooses randomly a cut point in the crossover and creates offspring by

mixing the contents to the left of this point from one parent with the contents to the

right of the point from the other parent

Mutation The alteration of the genetic material of an individual. Like crossover, this operator

is controlled by a certain probability (pm), usually gene-wise. For binary representations,

the most typical mutation is to flip a gene, changing from 1 to 0 or from 0 to 1.

Replacement The process that given an original population and an offspring’s population,

merges them to create the population for next iterations. The most classical approach

is to use only the offspring population, and the best individual of the original population

3.2 Basic theory of GA and a formal methodology for

its use

In the literature there are many examples of addressing the development of a formal theory

for the behaviour and convergence of GAs (Rudolph, 1998; Vose, 1999). One of the oldest

but also well accepted theory was proposed by Holland (Holland, 1975), and it is called the

schema theorem.

The theorem is based on the concept of schema, a meta-representation of a chromosome.

It is a string, of the same length of the chromosome, build using a ternary alphabet 0, 1, ∗.
Values 0 and 1 represent specified values in the chromosome. ∗ represents a “don’t care”, a

position that can take either 0 or 1. For example, the schema 00 ∗ 10 is represented by two

chromosomes: 00010 and 00110.

In order to state the theorem some definitions are needed:
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Order o(h) of a schema h is the number of specified positions, that is, not containing an

asterisk.

Defining length δ(h) of a schema h is the distance between the outermost non-asterisks

symbols. A schema with a high defining length has more risk of being broken, because

it has more chances of having a cut-point between the specified positions.

The schema theorem describes how the frequency of schema instances changes with the

iterations considering the effects of selection, crossover and mutation, supposing fitness-

proportionate selection, one-point crossover and gene-wise mutation probability. The schema

theorem is defined as:

E(m(h, t + 1)) ≥ m(h, t) · f(h)
f̄
·
[
1− Pc ·

δ(h)
l − 1

]
· [1− Pm]o(h) (3.1)

Where m(h, t) is the number of instances of schema h in the population at time t, f(h) is the

average fitness of the instances of schema h and f̄ is the average fitness of the population and

l is the length of the chromosome. The effect of the fitness proportionate selection is expressed

by f(h)/f̄ , indicating that over-the-average schemata should increase its number of instances

in next population. The effect of crossover is represented by
[
1− Pc · δ(h)

l−1

]
, indicating the

chances of survival of the schema depending on the probability of crossover and its defining

length. Finally, the effect of mutation is defined by [1− Pm]o(h), indicating the probability of

mutation not flipping any of the specified positions (the order of a schema).

The schema theorem states that the frequency of schemata with fitness higher than the

average, short defining length and low order increases in the next generation. Departing

from this theorem, Goldberg proposed the building block hypothesis (Goldberg, 1989a), that

states that “short, low-order, above-average schemata receive exponentially increasing trials

in subsequent generations”, defining these low-order subsets of a schemata as building blocks.

Moreover, Goldberg states the success of a GA using a methodology of seven problems

that need to be handled (Goldberg, 2002), all of them dealing with building blocks (BB):

1. Know what GAs process – building blocks

2. Know thy BB challengers – building-block-wise difficult problems

3. Ensure an adequate supply of raw BBs

4. ensure increased market share for superior BBs

5. Know BB takeover and convergence times

6. Make decisions well among competing BBs
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7. Mix BB well

Answering these questions leads to a facet-wise analysis of the GA, and the proposal

of several models that all together have the objective of guaranteeing the success of a GA

for problems of bounded difficulty. Some of these models are for population sizing (Harik,

Cantu-Paz, Goldberg, & Miller, 1997; Goldberg, Sastry, & Latoza, 2001) or convergence

time (Bäck, 1995). However, the last problem is difficult to address with a simple genetic

algorithm for complex problems (Goldberg, 2002), because standard crossover operator cannot

handle one task correctly: linkage learning, which is the process of identifying which genes are

coupled among them. In short: Building Block identification. New recombination methods

that could be able to discover what genes belong to each BBs are needed. Some examples

of these methods are the Linkage Learning Genetic Algorithm (Harik, 1995) and the Bayesian

Optimization Algorithm (Pelikan, Goldberg, & Cantú-Paz, 1999).

3.3 Three models of GBML learning systems

The rest of the chapter is focused specifically on issues related to machine learning. The

first step, in this section, is to describe some general models or approaches to apply evolutionary

computation techniques to machine learning tasks. As stated previously in the introduction

chapter of this thesis, usually only two models are described in the literature, called Michigan

approach and Pittsburgh approach. However, in recent years a third approach, called Iterative

Rule Learning, has risen in popularity. This third approach, first used in the SIA system

(Venturini, 1993) uses the separate-and-conquer methodology (explained in chapter 2) quite

popular in the non-evolutionary rule induction field. The next subsections will detail each of

these GBML models.

In this approach an individual is a rule, like in Michigan, but the solution provided by the

GA is the best individual of the population, like in Pitt, although the final solution is the

concatenation of the rules obtained by running the GA several time.
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3.3.1 The Pitt approach

The Pitt approach proposes a GBML system using the traditional cycle of a GA, where

each individual is a complete solution to the classification problem. A complete solution to the

classification problem means a disjunction of a set of classification rules. Each rule has fixed

length, but the number of rules of the set is variable. Individuals compete among themselves

to correctly classify the maximum amount of training examples and the population converges

towards good rule sets. Two representative systems of this family are:

• GABIL (DeJong & Spears, 1991)

• GIL (Janikow, 1991)

GABIL

• Knowledge representation

– Each individual is a variable-length set of rules:

I = (R1 ∨R2 . . . ∨Rn)

– Each classification rule has binary representation, fixed length and codifies a pred-

icate. This system performs concept learning from positive/negative examples.

Rules only cover the positive examples, thus, there is no class associated to the

rule. The semantic representation of the rule is:

((A1 = V 1
1 ∨ . . . ∨A1 = V 1

m)
∧

. . .
∧

(An = V n
2 ∨An = V b

m))

Ai, i ∈ [1..n] is the attribute i of the dataset

Aj
i ,i ∈ [1..n] i j ∈ [1..m] is the value j that can take the attribute i

– These predicates can be mapped to a binary string with the following procedure:

∗ We have 4 attributes: (A1,A2,A3,A4). The values of A1 are (A,B,C,D), the

values of A2 are (E,F,G), the values of A3 and (H,I,J,K,L) and finally the values

of A4 are (M,N).

∗ The predicate “(A1 is B or C) and (A2 is E or F or G) and (A3 is H i K) and

(A4 is M)” is represented as:

A1 A2 A3 A4
0110 111 10010 10
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– Looking at the examples we can see that all bits associated to the attribute A2 are

set to 1. This is the mechanism that the representation has to indicate that this

attribute is irrelevant.

• Fitness function. The fitness function is computed after classifying all instances of the

training set, and consists simply of a squared accuracy function:

fitness(individual) =
(

#instances correctly classified
total #instances

)2

• Crossover operator. This operator needs a small restriction to guarantee that semantically-

correct offspring are created. Cut points can take place in any rule of the individual,

which does not have to be the same for both parents, but it has to be placed in the

same position inside the rule.

• Variants of the system

– GABL (GA Batch concept learner). It is the system as described so far.

– GABIL (GA Batch-incremental concept learner). It is an evolution of GABL with

an incremental learning process:

∗ The system starts learning with only one training example. A rule set is gen-

erated covering it.

∗ After generating the initial rule set, the system tries to classify a second example

with it.

∗ If the new examples is classified correctly, the same test is repeated with more

examples.

∗ If not, GABL is run again, using all the instances tested so far.

GIL

• Knowledge representation

This system also evolves a disjunction of rules. Each rule contains a predicate defined in

the V L1 logic (Michalski, Mozetic, Hong, & Lavrac, 1986), although the mapping into

a binary string is equivalent to the one used in GABIL

• Fitness function.

The fitness function used in GIL has as a goal balancing the accuracy and complexity of

the individuals by means of the product of two terms related to these measures:

fitness = correctness · (1 + w3 · (1− cost))f (3.2)
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f grows very slowly on [0, 1] as the population ages, and correctness is defined as:

correctness =
w1 · ε+/E+ + w2 · (1− ε−/E−)

w1 + w2
(3.3)

Where ε+/ε− is the number of positive/negative examples covered by the individual and

E+/E+ is the number of positive/negative examples in the dataset. Cost is defined as:

cost = 2 ·#rules + #conditions (3.4)

The reported value (Janikow, 1993) for both w1 and w2 is 0.5. w3 takes smaller values,

such as 0.01-0.02.

• Genetic operators. This system is very rich in high-level operators that modify the

chromosome at the semantic level, unlike the “traditional GA operators” used in GABIL.

The operators can be classified in 3 categories:

– Chromosome level

∗ RuleExchange: this operator exchange complete rules between two parents.

For example, the two parents:

< 100|111|11|111|1000|11 ∨ 010|111|11|010|1111|11 >

< 111|001|01|111|1111|01 ∨ 110|100|10|111|0010|01 >

can generate the two following sons:

< 100|111|11|111|1000|11 ∨ 111|001|01|111|1111|01 >

< 010|111|11|010|1111|11 ∨ 110|100|10|111|0010|01 >

∗ RuleCopy: this operator removes a rule from a parent and appends it to the

other one:

< 100|111|11|111|1000|11 ∨ 010|111|11|010|1111|11 >

< 111|001|01|111|1111|01 ∨ 110|100|10|111|0010|01 >

can generate the two following sons:

< 100|111|11|111|1000|11∨111|001|01|111|1111|01∨110|100|10|111|0010|01 >

< 010|111|11|010|1111|11 >

∗ NewPEvent: unary operator that given an individual and an uncovered positive

example, appends it to the rule set:

Individual < 100|111|11|111|1000|11 ∨ 111|001|01|111|1111|01 >

and instance :
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< 100|010|10|010|0010|01 >

produce:

< 100|111|11|111|1000|11∨111|001|01|111|1111|01∨100|010|10|010|0010|01 >

∗ RuleGeneralization: unary operator that generalizes a random subset of the

rules of an individual:

< 100|111|11|111|1000|11∨010|111|11|010|1111|11∨100|010|10|010|0010|01 >

Choosing rules 2 and 3, the system produces::

< 100|111|11|111|1000|11 ∨ 110|111|11|010|1111|11 >

∗ RuleDrop: unary operator that eliminates a random subset of the rules of an

individual:

< 100|111|11|111|1000|11∨010|111|11|010|1111|11∨100|010|10|010|0010|01 >

may produce :

< 100|111|11|111|1000|11 >

∗ RuleSpecialization: unary operator that specializes a random subset of the

rules of an individual:

< 100|111|11|111|1000|11∨010|111|11|010|1111|10∨111|010|10|010|1111|11 >

Choosing rules 2,3 it may produce :

< 100|111|11|111|1000|11 ∨ 010|010|10|010|1111|10 >

– At rule level:

∗ RuleSplit: this operator splits a rule in two: < 100|111|11|111|1000|11 >

Dividing the rule by the second attribute:

< 100|011|11|111|1000|11∨ < 100|100|11|111|1000|11 >

∗ SelectorDrop: this operator selects an attribute and makes it irrelevant (all

bits set to 1):

< 100|111|11|111|1000|11 >

Choosing attribute 5:

< 100|011|11|111|1111|11 >

∗ IntroSelector: this operator selects an irrelevant attribute to specialize it:

< 100|111|11|111|1111|11 >
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Choosing attribute 5:

< 100|011|11|111|0001|11 >

∗ NewNEvent: this operator, given a negative example covered by the rule, splits

the rule to uncover it:

Given the rule:

< 110|010|11|111|1111|11 >

And the negative example:

< 100|010|10|010|0100|10 >

It produces the following rules:

< 010|010|11|111|1111|11 ∨ 110|0100|01|111|1111|11
∨110|010|11|101|1111|11 ∨ 110|010|11|111|1011|11
∨110|010|11|111|1111|01 >

– At attribute level

∗ ReferenceChange: operator that changes the state (0 or 1) of one of the values

of an attribute:

< 100|010|11|111|0001|11 >

Changing the third value of the forth attribute:

< 100|010|11|110|0001|11 >

∗ ReferenceExtension: operator that adds ones (generalizes) to an attribute:

< 100|010|11|111|1010|11 >

Modifying attribute 5:

< 100|010|11|110|1110|11 >

∗ ReferenceRestriction: operator that removes ones (specialize) from an at-

tribute:

< 100|010|11|111|1011|11 >

Modifying attribute 5:

< 100|010|11|110|1000|11 >

Most of these operators have associated parameters (probabilities), which makes the GIL

system, in comparison with GABIL, more complex to tune.
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3.3.2 The Michigan approach

The Michigan approach is characterized by the creation of a cognitive model called classifier

system where the population members are individual rules, and the whole population is the

solution to the classification problem. This means that a mechanism that rewards good rules

and penalizes bad rules is needed, usually based on reinforcement learning techniques. In this

approach the GA is not the central element, but only a part of the system used from time to

time to discover new rules.

Nowadays the most popular Michigan system is called XCS (Wilson, 1995). It is an

evolution of ZCS by the same author. The fitness of the individuals is based on the prediction

accuracy of each rule. A full description of the system follows:

• Populations of rules used in the system:

There are three kinds of populations used in different stages of the system:

– [P ]: is the population that contains all the rules evolved. This population can be

generated randomly, from a set of known rules, empty or having, for each class, a

single totally general rule.

– [M ]: this is the match set, the set of rules activated by an input instance.

– [A]: once we have selected a predicted class from the rules in [M ], the action set

[A] is created containing all the rules that predict this class.

– [A]−1 is the action set of the previous cycle.

• Rule representation:

Each rule (classifier in the XCS nomenclature) has a condition part and an action part.

In classification problems the action part is an associated class. The condition is a string

with as many symbols as attributes that, for binary problems, is built using the ternary

alphabet {“1′′, “0′′, “#′′}. The # symbol indicates that the value of the associated

attribute is irrelevant. Each classifier has also some associated parameters:

– p: expected reward of the classifier if it classifies correctly an example

– e: estimation of the prediction error of the classifier

– f : fitness of a classifier

– exp: number of times this classifier has been in an action set since it was created.

– ts: Last time the GA was used on an action set where this classifier was involved.

– as: estimated size of the action sets where this classifier has participated.
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– num: number of “micro-classifiers” that this “macro-classifier” represents. Rules

in XCS can assimilate other classifiers that cover a subset of its examples, creating

“macro-classifiers”.

• Parameters of XCS

– N: is the maximum size of the population

– β is the learning rate for p, e and f

– α1, e0 and v are used to compute the fitness of the classifiers

– θGA is the activation threshold of the GA. GA is activated if the average time since

it was last used is higher than this threshold

– θdel is the classifier deletion threshold. If the exp value of a classifier is higher that

this threshold, it can be eliminated depending on its fitness.

– δ is the percentage under the fitness average of [P ] where the fitness of a classifier

modifies its deletion probability.

• Working cycle

1. We build [M ] from [P ] with each input example

2. If [M ] is empty or some of the classes are not predicted in [M ], the covering process

is activated, and a new classifier is created, having as a condition a generalized

version of the input example and using a class not covered in [M ]. This classifier

is introduced in the population

3. From [M ], a prediction for each class is made, based on the p and f values of each

classifier.

4. A class is chosen from the calculated predictions, and [A] is build. The system

returns a payoff based on the prediction. The parameters of classifiers in [A] is

updated in the following way:

p← p + β(R− p) (3.5)

e← e + β(|R− p| − e) (3.6)

k =

{
1 if e < e0

α(e0/e)v otherwise
(3.7)

k′ =
k∑

x∈[A] kx
(3.8)

F ← F + β(k′ − F ) (3.9)
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Figure 3.2: XCS working cycle
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XCS cycle is represented in figure 3.2

• The genetic algorithm

The GA is activated periodically based on θGA, and it is applied over [A]. It selects two

parents from [A] and performs a complete GA cycle, but the two offspring are inserted in

[P ] without replacing their parents. If the number of classifiers in [P ] reaches N , some

classifies must be deleted

• Choosing the classifiers to be deleted.

Each classifier has a deletion probability, computed as follows:

1. The deletion probability of a classifier is computed to be proportional to the esti-

mation of the size of the match sets where the classifier can appear. In this way,

all classifier subpopulations are given equal number of resources

2. The probability can be increased if the classifier is experienced enough and its fitness

is much lower than the average fitness of [P ].

• Macro-classifiers.

When introducing new individuals in the population, the system checks if the new indi-

vidual is equal to another one. In this case, the new classifier is not introduced, and the

numerosity of the equal classifier is increased.
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3.3.3 Iterative Rule Learning approach

The Iterative Rule Learning, first used in the SIA system (Venturini, 1993) uses the

separate-and-conquer methodology (explained in chapter 2) to induce rules, using a GA to

generate each rule. In this approach an individual is a rule, like in Michigan, but the solution

provided by the GA is the best individual of the population, like in Pitt, although the final solu-

tion is the concatenation of the rules obtained by running the GA several time. This approach

has been use extensively in genetic-fuzzy systems (Cordón, Herrera, Hoffmann, & Magdalena,

2001) but there are also some examples of application of this model to crisp representations,

like the HIDER system (Aguilar-Ruiz, Riquelme, & Toro, 2003). A description of this system

follows:

• Representation:

This system uses intervals defined as [lower, upper] for real-valued attributes, and a

binary representation like the one in GABIL and GIL for nominal ones. Rules have an

associated class, unlike these two systems.

• Initialization:

Each rule is initialized picking randomly a training example, and assuring that the inter-

vals/disjunctions of nominal values of the rule cover it.

• General structure:

HIDER has two general stages. In the main level there is a separate-and-conquer style

algorithm. In the inner level there is a GA inducing each rule. The code for both stages

is represented in figure 3.3. The parameter epf ensures that no rule is created if the

number of examples still to cover is too low, to avoid creating over-specific rules. The

best individual of the parent population is preserved.

• Crossover operator:

The crossover operator for real-valued attributes is an extension of Radcliffe’s flat crossover

(Radcliffe, 1990) that guarantees the semantic correctness of the intervals in the rule.

For nominal attributes uniform crossover (Syswerda, 1989) is used.

• Mutation:

If mutation affects a real-valued gene, some offset determined by a distance metric is

added or subtracted from the gene value. For nominal genes, the value is changed from

0 to 1 or 1 to 0.

• Fitness function:

The goal of the fitness function is two-fold: maximizing the number of covered examples
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and minimizing the number of classification mistakes over the training set of the rule:

f(ϕ) = 2(N − CE(ϕ)) + G(ϕ) + coverage(ϕ) (3.10)

Where ϕ is an individual, N is the total number of training examples, CE(ϕ) is the num-

ber of wrongly classified examples and G(ϕ) the number of correctly classifier examples.

coverage(ϕ) is computed as follows:

coverage(ϕ) =
m∏

i=1

coverage(ϕ, i)
range(ϕ, i)

(3.11)

coverage(ϕ, i) =

{
upperi − loweri attribute i is continuous

ki attribute i is nominal
(3.12)

range(ϕ, i) =

{
Ui − Li attribute i is continuous
|Ai| attribute i is nominal

(3.13)

(3.14)

Where ki is the number of active values of attribute i of ϕ, Ui is the upper bound of

the domain of the attribute i, Li is the lower bound of the domain of the attribute i and

|Ai| is the number of values of nominal attribute i.

3.4 Representations for real-valued attributes

Apart from the last example, all described systems use only discrete representations. In

recent years, several representations for real-valued attributes have been proposed. In this

section some examples of these representations will be described. Without the aim of excluding

other systems, we can classify them in four categories:

Rules with real-valued intervals (Corcoran & Sen, 1994; Wilson, 1999; Stone & Bull, 2003;

Aguilar-Ruiz, Riquelme, & Toro, 2003; Giráldez, Aguilar-Ruiz, & Riquelme, 2003; Divina,

Keijzer, & Marchiori, 2003)

Decision trees with relational decision nodes (Llorà & Garrell, 2001b; Llorá & Wilson,

2004; Cantu-Paz & Kamath, 2003)

Synthetic sets of prototypes (Llorà & Garrell, 2001a)

Fuzzy representations (Cordón, Herrera, Hoffmann, & Magdalena, 2001)
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Figure 3.3: The HIDER iterative rule learning algorithm

HIDER
Input : Examples
RuleSet = ∅
n = |Examples|
While |Examples| = n× epf

rule = EvoAlg(Examples)
RuleSet = RuleSet ∪ rule
Examples = Examples \ Cover(rule)

EndWhile
Output : RuleSet

EvoAlg
Input : Examples
i = 0
P0 = Initialize()
Evaluation(P0,i)
While i < num− generations

i = i + 1
For j ∈ 1, . . . , |Pi−1|

x̄ = Selection(Pi−1, i, j)
Pi = Recombination(x̄, Pi−1, i, j)

EndFor
Evaluation(Pi,i)
EndWhile
Output : BestOf(Pi)
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3.4.1 Rules with real-valued intervals

From a semantic point of view we can consider that all systems in this category evolve

rules that have the following structure:

If A1 ∈ [l1, u1] ∧A2 ∈ [l2, u2] ∧ · · · ∧An ∈ [ln, un] Then predict class cm (3.15)

Where Ai is an attribute of the domain and li, ui are the lower and upper bounds of an interval

associated to the attribute i.

Can li and ui take any value in the attribute domain? The answer to this question creates

again two sub-categories:

• Representations based on discretization

• Representations handling directly real-valued bounds

Representations based on discretization

The aim of these representations is to reduce the search space of the problem by considering

the set of cut points provided by a discretization algorithm as the possible bounds of the

evolved intervals. In a certain way, it can be considered that they are performing a dynamic

discretization.

A first example (Giráldez, Aguilar-Ruiz, & Riquelme, 2003) is an extension of the HIDER

system described in the previous section, called HIDER*. The authors use their own discretiza-

tion algorithm, called USD (Giráldez, Aguilar-Ruiz, Riquelme, Ferrer, & Rodŕıguez, 2002), to

create the candidate interval bounds. The most interesting feature is the codification used,

which is called natural coding : Each possible interval created by these cut points is given a

number. Rules do not contain the intervals themselves, but these numbers. Transition ta-

bles are created for crossover and mutation to determine how these numbers are changed. In

practical usage, these transition tables add or subtract cut points from the interval codified

by the number (for mutation) or create intervals that are the intersection of the parents (for

crossover).

Another example is the ECL system (Divina, Keijzer, & Marchiori, 2003). This system is a

hybrid evolutionary algorithm for rule induction. Its cycle of application is formed by selection,

mutation and optimization. The mutation operators applied do not act randomly, but consider

a number of mutation possibilities, and apply the one yielding the best improvement in the

fitness of the individual. The optimization phase consists in a repeated application of mutation

operators until the fitness of the individual does not worsen, or until a maximum number of
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optimization steps has been reached. In the former case the last mutation applied is retracted.

Numerical values are handled by means of inequalities, which describes discretization intervals.

Inequalities can be initialized to a given discretization interval, e.g., found with the application

of the Fayyad & Irani’s algorithm (Fayyad & Irani, 1993). Inequalities are modified by the

mutation operator in a similar way to the natural coding described above.

Representations handling directly real values

The main differences among the representations that evolve real-valued intervals are the

ways in which the bounds of the interval are codified. The previous section already explained

the representations used in HIDER (Aguilar-Ruiz, Riquelme, & Toro, 2003), using two genes

to codify the lower and the upper bound, and a special crossover operator to guarantee the

semantic correctness of the interval (lower < upper). Another approach (Corcoran & Sen,

1994) uses a standard crossover operator and considers the intervals where the upper bound is

smaller than the lower one as irrelevant. A third way (Stone & Bull, 2003) to codify an interval

with upper and lower bounds is to use non-fixed positions for the bounds. The lower value

of the two genes associated to an interval becomes the lower bound, and the higher value the

upper one. A different approach that does not need any kind of mechanism to guarantee the

semantic consistency is used in the XCSR system (Wilson, 1999). In this system the interval is

codified as a pair of real values defines as center and spread. The lower bound of the interval

is defined as center − spread and the higher bound as center + spread.

3.4.2 Decision trees with relational decision nodes

There are different ways to apply GAs to induce decision-trees with real-valued tests. The

GALE system (Llorà & Garrell, 2001b) is a fine-grained parallel genetic algorithm, with several

knowledge representations that can co-evolve in a 2D board. One of these representations

evolves full decision trees by means of genetic programming operators. The tests used in the

internal nodes of the tree can be of three ways:

axis-parallel (ai ≤ θ) where ai is an attribute and θ a threshold

oblique (
∑d

i1 wiai + wd+1 > 0) where {w1, w2, . . . , wd+1} is a vector of coefficients defining

an oblique hyperplane

Originally, only one kind of test was used for all nodes of a tree, but in recent work (Llorá

& Wilson, 2004) the mix of axis-parallel and oblique tests in the same decision tree has been

studied.
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A totally different approach (Cantu-Paz & Kamath, 2003), where the GA is not the central

piece, is the heuristic construction of the structure of the tree followed by a an optimization

by GAs and ES of the tests performed at each node.

3.4.3 Synthetic sets of prototypes

Another of the knowledge representations used in the GALE system (Llorà & Garrell,

2001b) consists of evolving a set of synthetic instances, and using a k-nearest-neighbour clas-

sifier to classify input instances. These prototypes do not need to have all attributes completely

defined, and a partially-defined distance function is provided:

distance(ins, prot) =

√√√√ 1
|π(prot)|

∑
a∈π(prot)

(
insa − prota

domaina

)2

(3.16)

Where π(prot) is a set containing the defined attributes of prot and domaina is the domain

of the attribute a for the dataset. This distance function is basically a Euclidean distance

adapted to partially-defined prototypes.

3.4.4 Fuzzy representations

In the literature there is extensive work on the integration of fuzzy logic (Zadeh, 1965) with

evolutionary computation techniques, for classification and regression tasks. Good and general

reviews of these techniques exist in the literature (Cordón, Herrera, Hoffmann, & Magdalena,

2001). A fuzzy system consists of two parts: the rule base (a set of fuzzy rules) and the data

base (a set of linguistic variables used in the rules, each of them with an associated membership

function). Evolutionary computation techniques can be used for:

• Evolving the rule base

• Evolving the data base

• Evolving both the fuzzy base and the data base

Also, we can find systems using the three learning models described in this chapter, Pittsburgh,

Michigan and Iterative Rule learning.
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3.5 The scaling-up of GBML systems

This section is equivalent to the section of the same name in previous chapter, but focused

on GBML. The GABIL (DeJong, Spears, & Gordon, 1993) system described in section 3.3 is a

good example of a wrapper method. However, its working mechanism of resetting the system

for each wrongly classified example makes it not suitable for most modern-day real datasets,

where perfect accuracy is hardly ever achieved. Therefore, most modern systems concentrate

on the approaches that we called modified learning algorithms and prototype selection. Alex

Freitas did a good review (Freitas, 2002) of scaling-up methods for GBML, and describes a

classification of these systems:

• Individual-wise: changing the subset of the training examples used for each fitness com-

putation.

• Run-wise: selecting a static subset of examples for the whole evolutionary process.

• Generation-wise: changing the subset of the training examples used at each generation

of the evolutionary process.

The run-wise approach could be seen as a prototype selection method, and the other two can

be considered as modified learning algorithms.

For a genetic algorithms, is quite unfair to change the fitness function among individuals

in the same generation. On the other hand, selecting a static subset of examples before the

learning process can bias significantly the performance of the system. Therefore, most systems

reported in the literature end up being generation-wise, as will be the contributions in this area

that are presented in this thesis.

How can this generation-wise training examples subset be selected? Most systems reported

in the literature perform a pure random sampling process to select the subset. One example of

this approach, applied to attribute selection (but able to be extrapolated to rule induction), is

(Sharpe & Glover, 1999). Other approaches refine the random sampling in several ways. Dif-

ficult instances (missclassified) can be used more frequently than correctly classified instances

(Gathercole & Ross, 1994), or “aged” instances (instances not used for some time) can have

more probability of being selected (Gathercole & Ross, 1994).

Also, in (Sharpe & Glover, 1999) the issue of what final solution is proposed by the GA

is discussed. If the subsample used is small, maybe the best individual of the last iteration is

not representative enough of the whole training set. The authors propose two approaches: the

first one is to use the whole set in the last iteration. The other approach is to perform a kind

of voting process among all individuals in the population.

90



CHAPTER 3. GENETIC ALGORITHMS AND GENETIC-BASED MACHINE
LEARNING

3.6 Handling the bloat effect

The evolution of variable-length individuals can lead to solutions growing without control.

This phenomenon is usually known as bloat (Langdon, 1997). This phenomenon can affect

in general any evolutionary computation paradigm using variable-length representations, but it

has been especially studied in the Genetic Programming field, where individuals are variable-

length by definition. This section will describe general evolutionary computation techniques,

not only GBML-related ones, because most of these techniques are easily extrapolated to

GBML.

How can the control of the bloat effect and the generalization pressure be implemented?

Several alternatives can be found in the literature. We can group most of them in three

categories:

• Modification of the original fitness function to add some term related to the length of

the individual

• A special selection algorithm

• Removing useless parts of the chromosome

3.6.1 Modification of the fitness function

The methods that modify the fitness function can also be grouped in two sub-categories:

penalization functions and weighted sums. The control of bloat by means of a penalization

function is usually known as parsimony pressure (Soule & Foster, 1998; Llorà, Goldberg, Traus,

& Bernadó, 2002) although in a recent paper (Luke & Panait, 2002) this concept has been

extended to also include all selection methods that take into account the size of the individuals.

This penalization usually takes two different forms

• Multiplying the raw fitness by a penalty value proportional to the length of the individual

if the length is over a certain threshold (Burke, Jong, Grefenstette, Ramsey, & Wu, 1998;

Bernadó, Mekaouche, & Garrell, 1999). This method has the added difficulty of deciding

which is the correct threshold, which usually is domain-specific.

• Subtracting from the raw fitness a term depending on both the length and the raw fitness

(Nordin & Banzhaf, 1995; Bassett & Jong, 2000). In this way the penalty will increase

gradually at the rate as the fitness, preventing a premature convergence. Again, these

kind of methods usually have parameters which have to be adjusted for each domain.
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The weighted sum methods can be considered a specific case of a penalization function

with the particularity of having the fitness structure defined by its name. The general form of

the method is described as:

fitness = w1 · raw fitness + w2 · length (3.17)

One exception of this structure is (Bernadó & Garrell, 2000) which is a Michigan LCS.

In this case the second term of the sum is the generality of a rule (frequency of activation)

instead of the individual length. The weights of the sum can be static (Dasgupta & Gonzalez,

2001) or dynamic (Cordon, Herrera, & Villar, 2001). In the former case the domain-specific

adjusting problem remains. In the latter case the individuals are fixed-length and evolve the

information necessary to generate a variable-length fuzzy rules set with an heuristic algorithm.

The dynamic weight is based on the population individual that generates the largest rule set.

In this category we can also add a method based on the MDL principle (Rissanen, 1978)

applied to Genetic Programming (Iba, de Garis, & Sato, 1994). The fitness formula defined

by the MDL principle remains a weighted sum. However, its components have a complex

knowledge-dependent definition, instead of the (raw fitness,length) pair.

3.6.2 Special selection algorithms

In this category we include the control of the size or generalization pressure methods which

have not aggregated the raw fitness and some other parameter (length/generalization) into a

single value, thus, needing a specific selection algorithm. We can separate the methods in two

categories:

• Pareto-based Multi-Objective Optimization (MOO) methods using the accuracy and

either the length of the individuals (Ekart & Nemeth, 2001; Llorà, Goldberg, Traus,

& Bernadó, 2002) or a generalization measure (Bernadó & Garrell, 2000) as the two

objectives. The MOLCS-GA system (Llorà, Goldberg, Traus, & Bernadó, 2002) also

introduces elitism into the selection process in order to preserve the Pareto front and

best (based on accuracy) 30% of the prior population. This method, after identifying to

which Pareto front belongs each individual of the population, gives to the individuals the

fitness function described in equation 3.18, where Ii
j is the individual j belonging to front

i, φ is the sharing function, using a sharing radius of 0.1, dIi
j ,Ii

k
is the euclidean distance

between individuals j and k of front i and n is the number of fronts in the population.

This fitness function combines a raw multi-objective fitness (giving higher fitness to the

first fronts) with a niching procedure implemented using the sharing method (Goldberg,
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1989a) in order to spread the individuals through all the front to which they belong.

After all these fitness computations are performed, tournament selection is used.

fitness(Ii
j) = δ

 1∑
k∈Ii φ(dIi

j ,Ii
k
)

+ n− i− 1

 (3.18)

• Hierarchical Selection Algorithms. These methods (Aguirre, González, & Pérez, 2002;

Luke & Panait, 2002) define an ordering of some features of the individuals and perform

a multi-level Tournament selection (Goldberg & Deb, 1991) in the following way: if the

first feature is better in one individual than in another the first individual is better. If

the values are equal we look at the second feature, then at the third and so on. The

first feature is usually the raw fitness, and the second one the length of the individuals.

3.6.3 Removing useless parts of the chromosome

In this category the systems that in certain circumstances can remove certain rules of the

individuals are included. Two different approaches are described:

First, we have the SAMUEL (Grefenstette, 1991) system, that applies Lamarkian operators,

that manipulate the genetic material in a deterministic way, unlike traditional GAs. This system

has an operator which is activated when the size of an individual (in number of rules) is larger

than a certain threshold. Some rules are eliminated based on the following criteria:

• The frequency of activation of the rule is under a given threshold

• The “strength” of the rule (a measure that combines the accuracy and the usage of the

rule) is under a given threshold

• The rule has been subsumed by another rule of higher strength

On the other hand we have the RuleDrop operator of the GIL (Janikow, 1991) system

described in section 3.3. This operator removes rules given a certain probability.

3.7 Summary of the chapter

This chapter has provided a description of the specific area where this thesis is focused:

genetic-based machine learning (GBML). The chapter started with a general description of

the base search techniques used in GBML: evolutionary computation and, specifically, genetic
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algorithms (GA). After some brief theory description of GAs, the rest of the chapter focused

specifically on machine learning issues. First, three models of GBML systems (and some

example system of each model) were described. Finally, the chapter finished with three specific

topics that are very related to the contributions presented in this thesis: representations for

real-valued attributes, scaling-up of GBML systems and control of the bloat effect.

The aim of the chapter was to describe some GBML background material that allows to

place the contributions of the thesis in the context of the research field where it is applied.

Therefore, a lot of GBML content has been omitted or only briefly described, not because it

unimportant, but because in the author’s opinion it is not related to the thesis enough.

The background material section of this thesis finishes with this chapter. Next, the frame-

work over which the contributions presented in this thesis have been built will be introduced.
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Contributions to the Pittsburgh

model of GBML
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Chapter 4

Experimental framework of the thesis

This is the first chapter of the central part of the thesis, where all the contributions to the Pitts-

burgh model of evolutionary learning are presented. However, before starting the description

of these contributions it is necessary to describe to the maximum detail what the framework

is, the basic Pittsburgh system over which these contributions are constructed. Thus, this

chapter will contain all the details of the GAssist Pitt system that cannot be considered as

novel contributions. These details cover issues such as the matching process, the mutation

operator, random number generation, handling of missing values, etc.

This chapter will also present the experimental framework of the thesis. Usually, the

datasets, statistical tests, etc. of an experimentation are described after introducing the novel

contents of the thesis and (obviously) before the results. However, as each of these chapters

dedicated to contributions is quite large, we have decided to report the experimentation made

for each of the contributions in the same chapter where the contribution is described. This

means that the experimentation framework must be described in depth before the contributions

and this means placing the description of the experimentation framework in this chapter.

The chapter is structured as follows: section 4.1 will describe the general GA framework

of the system, followed by section 4.2 containing the specific machine learning issues. Then,

section 4.3 will describe the test suite used in the different experiments reported in the thesis,

and section 4.4 will describe the experimentation methodology used. Finally, section 4.5 will

include a summary of the chapter.
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Figure 4.1: GA cycle used in GAssist

Population 1 Population 1

Population 4 Population 2

Population 3

Replacement

Evaluation

Selection

Crossover
Mutation

4.1 Framework of GAssist: general GA issues

GAssist, as a system belonging to the Pittsburgh model, uses a standard GA cycle, repre-

sented in figure 4.1, using the following options for each stage of the cycle:

• Evaluation: representation-dependent, detailed in next section

• Selection algorithm: tournament selection

• Mating policy for crossover: totally random

• Crossover operator: representation-dependent, detailed in next section

• Mutation probability: individual-wise. The reason for this choice is to make easier the

tuning process of the GA because of the variable-length individuals that will be used.

• Mutation operator: representation-dependent, detailed in next section

• Generational replacement with elitism for the best individual
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4.2 Framework of GAssist: machine learning issues

The GAssist system was originally inspired in GABIL, thus, several of the following details

are common in both systems:

• Matching strategy: individuals (rule sets) will be treated as a decision list (Rivest, 1987).

Therefore, the first rule that becomes true for an input instance will be used to classify

it

• Fitness function: GABIL’s squared accuracy fitness function

• Base nominal representation: the GABIL representation, described in the previous chap-

ter is the nominal representation used for nominal datasets, unless otherwise explicitly

stated.

• Crossover operator: all knowledge representations used in the thesis will use the GABIL

semantically correct crossover operator. This means selecting cut points in equivalent

position inside the rule (but in any rule) for both parents

• Mutation operator: the GABIL’s bit-flipping mutation will be used for the nominal rep-

resentation.

• Missing values policy: When we deal with datasets with missing values we use a substi-

tution policy. That is, we gather the instances belonging to the same class as the one

with missing values, and we substitute the missing value by either the most frequent

value or the average value, depending on the type of attribute (nominal or real-valued).

• Pseudo-Random Numbers Generator: The pseudo-random number generator (PRNG)

used is the Mersene Twister (Matsumoto & Nishimura, 1998), one of the best PRNGs

currently available. Its application to GAs has been studied recently (Cantú-Paz, 2002),

showing that it reduces the fluctuation of the obtained results.
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4.3 Test suite of the experimentation of the thesis

A good test suite is important to legitimate an experimentation process. The datasets

included should represent a broad range of possibilities in several categories:

• Number of attributes

• Number of instances

• Number of classes

• Uniform/non-uniform class distribution

• Type of attributes

• Mix of different type of attributes

• Missing values

• Synthetic and real problems

• Explicit presence of noise

The selected datasets for the experiments reported in this thesis try to represent a broad

range of possibilities of the above categories. We split this list in two parts. First, the

group of small datasets that are considered as small. These datasets will be used in all the

experiments of the thesis except for the ones in chapter 7, which deals with techniques that

have as an objective handling successfully large datasets. Also, not all selected datasets are

used in all experiments. For instance, in chapter 6, which deals with representations for real-

valued attributes, the experimentation only uses datasets where the majority of attributes are

real-valued.

The origin of the datasets is also diverse. Most of them come from the University of Califor-

nia at Irvine (UCI) repository (Blake, Keogh, & Merz, 1998), which has become the reference

experimentation framework in the machine learning community in recent years. However, in

some experiments we also include datasets from the private repository of our own research

group. These datasets are called mammograms (Mart́ı, Cuf́ı, Regincós, & et al., 1998), biop-

sies (Mart́ınez Marroqúın, Vos, & et al., 1996) and learning (Golobardes, Llorà, Garrell, Vernet,

& Bacardit, 2000). A list of the small datasets (and the identifier assigned to each dataset)

follows:
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• Audiology (aud)

• Auto imports database (aut)

• Balance Scale Weight & Distance Database (bal)

• BUPA liver disorders (bpa)

• Biopies cancer diagnosis database (bps)

• Breast cancer data (bre)

• Contraceptive Method Choice (cmc)

• Horse Colic database (col)

• Credit Approval (cr-a)

• German Credit data (cr-g)

• Glass Identification Database (gls)

• Cleveland Heart Disease Database (h-c)

• Hepatitis Domain (hep)

• Hungarian Heart Disease Database (h-h)

• Statlog Heart Disease (h-s)

• Johns Hopkins University Ionosphere database (ion)

• Iris Plants Database (irs)

• Final settlements in labor negotitions in Canadian industry (lab)

• Learning (lrn)

• Lymphography Domain (lym)

• FIS mammogram database (mmg)

• Pima Indians Diabetes Database (pim)

• Primary Tumor Domain (prt)

• Sonar, Mines vs. Rocks (son)
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• Large Soybean Database (soy)

• Thyroid gland data (thy)

• Vehicle silhouettes (veh)

• 1984 United States Congressional Voting Records Database (vot)

• Wisconsin Breast Cancer Database (wbcd)

• Wisconsin Diagnostic Breast Cancer (wdbc)

• Wine recognition data (wine)

• Wisconsin Prognostic Breast Cancer (wpbc)

• Zoo database (zoo)

Some of these datasets have specific citation requests: The audiology dataset was donated

by Professor Jergen at Baylor College of Medicine. The breast cancer, lymphography, and pri-

mary tumor domains were obtained from the University Medical Centre, Institute of Oncology,

Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing the data. The

Cleveland Heart Disease database was donated by Robert Deytrano, M.D., Ph.D. from the

Cleveland Clinic Foundation. The Hungarian Heart Disease database was donated by Andras

Janosi, M.D. from the Hungarian Institute of Cardiology. The Vehicle silhouettes datasets

comes from the Turing Institute, Glasgow, Scotland. The Wisconsin breast cancer databases

were obtained from the University of Wisconsin Hospitals, Madison from Dr. William H.

Wolberg (Wolberg & Mangasarian, 1990).

As said before, in chapter 7 a different set of problems, beside these ones, will be used. The

origin of the problems is also diverse. First of all, there are two synthetic problems: Multiplexer

and led. The first one is actually a family of problems, widely used in the Learning Classifiers

Systems field (Wilson, 1995). It consist in learning the transition table of a multiplexer.

Depending on the number of data inputs of the multiplexer we can speak of MX-6, with

6 attributes and 64 instances, MX-11 with 11 attributes and 2048 instances, . . . The other

synthetic dataset is called LED. The problem consists of learning the digit represented by

a seven-segments display. This problem comes from the UCI repository and it is actually

a generator. It can generate an arbitrary number of instances of the domain with a given

percentage of noise applied to the attributes. The standard 10% noise level will be used here.

The rest of the problems used are the ones that can be considered as medium-size or

large. The first or them, called FARS (Fatality Analysis Reporting System), is a compilation
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Table 4.1: Features of the small datasets used in this thesis. #Inst. = Number of Instances,
#Attr. = Number of attributes, #Real = Number of real-valued attributes, #Nom. =
Number of nominal attributes, #Cla. = Number of classes, Dev.cla. = Deviation of class
distribution, Maj.cla. = Percentage of instances belonging to the majority class, Min.cla. =
Percentage of instances belonging to the minority class, MV Inst. = Percentage of instance
with missing values, MV Attr. = Number of attributes with missing values, MV values =
Percentage of values (#instances ·#attr) with missing values
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of statistics about car accidents made by the U.S. National Center for Statistics and Analysis
1. The specific dataset used contains information about all people involved in car accidents

in the U.S. during 2001. The selected class is the level of injury suffered. Finally, the rest of

datasets are real datasets that come from the UCI repository. The list of datasets, with their

features detailed in table 4.2 follows:

• Adult (adu)

• Connect-4 (c-4)

• FARS (fars)

• Hypothyroid (hyp)

• King-rook-vs-king-pawn (krkp)

• Mushroom (mush)

• Nursery (nur)

• Pen-Based Recognition of Handwritten Digits (pen)

• Statlog - Landsat Satellite (sat)

• Segment (seg)

• Sick (sick)

• Splice (spl)

• Waveform (wav)

4.4 Experimentation methodology

Once the test suite is selected, it is time to decide how the experiments will be done and

how the results of these experiments will be analyzed. The aim of the experimentation design

is to estimate the performance of the learning system and configuration being tested. In order

to achieve this objective, some partitions of the each dataset into training and test sets is

proposed, together with a formula to estimate the accuracy of the learning system based on

its performance on each pair of training/test sets.

1Downloaded from ftp://ftp.nhtsa.dot.gov/FARS/
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Table 4.2: Features of the large datasets used in this thesis. #Inst. = Number of Instances,
#Attr. = Number of attributes, #Real = Number of real-valued attributes, #Nom. =
Number of nominal attributes, #Cla. = Number of classes, Dev.cla. = Deviation of class
distribution, Maj.cla. = Percentage of instances belonging to the majority class, Min.cla. =
Percentage of instances belonging to the minority class, MV Inst. = Percentage of instance
with missing values, MV Attr. = Number of attributes with missing values, MV values =
Percentage of values (#instances ·#attr) with missing values
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The selected methodology is the most widely used in the literature: stratified ten-fold cross

validation (Kohavi, 1995). In short, this method splits the dataset into 10 mutually exclusive

subsets (called folds) of approximately the same size that also have the same class distribution

existing in the whole dataset. Once the folds are created, it generates ten pairs of training/test

sets. The first one uses the 9 first folds as training and the 10th one as test. The second

pair uses folds 1-8 and fold 10 for training, and fold 9 for test, and so on. In order to reduce

the bias that might be created by the random creation of these folds, in the experimentation

of the thesis 3 sets of cross-validation folds will be used. Also, for all the stochastic systems

included in the experiments, 5 runs with different random seeds will be made for each pair of

training/test sets. This means that the accuracy obtained from each method is the average

of 150 runs.

Once the experiments are done, and we obtain an estimate of the accuracy of each system

based on the cross-validation methodology, it will be time to compare the differences between

the tested systems. In order to guarantee that solid conclusions can be extracted from these

comparisons it is necessary to use statistical tests. The chosen test is the Student paired t-test

(Goulden, 1956). When more than two systems are included in the comparison, the Bonferroni

correction (Shaffer, 1995) is used. Confidence level is set to 95%. All the tests are performed

using the R statistical package (Venables & Ripley, 2002).

4.5 Summary of the chapter

The chapter focused on describing the framework specifically necessary to build the con-

tributions to the Pittsburgh model presented in the four next chapters of this thesis. This

framework had two parts. The first one was a a description of the basic pieces of the learning

system used in the thesis: GAssist. The second one was the design of the experimentation

framework used in this thesis to validate the contributions presented. The experimentation

consists in a dataset base with a very large range of problems, to be able to extract useful

information about what are the strong points or weak points of the classifier. Also, the results

of experimenting with these datasets will be analyzed with statistical t-tests, to guarantee that

we can extract solid conclusions of the results.

One the description of this framework is finished, it is time to really start the central part

of the thesis, describing the novel contributions made.
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Chapter 5

Integrating an explicit and static

default rule in the Pittsburgh model

An interesting feature of encoding the individuals of a Pittsburgh Learning Classifier System as

a decision list is the emergent generation of a default rule. With a default rule we can generate

more compact and accurate rule sets. However, the performance of the system is strongly tied

to the learning system choosing the correct class for this default rule. This chapter describes

the research that has been done on extending the knowledge representation used in GAssist

with an explicit and static default rule, and the policies studied to choose the correct default

class.

The chapter is structured as follows: First, section 5.1 will show a brief introduction to the

rest of the chapter and the motivation of this research. Then, section 5.2 will describe some

background material and related work. Section 5.3 will report the modifications applied to the

knowledge representation of the system to integrate the default rule. Section 5.4 will show

some illustrative results of the simple policies. After the simple policies, we will describe more

sophisticated ones in Section 5.5. Section 5.6 will show the experimentation results of applying

the previous described policies and will also analyze in depth these results. Section 5.7 will

discuss these results and will propose some further work. Finally, Section 5.8 will summarize

the chapter.
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Figure 5.1: Unordered and ordered rule sets for the MX-11 domain

Unordered MX-11 rule set
0 0 0 0 # # # # # # # : 0
0 0 0 1 # # # # # # # : 1
0 0 1 # 0 # # # # # # : 0
0 0 1 # 1 # # # # # # : 1
0 1 0 # # 0 # # # # # : 0
0 1 0 # # 1 # # # # # : 1
0 1 1 # # # 0 # # # # : 0
0 1 1 # # # 1 # # # # : 1
1 0 0 # # # # 0 # # # : 0
1 0 0 # # # # 1 # # # : 1
1 0 1 # # # # # 0 # # : 0
1 0 1 # # # # # 1 # # : 1
1 1 0 # # # # # # 0 # : 0
1 1 0 # # # # # # 1 # : 1
1 1 1 # # # # # # # 0 : 0
1 1 1 # # # # # # # 1 : 1

Ordered MX-11 rule set
0 0 0 0 # # # # # # # : 0
0 0 1 # 0 # # # # # # : 0
0 1 0 # # 0 # # # # # : 0
0 1 1 # # # 0 # # # # : 0
1 0 0 # # # # 0 # # # : 0
1 0 1 # # # # # 0 # # : 0
1 1 0 # # # # # # 0 # : 0
1 1 1 # # # # # # # 0 : 0
# # # # # # # # # # # : 1

5.1 Introduction and motivation

Default rules can be very useful in combination with a decision list because the size of the

rule set can be reduced significantly. For instance, for the 11-bit multiplexer we can obtain a

rule set of 9 rules instead of 16 unordered ones, as represented in Figure 5.1. With a smaller

rule set, the search space is reduced resulting in two potential advantages: (1) the learner has

to learn less rules (representing only the other classes of the dataset) and (2) with a smaller rule

set the system may be less sensitive to over-learning potentially increasing the test accuracy

of the system.

Data Mining problems can also benefit from a default rule. To illustrate this, table 5.1

shows the results of running the GAssist system with no static default rule for the Glass

problem from the UCI repository (Blake, Keogh, & Merz, 1998). The settings of the system

are summarized in table 5.2. The partitioning of the dataset into training and test subsets is

done using the stratified ten-fold cross validation method, and tests for each fold are repeated

a hundred times with different random seeds. The results show the benefits of using a default

rule and, more importantly, the benefits of choosing the correct class for the default rule.
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Table 5.1: How the emergent generation of a default rule can affect the performance in the
Glass dataset

Runs generating a default rule 736
Runs not generating a default rule 264
Accuracy of runs with a default rule 66.98±8.00
Accuracy of runs without a default rule 66.27±7.79

Average accuracy of runs using class 1 as default rule 65.45±7.39
Average accuracy of runs using class 2 as default rule 67.76±7.81
Average accuracy of runs using class 3 as default rule 59.40±5.51
Average accuracy of runs using class 4 as default rule 66.18±8.70
Average accuracy of runs using class 5 as default rule 67.66±8.58
Average accuracy of runs using class 6 as default rule 64.48±7.36

Table 5.2: Settings of GAssist for the default rule tests

Parameter Value

General parameters

Crossover prob. 0.6
Selection algorithm tournament selection
Tournament size 3
Population size 300
Individual-wise mutation prob. 0.6
Initial number of rules per individual 20
Iterations A maximum of 1500
Minimum number of rules for fitness penalty maximum of 6
Number of strata of ILAS windowing 2

ADI knowledge representation

Probability of ONE 0.75
Probability of Split 0.05
Probability of Merge 0.05
Probability of Reinitialize (begin,end) (0.02,0)
Maximum number of intervals 5
Uniform-width discretizers used 4,5,6,7,8,10,15,20,25 bins

Rule deletion operator

Iteration of activation 5
Minimum number of rules number of active rules + 3

MDL-based fitness function

Iteration of activation 25
Initial theory length ratio 0.075
Weight relax factor 0.90
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5.2 Background material and related work

We can find previous uses of a static default rule in the LCS field, although not in an

explicit way: Classic Pitt-approach systems such as GABIL (DeJong, Spears, & Gordon, 1993)

or GIL (Janikow, 1991), which perform concept learning (learning a concept from sets of

positive/negative examples), implicitly have a default rule that covers the negative examples.

The rules generated do not have an associated class because all of them cover the positive

examples. However, there is no explicit policy to decide which set is the positive or negative

in order to learn better. The decision comes from the definition of the dataset.

Looking at the machine learning field in general we find other examples of default rules.

The C4.5rules system (Quinlan, 1993) uses an explicit default rule and like our system it

generates a rule set acting as a decision list. To select the class for this default rule it uses the

class that has less instances covered by the other rules in the rule set. This kind of approach

seems feasible when we have induced the rule set beforehand, instead of using it during learning

as our system does.

The IREP system (Cohen, 1995) induces, in order, the rules modeling each class of the

problem (using the instances of the classes still to be learned as negative examples). The

criteria of this global order is ascendant frequency of examples. Therefore, the default rule of

this system uses a majority class policy. The AQ15 (Michalski, Mozetic, & Hong, 1986) and

CN2 (Clark & Niblett, 1989) systems also use a majority class policy.

5.3 The static default rule mechanism

The requirements of the system to be able to use this mechanism are few: we only need to

codify our individuals as decision list, independent on the knowledge representation used. The

implementation of the static default rule is very simple. Basically it affects only the matching

function, that classifies an input instance using the default class if no rule matches the instance,

represented by the code in Figure 5.2. Also, the default class is removed from the classes that

can be used by the rest of the rules in the population, effectively reducing the search space.

A general representation of the extended rule set is shown in Figure 5.3. These changes and

other small details are summarized as follows:

1. We determine with some criterion (in the following sections several criteria are studied)

which class is the default class

2. An individual predicts this default class when no rule matches an input instance
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Figure 5.2: Match process using an static default rule

Match process
Input : RuleSet, Instance
Index = 0
Found = false
While Index < RuleSet.size and not Found Do

If RuleSet.rule[Index] matches Instance Then
Class = RuleSet.rule[Index].class
Found = true

Else
Index + +

EndIf
EndWhile
If not Found Then

Class = DefaultClass
EndIf
Output : Predict class Class for instance Instance

3. The other rules of the individual cannot use the default class. Neither initialization nor

mutation can make a regular rule of the individual point to the default class

4. The default rule is included in the size of the rule set. This means that the rest of the

system transparently see an individual with one more rule. This affects the parts of the

fitness formula that uses the size of the rule set as a variable

5. The default rule cannot be affected by crossover not mutation nor any other recombi-

nation operator

6. The rule deletion operator ignores the petitions to delete this rule, in the rare chances

that this rule matches nothing

7. The MDL-based fitness function computes a theory length for this rule supposing that

the rule is totally general, that is, as if it were the emergent default rule observed before

implementing this mechanism

For the specific case of two-class domains, the classification problem is transformed into a

concept learning problem and the resulting knowledge representation is quite close to the ones

used in other evolutionary concept learning systems like GABIL (DeJong, Spears, & Gordon,

1993) or GIL (Janikow, 1991).
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Figure 5.3: Representation of the extended rule set with the static default rule

Elements of the
individuals that
can be modified

Class 0

Class 1

Class i−1
Class i+1

Class n

ClassRule predicate (knowledge representation−dependent)Rule 2

ClassRule predicate (knowledge representation−dependent)Rule n

Default
rule

Match any instance Class iStatic part of
the individuals

by the genetic
operators

ClassRule predicate (knowledge representation−dependent)Rule 1

5.4 Simple policies to determine the default class

In order to answer the question of which class is suitable for being the default class we

start by experimenting with two simple policies: using the most and least frequent class in the

domain (majority and minority classes). In Section 5.6 we can see the results of these tests

for several datasets. Here we show the results (in Table 5.3 only of two datasets (Glass and

Ionosphere), also from UCI. For Glass the best policy is using the majority class. For Ionosphere

the best policy is using the minority class. The point of showing these two datasets is that

it is very difficult to decide a priori which is the most suitable default rule class for each

dataset. Also, we can see in the values of the training accuracy and the number of rules a hint

about how we can combine the two policies to maximize the performance of the system. In

Section 5.6 we show a simple combination consisting of choosing at the test stage the policy

which has more training accuracy.

5.5 Automatically determined default class

Given that neither the majority nor the minority policies are always the most suitable policy

as default class, the next step is to modify the system to automatically determine the best

default class. Our initial approach simply assigns a randomly chosen class as default class

for each individual in the initial population. Additionally, we introduce a restricted mating
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Table 5.3: Results using majority and minority policy for the default class in the Glass and
Ionosphere datasets.

Domain Def. Class. Policy Training accuracy Test accuracy Number of rules

Glass disabled 79.9±2.6 66.4±8.1 6.4±0.7
Glass majority 83.2±1.6 69.5±6.9 6.6±0.8
Glass minority 80.6±2.3 66.7±8.0 7.2±0.8

Ionosphere disabled 96.0±0.6 92.8±3.6 2.3±0.6
Ionosphere majority 95.7±0.8 90.0±4.4 5.7±1.2
Ionosphere minority 96.8±0.7 93.0±3.7 2.6±0.8

Figure 5.4: Code of the crossover algorithm with restricted mating

Niched crossover algorithm
Comment To simplify the code, Parents contains only the parent individuals
Comment already selected for crossover by the probability of crossover
Input : Parents
OffspringSet = ∅
While Parents is not empty

Parent1 = select randomly and individual from Parents
Remove Parent1 from Parents
Niche = default class of Parent1
If there are individuals in Parents belonging to Niche

Parent2 = select randomly and individual from Parents belonging to Niche
Remove Parent2 from Parents
Offspring1, Offspring2 = apply crossover to Parent1, Parent2
Add Offspring1, Offspring2 to OffspringSet

Else
Offspring = clone of Parent1
Add Offspring to OffspringSet

EndIf
EndWhile
Output : OffspringSet

mechanism to avoid crossover operations between individuals having different default classes,

summarized by the code in Figure 5.4. Having removed the default class from the rest of the

rules, crossing individuals with different default classes may create lethals with high probability.

Especially in the specific case of two-classes domains, the regular rules of individuals using

different default classes cover completely different subsets of rules, therefore it is impossible

to integrate the rules of these two individuals using the regular crossover operator.
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Figure 5.5: Evolution of the training accuracy and the number of rules for the Ionosphere
problem using majority/minority default class policies
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If we run the system in this setting, we mainly observe that all individuals with one default

class take over the population. The question is can the system choose the correct default class

during the initial iterations?. To answer this question, we show the evolution of the training

accuracy and the number of rules for the Ionosphere tests described in Figure 5.5. We can see

that the training accuracy of the default class policy using the suitable class for this problem

(that is, the minority class) is lower at the initial iterations than the accuracy of the majority

class policy. Also, we can see the reason for the better test accuracy of the minority policy in

the smaller (better generalized) rule set created by this policy.

Thus, it appears necessary to introduce an additional niching mechanism that preserves

individuals for all default classes until the system has learned enough to decide correctly on the

best default class. This niching is achieved using a modified tournament selection mechanism,
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Figure 5.6: Code for the niched tournament selection

Niched tournament selection
Input : Population, PopSize, NumNiches, TournamentSize
NextPopulation = ∅
For i = 1 to NumNiches

ProportionNiche[i] = PopSize/NumNiches
EndFor

For i = 1 to PopSize
Niche = select randomly a niche based on ProportionNiche
ProportionNiche[Niche]−−
Select TournamentSize individuals from Population belonging to Niche
winner=Apply tournament
Add winner to NextPopulation

EndFor
Output : NextPopulation

inspired in (Oei, Goldberg, & Chang, 1991) in which the individuals participating in each

tournament are forced to belong to the same class. Also, each default class has an equal

number of tournaments. This niched tournament selection is represented by the code in

Figure 5.6. The tournament with niche preservation is used until the best individuals of each

default class have similar training accuracy. After this point, the niching is disabled and the

system chooses freely among the individuals. Specifically, we compute for each niche the

average accuracy for the last 15 iterations of its best individual. When the standard deviation

of all these averages is smaller than 0.5%, we disable the niched tournament selection.

Summarizing, the changes introduced to the default rule model by the automatic policy

are the following:

1. Initialization assigns randomly to each individual a class as being the default class

2. Again, this class cannot be used in the regular rules of the individual

3. Individuals having different default class cannot cross among them. The crossover algo-

rithm is modified adding this mating restriction.

4. We use a niched tournament selection to preserve an uniform proportion of individuals

from all default classes in the population. This niching process is achieved reserving a

quota of tournaments to each niche, and only applying tournaments among individuals

belonging to the same niche.
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5. This niching mechanism is disabled when individuals using different default class can

compete fairly among themselves. Specifically, we compute, for each default class, the

average accuracy for the last 15 iterations of its best individual. When the standard

deviation of all these averages is smaller than 0.5%, the niched tournament selection is

disabled and a regular tournament selection takes places until the end of the learning

process.

5.6 Results

In this section, we show the results of comparing the three policies tested for the default

class (majority,minority,auto to the original system (orig) with emergent default rule. We

also test a fifth configuration (majority+minority): Choosing for the test stage the major-

ity/minority policy that obtained more training accuracy. This configuration usually chooses

the correct policy (although there are some exceptions, like bpa). However, this last configu-

ration takes twice as long as the other policies.

The tests include 15 datasets (bpa, bps, gls, h-s, ion, lrn, mmg, pim, son, thy, veh, wdbc,

wbcd, wine, wpbc) described in section 4.3. Table 5.4 shows the results for these tests. These

results were analyzed using pair-wise statistical t-tests with Bonferroni correction to determine

how many times each method could significantly outperform or be outperformed by the other

methods. These statistical tests are summarized in table 5.5.

At first glance, we can see that all but two datasets (wbcd and wpbc) can benefit (by one

or more of the studied default class policies) from the inclusion in the knowledge representation

of a default rule. However, the achieved accuracy increase is not uniform across the datasets.

Some of them, like gls or son, show a notable accuracy increase, while some others only show

a small, non-significant increase. To understand these different degrees of accuracy increase

we have computed the percentage of runs where the orig configuration was already generating

emergently a default rule. Table 5.6 shows these results and also the accuracy of the orig

configuration and also the accuracy of the best default class policy for each dataset (and their

difference). Although it is not totally clear, we can see correlation between the percentage of

discovered default rules and the accuracy difference between using/not using the default rule.

The clearest exception is the gls dataset. However, considering that this dataset has 6 classes,

the benefits of removing the default class from the pool of classes used in the regular rules are

already substantial even if the orig configuration was already using a default rule.

From the test accuracy averages and the t-tests results it is clear that the major+minor

policy is the best configuration, both in performance and robustness, because it has been never
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Table 5.4: Results of the tests comparing the studied default class policies to the original
configuration using pop. size 300

Domain Result
Default rule policy

Disabled Major Minor Auto Major+Minor

bpa
Training acc. 78.6±1.6 81.4±1.3 80.1±1.6 80.8±1.4 81.4±1.3

Test acc. 63.8±7.4 62.9±7.8 65.2±6.5 64.0±6.9 62.9±7.8
#rules 6.7±1.0 8.9±1.4 8.3±1.5 8.5±1.6 8.9±1.4

bps
Training acc. 84.8±0.9 86.0±0.7 86.8±0.7 86.6±0.7 86.8±0.7

Test acc. 80.1±3.9 81.2±3.6 81.5±3.6 81.4±3.7 81.5±3.6
#rules 5.1±0.4 6.1±1.1 5.7±0.9 5.6±0.8 5.7±0.9

gls
Training acc. 79.9±2.6 83.2±1.6 80.6±2.3 79.0±1.8 83.2±1.6

Test acc. 66.4±8.1 69.5±6.9 66.7±8.0 66.9±7.4 69.5±6.9
#rules 6.4±0.7 6.6±0.8 7.2±0.8 6.9±0.9 6.6±0.8

h-s
Training acc. 89.8±1.2 91.6±0.9 92.1±0.8 91.9±0.9 92.1±0.8

Test acc. 79.5±6.2 79.3±6.4 81.3±6.8 81.3±6.1 81.3±6.8
#rules 6.7±0.9 7.6±1.2 7.3±1.2 7.4±1.3 7.3±1.2

ion
Training acc. 96.0±0.6 95.7±0.8 96.8±0.7 96.8±0.7 96.8±0.7

Test acc. 92.8±3.6 90.0±4.4 93.0±3.7 93.1±3.9 93.0±3.7
#rules 2.3±0.6 5.7±1.2 2.6±0.8 2.6±0.7 2.6±0.8

lrn
Training acc. 75.2±1.9 76.8±0.8 75.4±1.4 75.4±1.0 76.8±0.8

Test acc. 68.5±4.7 68.9±5.7 68.9±4.5 68.6±5.6 68.9±5.7
#rules 8.5±1.9 9.6±1.9 9.2±1.9 8.6±1.7 9.6±1.9

mmg
Training acc. 79.7±1.8 83.2±1.3 83.1±1.3 83.0±1.4 83.2±1.3

Test acc. 66.2±7.8 68.9±8.3 67.8±8.4 66.8±9.0 68.9±8.3
#rules 6.5±0.8 6.7±0.9 6.7±0.8 6.6±0.9 6.7±0.9

pim
Training acc. 79.7±0.9 81.3±0.8 80.9±0.7 81.1±0.8 81.3±0.8

Test acc. 74.7±4.7 75.4±4.8 75.0±4.7 75.0±4.5 75.4±4.8
#rules 5.2±0.4 6.2±1.0 5.6±0.8 6.1±1.0 6.2±1.0

son
Training acc. 92.2±1.6 96.1±1.2 94.8±1.4 95.5±1.4 96.1±1.2

Test acc. 72.6±11.5 77.0±9.0 76.1±9.7 76.1±9.3 77.0±9.0
#rules 6.7±1.1 7.6±1.4 7.7±1.3 7.4±1.1 7.6±1.4

thy
Training acc. 97.4±1.0 98.4±0.7 98.4±0.7 98.1±0.8 98.4±0.7

Test acc. 91.9±5.6 92.8±4.8 92.3±5.3 92.2±5.6 92.8±4.8
#rules 5.2±0.4 5.7±0.6 5.4±0.5 5.5±0.6 5.7±0.6

veh
Training acc. 71.1±2.2 73.5±1.4 73.5±1.4 72.0±1.5 73.5±1.4

Test acc. 66.4±4.7 68.1±4.5 67.4±4.9 67.5±4.7 68.1±4.5
#rules 6.6±1.2 9.3±2.0 9.9±1.6 8.0±1.8 9.3±2.0

wbcd
Training acc. 97.7±0.3 98.2±0.3 98.4±0.3 98.4±0.3 98.4±0.3

Test acc. 95.9±2.2 95.0±2.5 95.7±2.0 95.6±2.2 95.7±2.0
#rules 2.6±0.7 5.8±1.2 3.2±0.6 3.3±0.7 3.2±0.6

wdbc
Training acc. 97.2±0.8 97.8±0.6 97.8±0.6 97.8±0.7 97.8±0.6

Test acc. 94.1±3.0 94.2±3.1 94.0±3.0 94.3±3.1 94.2±3.1
#rules 4.3±1.1 4.6±0.9 4.4±1.0 4.5±1.0 4.6±0.9

wine
Training acc. 99.4±0.5 99.7±0.4 99.9±0.3 99.6±0.4 99.9±0.3

Test acc. 92.7±5.9 93.3±6.2 92.2±6.3 93.9±5.9 92.2±6.3
#rules 3.8±0.7 3.6±0.6 4.1±0.5 3.8±0.6 4.1±0.5

wpbc
Training acc. 84.3±3.0 89.4±2.0 86.4±3.4 88.7±2.3 89.4±2.0

Test acc. 76.0±7.3 75.8±7.4 72.6±8.5 75.2±7.5 75.8±7.4
#rules 2.8±0.8 3.8±0.9 4.2±1.2 3.6±1.0 3.8±0.9

ave.
Training acc. 86.9±9.0 88.8±8.4 88.3±8.8 88.3±9.0 89.0±8.5

Test acc. 78.8±11.4 79.5±10.7 79.3±11.0 79.5±11.3 79.8±10.9
#rules 5.3±1.8 6.5±1.8 6.1±2.1 5.9±1.9 6.1±2.1

117



CHAPTER 5. INTEGRATING AN EXPLICIT AND STATIC DEFAULT RULE IN
THE PITTSBURGH MODEL

Table 5.5: Summary of the statistical t-tests applied to the results of the default rule exper-
imentation with a population size of 300 and using a confidence level of 0.05. Cells in table
count how many times the method in the row significantly outperforms the method in the
column.

Policy Disabled Major Minor Auto Major+Minor Total
Disabled - 2 1 0 0 3
Major 3 - 2 1 0 6
Minor 2 2 - 0 0 4
Auto 2 1 1 - 0 4

Major+Minor 4 2 2 1 - 9

Total 11 7 6 2 0

Table 5.6: Percentage of runs where orig configuration was already generating a default rule,
accuracy difference between orig and the best default class policy for each dataset.

Rows are sorted by the percentage of default rule generation in orig
Label meaning

DRG Percentage of runs where the default rule was generated in orig configuration
AccO Accuracy of the orig configuration
AccDR Accuracy of the best rule policy on the dataset
AccDif Accuracy difference between AccO and AccDR

Dataset DRG AccO AccDR AccDif

mmg 19.33% 66.21% 68.88% -2.67%
son 36.00% 72.58% 76.99% -4.42%
bps 40.00% 80.10% 81.55% -1.44%
veh 46.67% 66.43% 68.15% -1.72%
pim 50.67% 74.65% 75.37% -0.71%
wdbc 55.33% 94.06% 94.26% -0.20%
h-s 57.33% 79.46% 81.31% -1.85%
bpa 65.33% 63.79% 65.22% -1.43%
thy 68.67% 91.92% 92.79% -0.87%
wine 71.33% 92.74% 93.85% -1.12%
gls 74.00% 66.37% 69.52% -3.15%
lrn 76.00% 68.55% 68.93% -0.39%

wpbc 82.00% 76.03% 75.78% 0.25%
ion 86.00% 92.85% 93.13% -0.29%
bre 96.00% 95.88% 95.74% 0.14%
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Table 5.7: Default class behavior in the auto configuration

Dataset Major. class pos. Minor. class pos. Class distribution in default rule

bpa 2 1 (50.67%,49.33%)
bps 1 2 (14.67%,85.33%)
bre 1 2 (0.00%,100.00%)
gls 2 4 (14.00%,40.00%,8.67%,9.33%,14.00%,14.00%)
h-s 1 2 (32.00%,68.00%)
ion 2 1 (97.33%,2.67%)
lrn 1 5 (17.33%,35.33%,34.00%,11.33%,2.00%)

mmg 1 2 (48.00%,52.00%)
pim 1 2 (62.00%,38.00%)
son 2 1 (32.00%,68.00%)
thy 1 3 (40.67%,18.67%,40.67%)
veh 3 4 (35.33%,24.00%,13.33%,27.33%)

wdbc 2 1 (48.00%,52.00%)
wine 2 3 (4.00%,70.67%,25.33%)
wpbc 2 1 (1.33%,98.67%)

outperformed in a significant way. However, having in this configuration a run-time two times

larger than in the other configurations, we have to question whether the computational cost

sacrifice is worth it. Looking at the other configurations, major and auto are tied in accuracy

average, but auto is much more robust than major according to the t-tests.

Nevertheless, it is important to investigate why the auto policy presents lower performance

than major+minor. Table 5.7 shows the class distribution of the default rules that appear in

the auto configuration runs, and we can see that this configuration is not able to determine

always which is the most suitable default class. Actually, on only 5 of the 15 datasets the

chosen default class was almost or totally concentrated on a single class.

Another important issue is the number of iterations where the niched tournament selection

was used. Table 5.8 shows these results. We can see that for some datasets, the niching

process was used for quite a long time. It is reported in the niching literature (Goldberg,

1989b) that we should increase the population size in order to guarantee that all niches can

learn properly.

For this reason, a second set of tests was performed increasing the population size from

300 to 400. The results are shown in table 5.9. The summary of the statistical t-tests applied

to these results is in table 5.10.

Now we can see a different scenario. The increase in population size allows the auto policy

to permit all niches to learn properly. This fact is reflected on the accuracy performance of this

policy which manages to reach major+minor, both in accuracy and in robustness, based on the
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Table 5.8: Percentage of iterations that used the niched tournament selection in the default
rule auto configuration

Dataset Percentage of iterations

bpa 8.19%
bps 15.10%
bre 13.71%
gls 27.82%
h-s 13.33%
ion 6.72%
lrn 69.06%

mmg 10.79%
pim 9.41%
son 15.45%
thy 30.20%
veh 20.29%

wdbc 7.66%
wine 34.11%
wpbc 12.43%

t-tests. Now that both policies are competitive, the smaller computational cost of auto (also

compared to major+minor using a population size of 300) clearly makes it the most suitable

configuration for the default class.

Also, we can see how the only method that degrades performance when we increase the

population size is the majority class policy, suggesting that the system is sensitive to over-

learning in domains where the majority class policy is not suitable. The larger average number

of rules and the better training accuracy of the solutions generated by this policy confirm the

over-learning problem compared to all other non-composed policies.

5.7 Discussion and further work

One of the main sacrifices done in the auto default class determination policy is the mating

restriction introduced into the crossover algorithm, to prevent creating lethals, because it is

almost impossible to create competitive offspring if the parents cover different subsets of the

training instances. However, it would be useful to study if there is any feasible way to recombine

successfully individuals with different default class. If we achieve this objective, perhaps we

can reduce the population size requirements of the auto policy.
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Table 5.9: Results of the tests comparing the studied default class policies to the original
configuration using pop. size 400

Domain Result
Default rule policy

Disabled Major Minor Auto Major+Minor

bpa
Training acc. 79.3±1.7 82.0±1.4 80.7±1.4 81.0±1.6 82.0±1.4

Test acc. 64.0±7.5 62.6±7.5 64.4±6.9 64.5±7.3 62.6±7.5
#rules 6.8±1.0 8.9±1.4 8.3±1.6 8.7±1.4 8.9±1.4

bps
Training acc. 84.9±0.9 86.2±0.7 87.1±0.6 86.9±0.8 87.1±0.6

Test acc. 80.4±4.5 80.9±3.8 81.6±3.8 81.2±3.9 81.6±3.8
#rules 5.1±0.4 6.1±1.1 5.9±1.0 5.8±1.0 5.9±1.0

gls
Training acc. 80.8±2.5 83.8±1.6 81.3±2.1 79.5±1.7 83.8±1.6

Test acc. 66.8±7.0 69.1±7.7 68.0±8.3 67.1±7.4 69.1±7.7
#rules 6.5±0.7 6.8±0.8 7.5±0.9 6.7±0.8 6.8±0.8

h-s
Training acc. 90.1±1.0 92.0±0.9 92.4±0.8 92.2±0.8 92.4±0.8

Test acc. 79.4±7.0 79.2±5.8 81.6±6.9 81.2±6.6 81.6±6.9
#rules 6.6±0.8 7.8±1.3 7.4±1.2 7.4±1.2 7.4±1.2

ion
Training acc. 96.1±0.6 95.9±0.8 97.1±0.7 96.9±0.7 97.1±0.7

Test acc. 93.5±3.5 90.4±4.3 93.4±3.5 92.8±4.0 93.4±3.5
#rules 2.3±0.7 5.7±1.2 2.6±0.7 2.6±0.9 2.6±0.7

lrn
Training acc. 75.7±1.7 77.2±0.8 75.8±1.4 75.7±1.0 77.2±0.8

Test acc. 68.0±5.0 69.1±5.4 68.7±5.2 69.1±4.9 69.1±5.4
#rules 8.4±1.9 9.5±1.6 9.3±1.9 8.8±1.8 9.5±1.6

mmg
Training acc. 80.3±1.7 83.4±1.3 83.4±1.3 83.5±1.1 83.4±1.3

Test acc. 65.9±8.3 69.0±8.0 67.3±8.9 69.7±7.7 69.0±8.0
#rules 6.5±0.8 6.5±0.9 6.8±1.0 6.6±0.9 6.5±0.9

pim
Training acc. 80.0±1.0 81.5±0.7 81.2±0.7 81.4±0.7 81.5±0.7

Test acc. 74.7±4.6 75.2±4.4 74.8±4.7 74.9±4.6 75.2±4.4
#rules 5.3±0.6 6.3±1.1 5.8±0.9 6.1±1.0 6.3±1.1

son
Training acc. 92.7±1.5 96.7±1.1 95.3±1.3 96.1±1.3 96.7±1.1

Test acc. 71.3±9.4 76.2±9.1 74.6±10.1 76.3±8.9 76.2±9.1
#rules 6.7±1.0 7.6±1.3 7.7±1.5 7.6±1.4 7.6±1.3

thy
Training acc. 97.6±0.9 98.6±0.7 98.6±0.7 98.3±0.8 98.6±0.7

Test acc. 91.5±6.2 92.0±5.2 92.4±4.8 91.4±5.6 92.4±4.8
#rules 5.2±0.5 5.7±0.7 5.4±0.6 5.5±0.6 5.4±0.6

veh
Training acc. 71.9±1.9 74.1±1.3 74.2±1.2 72.6±1.3 74.2±1.2

Test acc. 66.9±4.3 67.6±4.2 68.3±4.5 67.9±4.8 68.3±4.5
#rules 6.5±1.3 9.4±1.8 10.0±1.8 8.4±1.8 10.0±1.8

wbcd
Training acc. 97.7±0.4 98.3±0.3 98.5±0.4 98.4±0.4 98.5±0.4

Test acc. 95.7±2.3 95.0±2.6 95.7±1.9 95.8±1.9 95.7±1.9
#rules 2.6±0.8 5.8±1.1 3.3±0.7 3.2±0.7 3.3±0.7

wdbc
Training acc. 97.2±0.8 98.0±0.5 97.9±0.6 97.8±0.6 98.0±0.5

Test acc. 93.9±2.9 94.4±3.1 94.4±3.2 94.4±3.1 94.4±3.1
#rules 4.3±1.2 4.8±1.1 4.2±0.7 4.5±0.9 4.8±1.1

wine
Training acc. 99.4±0.6 99.7±0.4 99.8±0.3 99.6±0.4 99.8±0.3

Test acc. 94.1±6.0 93.2±6.4 92.0±6.5 93.2±6.3 92.0±6.5
#rules 3.8±0.7 3.7±0.6 4.2±0.5 3.8±0.7 4.2±0.5

wpbc
Training acc. 84.9±2.8 89.9±1.8 87.1±3.3 89.0±2.1 89.9±1.8

Test acc. 76.6±6.7 75.3±7.0 72.4±9.1 76.3±7.1 75.3±7.0
#rules 2.8±0.9 3.9±0.9 4.4±1.2 3.7±1.0 3.9±0.9

ave
Training acc. 87.2±8.8 89.2±8.3 88.7±8.6 88.6±8.9 89.3±8.3

Test acc. 78.8±11.5 79.3±10.7 79.3±11.1 79.7±10.8 79.7±11.7
#rules 5.3±1.7 6.6±1.7 6.2±2.1 6.0±2.0 6.2±2.2
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Table 5.10: Summary of the statistical t-tests applied to the results of the default rule exper-
imentation with a population size of 400 and using a confidence level of 0.05. Cells in table
count how many times the method in the row significantly outperforms the method in the
column.

Policy Disabled Major Minor Auto Major+Minor Total
Disabled - 2 1 0 0 3
Major 1 - 1 0 0 2
Minor 1 3 - 0 0 4
Auto 1 3 1 - 0 5

Major+Minor 2 3 1 0 - 6

Total 5 11 4 0 0

Another alternative is developing more sophisticated heuristics to combine the simple poli-

cies, although they have more computational cost, because the tests show that they cannot

correctly choose the suitable policy in all datasets. More interesting would be to develop a

method that would only need some short runs, instead of running a full test for each candidate

policy. Of course, it is clear that this approach would require a very solid statistical validation

in order to assure that the decision taken is correct.

5.8 Summary of the chapter

This chapter describes the research done on methods that extend the rule-based and

decision-list-style knowledge representations for a Pittsburgh Learning Classifier System by

using a static default rule. These kind of systems tend to generate an emergent default rule,

which can increase the performance of the system. By forcing the representation of a default

rule, we intended to guarantee these positive effects.

Simple policies such as using the majority/minority class as the default class perform quite

well compared to the original system. However, they perform poorly on certain datasets

showing a somewhat lack of robustness. We can integrate the best results of both policies by

using the simple heuristic of selecting the policy with more training accuracy. This mechanism

introduces a good performance boost, but doubles the run-time.

For this reason, we have developed a mechanism that decides automatically the class for

the default rule. This technique works by integrating in a single population individuals using

all possible default classes, and letting them compete among themselves. This approach has a

problem, however, which is providing a fair competition framework, because each default rule

122



CHAPTER 5. INTEGRATING AN EXPLICIT AND STATIC DEFAULT RULE IN
THE PITTSBURGH MODEL

can have a different learning rate. In order to achieve this fairness, we use a niched tournament

selection that guarantees that all niches (different default rules) survive in the population until

they can compete successfully by themselves. This automatic mechanism performs best when

we increase the population size, which is an usual requirement in most systems that use niching,

because we have to guarantee that each niche has enough individuals to ensure building block

supply and thus successful and reliable learning.

The increase in population size for the majority/minority policies, however, showed no

performance increase and even some performance decrease, suggesting the amplification of

the policy weaknesses These weaknesses are derived from over-learning, which is reflected in

the larger training accuracy and larger average rule set sizes and also on the statistical tests.

Although the automatic policy does not outperform the major+minor policy, the accuracy

difference is quite small in most datasets and the computational cost is significantly lower.

Therefore, it appears that in most situations the automatic policy is the best method.
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Chapter 6

The adaptive discretization intervals

rule representation

This chapter describes the contributions of this thesis to the area of representations for real-

valued attributes, proposing a representation called adaptive discretization intervals rule repre-

sentation. The approach chosen to handle these attributes is by using a discretization process,

but in a special way: the intervals used in the rules are created by joining together some

adjacent cut-points proposed by a discretization algorithm. Also several discretization algo-

rithms are used at the same time, letting the system choose the most suitable one for each

dataset. With these two characteristics, the proposed representation gains robustness and has

an efficient exploration of the search space.

The chapter is structured as follows: section 6.1 will contain a larger introduction to the

chapter explaining the motivations of the main characteristics of ADI. Next, section 6.2 will

show some related work, followed by section 6.3 with an extensive description of the basic

mechanisms of the representation. Section 6.4 will illustrate the behavior of the basic repre-

sentation on some datasets, which will lead to the identification of some problems, that will

be corrected with the new operator described in section 6.5. Section 6.6 will show the exten-

sive tests done to the representation, first with several well-known discretization algorithms

alone,then combining them with some criteria and finally comparing the ADI representation

with two alternative real-valued representations. Finally, section 6.7 will show some discussion

and further work and section 6.8 will provide a summary of the chapter.
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6.1 Introduction and motivation

There are two major options when with real-valued attributes, seen from a very simplistic

point of view: handle them as nominal attributes are handled or handle the real values directly.

In order to perform the former, a discretization process is needed to convert the real values

into a finite set of intervals that are considered as nominal values.

The discretization methods (section 2.5 contents a summary of several discretization tech-

niques), however, brings up some problematic issues. The first is that there is no discretization

algorithm that allows the learning system to perform well in all datasets. This is a natural fact

because discretizers, like learning algorithms, also introduce inductive bias into the solutions

generated and, therefore, are affected by the selective superiority problem (Brodley, 1993).

If a discretization algorithm with less bias (like the unsupervised uniform-width and uniform-

frequency ones) is chosen there is another problem: probably there will be several irrelevant

cut points, which will produce a search space bigger than necessary, wasting computation time.

This chapter describes the contributions done in discretization-based representations for

real-valued attributes that can handle the two previous issues: the adaptive discretization

intervals rule representation. This representation constructs intervals using as “low-level

bricks” the cut points proposed by a discretization algorithm. The intervals constructed can

be merged with adjacent intervals or split (having a minimum size: the low-level intervals).

In this way, the problem of useless search space is solved because the representation collapses

the search space where it is possible. Also, several discretization algorithms can be used at

the same time, allowing the system to choose for each domain (and even for each attribute)

the most suitable discretization algorithm, addressing the other issue described above.

6.2 Related work

Discretization is not the only way to handle real-valued attributes in Evolutionary Compu-

tation based Machine Learning systems. Some examples are induction of decision trees (either

axis-parallel or oblique), by either generating a full tree by means of genetic programming

operators (Llorà & Garrell, 2001b) or using an heuristic method to generate the tree and using

a Genetic Algorithm and an Evolution Strategy to optimize the test performed at each node

(Cantu-Paz & Kamath, 2003). Other examples are inducing rules with real-valued intervals

(Wilson, 1999; Stone & Bull, 2003) or generating an instance set used as the core of a k-NN

classifier (Llorà & Garrell, 2001b). A broad range of systems perform classifications tasks using
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evolutionary knowledge representations based on fuzzy logic. A good review of these systems

is (Cordón, Herrera, Hoffmann, & Magdalena, 2001).

Also, there are other systems, like ADI, that perform evolutionary induction of rules based

on discretization (Giráldez, Aguilar-Ruiz, & Riquelme, 2003; Divina, Keijzer, & Marchiori,

2003). A comparison of ADI with these two methods is found in (Aguilar, Bacardit, &

Divina, 2004). Other approaches to concept learning, e.g., Neural Network, do not need any

discretization for handling numerical values.

If our ADI method is able to find the correct cut points, the performance of the system

should be quite competitive if compared to all the axis-parallel methods described above.

6.3 Basic mechanisms of the ADI representation

The semantic structure of each rule in ADI is taken from GABIL (DeJong & Spears, 1991):

Each rule consists of a condition part and a classification part: condition → decision. Each

condition is a Conjunctive Normal Form (CNF) predicate defined as:

((A1 = V 1
1 ∨ . . . ∨A1 = V 1

m)
∧

. . .
∧

(An = V n
2 ∨ . . . An = V b

m))

Where Ai is the ith attribute of the problem and V j
i is the jth value that can take the ith

attribute. This kind of predicate can be encoded into a binary string in the following way: if

we have a problem with two attributes whose values can be {1,2,3}, a rule of the form “If the

first attribute has value 1 or 2 and the second one has value 3 then we assign class 1” will be

represented by the string 110|001|1.

In GABIL for each attribute we would use a set of static discretization intervals instead of

nominal values. The intervals of the ADI representation are not static, but they evolve through

the iterations splitting and merging among them (having a minimum size called micro-interval).

Thus, the binary coding of the GABIL representation is extended as represented in figure 6.1,

also showing the split and merge operations.

In order to make the interval splitting and merging part of the evolutionary process, we

have to include it in the GAs genetic operators. We have chosen to add to the GA cycle two

special stages applied to the offspring population after the mutation stage. The new GA cycle

is represented in figure 6.2. For each stage (split and merge) we have a probability (psplit or

pmerge) of applying the operation to an attribute term. Figure 6.3 contains the code that deals

with this probability for the merge operator. The code for the split operator is similar.

A complete specification of the ADI representation is shown as follows:
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Figure 6.1: Adaptive intervals representation and the split and merge operators.
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Figure 6.3: Code of the application of the merge operator in ADI

ForEach Individual i of Population
ForEach Rule j of Population individual i

ForEach Attribute k of Rule j of Population individual i
If random [0..1] number < pmerge

Select one random interval of attribute term k
of rule j of individual i

Apply a merge operation to this interval
EndIf

EndForEach
EndForEach

EndForEach

1. A set of static discretization intervals (called micro-intervals) is assigned to each attribute

term of each rule of each individual.

2. The intervals of the rule are built joining together adjacent micro-intervals.

3. Attributes with different number and sizes of micro-intervals can coexist in the popula-

tion. The evolution will choose the correct discretization for each attribute.

4. For computational cost reasons, we will have an upper limit in the number of intervals

allowed for an attribute, which in most cases will be less than the number of micro-

intervals assigned to each attribute.

5. The mutation operator will affect the semantic part of the rule: the states (0 or 1) of

each interval in the rule. In this way, the mutation operator is identical to the one used

in GABIL.

6. When we split an interval, we select a random point in its micro-intervals to break it.

7. When we merge two intervals, the state (1 or 0) of the resulting interval is taken from the

one which has more micro-intervals. If both have the same number of micro-intervals,

the value is chosen randomly.

8. The discretization assigned in the initialization stage to each attribute term is chosen

from a predefined set.

9. The number and size of the initial intervals is selected randomly.

10. The cut points of the crossover operator can only take place in attribute terms bound-

aries, not between intervals. This restriction takes place in order to maintain the semantic

correctness of the rules.
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Figure 6.4: Code of the split operator in ADI

Split operator
Input : Attribute to split
If number of intervals in Attribute = maxIntervals (user defined)

Do nothing
Else

interval = choose randomly an interval from Attribute
If number of micro-intervals in interval > 1

cutPoint = random cut-point between the micro-intervals of interval
int1, int2 = Split interval in two by cutPoint
truth value of int1 = truth value of interval
truth value of int2 = truth value of interval
Remove interval from Attribute
Add int1 and int2 to Attribute
Increase interval count of Attribute

EndIf
EndIf
Output : Attribute

11. The bloat control methods used (like the hierarchical selection or the MDL-based fitness

function, described in chapter 8) promote individuals with both reduced number of rules

and also reduced number of intervals. If only rules were used, the search space collapsing

effect of the merge operator would not be effective.

Figures 6.4,6.5 and 6.6 show the code for the split, merge and attribute initialization

operators, respectively. Figure 6.7 shows the matching process for an rule in ADI.

The ADI knowledge representation has changed over the time. The first version (Bacardit

& Garrell, 2002a) only used one discretizer at the same time (and only uniform-width dis-

cretizers), and had the merge and split operators integrated into the mutation operator. The

next release (Bacardit & Garrell, 2002b) already used several uniform-width discretizers at the

same time and an individual-wise probability of split and merge. Finally, the probabilities of

split and merge were changed to attribute-wise ones (Bacardit & Garrell, 2003c) and uniform

and non-uniform discretization algorithms were integrated into the representation.
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Figure 6.5: Code of the merge operator in ADI

Merge operator
Input : Attribute to merge
If number of intervals in Attribute > 1

interval = choose randomly an interval from Attribute
neighbour = choose randomly an adjacent interval to interval
If number of micro-intervals in interval > number of micro-intervals in neighbour

newV alue = truth value of interval
Else If number of micro-intervals in interval < number of micro-intervals in neighbour

newV alue = truth value of neighbour
Else

If random[0, 1] < 0.5
newV alue = truth value of interval

Else
newV alue = truth value of neighbour

EndIf
EndIf
newInterval = merge interval and neighbour
Truth value of newInterval = newV alue

Remove interval and neighbour from Attribute
Add newInterval to Attribute
Decrease interval count of Attribute

EndIf
Output : Attribute
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Figure 6.6: Code of the attribute initialization in ADI

Initialization operator
Input : nothing
discretizer = choose randomly a discretization algorithm from our predefined pool
microIntervals = number of cut points of discretizer + 1
maxAllowedIntervals = min(globalMaxIntervals,microIntervals)
If maxAllowedIntervals > 2

numIntervals = random[2..maxAllowedIntervals]
Else

numIntervals = maxAllowedIntervals
EndIf
Discretizer of Attribute = discretizer
Interval count of Attribute = numIntervals
For i = 0 to numIntervals− 1

If i < numIntervals− 1
microInt = random[1..(microIntervals− (numIntervals− i− 1))]

Else
microInt = microIntervals

EndIf
microIntervals = microIntervals−microInt
interval = Create an interval with size microInt
If random[0, 1] < probabilityOfTrue (user defined)

Truth value of interval = true
Else

Truth value of interval = false
EndIf
Insert interval in Attribute

EndFor
Output : Attribute
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Figure 6.7: Code of the matching process in ADI

Matching process
Input : Rule,Instance
// To simplify, we suppose that all attributes are real-valued
matchOK = true
ForEach Attr in Instance While matchOK = true

Attribute = Attribute Attr of Rule
disc = Discretizer assigned to Attribute
interval = Value assigned to Attr by discretizer disc
sumMicroInt = 0
found = false
ForEach Interval in Attribute While found = false

sumMicroInt = sumMicroInt + number of micro-intervals in Interval
If interval < sumMicroInt

found = true
If truth value of Interval = false

matchOK = false
EndIf

EndIf
EndForEach

EndForEach
Output : matchOK
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6.4 Behaviour of the basic ADI knowledge

representation

In this section the behavior of the ADI representation presented in previous section is

analyzed. This short analysis leads us to identify a flaw in the representation, which will be

fixed with the operator presented in next section.

6.4.1 Discretizers in the population. Finding the ideal discretizer

The first issue we want to examine is the distribution of discretizers in the population. In

the ADI representation, the initialization stage assigns a random discretizer from our prede-

fined pool to each attribute term of each rule of each individual. Through the iterations, the

discretizers of the best individuals survive, but no new discretizers are inserted into the popu-

lation. This brings up the question of how the number of attributes in the population assigned

to each discretizer evolves through the iterations. This information was extracted from the

population and it is represented in figure 6.8. This figure shows the evolution of the discretizer

proportions for 4 problems (bre,irs,mmg,pim). The configuration of these tests and the ones in

next section is summarized in table 6.1. The discretizers chosen for these tests are the used in

previous work (Bacardit & Garrell, 2003c): uniform-width discretizer of 4,5,6,7,8,10,15,20,25

intervals. We show this figure to compare the behavior among the datasets. Therefore, the

same Y scale is used in all plots.

Figure 6.8 shows that all discretizers start the evolutionary process with a proportion

approximately of 1/number of discretizers. Later on, the proportions change through the

iterations. We can see that the proportions for all the datasets do not diverge too much from

their initial value, with the exception of the iris dataset. This behavior made us wonder if the

system had managed to identify the ideal discretizer for this dataset. Thus we repeated the

tests for these four datasets but using only the discretizer most frequent for each problem.

The results are detailed in table 6.2.

We can see that the only dataset where there is accuracy increase when we are using

only one discretizer is iris. It would be interesting to determine if there are other datasets

where the evolution of the discretizer proportions presents the same behavior, and check if

they manage also to identify the ideal discretizer. Unfortunately, we could not find any more

dataset presenting this behavior.
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Table 6.1: Settings of GAssist for the ADI behavior tests

Parameter Value

General parameters

Crossover prob. 0.6
Selection algorithm tournament selection
Tournament size 3
Population size 300
Individual-wise mutation prob. 0.6
Initial number of rules per individual 20
Iterations A maximum of 1500
Minimum number of rules for fitness penalty maximum of 6
Default class policy disabled
Number of strata of ILAS windowing 2

ADI knowledge representation

Probability of ONE 0.75
Probability of Split 0.05
Probability of Merge 0.05
Maximum number of intervals 5
Uniform-width discretizers used 4,5,6,7,8,10,15,20,25 bins

Rule deletion operator

Iteration of activation 5
Minimum number of rules number of active rules + 3

Hierarchical selection operator

Iteration of activation 25
Threshold 0.01

Table 6.2: Results of the experiment of using only the discretizer with more proportion in the
population

Dataset Original accuracy Accuracy with one discretizer Discretizer

bre 95.6±2.2 95.5±1.8 4 intervals
irs 95.9±3.9 97.8±3.1 6 intervals
mmg 65.0±9.0 63.1±8.8 25 intervals
pim 74.4±4.7 74.2±3.7 4 intervals
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Figure 6.8: Evolution of the discretizer proportions in the population for the bre,iris,mmg,pim
datasets
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Figure 6.9: Evolution of the proportions of the uniform-width discretizer with 15 intervals in
the population for the bre dataset
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6.4.2 Discretizers in the population. Survival of the discretizers

The next issue to analyze of the ADI representation is also related to the discretizer

proportions in the population. In figure 6.9 we show the evolution of the average proportion of

the 15 intervals discretizer for the bre dataset, but this time using error bars. We can extract

an important piece of evidence: In some runs, this discretizer disappeared from the population

in less than 30 iterations. Other discretizers and datasets show the same behavior. Is this

effect good or bad? Ideally the GA should choose the ideal discretizer for each domain and

attribute. However, in most situations the system is not prepared to choose correctly in few

iterations because it has not learned enough. It is clear that, in order to avoid this situation,

we have to create some kind of mechanism that is able to introduce new discretizers into the

population through the evolutionary process, which is presented in next section.

6.5 The reinitialize operator

This section presents the work developed (Bacardit & Garrell, 2004) to fix the problem

of good discretizers disappearing too soon from the population. A mechanism that allows all

discretizers to survive in the population until the system can choose correctly among them is
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Figure 6.10: Steps of the reinitialize operator
1. We have an attribute term of a rule in the population selected for reinitialize

2. We select randomly a discretizer from our predefined pool

3. We assign a number of intervals to the attribute. This number is randomly chosen between 2
and min(number of micro-intervals, maximum allowed intervals per attribute)

4. We assign randomly a number of consecutive micro-intervals to each interval of the attribute.
Every interval must have at least one micro-interval

5. We assign a random truth value (0 or 1) to each interval

needed.

What form should such survival mechanism take? Probably the most suitable form would

be an operator that changes the discretizer used by an attribute but maintaining, as much as

possible, the semantic structure of the attribute. That is, finding a set of intervals built over

the new discretizer as close as possible to the old ones. Unfortunately, an operator like this can

present a huge computational cost considering that it can be common to deal with datasets

that have hundreds of cut points. Therefore, we start by studying a more simple operator,

called reinitialize. This operator repeats the process done in the initialization stage of the

GA, but only for the selected individual and attribute term, as represented in figure 6.10.

This operator is applied after the merge and split stages, and the probability controlling it

is also defined for each attribute-term. In order to assign a good value to this probability we

did some tests with some probability values (0.0025,0.005,0.01,0.015). We reproduce only the

results for the mmg and pim datasets because they illustrate two different kinds of behavior.

The results are in table 6.3, where we can see a correlation between the probability increase

and the a decrease of obtained training accuracy and more rules and intervals per attribute.

However, test accuracy does not show these trends. While the pim dataset does not benefit

from this operator, the mmg dataset has a notable accuracy increase, considering that we are

comparing two versions of the same system.

Therefore, we can see that the operator is beneficial in some domains but its effects are

too much aggressive (creating poor solutions) when applied to other datasets. The reinitialize

operator needs to be redefined to have a milder behavior. The simplest way to achieve this goal

is to redefine the probability controlling the operator. The new probability decreases linearly

through the iterations until it achieves value 0 at last iteration. This fix allows the system to

explore more aggressively in the early iterations and later on, in the final iterations, refine the

good solutions. We repeated the short test with the same datasets, using as initial probabilities

the values 0.01,0.02,0.03,0.04. The results are in table 6.4.

There are some interesting differences from the previous results. The training accuracy of
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Table 6.3: Short tests of the reinitialize operator

Dataset Reinit. prob. Training acc. Test acc. # of rules Interv. per attr

mmg

0.0000 78.4±1.8 65.0±9.0 6.6±1.0 2.4±0.1
0.0025 78.4±1.8 65.7±8.8 6.5±1.0 2.5±0.1
0.0050 78.2±1.7 66.8±8.8 6.5±0.8 2.5±0.1
0.0100 77.5±1.7 67.3±9.5 6.5±0.9 2.6±0.1
0.0150 76.4±1.8 67.5±9.1 6.6±1.0 2.7±0.1

pim

0.0000 78.6±1.0 74.4±4.7 5.4±0.9 2.2±0.1
0.0025 78.1±0.9 74.4±4.5 5.1±0.6 2.2±0.1
0.0050 78.1±1.0 74.4±4.7 5.3±0.7 2.3±0.1
0.0100 77.9±1.0 74.3±4.3 5.2±0.8 2.3±0.1
0.0150 77.7±1.0 74.1±5.1 5.1±0.6 2.4±0.1

Table 6.4: Short tests of the improved reinitialize operator

Dataset Initial reinit. prob. Training acc. Test acc. # of rules Interv. per attr

mmg

0.00 78.4±1.8 65.0±9.0 6.6±1.0 2.4±0.1
0.01 78.8±1.6 65.7±9.4 6.5±0.8 2.4±0.1
0.02 78.4±1.7 66.2±9.4 6.5±1.0 2.5±0.1
0.03 78.4±1.5 67.1±8.1 6.4±0.7 2.5±0.1
0.04 78.0±1.8 67.2±8.0 6.6±1.0 2.5±0.1

pim

0.00 78.6±1.0 74.4±4.7 5.4±0.9 2.2±0.1
0.01 78.7±1.0 74.6±4.5 5.3±0.9 2.3±0.1
0.02 78.7±1.0 74.6±4.4 5.4±1.0 2.3±0.1
0.03 78.6±1.0 75.1±4.5 5.3±0.7 2.3±0.1
0.04 78.5±1.1 74.3±4.7 5.2±0.7 2.3±0.1
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tests with the reinitialize operator is slightly higher that the original configuration. This shows

that we have achieved the objective of creating an operator that helps in exploring the search

space for better solutions while being soft enough so as not to destroy these solutions in the

final iterations. Even more interesting is the test accuracy, because now we obtain an accuracy

increase over the original ADI configuration in both domains. Extensive experimentation of

this reinitialize operator was conducted (Bacardit & Garrell, 2004), showing that the most

suitable initial probability of reinitialization was 0.02. New tests of this kind will be repeated

in next section, experimenting this time with all kinds of discretization algorithms.

6.6 Which are the most suitable discretizers for ADI?

This section will describe the extensive experimentation performed to determine which is the

most suitable set of discretization algorithms for the ADI knowledge representation. First, some

tests will be conducted using each studied discretization algorithm alone. The performance

of the discretizers by itself will be used by several criteria to propose some combination of

discretization algorithms, that will be tested will different settings of the reinitialize operator,

in order to find the best configuration for ADI. Finally, this best configuration will be compared

to two alternative knowledge representations handling directly real values.

6.6.1 Testing each discretization algorithm alone

The aim of this first set of experiments is to determine which are the candidate discretiza-

tion algorithms that will be used together in later experiments. The chosen discretization

algorithms (described in section 2.5) are the following:

• Uniform-width (Liu, Hussain, Tam, & Dash, 2002)

• Uniform-frequency (Liu, Hussain, Tam, & Dash, 2002)

• Id3 (Quinlan, 1986)

• Fayyad & Irani (Fayyad & Irani, 1993)

• Màntaras (Cerquides & de Mantaras, 1997)

• USD (Giráldez, Aguilar-Ruiz, Riquelme, Ferrer, & Rodŕıguez, 2002)

• ChiMerge (Kerber, 1992)
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Table 6.5: Discretizers used in the ADI experimentation with the chosen sets of parameters

Discretization algorithm parametrizations

Uniform-width 5,10,15,20,25 bins

Uniform-frequency 5,10,15,20,25 bins

ID3 —

Fayyad & Irani —

Màntaras —

USD —

ChiMerge significance levels: 0.01,0.5

Random —

Also, as a baseline, a random discretization algorithm will be used. This discretizer chooses

as cut points a random subset of the mid-points between all values in the attribute do-

main. Some of the chosen discretization algorithms need to be parametrized. The chosen

parametrizations of all discretizers are described in table 6.5. The total number of discretizers

tested (counting the different parametrizations of each discretizer) will be 17. Table 6.6 shows

the configuration used in the test, tables A.1 through A.14 of appendix A show the results of

these tests for each tested dataset, and table 6.7 shows the average results over all datasets.

From the averages of the results we can see some interesting facts. There are some differ-

ences between the training accuracy of some methods, especially between ID3 and Màntaras.

This is a consequence of the number of cut-points proposed by each discretizer (table 6.8

shows the average number of cut points per attribute for each discretization algorithm). ID3

is the discretizer generating more intervals (leaving out Random), and Màntaras the one gen-

erating less intervals. However, this difference does not translate into test accuracy, where the

difference is very small. The number of rules and the run time of the Màntaras discretizer also

reflect that this discretizer generates a small number of cut points.

If we look in general at the most important result, the test accuracy, we see that on

average the accuracy differences between all methods are small, even for the random discretizer.

However, we cannot say that all discretizers all equally good, because if we look at the results

of any individual dataset we can see large accuracy differences. Of course, this was expected,

it only reflects the specific inductive bias of each discretization algorithm. To gain more

insight on the discretizers performance we need to apply statistical tests to the results. Table

6.9 summarizes the pairwise t-tests with Bonferroni correction applied to the results. For

each discretizer it shows how many times it has been able to outperform significantly another

discretizer (with a 95% confidence level) and also how many times it has been outperformed.
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Table 6.6: Settings of GAssist for the ADI single discretizers tests

Parameter Value

General parameters

Crossover prob. 0.6
Selection algorithm tournament selection
Tournament size 3
Population size 400
Individual-wise mutation prob. 0.6
Initial number of rules per individual 20
Iterations A maximum of 1500
Minimum number of rules for fitness penalty maximum of 6
Default class policy auto

ADI knowledge representation

Probability of ONE 0.75
Probability of Split 0.05
Probability of Merge 0.05
Maximum number of intervals 5

Rule deletion operator

Iteration of activation 5
Minimum number of rules number of active rules + 3

MDL-based fitness function

Iteration of activation 25
Initial theory length ratio 0.075
Weight relax factor 0.90
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Table 6.7: Averages of the results of the ADI tests with a single discretizer

Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 90.3±8.3 80.3±11.9 5.8±2.0 46.9±32.6
ChiMerge 0.50 91.3±7.6 80.7±11.8 6.3±2.4 48.6±33.0

Uniform frequency 10 90.5±7.8 81.1±11.5 6.8±2.4 47.1±31.1
Uniform frequency 15 90.6±7.7 80.8±11.7 6.8±2.4 47.4±31.5
Uniform frequency 20 90.7±7.6 81.0±11.4 6.8±2.4 47.8±31.8
Uniform frequency 25 90.7±7.5 80.9±11.4 6.7±2.5 47.9±32.4
Uniform frequency 5 89.2±8.4 80.9±11.3 6.6±2.2 46.2±31.0

ID3 91.3±7.4 81.1±11.5 6.6±2.4 46.5±30.7
Màntaras 85.0±12.8 80.9±12.6 5.1±1.9 37.5±28.9
Fayyad 86.4±11.4 80.7±12.3 4.9±1.8 41.0±30.7
Random 89.1±8.9 80.0±11.9 6.3±2.0 46.7±31.8

Uniform width 10 89.2±8.8 80.7±12.4 6.5±2.5 45.0±30.7
Uniform width 15 89.8±8.4 81.0±12.2 6.6±2.6 45.6±30.7
Uniform width 20 90.1±7.9 81.1±11.6 6.6±2.5 45.4±30.5
Uniform width 25 90.1±8.1 80.8±12.0 6.6±2.6 45.5±30.5
Uniform width 5 87.1±10.6 80.0±13.6 6.1±2.1 43.2±28.9

USD 90.2±8.3 80.3±12.0 6.2±2.1 44.4±29.9

Table 6.8: Average number of cut-points per attribute for the tested discretization algorithms

Discretizer bal bpa gls h-s ion irs lrn mmg pim thy wbcd wdbc wine wpbc Ave.

ChiMerge 0.01 1.61 4.48 5.20 2.15 8.60 4.00 5.57 5.80 5.49 3.56 2.73 9.03 3.90 4.70 4.77
ChiMerge 0.50 3.00 9.56 9.32 4.35 9.41 7.10 10.00 10.00 9.74 10.00 6.34 10.00 10.00 10.00 8.49
Uniform frequency 10 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00
Uniform frequency 15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00
Uniform frequency 20 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00
Uniform frequency 25 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00
Uniform frequency 5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
ID3 4.00 43.06 71.09 21.24 61.54 13.60 109.67 81.15 100.75 27.18 8.74 151.05 50.79 61.11 57.50
Màntaras 2.38 0.02 0.74 0.74 1.34 2.62 3.02 0.70 1.12 3.71 2.67 1.83 1.88 0.03 1.63
Fayyad 2.00 0.33 1.52 0.75 3.10 2.12 3.17 0.98 1.45 2.63 2.96 1.98 1.85 0.06 1.78
Random 1.47 23.86 51.18 13.60 106.18 13.82 67.96 96.95 72.24 31.87 4.53 234.41 44.55 78.37 60.07
Uniform width 10 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00
Uniform width 15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00
Uniform width 20 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00
Uniform width 25 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00
Uniform width 5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
USD 1.00 19.43 50.12 9.56 60.17 5.26 73.38 80.26 48.98 11.01 2.31 129.18 32.39 55.80 41.35
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Table 6.9: Pairwise t-tests applied to the results of the tests with single discretizers

Discretizer #times outperforming #times outperformed

ChiMerge 0.01 10 36
ChiMerge 0.50 13 18

Uniform frequency 10 21 5
Uniform frequency 15 15 14
Uniform frequency 20 18 12
Uniform frequency 25 15 12
Uniform frequency 5 16 27

ID3 18 7
Màntaras 41 26
Fayyad 33 34
Random 11 37

Uniform width 10 25 24
Uniform width 15 23 15
Uniform width 20 31 5
Uniform width 25 20 10
Uniform width 5 25 45

USD 14 22

From the results of the t-tests we can see that the discretizer that is able to outperform

significantly more times than anyone the other methods, the Màntaras discretizer, is also one of

the most outperformed ones, showing that it lacks some robustness capacity, which probably is

a consequence of generating so few cut-points. In some domains the loss of information created

by the discretization becomes critical. We can see that the most robust discretizers (the ones

being outperformed less times than anyone) are Uniform-width 20, Uniform-frequency 10 and

ID3. ID3 having the best training accuracy average and showing also its robustness we can

say that it is the best single discretization algorithm.

6.6.2 Testing the groups of discretization algorithms

In order to propose the groups of discretizers that are going to be tested we rely on the

following criteria, that created the sets of discretizers described in table 6.10 :

1. The 8 discretizers that were significantly outperforming another discretization algorithm

more times, based on the t-tests

2. The 4 discretizers that were significantly outperforming another discretization algorithm
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Table 6.10: Selected sets of discretizers for the multiple discretizers ADI experimentation

Group Discretizers in group

Group 1

Màntaras
Fayyad & Irani

Uniform-width 20
Uniform-width 5
Uniform-width 10
Uniform-width 15

Uniform-frequency 10
Uniform-width 25

Group 2

Màntaras
Fayyad & Irani

Uniform-width 20
Uniform-width 5

Group 3

Uniform-frequency 10
Uniform-width 20

ID3
Uniform-width 25

Uniform-frequency 20
Uniform-frequency 25
Uniform-frequency 15

Uniform-width 15

Group 4

Uniform-frequency 10
Uniform-width 20

ID3
Uniform-width 25

Group Discretizers in group

Group 5

Màntaras
Fayyad & Irani

USD
ID3

Group 6

Uniform-width 4
Uniform-width 5
Uniform-width 6
Uniform-width 7
Uniform-width 8
Uniform-width 10
Uniform-width 15
Uniform-width 20
Uniform-width 25

Group 7

Uniform-frequency 4
Uniform-frequency 5
Uniform-frequency 6
Uniform-frequency 7
Uniform-frequency 8
Uniform-frequency 10
Uniform-frequency 15
Uniform-frequency 20
Uniform-frequency 25

more times, based on the t-tests (a subset of the previous discretizer)

3. The 8 discretizers that were significantly outperformed by another discretization algo-

rithm less times, based on the t-tests

4. The 4 discretizers that were significantly outperformed by another discretization algo-

rithm less times, based on the t-tests (a subset of the previous discretizer)

5. The discretization algorithms with no parameters

6. The set of uniform-width discretizers used in previous work (Bacardit & Garrell, 2004)

7. An equivalent set of discretizers to the previous one but using uniform-frequency dis-

cretization
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Table 6.11: Averages of the results of the ADI tests with the groups of discretizers, without
reinitialize

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 89.6±8.3 81.2±13.3 6.0±2.2 44.4±29.7
Group 2 88.9±8.9 81.3±13.3 5.7±2.0 42.6±28.8
Group 3 90.5±7.7 81.0±13.1 6.4±2.4 46.8±30.9
Group 4 90.5±7.8 81.1±13.2 6.4±2.4 45.9±30.3
Group 5 89.9±8.1 81.3±13.3 5.8±1.9 44.3±29.8
Group 6 89.3±8.5 80.8±13.7 6.2±2.2 44.7±30.0
Group 7 90.2±7.8 81.3±13.1 6.4±2.2 46.8±30.6

Testing the groups of discretizers without the reinitialize operator

The first experiments done on these groups of discretizers consists of an equivalent test

to the previous tests using only a single discretizer, that is, without the reinitialize operator.

The average results over all datasets of these tests appears in table 6.11. The full results of

these tests are in appendix A. We can see from the averages of the test accuracy that the

performance of the groups of discretizers, even if there is no increase, are more robust than

using a single discretization algorithms. The range of average accuracies obtained goes from

80.8% to 81.3%, compared to the 80.0%-81.1% of the single discretizers, validating that the

approach of mixing several discretizers is feasible.

Moreover, we compared statistically the performance of the best single discretizer (ID3)

with these groups, using the usual pairwise t-tests. Table 6.12 shows the results of these tests,

indicating by the few significant differences found that all configurations perform similarly.

Maybe we can only discard group 6, because it is the one showing less robustness. What these

results show is that the groups of discretization algorithms are unable to discover in all tests

the most suitable discretizer. This picture changes slightly in the next set of tests, when we

activate the reinitialization operator.

Testing the groups of discretizers with the reinitialize operator

The next set of tests will use the reinitialization operator. As we have described in sec-

tion 6.5, previous tests (Bacardit & Garrell, 2004) showed that the most robust reinitialize

probability (in the tested datasets) was 0.02. These previous tests only used group 6 of dis-

cretization algorithms. Also, some of the techniques used in the current tests (like the default

rule mechanism or the MDL-based fitness function) were not used before. Therefore we will

run the tests again to determine the best reinitialize probability for each group of discretizers.
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Table 6.12: Results of the t-tests comparing the best single discretizer with the seven tested
groups of discretizers without reinitialize operator, using a confidence level of 0.05. Cells in
table count how many times the method in the row significantly outperforms the method in
the column.

ID3 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Total
ID3 - 0 1 0 0 0 1 0 2

Group 1 0 - 0 0 0 0 0 0 0
Group 2 0 0 - 1 0 0 1 0 2
Group 3 0 0 1 - 0 0 0 0 1
Group 4 1 0 0 0 - 0 1 1 3
Group 5 0 0 0 0 0 - 1 0 1
Group 6 0 0 0 0 0 0 - 0 0
Group 7 0 0 1 1 0 0 1 - 3

Total 1 0 3 2 0 0 5 1

We tested probabilities are 0.01,0.02,0.03,0.04, and table 6.13 shows the average results on

all datasets. As usual, the full details of the results are in appendix A.

We can see that the reinitialize operator, using almost any of the tested probabilities, pro-

duces an accuracy increase. The ranges of average accuracies obtained are (81.2%-81.5%),

(81.3%-81.6%), (81.3%-81.9%) and (81.4%-81.7%). These ranges are totally non-overlapped

compared to the performance of the single discretizer tests, and almost non-overlapped com-

pared to the tests without reinitialize. With these observations we can almost assure the

benefits of the reinitialize operator, backing our previous results. The accuracy differences

might seem small, but we want to remind that these results are averages over all discretizers,

and we are only comparing different settings of the same system. Therefore, we think that

these results are quite relevant.

The next goal is to determine, from these results, the best settings for each group of

discretization algorithms. For this task we will rely, as usual, on the results of the statistical t-

tests. This time we will compare, for each group of discretization algorithms, all experimented

settings with and without reinitialize. The results of these statistical t-tests are shown in table

6.14.

Some different behavior can be observed from the results: group 1 is totally insensitive to

the reinitialize operator, no significant differences were observed. On the other hand, group

6 benefits totally from reinitialize because the only outperformed configuration was the one

without the operator. This result was expected, as this operator was designed using only this

group of discretizers. However, groups 2, 3 and 4 to a lesser degree also benefit from reinitialize.

The opposite case is group 5, the one with only supervised and parameter-less discretizers,
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Table 6.13: Averages of the results of the ADI tests with the groups of discretizers with
reinitialize

Reinit. prob. Discretizer Training acc. Test acc. #rules Run-time (s)

0.01

Group 1 90.1±8.0 81.5±12.9 5.9±2.2 45.1±30.6
Group 2 89.5±8.5 81.5±13.0 5.6±2.1 43.3±29.8
Group 3 90.8±7.6 81.4±13.2 6.3±2.5 47.2±31.7
Group 4 90.8±7.6 81.2±13.3 6.3±2.4 45.9±30.8
Group 5 90.4±7.8 81.3±13.2 5.7±2.1 44.4±30.4
Group 6 89.7±8.2 81.2±13.5 6.0±2.3 45.3±30.7
Group 7 90.4±7.8 81.2±13.1 6.3±2.3 47.1±31.5

0.02

Group 1 90.1±8.0 81.4±13.1 5.8±2.3 45.2±30.9
Group 2 89.6±8.4 81.5±12.9 5.6±2.2 43.6±30.2
Group 3 90.7±7.7 81.3±13.3 6.2±2.5 46.9±31.8
Group 4 90.7±7.7 81.6±12.9 6.1±2.4 45.8±31.1
Group 5 90.3±7.9 81.3±13.3 5.7±2.2 44.7±30.8
Group 6 89.8±8.2 81.3±13.3 5.9±2.3 44.9±30.7
Group 7 90.3±7.8 81.4±13.0 6.1±2.2 46.5±31.2

0.03

Group 1 90.0±8.1 81.6±12.9 5.7±2.3 44.8±30.9
Group 2 89.6±8.4 81.9±12.8 5.5±2.2 43.2±30.2
Group 3 90.6±7.7 81.3±13.1 6.1±2.4 46.1±31.4
Group 4 90.5±7.7 81.6±13.0 6.1±2.4 45.2±30.7
Group 5 90.3±7.9 81.4±13.2 5.6±2.2 43.9±30.4
Group 6 89.7±8.2 81.5±13.0 5.9±2.4 44.5±30.6
Group 7 90.1±7.8 81.6±12.7 6.1±2.3 46.2±31.5

0.04

Group 1 89.9±8.1 81.7±12.9 5.7±2.3 44.7±30.9
Group 2 89.4±8.4 81.5±13.1 5.5±2.2 43.1±30.2
Group 3 90.5±7.7 81.6±13.1 6.0±2.4 46.2±31.6
Group 4 90.4±7.8 81.5±13.1 6.0±2.4 45.0±30.9
Group 5 90.1±8.0 81.5±12.9 5.6±2.2 43.7±30.6
Group 6 89.5±8.2 81.5±13.3 5.8±2.3 44.6±30.8
Group 7 90.0±7.9 81.4±13.1 6.1±2.3 46.1±31.6
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Table 6.14: Results of the t-tests comparing, for each group of discretizers, all configurations
tested, using a confidence level of 0.05. The table shows for each configuration how many
times it has been able to outperform significantly another method, and how many times it has
been outperformed.

Group of disc. Config. Times outperforming Times outperformed

Group 1

NoReinit 0 0
Reinit 0.01 0 0
Reinit 0.02 0 0
Reinit 0.03 0 0
Reinit 0.04 0 0

Group 2

NoReinit 0 6
Reinit 0.01 1 1
Reinit 0.02 1 0
Reinit 0.03 3 0
Reinit 0.04 2 0

Group 3

NoReinit 0 5
Reinit 0.01 0 1
Reinit 0.02 4 1
Reinit 0.03 1 1
Reinit 0.04 4 1

Group 4

NoReinit 0 4
Reinit 0.01 0 1
Reinit 0.02 2 0
Reinit 0.03 2 0
Reinit 0.04 1 0

Group 5

NoReinit 3 0
Reinit 0.01 0 1
Reinit 0.02 0 0
Reinit 0.03 0 1
Reinit 0.04 0 1

Group 6

NoReinit 0 7
Reinit 0.01 1 0
Reinit 0.02 2 0
Reinit 0.03 2 0
Reinit 0.04 2 0

Group 7

NoReinit 1 2
Reinit 0.01 0 1
Reinit 0.02 0 0
Reinit 0.03 1 1
Reinit 0.04 2 0
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which shows better results without the reinitialize operator. Group 7 shows unclear results,

although it seems that it can also benefit from reinitialize.

With the results of the t-tests and also using the accuracy averages for the case where

there was no significant differences among the methods, we determine that the best setup for

each group of discretization algorithms is the following:

Group 1 Configuration with reinitialize and probability 0.04

Group 2 Configuration with reinitialize and probability 0.03

Group 3 Configuration with reinitialize and probability 0.04

Group 4 Configuration with reinitialize and probability 0.03

Group 5 Configuration without reinitialize

Group 6 Configuration with reinitialize and probability 0.03

Group 7 Configuration with reinitialize and probability 0.04

Now it is time to determine which is the best group of discretization algorithms for ADI.

Therefore, new t-tests will be performed comparing the best configuration of each group,

described above. The results of these t-tests are in table 6.15. From these t-tests we can

conclude that the best group is group 2, because it is the one outperforming other methods

more times than any other group, and it is also the one being outperformed less times than

any other group.

If we compare the performance of group 2 with the performance of using ADI with a single

discretizer using the t-tests we see that group 2 is able to outperform another configuration

(single discretizer in this case) 56 times, and it is being significantly outperformed only twice.

If we look at the t-tests results of the single discretizers experimentation in table 6.9 we see

that these results are better than the achieved by any single discretizer. This last comparison

helps to confirm that the combination of discretizers is the most feasible way to use ADI, and

that the set of discretizers in group 2 performs well and it is also very robust. Now it is time

to compare the ADI representation with other alternatives.
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Table 6.15: Results of the t-tests comparing the best setup of each group of discretizers,
using a confidence level of 0.05. Cells in table count how many times the method in the row
significantly outperforms the method in the column.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Total

Group 1 - 0 0 1 1 1 1 4
Group 2 0 - 1 1 2 1 3 8
Group 3 0 0 - 0 2 0 1 3
Group 4 0 0 1 - 2 0 2 5
Group 5 0 1 1 1 - 1 1 5
Group 6 1 0 2 1 2 - 2 8
Group 7 0 0 0 0 1 1 - 2

Total 1 1 5 4 10 4 10

6.6.3 Comparing ADI to two representations handling directly with

real values

For this final comparison two knowledge representations have been selected:

Unordered bounds intervals representation (UBR) This representation uses rules with to-

tally conjunctive predicates. The term assigned to each attribute in the rule is a real-

valued interval codified with two real values, the bounds of the interval. The position

of the lower and the upper bound is not defined, the lower of the two real values is

the lower bound, the higher is the upper bound, like the ones used in (Stone & Bull,

2003). The representation is extended with two bits per attribute, which define if the

lower or the upper bound are relevant. If one of these two bits declares its assigned

bound as irrelevant, the test in the rule is converted to a “greater than” or “less than”

type of test. If both bits are set to true, the test is always true, declaring the attribute

irrelevant. In initialization these two bits have a 50% probability of being true, and the

initial intervals have a size ranging from 25% to 75% of the attribute domain. Mutation

flips the state of the bits or adds/subtracts a random offset from the bounds of the

interval. The crossover operator is unchanged.

Instance set representation This representation (Llorà & Garrell, 2001a) evolves a set of

synthetic prototypes, that act as the core of a 1-nearest neighbour classifier. Euclidean

distance function is used. Mutation adds or subtracts a random offset from the attribute

value, crossover is unchanged.
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These are not the only real-valued representations existing in the literature (Cordón, Her-

rera, Hoffmann, & Magdalena, 2001; Llorá & Wilson, 2004), we selected only the two options

described above because they are simple and easy to configure, and have a similar genetic

representation (especially compared knowledge representations evolving decision trees). Also,

in this comparison we do not include other non-evolutionary learning systems. The aim of

these tests is to seek how suitable these knowledge representations are in the framework of our

system. That is, how compatible the bias introduced by the representation and the one intro-

duced by the learning system are. A comparison of GAssist with some other non-evolutionary

learning systems appears in chapter 9.

Table 6.16 shows the results of the experimentation with the two selected real-valued

knowledge representations. This table also includes two configurations of ADI, one using the

best single discretization algorithm (ID3) and another one using group 2 of discretizers. For

the sake of simplicity, we used common parameters for all configurations.

These results show how, on average, the best knowledge representation is the one evolving a

set of instances. However, it has a computational cost which is four times higher than the cost

of ADI. Also, this high accuracy does not translate into robustness. If we compute the t-tests

over these results, shown in table 6.17, we can see that the instance set representation is the

one outperforming most times, but it has been outperformed one more time than ADI-Group2.

These results are a natural consequence from the difference in representation bias between the

instance knowledge representation and all the other three (axis-parallel) representations. It is

normal that this representation can achieve better results in some datasets, while it performs

worse in some others. In general we can consider its performance, in the framework of GAssist

as good, but given that it is not more robust than ADI-Group2 and that it has a computational

cost 4 times higher, we can consider that ADI-Group2 is also a very good choice; it sacrifices

some accuracy but it is much faster.

On the other hand, the performance of the representation codifying real-valued intervals

can be considered as somewhat poor. Its only good quality is that it runs faster than ADI,

but looking at the training accuracy we can see that this representation, as it is, has some

problems exploring the real-valued search space. The huge reduction in the size of the search

space introduced by the discretization process appears to be beneficial in this case.
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Table 6.16: Results of the tests comparing ADI to two real-valued representations.

Dataset Technique Training acc. Test acc. #rules/#prototypes Run-time (s)

bal

ADI-ID3 85.8±0.7 78.7±4.4 10.7±2.2 36.8±5.2
ADI-Group2 85.1±0.7 79.3±3.5 9.7±1.9 34.2±5.5

UBR 88.2±1.0 80.1±4.3 13.5±2.5 26.5±4.8
Instances 92.2±0.2 90.0±2.0 35.5±15.6 129.7±22.0

bpa

ADI-ID3 84.9±1.6 65.3±7.4 9.6±1.8 42.3±6.7
ADI-Group2 79.3±1.5 66.8±6.9 7.5±1.3 38.3±5.6

UBR 77.6±3.4 62.8±7.1 8.9±1.3 25.8±4.0
Instances 83.6±1.7 66.2±7.7 27.7±8.1 94.1±13.9

gls

ADI-ID3 82.4±1.9 69.6±9.1 7.3±1.1 85.0±5.2
ADI-Group2 79.3±2.3 67.3±9.8 6.7±0.8 84.3±6.0

UBR 78.3±2.2 67.4±9.4 8.5±1.1 55.5±4.6
Instances 88.1±2.3 67.5±9.9 30.5±5.1 330.4±55.2

h-s

ADI-ID3 91.5±1.0 79.8±7.2 7.3±1.2 24.7±2.0
ADI-Group2 90.7±1.0 81.1±7.7 7.0±0.9 24.4±2.5

UBR 91.4±1.4 79.2±7.6 8.7±1.3 18.3±2.4
Instances 92.2±1.1 81.2±6.8 13.4±3.9 54.1±8.5

ion

ADI-ID3 97.7±0.9 90.1±5.5 3.7±1.1 62.2±11.5
ADI-Group2 97.2±0.5 92.3±5.0 2.1±0.3 54.5±8.3

UBR 96.3±2.2 90.4±4.9 4.8±1.1 37.3±6.5
Instances 98.7±0.5 90.8±5.0 18.0±5.6 390.3±64.8

irs

ADI-ID3 98.2±0.8 95.0±5.8 3.6±0.7 3.8±0.5
ADI-Group2 97.9±0.9 94.4±5.9 3.5±0.6 4.1±0.5

UBR 97.9±0.9 94.4±5.6 3.8±0.7 2.7±0.6
Instances 99.5±0.4 95.2±6.0 4.2±0.9 6.0±0.8

lrn

ADI-ID3 76.9±1.0 69.2±5.2 9.2±1.9 88.1±8.2
ADI-Group2 76.0±0.8 69.9±4.7 7.6±1.2 90.8±8.2

UBR 75.9±1.2 69.0±5.0 8.6±1.5 85.2±13.7
Instances 78.7±1.1 66.5±4.9 67.2±17.0 510.4±112.4

mmg

ADI-ID3 87.6±1.5 64.9±10.8 7.1±1.1 50.6±6.6
ADI-Group2 83.4±1.3 68.7±11.2 6.5±0.7 46.0±4.4

UBR 81.4±2.5 64.8±10.3 6.9±0.9 31.7±4.1
Instances 79.9±1.8 63.4±10.8 8.4±1.7 100.8±9.5

pim

ADI-ID3 84.2±0.8 73.7±4.8 9.5±1.9 104.6±15.5
ADI-Group2 82.9±0.8 74.9±4.9 7.6±1.4 103.1±11.6

UBR 82.4±1.3 74.0±4.6 10.3±1.2 64.5±12.2
Instances 84.6±0.9 74.8±5.3 37.9±11.7 379.4±62.4

thy

ADI-ID3 99.1±0.7 92.9±5.3 5.4±0.6 8.5±0.9
ADI-Group2 99.0±0.5 92.1±5.4 5.3±0.5 8.5±0.9

UBR 97.3±1.1 91.5±5.8 5.4±0.6 5.8±0.8
Instances 99.6±0.5 95.7±3.8 5.3±0.6 13.7±1.5

wbcd

ADI-ID3 98.5±0.3 95.7±2.4 3.5±0.7 15.7±2.1
ADI-Group2 97.9±0.4 96.0±2.3 3.0±0.7 14.7±1.8

UBR 98.1±0.4 95.4±2.5 4.4±1.4 12.9±3.0
Instances 98.4±0.3 96.0±2.4 6.7±4.1 76.3±16.7

wdbc

ADI-ID3 98.9±0.4 94.2±3.0 5.2±1.2 69.9±15.3
ADI-Group2 98.0±0.5 94.0±3.1 3.9±0.7 54.9±9.3

UBR 97.4±0.8 93.9±3.0 5.0±1.2 36.9±6.6
Instances 99.1±0.3 96.6±2.5 5.4±2.4 189.5±53.9

wine

ADI-ID3 99.7±0.4 93.7±5.5 3.9±0.8 15.0±1.7
ADI-Group2 99.9±0.3 93.8±5.6 3.2±0.5 14.3±1.3

UBR 99.4±0.5 92.3±6.1 4.6±1.1 10.2±1.0
Instances 100.0±0.1 96.3±4.6 3.7±0.7 30.7±4.7

wpbc

ADI-ID3 92.5±1.7 73.2±8.8 6.7±1.5 43.7±9.3
ADI-Group2 87.2±2.1 76.3±8.1 3.3±1.1 32.4±4.2

UBR 88.7±1.8 72.9±8.5 7.7±1.4 28.4±2.7
Instances 89.4±1.8 75.8±7.9 7.6±2.8 91.5±9.9

Ave.

ADI-ID3 91.3±7.4 81.1±11.5 6.6±2.4 46.5±30.7
ADI-Group2 89.6±8.4 81.9±12.8 5.5±2.2 43.2±30.2

UBR 89.3±8.6 80.6±13.4 7.2±2.6 31.6±22.6
Instances 91.7±7.6 82.6±14.1 19.4±17.7 171.2±157.1
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Table 6.17: Results of the t-tests comparing the ADI representation with two alternative
knowledge representations handling directly real values, using a confidence level of 0.05. Cells
in table count how many times the method in the row significantly outperforms the method
in the column.

ADI-ID3 ADI-Group2 UBR Instances Total

ADI-ID3 - 1 1 2 4
ADI-Group2 4 - 6 3 13

UBR 1 0 - 1 2
Instances 6 4 8 - 18

Total 11 5 15 6

6.7 Discussion and further work

In order to decide which were the best single discretizers and, after, the best groups of

discretizers we have used the same set of 14 datasets. In order to validate if the group of

discretizers that was determined by all the experimentation to be the best is really competent,

we have to test it over a much larger set of problems.

The rest of this section deals with the dynamics of the ADI representation. We have seen,

first from the results, and then looking at the proportions of each discretizer in the population

that ADI was not able to discover the most suitable discretizers in all datasets used in the

experimentation. In order to fix this problem, we introduced the reinitialization operator,

which performs a very drastic and destructive action. Playing with the probability controlling

the operator we have been able to use it with almost no destructive effects. However, there may

be other ways to apply the operator, by either a different probability setting policy, biasing the

random selection of the new discretizer or perhaps by selecting deterministically the attributes

that are going to be reinitialized based on some criteria that studies the performance of the

attribute.

Nevertheless, instead of fixing the problem of the discretizers disappearing from the popu-

lation, we should avoid it. Looking at the previous chapter, dealing with default rules, we have

developed a niching process to allow the system to choose correctly a default class. In some

sense, here we are in the same situation. We should preserve all discretizers until the system

is able to decide by itself. The problem is that performing a niching process over attributes is

difficult, because an individual can contain in most datasets hundreds of attributes. If we use

traditional recombination operators, this task is very difficult. Maybe, in order to deal with this

question we should transform our system into a kind of estimation of distribution algorithm
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(Larranaga & Lozano, 2002), that samples individuals from a model. If we can construct

individuals piece by piece, it is much easier to implement the needed niching mechanisms.

6.8 Summary

In this chapter we have described our contribution in the area of representations for real-

valued attributes in genetic-base machine learning. This contribution is a representation,

called adaptive discretization intervals (ADI) rule representation, that evolves rules that can

use multiple discretization algorithms, letting the evolution choose the correct discretization

for each rule and attribute. Also, the intervals defined in each discretization can split or merge

among them through the evolution process, reducing the search space where it is possible.

The chapter started by describing the basic mechanisms of the representation, then the

illustration of the behavior of this basic system led to identifying some problems that motivated

the development of a new operator, also described in depth.

Next came a large number of experiments. First testing the representation using only one

discretizer at the same time. Several proposals of groups of discretizers were made, using

the performance of these single-discretizer tests to determine these groups. The groups of

discretizers were tested in several setups of the representation. These tests were useful to

learn which was the most suitable configuration for each group of discretizers (and, as an

extension, for the families of discretizers represented by the groups). The tests validated

that the combination of discretizers is a better approach than using only one discretization

algorithm, because we obtain a system with slightly higher accuracy but which is much more

robust.

The ADI representation with the best single and composed set of discretizers was compared

against two alternative knowledge representations handling directly real values, one evolving

real-valued intervals and one evolving a set of instances as a core of a nearest neighbour

classifier. The comparison with the UBR representation showed that ADI performs better and

is more robust. The comparison against the representation generating prototypes showed that,

although the accuracy of ADI is smaller, it manages to be equally robust, and it is much

faster. This leads to the conclusion that both representations, ADI as well as the instance-

set-generation are equally good for using inside the framework of GAssist

Finally we described some further work, focusing especially on how to fix or solve the

problem of being able to guarantee that we can choose correctly the discretizer that is going

to be used in the representation.
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Chapter 7

Windowing techniques for

generalization and run-time reduction

Windowing methods are useful techniques to reduce the computational cost of Pittsburgh-style

genetic-based machine learning techniques. Also, if used properly, they can also be used to

improve the classification accuracy of the system. This chapter describes the research done

on these techniques. After describing the development of the windowing method that we

use, called ILAS (incremental learning by alternating strata), we start by studying its behavior

on small datasets, proposing a model of the maximum run-time reduction degree achievable

without performance decrease. Also, a run-time model is developed. The models lead us

to propose several strategies for the use of ILAS. On small datasets they are used to check

how can we maximize the performance of the system with minimum overhead, or maintain

this performance with significant run-time reduction. On large datasets the objective is to

achieve good performance while reducing very significantly (sometimes one or more order of

magnitude) the run-time.

The chapter is structured as follows: First, section 7.1 will contain an introduction to the

windowing techniques studied, followed by section 7.2 containing some related work. Next,

section 7.3 will show an historical description of the development process of ILAS illustrated

with some past results that will show the motivation for the rest of the chapter. Section 7.4

will describe the models developed to study the behavior of ILAS, followed by the experimental

study of the performance of ILAS in small datasets in section 7.5. Next, section 7.6 will contain

the corresponding experimentation on large datasets, section 7.7 will provide a discussion about

the studied windowing technique and some further work. Finally, section 7.8 will summarize

the chapter.
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7.1 Introduction

One of the traditional drawbacks associated to the GBML systems using the Pittsburgh

approach is the high computational cost associated. The reason of this cost, as usual in GAs,

is the fitness computation. In this case because computing the fitness of each individual means

using it to classify the whole training set.

We can primarily reduce the cost of these fitness computations by either: (a) decreasing

complexity of the individuals or (b) decreasing the dimensionality of the domain to be classified

(there are other methods such as fitness inheritance or informed competent operators but they

may affect the whole GA cycle). The former methods are usually referred to as parsimony

pressure methods (Soule & Foster, 1998). The latter methods are either characterized as fea-

ture selection methods, reducing the number of problem attributes, or as incremental learning

or windowing methods, reducing the number of training instances per fitness computation.

In previous work (Bacardit & Garrell, 2003d; Bacardit & Garrell, 2003b), we empirically

tested some training set reduction schemes. These schemes select a training subset to be

used for fitness computation, changing the subsets through the iterations of the GA process.

Thus, being a kind of windowing process. Our previous results showed that the techniques

achieved the run-time reduction objective with no significant accuracy loss. Sometimes, test

accuracy actually increased, indicating knowledge generalization pressures that may alleviate

over-fitting. The technique that obtained the best performance is called ILAS (incremental

learning by alternating strata). This technique divides the training set into n strata, which are

the subsets used in the fitness computations. It changes the used strata at each iteration, using

a round-robin policy. The new research being described in this chapter will focus exclusively

on ILAS.

We use the “Incremental Learning” term to name this scheme in the sense that the individ-

uals of the population (rule sets) are refined through the iterations based on some knowledge

(instances) that is presented to these individuals in small increments (strata). It should not

be confused with other kinds of learning methods in which the model (e.g. a rule set) is con-

structed by merging partial modules learned with subsets of the training set (Giraud-Carrier,

2000).

In our previous work several open questions remained. From a run-time reduction per-

spective, we were interested in deriving a model of the maximal learning time reduction while

avoiding significant accuracy loss. From a learning perspective, we were interested in the

learning time reduction that maximizes accuracy in the system, given a constant run time. In

order to achieve the latter objective, the development of a run-time cost model was needed. In

(Bacardit, Goldberg, Butz, Llorá, & Garrell, 2004) the development of these models started,
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based on some synthetic datasets.

These models were a framework for future experimentation on ILAS, which is described

in this chapter. The experimentation is split in two parts: ILAS focused on small datasets

and ILAS focused on large datasets. On small datasets, maximizing the performance is the

main objective. On large problems the objective is to achieve the maximum run-time reduction

possible without significant accuracy loss.

7.2 Related work

Following the classification of training set reduction techniques described in section 2.6,

the ILAS windowing scheme is a modified learning algorithm. In previous work (Bacardit

& Garrell, 2003b), reproduced in next section, the prototype selection approach was tested,

using a Case-Base Maintenance technique called ACCM (Salamó & Golobardes, 2003) which

is based on Rough Sets theory. The results obtained, however, were poor, both in accuracy

and computational cost. The prototype selection way has a very high risk of introducing an

irreversible negative bias into the system. This bias is smaller in ILAS because all instances of

the training set, through the learning process, are used. Moreover, one of the two models of

ILAS described in this chapter has as an objective to analyze this bias.

The GABIL system (DeJong, Spears, & Gordon, 1993), which is the original inspiration of

GAssist, is an example of wrapper method. As said in section 3.5 this approach does not seem

to be very suitable for real-world problems. Also, the wrapper approach is not very suitable for

a GBML system (especially a Pittsburgh one) because the base computational cost of running

a full GA learning process is already high. Even if we can reduce considerably the training set,

the overhead of the GA cannot be ignored.

From a GBML perspective, described in section 3.5, the windowing techniques studied in

this chapter can be considered as generation-wise, and performing a sampling process controlled

by age exclusively.
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7.3 The development process of the ILAS windowing

technique and previous results

This section describes the development process that led to the proposal of the windowing

technique, ILAS, studied in this chapter. This process consisted of the sequential proposal of

three windowing techniques, each of them fixing the problems of the previous one. The third

technique is ILAS, the windowing method used in the rest of the chapter. All techniques varied

the subset of training examples used for the fitness computations through the GA iterations.

The criteria to select this subset (stratum) and also when and how often this stratum was

changed defined each of them. The section also reproduces the initial results achieved with

these techniques.

7.3.1 Basic Incremental Learning (BIL)

Our first proposal simply divides the training set and the GA iterations in N uniform parts,

and uses the training stratum 1 for the first stage of iterations, training stratum 2 for the

second stage of iterations, and so on. The last iteration of the learning process will use the

whole training set because we need to select the individual which will provide the final theory,

and it should be a good solution for all the training data, not only for the final stratum.

The original examples are reordered to maintain, for each stratum, the same class distribution

that exists in the whole training set. This scheme is represented by the code in figure 7.1.

The procedure to reorder the examples in strata with equal class distribution is described in

figure 7.2. The aim of this procedure is to generate strata reducing the introduced bias of the

stratification as much as possible.

A quick test was done to check the performance of this BIL scheme. The test used the

bps problem which is detailed in section 4.3, the configuration of GAssist for all the tests in

this section is summarized in table 7.1. Tests with 2, 3 and 4 strata were done, and the results

are shown in table 7.2. The meaning of the column labeled speedup is the ratio between the

non-incremental and incremental schemes run times. This speedup cannot be compared to

the speedup measure of algorithm parallelization because we are modifying the algorithm. For

this reason, we can find speedups higher than the number of strata used.

The speedups obtained using 2 and 3 strata were as expected, and a surprise for the 4 strata

test. However, there was an accuracy (percentage of correctly classified examples) loss for all

the incremental tests. These results bring up a question: Is this decrease normal? Looking

at the systems described in the related work section we can see reports of both performance

increase and decrease. Thus, we have to explore why we have a performance decrease and
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Figure 7.1: Code of the Basic Incremental Learning scheme

Procedure Basic Incremental Learning
Input : Examples, NumStrata,NumIterations
Initialize GA
Examples = ReorderExamples(Examples,NumStrata)
Iteration = 0
StrataSize = size(Examples)/NumStrata
While Iteration < NumIterations

IfIteration = NumIterations− 1
TrainingSet = Examples

Else
CurrentStratum = int(Iteration ·NumStrata/NumIterations)
TrainingSet= examples from Examples[CurrentStratum · StratumSize]

to Examples[(CurrentStratum + 1) · StratumSize]
EndIf
Run one iteration of the GA with TrainingSet
Iteration = Iteration + 1

EndWhile
Output : Best set of rules from GA population

Figure 7.2: Code of the strata generation with equal class distribution

Procedure ReorderExamples
Input : Examples, NumStrata
NumClasses = number of classes existing in Examples
ListsOfExamples = V ector[NumClasses] of sets of examples
Strata = V ector[NumStrata] of sets of examples
ForEach example in Examples

cls = class of examples
Add example to ListsOfExamples[cls]

EndForEach
stratum = 0
ForEach cls in NumClasses

While size of ListsOfExamples[cls] > 0
example = remove a random example from ListsOfExamples[cls]
Add example to Strata[stratum]
stratum = (stratum + 1) mod NumStrata

EndWhile
EndForEach
NewExamples = Merge Strata into a single set putting in order the examples of each strata
Output : NewExamples
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Table 7.1: Settings of GAssist for windowing experiments reported in section 7.3

Parameter Value

General parameters
Crossover prob. 0.6
Selection algorithm tournament selection
Tournament size 3
Population size 300
Individual-wise mutation prob. 0.6
Initial number of rules per individual 20
Iterations A maximum of 1000
Minimum number of rules for fitness penalty maximum of 6
Default class policy disabled

ADI knowledge representation
Probability of ONE 0.75
Probability of Split 0.05
Probability of Merge 0.05
Maximum number of intervals 5
Uniform-width discretizers used 4,5,6,7,8,10,15,20,25 bins

Rule deletion operator
Iteration of activation 5
Minimum number of rules number of classes in dataset + 3

Hierarchical selection operator
Iteration of activation 25
Threshold 0.01
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Table 7.2: Quick test of the BIL scheme

Strata Test accuracy acc. increase speedup

1 80.2% — —
2 79.5% -0.7% 1.92
3 79.0% -1.2% 2.96
4 78.9% -1.3% 4.81

Figure 7.3: Accuracy evolution for the Basic Incremental Learning scheme for the bps problem
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whether it can be fixed. The next scheme will try to solve this problem.

7.3.2 Basic Incremental Learning with a Total Stratum (BILTS)

The reason of the performance decrease of the BIL scheme can be seen by looking at the

accuracy evolution through the iterations. This evolution is represented in figure 7.3. At each

stratum change, there is an accuracy loss because the knowledge of the current population is

not enough to classify some of the new training examples.

Thus, new knowledge has to be learned. The process of adding new knowledge will modify

some of the current rules, but it will also add new ones. This can lead to a situation where

some of the good rules for the previous strata are not used anymore, and these rules are deleted

by our rule deletion operator. The old useless knowledge is forgotten. Looking again at the

graph in figure 7.3 we can see a performance hit at the end of the learning. This is due to
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Figure 7.4: Code of the Basic Incremental Learning with Total Stratum scheme

Procedure Basic Incremental Learning with Total Stratum
Input : Examples, NumStrata,NumIterations
Initialize GA
Examples = ReorderExamples(Examples,NumStrata)
Iteration = 0
StratumSize = size(Examples)/NumStrata
While Iteration < NumIterations

CurrentStratum = int(Iteration · (NumStrata + 1)/NumIterations)
If CurrentStratum = NumStrata

TrainingSeg = Examples
Else

TrainingSeg= examples from Examples[CurrentStratum · StratumSize] to
Examples[(CurrentStratum + 1) · StratumSize]

EndIf
Run one iteration of the GA with TrainingSeg
Iteration = Iteration + 1

EndWhile
Output : Best set of rules from GA population

using the whole training stratum in the last iteration. All the forgotten knowledge could be

useful again, but it is missing.

How can we fix the problem of forgetting good knowledge and, as a consequence, prevent

the performance loss? Switching off the rule deletion operator is not a feasible solution because

the population would grow without control, as was seen in chapter 8. A simple alternative is

adding a stage at the end of the learning process where all the training examples are used.

This scheme, called Basic Incremental Learning with a Total Stratum (BILTS) is represented

by the code in figure 7.4.

We repeated the same quick tests done for the previous scheme, and its results can be

seen in table 7.3. Figure 7.5 shows the graph of the accuracy evolution. The performance loss

is smaller now and even there is performance increase using 4 strata. The speedup, obviously,

is less than the obtained with the previous scheme, but it is still worthy.

With this second scheme we have fixed the loss of knowledge derived from a stratum

change, but it has cost a decrease in the speedup of the system. Instead of fixing the loss of

knowledge maybe we should prevent it and, therefore, avoid the stage of the learning using

the whole training set.
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Table 7.3: Performance of the Basic Incremental Learning with Total Stratum scheme

Strata Test accuracy acc. increase speedup

1 80.2% — —
2 80.1% -0.1% 1.50
3 80.0% -0.2% 2.06
4 80.5% +0.3% 2.93

Figure 7.5: Accuracy evolution for the Basic Incremental Learning with Total Stratum scheme
for the bps problem
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Figure 7.6: Code of the Incremental Learning with Alternating Strata scheme

Procedure Incremental Learning with Alternating Strata
Input : Examples, NumStrata,NumIterations
Initialize GA
Examples = ReorderExamples(Examples,NumStrata)
Iteration = 0
StratumSize = size(Examples)/NumStrata
While Iteration < NumIterations

IfIteration = NumIterations− 1
TrainingSeg = Examples

Else
CurrentStratum = Iteration mod NumStrata
TrainingSeg= examples from Examples[CurrentStratum · StratumSize] to

Examples[(CurrentStratum + 1) · StratumSize]
EndIf
Run one iteration of the GA with TrainingSeg
Iteration = Iteration + 1

EndWhile
Output : Best set of rules from GA population

7.3.3 Incremental Learning with Alternating Strata (ILAS)

In order to prevent a knowledge loss we should use all the training examples with enough

frequency to assure that all the knowledge of the individuals becomes useful and, as a con-

sequence, it is not forgotten. Bringing this idea to the extreme, we propose another scheme

called Incremental Learning with Alternating Strata, which changes the used stratum at each

iteration. Its code can be seen in figure 7.6.

Again, we repeated the same quick test. Its results can be seen in table 7.4 and in figure

7.7. Some oscillations have appeared in the evolution of the incremental schemes. They are

due to the fact that there are some strata which are easier than some others. By easier strata

we understand strata that have, by chance, less noise, more uniform distribution of examples,

etc. Now the results are really surprising for both the accuracy increase and the speedup. How

can we explain the performance and speedup increase?

Our hypothesis is based on the behavior of the classifier system given our fitness function

(squared training accuracy). This fitness function does not make differences whether training

examples are learned (creating generalized rules) or memorized (creating specific rules). Using

a non-incremental GA, the easiest way to increase the fitness is to memorize examples instead

of learning them. Generality pressure methods can reduce this problem, but not completely fix

it.
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Figure 7.7: Accuracy evolution for the Incremental Learning with Alternating Strata scheme
for the bps problem. Sampling of the accuracy every 5 iterations

0.7

0.75

0.8

0.85

0.9

0 50 100 150 200 250 300

Tr
ai

n 
A

cc
ur

ac
y

Iterations

1 stratum
2 strata
3 strata
4 strata

Table 7.4: Performance of the Incremental Learning with Alternating Stratum scheme

Strata Test accuracy acc. increase speedup

1 80.2% — —
2 80.5% +0.3% 2.05
3 80.8% +0.5% 3.6
4 80.4% +0.2% 6.01

The ILAS scheme changes dramatically the environment of the GA population: The adap-

tation of the individuals to the high frequency changes of the training set consists of learning

the examples instead of memorizing them, because the chances of surviving in the population

become higher. The use of the rule deletion operator implicates that all the rules have to, at

least, match one example in every stratum. This fact penalizes specific rules.

Therefore, more generalized solutions are generated and these solutions have more chances

of having a good test accuracy. Also, more generalized solutions usually mean smaller solutions.

This is the reason of the speedup increase and can be seen in figure 7.8.
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Figure 7.8: Evolution of the number of rules for the incremental learning schemes with two
strata in the bps problem
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7.3.4 Some previous results on ILAS

Table 7.5 show previous results (Bacardit & Garrell, 2003b) of the ILAS scheme applied to

some datasets. The first three datasets are small (less than 1000 instances), while the rest of

datasets are of medium size (ranging from 6435 to 10992 instances). For the small datasets

we tested ILAS using 2, 3 and 4 strata and for the medium datasets we used 5, 10 and 20

strata. The ILAS scheme is compared to the standard non-windowed system, labeled NON.

The table includes results for accuracy and speedup.

The datasets shown in table 7.5 exhibit different behavior patterns. The runs in the

small datasets show that accuracy increases in wbcd and ion when using ILAS but not in

pim. Moreover, the maximum accuracy for wbcd is achieved using 3 strata, while in ion it

is achieved using 4 strata. In the large datasets, a larger number of strata slightly decreases

accuracy while strongly improving computational cost. Thus, using ILAS can be beneficial

in two aspects: either an actual accuracy increase may be achieved in small datasets while

achieving significant run-time reduction or stronger run-time reduction can be achieved while

only slightly decreasing accuracy. We are interested in how ILAS may be applied to achieve

optimal results focusing on learning time and learning accuracy with respect to the number of

strata s.

In the next section, we first develop a model of what makes a dataset hard for ILAS. Once

we achieve this objective and we know which is the maximum number of strata we can use for
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Table 7.5: Previous results of ILAS and plot of individual size reduction. Dat=dataset, Sch =
windowing scheme, Acc=Test accuracy, Spe=Speedup

Dat Sch Acc Spe

wbcd

NON 95.6% —
ILAS2 95.9% 2.72
ILAS3 96.0% 4.63
ILAS4 95.8% 5.70

ion

NON 89.5% —
ILAS2 90.2% 2.72
ILAS3 90.6% 4.63
ILAS4 91.0% 5.70

pim

NON 75.2% —
ILAS2 74.8% 2.67
ILAS3 74.6% 4.41
ILAS4 74.0% 5.85

Dat Sch Acc Spe

pen

NON 79.9% —
ILAS5 79.9% 5.18
ILAS10 79.4% 10.37
ILAS20 78.9% 20.44

sat

NON 79.9% —
ILAS5 79.9% 4.73
ILAS10 79.4% 9.04
ILAS20 78.9% 16.54

thy

NON 93.6% —
ILAS5 93.7% 5.20
ILAS10 93.6% 9.84
ILAS20 93.5% 18.52

a dataset, we can decide with how many strata ILAS should be applied to a given problem.

If the dataset is small, we can use ILAS to improve the accuracy performance of the system

regardless of the run-time reduction. Therefore, we need to predict how many GA iterations

of ILAS use make it has the same run-time as the non-windowed system. On the other hand,

if we are dealing with a medium or large dataset where the run-time reduction is the main

concern, we have to predict how many iterations we can perform given a maximum run time.

For both kinds of datasets we need to develop a run-time model.

7.4 The behavior models of ILAS

This section presents our models for the hardness of a dataset for ILAS and a computational

cost model. The models are crucial for estimating the optimal ILAS settings for a given

problem.

7.4.1 What makes a problem hard to solve for ILAS?

We start our study focusing on the multiplexer (Wilson, 1995) family of problems—a

widely used kind of dataset with a well-known model. Our first step is to perform experiments

determining how many iterations are needed to achieve 100% accuracy (convergence time)
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Table 7.6: Settings of GAssist for windowing experiments reported in section 7.4

Parameter Value

General parameters
Crossover prob. 0.6
Selection algorithm tournament selection
Tournament size 3
Population size 300
Individual-wise mutation prob. 0.6
Initial number of rules per individual 20
Iterations A maximum of 1500
Minimum number of rules for fitness penalty maximum of 6
Default class policy disabled

ADI knowledge representation
Probability of ONE 0.75
Probability of Split 0.05
Probability of Merge 0.05
Probability of Reinitialize (begin,end) (0.02,0)
Maximum number of intervals 5
Uniform-width discretizers used 4,5,6,7,8,10,15,20,25 bins

Rule deletion operator
Iteration of activation 5
Minimum number of rules number of classes in dataset + 3

MDL-based fitness function
Iteration of activation 25
Initial theory length ratio 0.075
Weight relax factor 0.90

using the ILAS scheme for a given number of strata. The results of the experiments for the 6

(MX6) and 11 (MX11) bits multiplexer are shown in Figure 7.9. The plots are averaged over

50 independent runs. The settings of these tests are summarized in table 7.6

For both datasets we can see that the convergence time increases with the number of

strata in an exponential way. Before a certain break point, the first part of the curve can be

approximated by a linear increase. This break point is the maximum number of strata that is

worth using in a dataset.

Intuitively we may suspect that after the break point the strata tend to miss-represent the

whole training set causing learning disruptions. Since we know the optimal rule size in the

multiplexer dataset, we are able to estimate how representative a strata may be. In the case of

MX6 we have 8 rules, each rule covering 8 instances. In the case of MX11 we have 16 rules,

each one covering 128 instances1. Only by observing these numbers it is quite easy to see

1Figure 5.1 in chapter 5 shows the optimal rule set for the MX-11 domain
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Figure 7.9: Convergence time for the MX6 and MX11 datasets
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that MX6 has a higher risk of having one of these rules unrepresented in some strata, which

translates into having a break point at strata 3 (as seen in figure 7.9).

In order to predict the break point, we calculate the probability of having a particular rule

(which corresponds to a sub-solution) unrepresented in a certain strata. We can approximate
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this probability supposing uniform sampling with replacement:

P (unrepresented rule/s) = (1− p)
D
s (7.1)

where p denotes the probability that a random problem instance represents a particular rule,

D is the number of instances in the dataset and s is the number of strata. The probability

essentially estimates the probability that a particular rule is not represented by any problem

instance in a strata.

A general probability of success (requiring that no rule is unrepresented) of the whole

stratification process can now be derived using the approximation (1 − r
s)

s ≈ e−r twice to

simplify:

P (success/s) = (1− P (unrepresented rule/s))rs (7.2)

P (success/s) = e−rs·e−
pD
s (7.3)

where r denotes the number of rules. The derivation assumes that p is equal for all rules which

is the case for our experimental verification below. If p differs, a derivation of success is still

possible but the closed form is not derivable anymore.

The model is experimentally verified for MX6 and MX11 in figure 7.10. The experimental

plot is the average of performing 2500 stratification processes and monitoring when there

was an unrepresented rule. We can observe that the theoretical model is quite close to the

experimental data, although it is slightly more conservative.

If we overlap this probabilistic model with the convergence time curve we can see that

the exponential area of the convergence time curve starts approximately when the success

probability drops below 0.95. We show this observation in figure 7.11 for the MX6 and MX11

and also for two versions of MX6 that have 2 (MX6 2) and 4 (MX6 4) additional redundant bits,

thus being more robust to the stratification process than MX6. We can predict approximately

the break point, achieving one of the objectives of this section.
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Figure 7.10: Probability of stratification success. Verification of model with empirical data
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Figure 7.11: Comparison of the convergence time and the probability of stratification success.
The vertical scale for left hand side of plots corresponds to iterations of convergence time.
The scale for right hand side is the probability of stratification success (equation 7.3). The
vertical and horizontal lines mark the 0.95 success point
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7.4.2 Cost model of ILAS

The second objective of this section is the development of a run-time model. Assuming

constant run time per iteration, we can model the run-time of the system by

T = α · it (7.4)

where T denotes the total time of the learning process, α the time per iteration and it the

number of iterations. This supposition may seem to contradict the rationale for the speedup

results reported in section 7.3. The experimental setup used here has changed in one crucial

parameter: the minimum number of rules of the rule deletion operator, which has increased

considerably. While the number of alive rules in the individuals decreases when we increase

the used strata, maintaining the implicit generalization pressure reported previously, the total

number of rules per individuals is maintained approximately constant, which allows us to

assume the supposition stated above.

Figure 7.12 shows α values for MX6, MX6 2 and MX6 4. Clearly, α is strongly dependent

on the number of instances in a dataset. As hypothesized above, time approximately behaves

inverse proportional to the number of strata. To have a better insight in α, we compute α′ as

α′
s = αs/α1, that is, the value of α for s strata over the value for one strata. Figure 7.12 also

shows α′.

The evolution of α′ can be approximated by a formula such as α′ = a/s + b, where s is

the number of strata and b is a constant that needs to be adjusted to the problem at hand

(from applying the formula for 1 stratum we know that a = 1− b). In order to assign a value

to b effectively developing a predictive model for α′, we did some tests with several datasets

of the MX6 family (with redundant bits and redundant instances) and performed a regression

process. The results of these tests are in table 7.7 and show that b is mostly correlated to the

number of instances in the dataset, and can be modeled as b = c/D+d, applying regression

again for c and d. These values, for an Athlon XP 2500+ with Linux and gcc 3.3 are 25.051

for c and 0.0270435 for d.

The model of α′ is verified experimentally with two different datasets: MX11 and LED

(using 2000 instances). LED was selected because it is similar to a real problem than the MX

datasets due to the added noise. The comparison of the model and the empirical data can be

seen in figure 7.13, which shows that the model is quite accurate.

With this α′ model we can now deduce a formula to approximate the optimal number of

iterations to maximize accuracy within a constant running time. The question is how many

iterations using s strata (its) have the same run time as a base run time using one strata and
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Figure 7.12: α (time per iteration) and α′ (α relative to a single stratum) values for some
datasets

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  2  4  6  8  10  12  14  16

α

Strata

MX6
MX6-2
MX6-4

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16

α
’

Strata

MX6
MX6-2
MX6-4

it1 iterations. its can be estimated by

its =
it1 · s

1 + b · (s− 1)
, (7.5)

setting a = 1− b. This formula is quite interpretable: b is the overhead of the GA cycle. If it

were 0, the speedup obtained would be optimal and we could do as many iterations as it1 · s
for s strata. This overhead, however, also depends on the number of strata showing that the

stratification does affect not only the evaluation stage of the GA cycle but also the whole GA

cycle.

176



CHAPTER 7. WINDOWING TECHNIQUES FOR GENERALIZATION AND
RUN-TIME REDUCTION

Table 7.7: Values of constants a & b of the α′ model for several datasets of the MX6 family.
These values are highly dependent on the computer used (Athlon XP 2500+ with Linux and
gcc 3.3 in this case)

Instances Bits a b
64 7 0.646565 0.376474
128 7 0.773325 0.237257
128 8 0.748979 0.2611
256 7 0.857456 0.144431
256 8 0.855623 0.146535
256 9 0.841101 0.16176
512 10 0.90852 0.0910079
512 7 0.916831 0.0814565
512 8 0.920005 0.081788
512 9 0.919123 0.0540724
1024 10 0.95798 0.0398794
1024 11 0.953393 0.0450033
1024 7 0.959353 0.0365472
1024 8 0.956824 0.03408
2048 11 0.981321 0.017982
2048 8 0.985519 0.0177624

7.5 Testing ILAS in small datasets

This section puts into practice the ILAS windowing system in a large set of real datasets

of small size. The objective of these tests is two-fold: on one hand we seek to determine if the

models of the ILAS behavior presented in the previous section are valid for real datasets. On

the other hand, it is time to validate in a rigorous way the good performance of ILAS reported

in previous work (Bacardit & Garrell, 2003d; Bacardit & Garrell, 2003b).

To achieve both objectives, three strategies of the use of ILAS will be tested:

Constant Learning Steps (CLS) This strategy starts by setting a number of iterations of the

system with only one strata. That is, without using windowing. This number of iterations

is assigned by running the system until no further improvement of the training accuracy

is achieved. Then, the configuration with two strata uses twice as many iterations, the

configuration with three strata uses three times as many iterations, etc. The learning

steps name comes from the Michigan LCS nomenclature, and means the number of input

instances tested by the population in the learning process. In the context of GAssist, the

meaning is approximately the same (the only difference is the last iteration of GAssist,

which uses all the training set).

177



CHAPTER 7. WINDOWING TECHNIQUES FOR GENERALIZATION AND
RUN-TIME REDUCTION

Figure 7.13: Verification of the alpha′ model with MX11 and LED datasets

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16

α
’

Strata

MX11 dataset

Experimental
Theoretical

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5  6  7  8  9  10

α
’

Strata

LED dataset

Theoretical
Experimental

Constant Time (CT) This strategy uses approximately the same run-time for all the config-

urations with different number of strata. The used run-time is the one achieved by the

constant learning steps strategy with the non-windowing configuration. The run-time

model described in the previous section and equation 7.5 are needed to use this strategy.

Constant Iterations (CI) In this strategy, all tested configurations with different number of

strata will use the same number of iterations, the ones determined for the Constant

Learning Steps strategy for the non-windowed configuration.

The methodology used for setting the initial number of iterations for the constant learning

steps strategy is somewhat problematic, because it is quite probable that, in some of the

datasets, it will mean generating solutions with over-learning. We think it is not a drawback

for two reasons: (1) it will reflect even more the implicit generalization pressure introduced
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Table 7.8: Number of iterations used for the non-windowed configuration of the constant
learning steps strategy of ILAS

dataset iterations dataset iterations dataset iterations

bal 500 h-s 250 thy 250
bpa 600 hep 250 vot 250
bre 1000 ion 450 wbcd 250
cmc 500 irs 250 wdbc 300
col 500 lab 250 wine 300
cr-a 500 lym 500 wpbc 300
gls 1500 pim 750 zoo 250
h-c 500 prt 750
h-h 500 son 400

by ILAS and (2) as the results of these experiments and the used statistical tests will show,

using ILAS is beneficial in almost all datasets. This means that we will also have developed

a systematic way of setting the number of iterations for GAssist. This issue is problematic in

general for systems using the Pittsburgh model, because the number of iterations needed to

generate competent solutions depends of several factors, like the size of the training set, the

number of rules in the solution generated, etc.

After the results of each strategy are described, the best configurations for each of them

will be compared.

7.5.1 The constant learning steps strategy

Table 7.10 shows the average results of this strategy. The full results on the selected

experimentation framework containing 25 datasets are represented in table B.1 in appendix

B. The non-windowed configuration plus four number of strata (2, 3, 4 and 5) were tested,

making a total of 5 tested configurations for each dataset. For the sake of clarity, table 7.8

reproduces the number of iterations used for the non-windowed configuration on each dataset.

Also, the parameters of the system were configured as described in table 7.9.

Looking at the average results of ILAS over all datasets we can see the general behaviour

of this windowing schema: With the increase of the number of strata, the training accuracy

and the number of rules decreases while the test accuracy increases until a certain point and

then it too starts to decrease. From the analysis of the ILAS behavior in the previous section

we can say that this decrease in test accuracy is due to the lack of representativity of the whole

training set on each strata.
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Table 7.9: Settings of GAssist for windowing experiments reported in section 7.5

Parameter Value

General parameters
Crossover prob. 0.6
Selection algorithm tournament selection
Tournament size 3
Population size 400
Individual-wise mutation prob. 0.6
Initial number of rules per individual 20
Iterations A maximum of 1500
Minimum number of rules for fitness penalty maximum of 6
Default class policy auto

ADI knowledge representation
Probability of ONE 0.75
Probability of Split 0.05
Probability of Merge 0.05
Probability of Reinitialize (begin,end) (0.02,0)
Maximum number of intervals 5
Uniform-width discretizers used 4,5,6,7,8,10,15,20,25 bins

Rule deletion operator
Iteration of activation 5
Minimum number of rules number of classes in dataset + 3

MDL-based fitness function
Iteration of activation 25
Initial theory length ratio 0.075
Weight relax factor 0.90

Table 7.10: Average results of the constant learning steps strategy tests of ILAS

#Strata Training acc. Test acc. #rules Run-time (s)

1 92.02±10.89 82.34±13.50 7.45±3.37 60.89±47.26
2 91.57±11.03 82.64±13.45 6.77±2.76 70.51±57.03
3 90.87±11.25 82.58±13.48 6.13±2.26 80.01±65.98
4 90.30±11.43 82.36±13.54 5.86±2.10 90.01±75.45
5 89.98±11.33 82.38±13.47 5.74±2.07 99.96±85.02
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Table 7.11: Results of the t-tests comparing the 5 tests configurations of ILAS using the
constant learning steps strategy, using a confidence level of 0.05. Cells in table count how
many times the method in the row significantly outperforms the method in the column.

1 stratum 2 strata 3 strata 4 strata 5 strata Total

1 stratum - 0 1 1 1 3
2 strata 1 - 0 3 1 5
3 strata 1 0 - 0 1 2
4 strata 1 0 0 - 0 1
5 strata 1 0 0 1 - 2

Total 4 0 1 4 3

Now it is time to determine which is the most suitable configuration of ILAS for the

constant learning steps strategy. The most desirable option would be not to select a global

best setting, but have a method to predict, for each dataset, which is the ideal number of

strata. Actually, the aim of the model of stratification success described in previous section was

exactly to be able to predict the most suitable number of strata for each dataset. However,

using this model for real datasets (supposing that the number of rules that we obtain are

equivalent to the number of niches in the dataset) has some problems:

• Not all rules cover the same number of examples. This problem is the smallest one,

because we still can compute the stratification success probability, even if it not with a

closed-form formula

• The system might have split a niche into two rules, which would mean that we would

create an over-pessimistic model.

• We cannot know if some rules cover examples that are simply noise, inconsistencies or

outliers. This is the most difficult problem, and does not has a clear answer, because it

is a basic part of the learning class: the generalization capacity.

This does not mean that the model is useless. It only means that some post-processing work

is needed to successfully apply the model. Some heuristics have to be developed for merging

and filtering the obtained rules, which is left as future work.

Meanwhile, with the help of some statistical tests, we seek to determine if there is some

setting of ILAS can be considered good and robust enough to affirm that it can be used as

the default configuration of ILAS in small datasets and constant learning steps strategy. The

results of the statistical tests are summarized in table 7.11.
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Figure 7.14: Overlapping the initial run-time model of ILAS with the experimental b values
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From the results of the statistical tests it can be affirmed with high confidence that the

configuration with 2 strata is the best one. It was the one achieving higher test accuracy

average, it is the most robust one (it has never been significantly outperformed) and it is almost

the top outperforming configuration. The specific comparison between the configurations with

2 and 3 strata indicates that their performance is never significantly different, but the slightly

higher run-time of the configuration with 3 strata discards it as the best global candidate for

the constant learning steps strategy.

7.5.2 The constant time strategy

In order to apply the constant time strategy the first step is determining the number of

iterations needed for ILAS using 2, 3, 4 and 5 strata that have the same run-time as the non-

windowed configuration, using the run-time model developed in previous section. However, as

we can compute the value of the b parameter of the model for each dataset from the results

of the constant learning steps strategy, we can check if the developed model is valid. Figure

7.14 overlaps the run-time model with the real b value for each dataset. It can be observed

clearly in the figure that the model is not working correctly.

From figure 7.14 we can see several discrepancies between the model and the experimen-

tation results, especially in the lower part of the figure, when the model is too pessimistic. If

we look at which datasets have a low value of b, described in table 7.12, it can be observed

that most of these datasets have a very low average of rules per individual. Therefore, we may
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Table 7.12: Input information for the new run-time model for ILAS

Dataset #Instances Ave. #rules/indiv. b

bal 562.500000 10.821058 0.054245
bpa 310.500000 10.233713 0.130907
bre 257.400000 12.242420 0.15417
cmc 1325.700000 8.734425 0.0397349
col 331.200000 16.507130 0.187061
cr-a 621.000000 8.123931 0.0736727
gls 192.600000 10.487166 0.309448
h-c 272.700000 10.834397 0.172864
hep 139.500000 8.403331 0.251041
h-h 264.600000 10.651623 0.211792
h-s 243.000000 10.624691 0.213375
ion 315.900000 5.802508 0.0201061
irs 135.000000 7.256767 0.129837
lab 51.300000 7.089468 0.483658
lym 133.200000 9.959550 0.13808
pim 691.200000 8.336094 0.0796481
prt 305.100000 19.265333 0.19428
son 187.200000 10.595582 0.273156
thy 193.500000 8.145829 0.238255
vot 391.500000 7.576427 0.0402058

wbcd 629.100000 5.076236 -0.0954714
wdbc 512.100000 5.631767 -0.0158894
wine 160.200000 6.582595 0.145283
wpbc 178.200000 4.696640 -0.0477674
zoo 90.900000 10.378047 0.267821

need to extend the model with another variable: the average number of rules per individual.

Therefore, from the information in table 7.12 a new model is extracted. This time the

model takes the form defined in equation 7.6, where D is the number of instances in the

training set and NR is the average number of rules per individual. The actual values for c, d

and e are computed using linear regression 2 and are 30.3670, −0.9042 and 0.1257 respectively.

The comparison of the new model with the experimental values of b is represented in figure

7.15.

b = c/D + d/NR + e (7.6)

The new run-time model was used to determine the number of iterations used in the

constant time strategy. Table 7.13 describes the average results of these tests. The full results

2Using the R statistical package to compute it
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Figure 7.15: Overlapping the new run-time model of ILAS with the experimental b values
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Table 7.13: Average results of the constant time strategy tests of ILAS

#Strata Training acc. Test acc. #rules Run-time (s)

1 92.02±10.89 82.34±13.50 7.45±3.37 60.89±47.26
2 91.47±11.04 82.53±13.38 6.78±2.68 61.71±49.42
3 90.69±11.37 82.50±13.42 6.15±2.25 62.64±50.50
4 90.06±11.53 82.51±13.34 5.87±2.11 63.46±51.37
5 89.56±11.64 82.23±13.47 5.72±2.03 64.64±52.23

are in table B.2 in appendix B. From the average run time it seems that the run-time model

works relatively well, but in order to show exactly how well it is working, the relative run-time

divergence between the configurations with 1 and 5 strata was computed for each dataset.

Table 7.14 shows these divergences for each dataset. The average relative run-time divergence

is 9.52%. This shows that the model is not perfect neither it is completely wrong. Only 9 of

the 25 datasets had a divergence higher than 10%.

What is the best configuration for the constant-time strategy?. Again, statistical t-tests

were computed, and its results described in table 7.15. This time configuration with 1 strata

through configuration with 4 strata look equally robust. As strata 2 has higher average test

accuracy, it is the best candidate as the default number of strata for the constant time strategy

of ILAS.
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Table 7.14: Relative divergence between the run time of ILAS configurations using 1 and 5
strata using constant time strategy

dataset divergence dataset divergence dataset divergence

bal 8.72% h-s 8.15% thy 21.17%
bpa 0.73% hep 7.57% vot 8.73%
bre 15.38% ion 18.94% wbcd 7.36%
cmc 4.86% irs 4.76% wdbc 4.17%
col 8.90% lab 7.65% wine 5.60%
cr-a 5.17% lym 12.06% wpbc 7.24%
gls 23.19% pim 0.38% zoo 14.73%
h-c1 6.23% prt 5.83%
h-h 15.83% son 14.74%

Average 9.52±5.86

Table 7.15: Results of the t-tests comparing the 5 tests configurations of ILAS with the
constant time strategy, using a confidence level of 0.05. Cells in table count how many times
the method in the row significantly outperforms the method in the column.

1 stratum 2 strata 3 strata 4 strata 5 strata Total

1 stratum - 1 1 1 1 4
2 strata 0 - 0 0 3 3
3 strata 0 0 - 0 1 1
4 strata 0 0 0 - 0 0
5 strata 0 0 0 0 - 0

Total 0 1 1 1 5
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Table 7.16: Average results of the constant iterations strategy tests of ILAS

#Strata Training acc. Test acc. #rules Run-time (s)

1 92.02±10.89 82.34±13.50 7.45±3.37 60.89±47.26
2 90.90±11.47 82.59±13.44 6.56±2.41 35.17±27.97
3 90.05±11.69 82.36±13.59 6.12±2.18 26.76±21.66
4 89.44±11.78 82.17±13.54 5.93±2.11 22.56±18.49
5 88.92±11.83 82.20±13.56 5.84±2.07 20.13±16.69

Table 7.17: Results of the t-tests comparing the 5 tests configurations of ILAS using the
constant iterations strategy, using a confidence level of 0.05. Cells in table count how many
times the method in the row significantly outperforms the method in the column.

1 stratum 2 strata 3 strata 4 strata 5 strata Total

1 stratum - 0 2 3 2 7
2 strata 1 - 1 2 1 5
3 strata 0 0 - 0 0 0
4 strata 0 0 0 - 0 0
5 strata 1 1 0 0 - 2

Total 2 1 3 5 3

7.5.3 The constant iterations strategy

In this strategy, the tested numbers of strata in each dataset use the same number of

iterations. The goal is two-fold: determine which is the number of strata that maximize

the performance, and also which is the maximum run-time reduction that achieves the same

performance as the non-windowed system.

The results of these tests are described in table B.3 in appendix B. The results are sum-

marized in the average results in table 7.16. From these average results it seems that the

the configurations that achieve the above stated goals are 2 strata and 3 strata, respectively.

In order to verify these hints, statistical tests over these results were performed. Table 7.17

summarizes the results of the statistical tests, and shows how the configuration with 3 strata,

although having an average test accuracy approximately equal to the non-windowed config-

uration, it is less robust. Therefore the two objectives stated above are achieved by the

configuration with 2 strata.
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Table 7.18: Comparison of the average results of the best strata configuration for the three
ILAS strategies proposed. CLS = constant learning steps, CT = constant time, CI = constant
iterations

Strategy Training acc. Test acc. #rules Run-time (s)

CLS 91.57±11.03 82.64±13.45 6.77±2.76 70.51±57.03
CT 91.47±11.04 82.53±13.38 6.78±2.68 61.71±49.42
CI 90.90±11.47 82.59±13.44 6.56±2.41 35.17±27.97

7.5.4 Comparing the results of the three strategies for ILAS

In this subsection the best configurations for each tested strategy are compared. Table 7.18

summarizes the performance of these configurations, all of them using 2 strata. To determine

which is the best configuration we use, as usual, statistical tests. This time the tests indicated

that there were no statistical differences between the performance of these configuration for

any dataset. Therefore, it is reasonable to say that the constant iterations strategy is the best

configuration of ILAS because it has similar performance to the other strategies but it uses

less run-time.

7.6 Testing ILAS in large datasets

After verifying that the ILAS windowing scheme improves the overall performance of the

system while reducing the run-time, it is time to check if it has good performance in the datasets

where its use becomes critical: the large ones. The experimentation starts by testing the run-

time model developed for the small datasets. Then, we focus on testing the performance of

ILAS on the large datasets, defining an experimental methodology to tune the used number

of strata.

7.6.1 Testing the ILAS run-time model on large datasets

The tests used to check the run-time model for ILAS developed for the small datasets will

use the following procedure:

1. Running the system without using ILAS, to compute the reference number of iterations

used in equation 7.5, is not feasible in general for large datasets for two factors: even if

we only make short runs, it is not practical for run-time reasons (this is the motivation
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for using a windowing process). For this reason, the reference number of iterations for

the run-time model will already use ILAS. This means that we need a new formula for

setting the number of iterations to achieve constant run-time with different degrees of

stratification. This new formula is simply an extension of the previous one, and it is

represented in equation 7.7, where itref is the iterations for the reference number of

strata and sref is the reference number of strata.

its =
itref · s · (1 + b · (sref − 1))

sref · (1 + b · (s− 1))
(7.7)

2. A small number of runs (10) is made with constant time (150 seconds) using the selected

reference number of strata. The reference number of strata is chosen in order to have a

reasonable number of iterations in the selected run-time. The constant time of the runs

is achieved simply by running the system until the pre-defined time limit is reached.

3. From there short runs, the average number of iterations and the average rules per

individual are extracted.

4. With these two extracted measures and the size of the training set we can use the model

for b and equation 7.7 to determine the iterations used for the other tested number of

strata

The above defined steps are used for the sick dataset. The reference strata used are 5,

that need 355 iterations to reach the selected run-time of 150 seconds. The other number of

strata tested are 10, 15, 20 and 25. Table 7.20 contains the results of these tests. The settings

of the system used are summarized in table 7.19. These results show that the model, although

it is not perfect, it is relatively accurate. The maximum divergence in run-time is 8%.

The tests were repeated with another dataset (nur). This time the reference strata were

10, and the other tested settings used 20, 30, 40 and 50 strata. Table 7.21 has the results

of these tests. In this case the run-time model does not work at all. The run-time of the

configuration with 50 strata was almost 1/3 of the reference strata, which is not acceptable

at all. What is the reason of such a big divergence from the model? if we compute the α

(timer per iteration) values for the tested strata (listed in table 7.22), we see that α10 is more

than double than α20, which would mean that the overhead of the GA (b) was non-existent.

However, if we look at the next values of α we can see how this observed tendency does not

appear here. What is the cause of these contradictory observations?

We observe that the iterations in for the tests using 20 strata or higher are much faster

that the iterations using 10 strata. The reason of this speed difference is the cache memory
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Table 7.19: Settings of GAssist for windowing experiments reported in section 7.6

Parameter Value

General parameters
Crossover prob. 0.6
Selection algorithm tournament selection
Tournament size 3
Population size 400
Individual-wise mutation prob. 0.6
Initial number of rules per individual 20
Iterations A maximum of 1500
Minimum number of rules for fitness penalty maximum of 6
Default class policy auto

ADI knowledge representation
Probability of ONE 0.75
Probability of Split 0.05
Probability of Merge 0.05
Probability of Reinitialize (begin,end) (0.02,0)
Maximum number of intervals 5
Uniform-width discretizers used 4,5,6,7,8,10,15,20,25 bins

Rule deletion operator
Iteration of activation 5
Minimum number of rules number of classes in dataset + 3

MDL-based fitness function
Iteration of activation 25
Initial theory length ratio 0.075
Weight relax factor 0.90

Table 7.20: Results of ILAS on the sick dataset using the run-time model to achieve constant
time

#Strata Training acc. Test acc. #rules Run-time (s)

5 97.59±1.91 97.35±1.91 6.42±0.62 147.73±17.35
10 98.59±0.60 98.23±0.87 6.26±0.64 138.07±14.09
15 98.52±0.60 98.08±0.83 6.41±0.83 137.34±9.65
20 98.33±0.85 98.02±0.99 6.50±0.85 139.16±9.44
25 98.25±0.65 97.87±0.91 6.59±0.84 135.83±8.75
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Table 7.21: Results of ILAS on the nur dataset using the run-time model to achieve constant
time

#Strata Training acc. Test acc. #rules Run-time (s)

10 94.63±0.97 94.55±1.08 16.27±6.27 152.00±12.51
20 94.21±1.22 94.10±1.37 12.82±2.79 104.66±7.54
30 93.57±1.28 93.47±1.40 11.69±2.45 81.37±6.51
40 93.25±1.35 93.14±1.51 10.88±2.23 66.91±4.92
50 93.12±1.22 93.02±1.48 10.35±2.20 57.98±4.01

Table 7.22: Alpha values (time per iteration) for the nur dataset and strata 10, 20, 30, 40, 50

#Strata α

10 0.130133
20 0.0644874
30 0.0436561
40 0.0332035
50 0.0273878

of the computer. Our implementation of the data structure containing an instance uses 52

bytes for the nur problem, and each individual consumes an average of 539 bytes. Also, two

full populations (parents and offspring) are maintained at the same time. This means that,

given the 11665 instances of the dataset, the 400 individuals in the population and 10 strata,

we are consuming 480KB of memory for storing the data used. Considering the code of the

program running, and also the kernel of the operating system, it is very probable that from

time to time some of this information is flushed from the 512KB of cache memory that the

computer used in this experimentation has, slowing the program being run. With 20 strata

we are using 432KB, with 30 strata the consume is 420KB. The consume is slowly getting far

from the limit, and probably no data is being flushed from the cache memory.

What is the point of this observation? Probably we cannot make a general run-time model

for ILAS in large datasets, because it depends on too many factors. If the dataset has real-

valued attributes, the consume is much higher, therefore, domains with much less number of

instances get already affected by this problem. Also, computers with only 256KB of cache

memory are still very common nowadays, but in the high end of the market, computers with

1 or 2 MB of cache exist, . . . It is not practical to create a model that we have to adjust

too often. Therefore, the experiments conducted in next subsection will not use the run-time

mode.

190



CHAPTER 7. WINDOWING TECHNIQUES FOR GENERALIZATION AND
RUN-TIME REDUCTION

7.6.2 Testing the performance of ILAS in large datasets: tuning the

number of strata for maximum performance

Looking at the results of sick and nur in the previous section we see some common behavior:

the configuration having the best performance in the training set was also the best in the test

set. What does this mean? By using a high number of strata, the implicit generalization

pressure introduced by ILAS is so high that it is almost impossible to suffer from over-learning.

Therefore, we only have to worry about finding the number of strata that maximizes the

training accuracy.

In order to verify if this hypothesis can be generalized, we tested ILAS on all the datasets

described in table 4.2 of chapter 4. We ran the system on each dataset with constant time,

and testing, for each dataset, 5 different numbers of strata. Because the number of instances

in the tested datasets range from 2300 to 100968, the same sets of strata cannot be used on

all datasets. Therefore, each dataset will use a different set of tested strata. The criteria used

to select these sets is the same used in previous subsection, strata that use a reasonable (at

least 250) number of iterations in the predefined time.

Two different time limits are used: 150 and 300 seconds. The aim of these two limits is

testing two degrees of “reasonable” run-time (although nowadays there are several machine

learning algorithms that run in very short time). If we suppose we are using this learning

system in a real-life environment, spending 5 minutes to learn a knowledge base is still quite a

reasonable duration. Table 7.23 contains the results for time limit 150 and table 7.24 contains

the results for the runs with 300 seconds of duration.

Table 7.23: Results of ILAS on large-size datasets with time-limit 150

Dataset #Strata Training acc. Test acc. #rules

adu

75 85.28±0.23 85.12±0.59 10.63±1.93

100 85.25±0.25 85.11±0.57 10.28±2.10

200 85.04±0.31 84.94±0.55 9.97±2.02

300 84.56±0.69 84.44±0.79 10.19±2.14

400 84.18±0.83 84.09±0.93 10.20±2.03

c-4

50 69.77±2.37 69.64±2.31 11.65±4.86

75 70.41±2.42 70.22±2.34 13.49±5.96

100 70.21±2.77 70.09±2.71 12.58±5.57

125 70.03±2.84 69.94±2.78 11.96±5.53

150 70.01±2.70 69.90±2.63 10.69±4.30
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Table 7.23: Results of ILAS on large-size datasets with time-limit 150

Dataset #Strata Training acc. Test acc. #rules

fars

250 76.78±0.55 76.71±0.56 13.44±2.20

500 76.48±0.50 76.48±0.50 13.22±2.31

750 76.21±0.41 76.21±0.45 12.74±2.18

1000 76.07±0.56 76.05±0.54 13.06±2.28

1250 75.77±0.30 75.75±0.27 13.12±2.22

hyp

10 94.53±0.49 94.25±0.64 6.95±0.95

15 94.42±0.49 94.17±0.65 7.01±1.14

20 94.25±0.54 94.03±0.67 7.19±1.17

25 94.27±0.40 94.05±0.62 7.05±1.06

30 94.20±0.42 94.04±0.57 6.98±0.92

krkp

5 96.71±1.64 96.68±1.82 7.25±0.46

10 96.59±1.65 96.51±1.83 7.23±0.56

15 96.32±1.65 96.18±1.80 7.17±0.49

20 96.07±1.63 95.92±1.81 7.10±0.32

25 96.45±1.58 96.34±1.78 7.27±0.68

mush

5 99.80±0.35 99.79±0.38 4.78±0.85

10 99.88±0.28 99.87±0.31 4.87±0.90

15 99.88±0.26 99.86±0.31 4.92±0.80

20 99.86±0.28 99.84±0.31 4.99±0.77

25 99.83±0.31 99.81±0.33 4.87±0.73

nur

10 94.69±0.90 94.54±1.09 16.71±6.59

20 94.47±1.01 94.41±1.20 13.67±3.51

30 94.16±0.97 94.06±1.07 12.03±2.35

40 93.85±1.13 93.75±1.20 11.45±2.06

50 93.70±1.04 93.60±1.16 11.28±2.06

pen

25 68.36±2.60 68.10±2.89 12.63±2.07

50 69.48±2.57 69.24±2.85 11.81±1.70

75 68.91±2.33 68.68±2.58 11.76±2.09

100 68.21±2.65 68.01±2.73 10.93±1.79

125 67.00±2.15 66.94±2.58 10.86±1.64

sat

10 77.64±1.15 77.40±1.71 8.22±1.75

20 79.42±0.70 78.95±1.42 8.78±1.80

30 79.67±0.60 79.28±1.27 9.05±1.84

40 79.62±0.63 79.42±1.35 8.27±1.45

50 79.52±0.58 79.18±1.27 8.13±1.61
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Table 7.23: Results of ILAS on large-size datasets with time-limit 150

Dataset #Strata Training acc. Test acc. #rules

seg

5 89.02±1.59 88.11±2.49 8.83±1.38

10 89.86±1.11 89.04±2.25 8.41±1.13

15 89.56±1.36 88.87±2.32 7.95±1.13

20 89.48±1.25 88.92±2.24 7.72±0.88

25 89.38±1.33 88.91±2.17 7.67±0.91

sick

5 97.69±1.82 97.31±1.79 6.52±0.75

10 98.59±0.65 98.21±0.88 6.33±0.64

15 98.57±0.33 98.18±0.81 6.29±0.56

20 98.46±0.46 98.09±0.80 6.45±0.77

25 98.33±0.29 97.98±0.76 6.43±0.79

spl

5 91.24±2.04 90.37±2.61 9.31±2.20

10 92.54±1.36 91.59±1.96 9.72±2.26

15 92.25±1.63 91.50±2.01 8.31±1.38

20 91.66±1.61 90.88±2.10 8.21±1.36

25 90.71±2.60 90.24±2.84 8.07±1.11

wav

10 76.85±0.78 75.16±2.12 9.32±1.75

20 77.50±0.61 75.73±2.16 9.83±1.76

30 77.16±0.65 75.47±2.17 9.40±1.64

40 76.92±0.61 75.14±2.23 8.91±1.48

55 76.59±0.69 75.03±2.32 8.93±1.78

Table 7.24: Results of ILAS on large-size datasets with time-limit 300

Dataset #Strata Training acc. Test acc. #rules

adu

75 85.23±0.24 85.09±0.56 10.79±2.18

100 85.27±0.24 85.10±0.56 10.63±2.20

200 84.99±0.33 84.85±0.60 10.37±2.04

300 84.71±0.53 84.59±0.72 10.11±2.22

400 84.32±0.72 84.26±0.88 10.25±2.20

c-4

50 71.92±2.39 71.69±2.32 21.88±8.80

75 71.75±2.80 71.54±2.71 19.27±8.74

100 71.46±2.97 71.24±2.85 17.72±8.24

125 71.34±2.80 71.14±2.74 15.19±7.28

150 71.21±2.61 71.05±2.57 13.31±6.05
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Table 7.24: Results of ILAS on large-size datasets with time-limit 300

Dataset #Strata Training acc. Test acc. #rules

fars

250 76.83±0.57 76.80±0.58 13.58±2.43

500 76.36±0.44 76.35±0.49 12.58±2.17

750 76.27±0.49 76.20±0.44 13.02±2.34

1000 75.86±0.49 75.84±0.47 13.02±2.65

1250 75.83±0.35 75.86±0.35 13.50±2.57

hyp

10 94.77±0.50 94.47±0.77 6.85±0.85

15 94.62±0.54 94.39±0.68 7.01±0.98

20 94.49±0.56 94.21±0.73 7.00±0.95

25 94.42±0.50 94.24±0.72 7.05±1.02

30 94.25±0.37 93.99±0.50 7.08±0.95

krkp

5 97.36±1.44 97.27±1.67 7.40±0.62

10 97.74±1.14 97.58±1.32 7.46±0.58

15 97.55±1.18 97.44±1.29 7.24±0.65

20 97.46±1.21 97.35±1.38 7.20±0.57

25 97.79±0.62 97.67±0.80 7.19±0.53

mush

5 99.90±0.26 99.90±0.28 4.83±0.89

10 99.94±0.21 99.93±0.23 4.99±0.85

15 99.96±0.14 99.95±0.19 4.96±0.78

20 99.94±0.18 99.92±0.24 5.03±0.74

25 99.95±0.10 99.94±0.13 4.97±0.67

nur

10 95.39±0.93 95.23±1.10 19.80±7.21

20 95.11±0.92 94.97±1.03 13.83±2.92

30 94.75±0.85 94.63±1.01 12.83±2.51

40 94.49±0.82 94.38±0.98 11.96±1.90

50 94.38±0.77 94.33±0.97 11.51±1.57

pen

25 72.18±2.68 71.93±2.96 12.68±1.75

50 72.02±2.37 71.65±2.51 11.89±1.82

75 70.96±2.45 70.89±2.73 11.37±1.74

100 69.94±2.41 69.64±2.67 11.63±1.75

125 68.92±2.15 68.86±2.27 10.81±1.63

sat

10 79.62±0.64 79.16±1.46 9.02±2.19

20 80.34±0.53 79.85±1.35 8.77±1.98

30 80.45±0.62 80.00±1.30 8.25±1.56

40 80.19±0.50 79.72±1.32 7.93±1.43

50 80.01±0.53 79.63±1.34 7.71±1.59
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Table 7.24: Results of ILAS on large-size datasets with time-limit 300

Dataset #Strata Training acc. Test acc. #rules

seg

5 90.68±1.16 89.98±2.06 8.93±1.25

10 90.89±1.08 90.25±2.11 8.09±1.06

15 90.78±1.07 90.15±2.10 7.95±0.88

20 90.46±1.12 90.10±2.11 7.90±1.09

25 90.14±0.98 89.69±1.95 7.67±0.79

sick

5 98.65±0.77 98.23±0.95 6.24±0.49

10 98.75±0.23 98.41±0.70 6.33±0.66

15 98.67±0.23 98.29±0.72 6.30±0.67

20 98.54±0.24 98.18±0.65 6.33±0.70

25 98.41±0.23 98.06±0.70 6.51±0.81

spl

5 93.58±2.53 92.46±2.79 11.67±4.23

10 93.58±1.09 92.45±1.70 8.95±1.71

15 93.01±1.05 92.47±1.86 8.47±1.39

20 92.06±2.15 91.49±2.65 8.19±1.23

25 92.03±1.49 91.19±2.14 8.27±1.31

wav

10 78.28±0.60 76.01±1.97 10.64±1.94

20 78.15±0.60 76.27±1.95 9.34±1.52

30 77.80±0.63 75.88±2.03 9.14±1.57

40 77.39±0.60 75.38±2.26 9.15±1.67

50 76.95±0.62 75.26±2.08 8.97±1.57

From the results on these 13 datasets, in 12 of them the above stated hypothesis is correct

(for both types of experiments done). Even, in the dataset where the best training accuracy

and the best test accuracy did not belong to the same number of strata, the accuracy difference

from the best method in test is minimal.

Moreover, does ILAS benefit from running for 300 seconds compared to the 150 seconds

runs? Statistical tests were made to compare the performance of the best configuration for each

dataset in the two type of tests. The paired t-tests determined that the runs with 300 seconds

were significantly better than the runs with 150 seconds in all but adu and fars datasets, using

a confidence level of 99%. If we look at the results, the average accuracy difference in datasets

such as sick seems small (only 0.2%), but looking at the smaller deviation we can see why this

small difference became significant: the system is much more stable if it runs for longer time.
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7.7 Discussion and further work

In this chapter we have seen the ILAS windowing scheme used in different scenarios. In all

of these scenarios the performance of the system benefits from the use of ILAS in a significant

way.

In small datasets we have seen three different strategies for the use of ILAS. These strategies

represent three degrees of balance between performance (accuracy) and run-time. The first

strategy (constant learning steps) maximizes performance with a small sacrifice of run-time.

The second strategy (constant time is a middle point: determining the maximum performance

increase achievable using ILAS with the same run-time as the non-windowed system. The

third strategy (constant iterations) seeks the maximum run-time reduction having a competent

performance compared to the non-windowed system.

These three strategies were tested over 25 datasets. The results of these tests and the

statistical tests applied over these results showed in a significant way which is the best (in

both performance and robustness) configuration for each kind of strategy. Therefore, we

have a systematic and versatile methodology to tune the ILAS windowing system for further

small datasets. Also, we can affirm with high confidence that ILAS is useful in almost all

configurations, even if run-time reduction is not an important issue, because the tests have

showed how ILAS, with its implicit generalization pressure, can reduce the sensitivity to over-

learning of GAssist.

In large datasets ILAS is also useful in two ways: It can reduce in a very significant way

the run-time of the system (even using thousands of strata, like in fars) and it can also help

the system to learn better. In a Pittsburgh system with a global fitness function and given

these large datasets with thousands, hundreds of thousands or even millions of instances, the

contribution of classifying correctly each training instances becomes so small that it makes the

learning process even more difficult. If we can partition the training set in small chunks (the

strata), we help the system process correctly the training set by achieving a fitness landscape

that allows the selection algorithm to choose properly between individuals.

Like in the small datasets, we also have a deterministic process to tune the number of strata

that maximizes the performance for each dataset. This process worked correctly for 12 of the

13 datasets used in the experimentation. Also, in most datasets we determined in a significant

way that the system needs more than 150 seconds (using modern hardware) to learn properly.

This deterministic process needs some improving. Right now we have determined that it is

correct by performing a full test in all candidate configurations. The ideal situation would be

to determine the ideal number of strata for each dataset using only short runs. Therefore, this

tuning process needs further development.
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Thus, we have shown experimentally that the performance of the system is good in many

different scenarios. However, we cannot say the same of the two models we developed about

the behavior of the system.

The goal of the first model was to predict the maximum stratification degree we can use

before some of the strata lose the representativity of the whole training set. This model was

quite good for synthetic problems, but when we jumped to real problems, the situation was

different. With the current model, and making the supposition that the rules we obtain are more

or less equivalent to the niches existing in the training set, we cannot predict accurately the

number of strata that maximizes the test performance of the system. Maybe this extrapolation

from training to test is impossible to assume. But there is another path worth of exploring.

Probably we need to filter the obtained rule set in order to predict more accurately the number

(and coverage) of the niches existing in the training set. With some post-processing of this

kind, maybe we can obtain an enough accurate model that outperform the deterministic tuning

process of ILAS that we have experimentally verified that is already quite robust.

The other model was about the run-time of the system. With the synthetic datasets that

were used to develop the model, we could predict the relative run-time (relative to the non-

windowed system) of the system knowing only the size of the dataset. The tests with real

problems showed that the model needs another variable: the average number of rules per

individual during the learning process. With the extended model with two variables we can

predict the relative run-time for small datasets more accurately (although it is not perfect).

However, the model cannot be extrapolated to large datasets, because of the experimental

limitations we have with the hardware used. The cache memory, while being beneficial for the

run-time of any program in most situations, makes impossible the development of a general

model of run-time for large datasets, because the parameters of the model need to be tuned

almost for every datasets, eliminating totally the predictive capacity of the model.

The reader may wonder why is it worth using a run-time model, if we can simply stop the

learning process when the time limit is reached. The point is that the mechanism used is unfair

because the number of iterations achieved in this fixed time can change if, for random reasons,

the average number of rules per individual (the other factor, beside the size of the training

set that controls the cost of the fitness function) differs from run to run. Therefore, some of

the runs cannot learn enough if the contain, by chance, large individuals. An alternative is

determining an approximate number of iterations using the pre-defined fixed time using only

few runs, and then perform the full test with fixed number of iterations, but this has some

extra cost. If we could have a reliable run-time model, this extra cost would be much lower.
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7.8 Summary of the chapter

In this chapter we have described the work done on applying windowing techniques to a

Pittsburgh approach genetic-based machine learning system. The objective of these methods

is to reduce the cost of fitness computations by using only a subset of the training examples to

evaluate each individual and, therefore, reducing the total computational cost of the system.

Most of the chapter has been focused on an specific windowing technique, called ILAS

(incremental learning with alternating strata). This technique divides the training set into

several non-overlapped subsets of equal class distribution as the whole training set, therefore,

strata. Then, each iteration uses a different strata, using a round-robin policy.

The chapter started by describing the historical process and motivation for the development

of ILAS, by showing the prior attempts at windowing schemes and some previous results. The

chapter continued by describing the work done on analyzing the behavior of ILAS, which led

to the development of two models. One about the maximum number of strata that can be

used without degrading the performance of the system. By this we mean computing the

probability that the created strata are still enough representative of the whole training set.

The other one about the run-time of ILAS. Both models were developed using synthetic (and

thus, predictable) datasets.

When these two models were put into practice using real datasets, the experimentation

showed that the stratification representativity model needs to be refined if it is to predict the

number of strata that give maximum test accuracy. As further work, some ideas of how to do

this refinement were proposed. The experimentation with real datasets showed that the run-

time model needed to be expanded. The expanded model was more accurate in small datasets,

but it was not usable in large datasets, because of physical limitations of the experimentation

framework.

Independently of these two models, ILAS showed in the experimentation on real datasets

that it can improve the performance of the Pittsburgh model of GBML in more than one way.

The tests showed how ILAS can be used successfully in several different scenarios, showing its

versatility.
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Chapter 8

Bloat control and generalization

pressure methods

Bloat control and generalization pressure are very important issues in the design of Pittsburgh

GBML systems, in order to achieve simple and accurate solutions in a reasonable time. The

bloat control deals with a problem, identified as bloat effect, related to the growth without

limit of the size of the individuals. The same techniques used to control bloat if properly

adjusted and combined with other techniques can be helpful in the introduction of general-

ization pressure into the system, evolving more accurate but compact solutions potentially

having better test accuracy. A side effect of applying this pressure towards short individuals is

a run-time reduction, always desirable in this context.

Thus, the chapter will present several mechanisms intended to control the bloat effect and

apply generalization pressure. Some of them can be combined, some of them not. An analysis

of each mechanism, reporting how they affect the general dynamics of the system, and how

can they be used properly will be presented. Finally, a comparison of the non-combinable

techniques with an external reference will be presented.

The chapter is structured as follows: First, section 8.1 will show a larger introduction to

the chapter. Next, section 8.2 will describe briefly some related work, followed by section 8.3

containing a short description of how Bloat effect affects Pittsburgh GBML systems, and also

some guidelines about how should the measures to solve the Bloat effect be defined. Section

8.4 will provide the basic mechanism used to control the bloat effect: a rule deletion operator.

The operator will be defined and its behavior studied. After describing the bloat control

method, section 8.5 will contain the generalization-pressure methods studied. Like in the

previous section its behavior will be analyzed, and some additional mechanisms that guarantee

that the learning process is performed properly will be introduced. Section 8.6 will show the
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experimentation performed on a large set of domains to analyze in depth the generalization

pressure methods presented in the previous section, comparing them to an alternative method.

This comparison, together with the analysis of the bloat control method will lead to some

discussion and further work, presented in section 8.7. Finally, section 8.8 will summarize the

chapter.

8.1 Introduction

One of the most important problems of variable-length Pittsburgh GBML systems is the

control of the bloat effect. As described in section 3.6, the bloat effect is characterized by a

growth without control of the size of the individuals, affecting in general any variable-length

representation used in evolutionary computation. This chapter describes the contributions

made in this thesis to control this effect.

Nevertheless, as the title of this chapter suggests, we want to go one step further. The

same techniques that can control successfully the bloat effect, if adjusted properly, can also

introduce some extra generalization pressure into the behavior of the system. This issue is

very important considering the base model we have taken as initial point (GABIL) which has

a fitness function that only considers the accuracy of the whole rule set over the training

examples, without any explicit mechanism related to the complexity of the rule-set. Given

this fitness function, the easiest way to increase it is to maximize the probability of correctly

classifying the training examples, which is achieved by increasing the size of the individuals.

This fact produces solutions that are bigger than necessary, contradicting the Occam’s razor

principle which says that “the simplest explanation of the observed phenomena is most likely to

be the correct one”. A probable consequence of the “over-complexity” is an over-fitting of the

solutions created which can lead to a decrease of the generalization capacity. The following

techniques will be described and studied in the chapter:

Rule pruning operator (Bacardit & Garrell, 2002c) This operator removes useless rules from

the individuals. It is applied after the fitness computation, when it is known which rules

have never been used (thus useless). Some constraints control the disruptive potential

of the operator

Hierarchical selection operator (Bacardit & Garrell, 2002c) This operator is actually a com-

parison function integrated into the tournament selection, to decide the outcome of each

tournament. In order to decide which individual is better, it uses a double-step compar-

ison, selecting the smallest individual if the accuracies of the individuals involved in the
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tournament are similar.

MDL-based fitness function (Bacardit & Garrell, 2003a) This is a fitness function based

on the minimum description length (MDL) principle (Rissanen, 1978), this is a metric

that combines the accuracy and the complexity of a solution in a smart way to obtain a

fitness function aware of both factors. The complexity of a solution is dependent on the

knowledge representation used, and it allows us not only to promote smaller solutions,

but better ones, depending on how the rules are defined.

Fitness penalty for short individuals The two above individuals are helpful in the promotion

of compact individuals, but they are also dangerous if applied without control, because

they may create an irreparable loss of diversity and information in the population. A

simple penalty function is aggregated with the fitness function to avoid this situation.

The first technique of this list will be studied in section 8.4, the other three in section 8.5.

8.2 Related work

The MDL principle has been applied as a part of modeling tasks in many different fields. For

example, handwriting recognition and robotic arms (Gao, Li, & Vitányi, 2000). , determining

the topology of an Artificial Neural Network (Lehtokangas, Saarinen, Huuhtanen, & Kaski,

1996) applied to time series prediction or magnetic recording channels (Kavcic & Srinivasan,

2001). The principle has also been widely applied for classification tasks. Some examples are

the creation of decision trees by means of Inductive Learning (Quinlan & Rivest, 1989; Forsyth,

Clarke, & Wright, 1994) , Genetic Programming (Iba, de Garis, & Sato, 1994) , Constructive

Induction (Pfahringer, 1994), Bayesian Networks creation (Wong, Lam, & Leung, 1999) or,

probably, the best known case: c4.5rules (Quinlan, 1993; Quinlan, 1995), where the MDL

principle is used to select the best subset of rules derived from a c4.5 induced decision tree.

Section 3.6 already described how the bloat effect is controlled in different paradigms of

evolutionary computation. The rule-deletion operator used here is probably closer to the one

used in SAMUEL (Grefenstette, 1991) than the one used in GIL (Janikow, 1991). There

were other examples reported (Aguirre, González, & Pérez, 2002; Luke & Panait, 2002) of

techniques similar to the hierarchical selection operator. The main difference is the criteria

used to jump from the primary decision factor of the tournament to the other factors. As stated

in the previous paragraph, the MDL principle has been used in the genetic programming field,

although using a different formulation from the one used here, due to knowledge representation

differences. The closest technique in general to the ones studied here is a bloat control
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technique for Pittsburgh GBML systems based on multi-objective optimization called MOLCS

(Llorà, Goldberg, Traus, & Bernadó, 2002) 1. In section 8.6 the methods studied in this

chapter will be compared to this MOO-based approach

8.3 The bloat effect: why it happens and how we have

to deal with it

In this section we will do a brief and illustrative introduction about how and why the bloat

effect affects Pittsburgh GBML. We will also show that fixing this problem is not a simple

task, showing how bad ways to fix this problem can collapse the learning process.

8.3.1 What form does the bloat effect take?

Usually the bloat effect is defined as the growth of the individuals length without control,

and it is a phenomenon that can affect in general all variable-length representations. In

Pittsburgh LCS this effect takes the form of an exponential-rate growing of the number of

rules of the individuals. This effect can be illustrated by the first 15 iterations in figure 8.1,

which represents the evolution of the average individual size for the MX11 problem. If we did

not apply any measure to control this, the program would crash for lack of memory shortly

after.

8.3.2 Why do we have bloat effect?

The reason of the bloat effect is well explained in (Langdon, 1997). Its cause is the use of a

fitness function which only takes into account the validity of the solution (accuracy in our case).

Having a variable-length representation means that it possible to have several individuals with

the same fitness value, and there will be more long representations of a given solution (fitness

value) that short ones. So, when the exploration finds new solutions, it is more probable that

these solutions will be long than short.

The interpretation of this idea in LCS is that, it is more probable to classify correctly more

training examples with an individual with a lot of rules that with a short individual. Is this

long individual a good solution? Probably no, as this individual is memorizing the training

examples instead of learning them. This shows a side effect of bloat in LCS : the generated

solutions will probably lack generalization, and its test accuracy will probably be poor.

1Specifically, we are using the MOLCS-GA version of MOLCS
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Figure 8.1: Illustration of the bloat effect and how a badly designed bloat control method can
destroy the population
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8.3.3 How can we solve the bloat effect?

It is obvious that we need to add to the system some bias towards good but simple

solutions, but will any intervention in this sense work? The answer is no. If we introduce too

much pressure towards finding simple solutions, we are in danger of collapsing the population

into individuals of only one rule, which cannot generate longer individuals anymore. With

these kind of individuals we can only classify the majority class. Again in figure 8.1 we can

see an example of too much pressure for the MX11 dataset, which is activated just after 15

iterations. With only a few iterations, a population of an average of more than 120 rules per

individual is reduced to individuals containing only one rule. The bloat control method that

created this situation is the MDL-based fitness function studied in this chapter, but using a

bad parametrization (InitialRateOfComplexity=0.5).
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Figure 8.2: Code of the rule deletion operator

Rule deletion operator
Input : Individual, RuleActivations,minThreshold
numRules = Individual.numRules
RulesToDelete = ∅
For i = 1 to numRules

If RuleActivations[i] = 0
Add i to RulesToDelete

EndIf
EndForEach
selectedRules = |RulesToDelete|
If numRules− selectedRules < minThreshold

selectedRules = numRules−minThreshold
While |RulesToDelete| > selectedRules

pos = random[1, |RulesToDelete|]
Remove position pos from RulesToDelete

EndWhile
EndIf
Remove rules in RulesToDelete from Individual
Output : Individual

8.4 Controlling the bloat effect

The mechanism studied to control the bloat effect is a rule deletion operator. This operator

is applied after every fitness computation, removing the rules of the individual that have not

been activated with any input example. The behavior of the operator is controlled by two

constrains:

• The process is only activated after a predefined number of iterations, to prevent an

irreversible diversity loss.

• The number of rules of an individual never goes below a threshold. If the rules of an

individual that are selected for deletion will lower the total number of rules below this

threshold, only the extra rules (over the threshold) are deleted. How do we decide which

rules to delete? In order to introduce as little bias as possible, the subset of rules that

are deleted is randomly selected.

Algorithmically, the operator is represented in figure 8.2.
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Figure 8.3: Evolution of the number of rules for the pim dataset depending on the activation
iteration of the rule pruning operator. Log scale on the y axis
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8.4.1 Tuning the iteration of activation of the operator

What is the effect of this operator in the population? Figure 8.3 shows the expected effect

over the number of rules in the individuals, using 5 starting iterations: 25, 50, 75, 100 and 125

for the pim dataset. The figure shows how the average number of rules in the population can

increase up to more than 1200 rules if it is not controlled. This means a memory consumption

for this dataset and a population size of 300 of approx. 70MB. Considering that this dataset is

relatively small, it is unacceptable to consume that much memory. Also, the run that started

pruning individuals at iteration 125 had a run time three times larger than the one starting at

iteration 25.

Thus, it seems reasonable to activate the rule deletion operator early in the learning process.

Nevertheless, is there any additional motivation for this early activation? The answer again is

yes, and the cause is that the bloat effect produces a loss of diversity in the population. This

effect is not particular in this kind of system, it also affects genetic programming, where there

is the widespread interpretation that individual size growth occurs to protect the individuals

from the destructive effects of the recombination operators such as crossover (Soule & Foster,

1998). When the size of the trees grows, most of the code in the individuals is useless (like in

our case). In the GP literature this useless code is defined as neutral code or introns. If most of

the individual code are introns, the crossover operator will have more chances of manipulating
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Figure 8.4: Evolution of the number of different classification profiles in the population for the
pim dataset depending on the activation iteration of the rule pruning operator
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an intron than manipulating useful code, which will prevent the destruction of the useful parts

of the individual. However, as the code grows, the chances of improving the fitness of the

individuals by recombination also decrease for the same reason, thus producing a diversity loss

in the population.

The problem with diversity in Pittsburgh GBML is easy to illustrate by using the con-

cept of classification profile. Given an individual Ind, a training set D formed by instances

(D1,D2, . . . ,Dn) and a prediction function pred(Ind, Ins) that given an Individual and an

input instance it returns the class predicted by the individual for the input instance, we can

define the classification profile CF as a vector of size n (the size of the training set) defined

as:

CF (Ind,D) = (pred(Ind,D1), pred(Ind,D2), . . . , pred(Ind,Dn)) (8.1)

This vector defines the behavior of an individual. If we count the number of different

vectors of this kind that can be found in the population, we have an effective diversity measure

of the population. Figure 8.4 shows the evolution of the number of different profiles through

the iterations for the same tests with the pim dataset shown if figure 8.3. The figure shows how

the number of different profiles descends gradually until the rule deletion operator is activated.

Then it suffers a drastic increase and then it starts a more slower descent while the population

converges towards the good solutions.

Looking at the y scale of the plot in figure 8.4 it can be observed that this diversity loss
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is not drastic, the minimum achieved number of profiles is 235 (the maximum achievable is

300, the population size). However, some other datasets can have a much lower number of

different profiles, and therefore be in real danger of a critic diversity loss.

Considering that for two reasons, run-time and diversity, it seems suitable to start pruning

individuals in early iterations. Our previous tests indicated that starting pruning at iteration 5

is safe enough to guarantee that there are enough alive rules in the population, but it is very

early, so the impact to the population diversity and the run time is very minor.

8.4.2 Tuning the lower threshold of activation of the operator

There is another parameter that needs tuning, the parameter minThreshold. This pa-

rameter disables the operator if the number of rules in the individual becomes less or equal to

this parameter, even if there still are dead rules in the individual. Why it would be useful to

leave some dead rules in the individual? The reason recalls again the arguments described in

the previous subsection about the introns. Some small quantity of introns can be beneficial

for the individuals because they may protect them from the destructive effects of crossover.

The question is to define what is small quantity. The answer is difficult to determine. As a

rule of thumb, in the experimentation of this chapter this threshold will be set to the number

of alive rules of the final solution + 3. This means that some short runs are required to tune

the system. The automatic setting of this threshold is left as further work.

This tuning of minThreshold has a consequence: the generalization pressure methods

presented in next section will need to be aware of the existence of useless rules, and ignore them.

If not, these useless rules tend to disappear because they do not have positive contribution to

the fitness of the individual. There is another consequence: what happens with these useless

rules in the test stage of the system? It is obvious that these rules are useless in the training

set, but it cannot be guaranteed the same for the test set. In order to avoid random behavior

of the generated solutions in the test stage because of these dead rules, minTheshold will

be lowered to value 1 for the last iteration of the learning process. In this way we want to

guarantee that the behaviour showed by the best individual of the population in the test stage

is a representation of what it has learned during the training process.
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8.5 Applying extra generalization pressure

In this section we describe our contributions in methods designed explicitly to apply gener-

alization pressure to a Pittsburgh GBML system. Two alternative methods are presented, the

first is a very simple approach: the hierarchical selection. The second one is much more sophis-

ticated, designed to perform a wiser exploration of the search space: the MDL-based fitness

function. Finally, in order to avoid situations such as the represented in figure 8.1, where there

is an irreversible collapse of the population, a penalty function added to the fitness formula

will be described.

8.5.1 Hierarchical selection operator

Motivation and definition

As described in the introduction of this chapter, this first generalization pressure method

is very simple in concept. It consist of a comparison function integrated into a tournament

selection that decides which individual is the winner of each tournament. Its inspiration is

the Occam’s razor principle, which informally says that given two equally accurate solutions,

keep the simplest one. In the case of this operator, the equally accurate has been changed to

similarly accurate. The code of the hierarchical selection is represented in figure 8.5.

Why is the rationale of this similarly accurate, which introduces an extra parameter?

(threshold) if the threshold were 0, it would mean that the best individual of the population

is the one achieving most training accuracy with the minimum number of rules. This is

totally correct for synthetic or totally consistent domains, where it is normal to achieve perfect

accuracy, but what happens if there is noise in the dataset? The hierarchical selection would be

unable to stop the system learning specific rules that cover wrong training examples, because

they would increase the training accuracy of the generated solution.

On the other hand, if we have a threshold slightly larger than 0, the system will be able to

learn almost the maximum possible training accuracy, but it will avoid learning rules that have

an almost insignificant contribution to the training accuracy, which usually means inconsistent

instances or noise. There is an open question, which is how do we tune threshold. In previous

work (Bacardit & Garrell, 2002c), the experimentation showed that value 0.01 was quite good

in general for real datasets, which smaller values such as 0.001 were better for synthetic ones,

which is consistent with the rationale of the operator stated above. As the experimentation

reported in this chapter only contains real problems, for the sake of simplicity we will only use

value 0.01 for the threshold.
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Figure 8.5: Code of the hierarchical selection operator

Hierarchical selection operator
Input : Indiva, Indivb, threshold
winner = NULL
If |Indiva.accuracy − Indivb.accuracy| < threshold

If Indiva.numRules < Indivb.numRules
winner = Indiva

Else If Indiva.numRules > Indivb.numRules
winner = Indivb

EndIf
EndIf
If winner is NULL

If Indiva.fitness > Indivb.fitness
winner = Indiva

Else If Indiva.fitness < Indivb.fitness
winner = Indivb

Else
If random[0, 1] < 0.5

winner = Indiva

Else
winner = Indivb

EndIf
EndIf

EndIf
Output : winner
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In order to integrate the operator with the rest of the system, some modifications are

needed:

• As the default tuning for the rule-deletion operator leaves a small subset of useless rules

in the individual, to act as neutral code, it is logical to exclude these rules from the

operator. Thus, the number of rules of an individual used in the operator will include

only the alive rules.

• For the ADI knowledge representation we need an alternative definition of complexity to

using simply the number of alive rules, because now there are to factors of complexity:

number of rules and number of intervals per attribute. The simplest alternative is to

use as the length of an individual the total sum of intervals contained in the rules of the

individual, that serves for both factors.

Behavior of the hierarchical selection operator

What is the behavior of the hierarchical selection operator? section 8.6 will show perfor-

mance and run-time results of the operator over a large set of problems. Here the aim is to

illustrate the general tendency (in the complexity of the individuals) that the operator shows

through the iterations. Figure 8.6 shows the evolution, through the iterations, of the number

of alive rules of the best individual and the average of the population for the bal, bpa and cr-a

datasets.

The hierarchical selection method uses a specific-to-general policy. In the early iterations of

the learning process it frequently finds new solutions that outreach the previous best accuracy

by more than threshold. In this situation the number of rules of the individuals is irrelevant.

But as the learning curve stabilizes, the differences in accuracy between the bests individuals

of the population become smaller than threshold. Then, the smaller individual are mostly

selected and, as a consequence, the size of the individuals slowly decreases.

8.5.2 The MDL-based fitness function

This subsection describes the alternative method to the hierarchical selection proposed

in this thesis to apply generalization pressure in the learning system. It is inspired in the

Minimum Description Length (MDL) principle (Rissanen, 1978) which is an interpretation of

the Occam’s Razor principle based on the idea of data compression, that takes into account

both the simplicity and predictive accuracy of a theory. Pfahringer (Pfahringer, 1995) did a

very good and brief introduction of the principle:
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Figure 8.6: Evolution of number of alive rules for the bal, bpa and cr-a datasets with the
hierarchical selection operator
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Concept membership of each training example is to be communicated from a

sender to a receiver. Both know all examples and all attributes used to describe the

examples. Now what is being transmitted is a theory (set of rules) describing the

concept and, if necessary, explicitly all positive examples not covered by the theory

(the false-negative examples) and all negative examples erroneously covered by the

theory (the false-positive examples). Now the cost of a transmission is equivalent

to the number of bits needed to encode a theory plus its exceptions in a sensible

scheme. The MDL principle states that the best theory derivable from the training

data will be the one requiring the minimum number of bits.

For the exact definition of the fitness function used, we have taken the general formula

used in C4.5rules (Quinlan, 1993):

MDL = W · theory bits + exception bits (8.2)

The objective of the GA is to minimize this function. W is a weight that adjust the relation

between theory and exception bits. The length of the theory bits (TL) is defined as follows:

TL =
∑

i∈alive(individual)

TLi (8.3)

Where aliverules(individual) is the subset of rules of the individual that are alive. The

definition of the rules for all the knowledge representations used share a common structure:

condition → class. The condition is defined as a certain structure (usually a predicate)

formed by elements, each of them associated to an attribute of the problem. Therefore, TLi

is defined as follows:

TLi =
na∑
j=1

TLj
i . (8.4)

Where na is the number of attributes of the problem. TLj
i is the length of the predicate

associated to the attribute j of the rule i, and has a specific formula for each knowledge

representation used. The reader can see that we have omitted a term in the formula related to

the class associated to the rule. As it is a value common for all the possible rules it becomes

irrelevant and it has been removed for simplicity reasons.

The exceptions part of the MDL principle (EL) represents the act of sending the class for

the misclassified or unclassified examples to the receiver. We implement this idea by sending

the number of exceptions plus, for each exception, its index in the examples set (supposing
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Figure 8.7: Example of an ADI2 attribute predicate

11 1 0

that sender and receiver have the examples organized in the same order) and its class:

EL = log2(ne) + (nm + nu) · (log2(ne) + log2(nc)) (8.5)

Where ne is the total number of examples, nm is the number of wrongly classified examples,

nu is the number of unclassified examples and nc is the number of classes of the problem.

Adaptation of the MDL principle for each knowledge representation

The length of the predicate associated to each attribute (TLj
i ) has to be adapted to

the type of the attribute and the knowledge representation. While designing the formula

to calculate this length we have to remember that the philosophy of the MDL principle is

to promote simple but accurate solutions. Therefore, we will prefer formula definitions that

promote bias towards simpler solutions although there may exist shorter/simpler definitions.

MDL formula for real-valued attributes and ADI knowledge representation The pred-

icate associated to an attribute by this representation is defined as a disjunction of intervals,

where each interval is a non-overlapping number of micro-intervals and can take a value of ei-

ther true of false. Thus, the information to transmit is the number of intervals of the predicate

plus, for each interval, its size and value (1 or 0):

TLj
i = log2(MaxI) + niji · (log2(MaxMI) + 1) (8.6)

MaxI is the maximum number of intervals allowed in a predicate, ni is the actual number of

intervals of the predicate and MaxMI is the maximum allowed number of micro-intervals in

the predicate.

Given the example of attribute predicate in figure 8.7, where we have 4 intervals , and

supposing that the maximum numbers of intervals and micro-intervals are respectively 5 and

25, its MDL size is defined as follows:

TLj
i = log2(5) + 4 · (log2(25) + 1)
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MDL formula for real-valued attributes and unordered bounds intervals representation

(UBR) The predicate associated to an attribute by this representation is a real-valued interval

encoded as the two bounds of the interval (without fixed ordering) and two bits that represent

the relevance state of each of the two bounds of the interval. The aim of the MDL formulation

for this representation is to promote irrelevant intervals. Thus, we send the relevance state of

each interval bound (one bit per bound) and, if necessary, the value of the bound. What is

the description length of a bound? We use the simple solution of using the length of a float

data type.

TLj
i = 2

+

{
size(float) if lowerBoundj

i is relevant
0 otherwise

+

{
size(float) if upperBoundj

i is relevant
0 otherwise

(8.7)

Given an attribute in the [0..1] domain, and the three following predicates related to this

attribute:

p1 : false, false, [0, 2..0, 6]

p2 : false, true, [0.6..0.3]

p3 : true, true, [0.1..0.9]

The relevance bits make the whole interval p3 and the upper bound of p2 be totally irrelevant.

Thus, the theory length of these intervals are:

p1 : TLj
i = 2 + 2 · size(float)

p2 : TLj
i = 2 + size(float)

p3 : TLj
i = 2

MDL formula for discrete attributes and GABIL representation The predicate associ-

ated to an attribute by this representation is defined as a disjunction of all the possible values

that can take the attribute. The simpler way of transmitting this predicate is sending the bi-

nary string that the representation uses to encode it. This is the approach used by Quinlan in

C4.5rules (Quinlan, 1993). However, this definition does not take into account the complexity

of the term and does not provide a bias towards generalized solutions.
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Therefore, we define a different formula which is very similar to the one proposed for the

ADI2 knowledge representation. In this formula we simulate that we have merged the neighbor

values of the predicate which have the same value (true or false):

TLj
i = log2(nvj) + 1 + niji · log2(nvj) (8.8)

nv is the number of possible values of the attribute j and ni is the number of “simulated

intervals” that exist in the predicate. The only difference between this formula and the ADI2

one is that we do not have to transmit the value of all the “simulated intervals”, but only the

first one (one bit).

If we had an attribute predicate such as “1111100001” we can see that we have 10 values

and 3 “simulated intervals” and that the MDL size of the predicate would be:

TLj
i = log2(10) + 1 + 3 · log2(10)

This approach makes sense for ordinal attributes, where an order between values exists,

but not for nominal ones. However, we think that this definition is also useful for nominal

attributes because we want to promote generalized predicates, where most of the values are

true, and this means having few “simulated intervals”.

MDL formula for discrete attributes and XCS representation The predicate for this

representation is a conjunction of tests where each test is either a possible value of the attribute

or “don’t care” (#). In order to promote generalized rules, the message for a # symbol should

be much shorter that the message for the other symbols. Our proposal is to send a bit which

determines the relevance of the predicate and, if necessary, the value of the predicate test.

TLj
i = 1 +

{
log2(numV aluesAttrj) if valuej

i is relevant
0 otherwise

(8.9)

Given a whole rule defined as “#12#1|1” with 5 attributes. Attribute 1,2 and 3 can take

3 different values. Attributes 4 and 5 can take 7 different values. The MDL size for the rule

for this rule would be:

TLi =
5∑

j=1

TLj
i = 1 + (1 + log2(3)) + (1 + log2(3)) + 1 + (1 + log2(7))
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Parameter-less MDL principle

If we examine all the formulas of the MDL principle we only find one parameter: W , which

adjusts the relation between the length of the theory and the length of the exceptions. Quinlan

used a value of 0.5 for this parameter in C4.5rules and reported the following in page 53 of

(Quinlan, 1993):

Fortunately, the algorithm does not seem to be particularly sensitive to the

value of W .

Unfortunately, our environment of application of the MDL principle is quite different and

the value of the W parameter becomes very sensitive. The reason of this fact is the selection

pressure of the GA. If this weight is to high, the individuals may collapse into one-rule solutions,

as represented in figure 8.1.

This problem with the adjusting of W leads to a question: Is it possible to find a good

method to adjust this parameter automatically? The completely rigorous answer, being aware

of the No Free Lunch Theorem (Wolpert & Macready, 1995) and the Selective Superiority

Problem (Brodley, 1993) is no.

Nevertheless, at least we can try to find a way to automatically make the system perform

“quite well” in a broad range of problems. In order to achieve this objective we have developed

a simple approximation which starts the learning process with a very strict weight (but loose

enough to avoid a collapse of the population) and relaxes it through the iterations when the

GA has not found a better solution for a certain number of iterations. This method can be

represented by the code in figure 8.8.

InitialRateOfComplexity defines which percentage of the MDL formula should the

term W ·TL have. Using this supposition and given one individual from the initial population,

we can calculate the value of W . We have used a simple policy to select this individual: the

one with more training accuracy (W = InitialRateOfComplexity·EL
(1−InitialRateOfComplexity)·TL′ ).

This raises a question, is this individual good enough? If we recall section 8, it is more

probable that this individual will be long than short. Then, maybe we would be initializing W

with too mild a value. Therefore, before calculating the initial value of W we do a last step:

scaling the theory length of this individual (TL′ = TL · NR
NC ), using as a reference the minimum

possible number of rules of an optimal solution: the number of classes of the domain.

We can see that in order to automatically adjust one parameter we have introduced three ex-

tra parameters (InitialRateOfComplexity, MaximumBestDelay and WeightRelaxationFactor).

The second parameter is easy to setup if we consider the takeover time for the tournament

selection (Goldberg & Deb, 1991). Given a tournament size of 3 and a population size of 300,
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Figure 8.8: Code of the parameter-less learning process with automatically adjusting of W

Initialize GA
Ind = Individual with best accuracy from the initial GA population
TL = Theory Length of Ind
EL = Exceptions Length of Ind
NR = Number of rules of Ind
NC = Number of Classes of the domain
TL′ = TL · NR

NC

W = InitialRateOfComplexity·EL
(1−InitialRateOfComplexity)·TL′

Iteration = 0
IterationsSinceBest = 0
While Iteration < NumIterations

Run one iteration of the GA using W in fitness computation
If a newbest individual has been found then

IterationsSinceBest = 0
Else

IterationsSinceBest = IterationsSinceBest + 1
EndIf
If IterationsSinceBest > MaximumBestDelay then

W = W ·WeightRelaxationFactor
IterationsSinceBest = 0

EndIf
Iteration = Iteration + 1

EndWhile
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Table 8.1: Tests with the MX-11 domain done to find the values of InitialRateOfComplexity
(IROC ) and WeightRelaxationFactor (WRF )

WRF IROC Test acc. Num. of Rules Iterations until perfect accuracy

0.7
0.05 100.0±0.0 9.3±0.6 301.4±56.8
0.075 100.0±0.0 9.2±0.5 309.0±62.6
0.1 100.0±0.0 9.2±0.5 333.3±62.2

0.8
0.05 100.0±0.0 9.3±0.5 331.0±71.5
0.075 100.0±0.0 9.2±0.3 364.4±75.3
0.1 100.0±0.0 9.2±0.5 374.3±66.9

0.9
0.05 100.0±0.0 9.2±0.5 428.6±99.7
0.075 100.0±0.0 9.2±0.4 475.5±95.6
0.1 100.0±0.0 9.1±0.4 518.4±110.2

the takeover time is 6.77 iterations. Considering that we have both crossover and mutation in

our GA, setting MaximumBestDelay to 10 seems quite safe.

Setting InitialRateOfComplexity is also relatively easy: if the value is too high (giving

too much importance to the complexity factor of the MDL formula) the population will col-

lapse. Therefore, we have to find the maximum value of InitialRateOfComplexity that lets

the system perform a correct learning process. Doing some short tests with various domains we

have seen that values over 0.1 are too much dangerous. In order to adjust this parameter more

finely and also set WeightRelaxationFactor we have done tests using again the MX-11 domain

testing three values of each parameter: 0.1, 0.075 and 0.05 for InitialRateOfComplexity

and 0.9, 0.8 and 0.7 for WeightRelaxationFactor.

The results can be seen in table 8.1, showing three things: test accuracy and the number

of rules of the best individual in the final population and also the average iteration where

100% training accuracy was reached. We can see that all the tested configuration manage

to reach a perfect accuracy, and also that the number of rules of the solutions are very close

to the optimum 9 ordered rules. The only significant differences between the combinations

of parameters tested comes when we observe the iterations needed to reach 100% training

accuracy. We can see that as more mild are the parameters used, fewer iterations are needed.

This brings up the question of how well can this behavior be extrapolated to other domains.

We have to be aware that MX-11 is a synthetic problem without noise.

In order to check how the system is behaving in real problems, we repeated this test with

the wbcd dataset. The results can be seen in table 8.2. Iterations are not included in this table

because we do not know the ideal solution for this problem. Instead, we have included training

accuracy. It will help illustrate the completely different landscape that we have here: Although

the differences are not significant, we can see that the more mild the parameters used, we have
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Table 8.2: Tests with the bre domain done to find the values of InitialRateOfComplexity
(IROC ) and WeightRelaxationFactor (WRF )

WRF IROC Training acc. Test acc. Num. of Rules

0.7
0.05 98.2±0.3 95.6±1.5 4.3±1.5
0.075 98.2±0.3 95.8±1.5 4.1±1.3
0.1 98.1±0.3 95.9±1.7 3.9±1.2

0.8
0.05 98.1±0.3 95.8±1.5 3.9±1.3
0.075 98.0±0.3 96.0±1.7 3.7±0.8
0.1 97.9±0.3 96.0±1.7 3.5±0.9

0.9
0.05 97.8±0.3 95.9±1.7 2.9±0.9
0.075 97.6±0.3 96.0±1.8 2.3±0.6
0.1 97.5±0.3 95.9±1.8 2.2±0.5

more training accuracy, more rules, and less test accuracy. It seems quite clear that the system

suffers from over-learning if its working parameters are not strict enough. The results showed

here are illustrative of the general behavior of MDL in several datasets. Therefore, we select

0.075 and 0.9 as the values of InitialRateOfComplexity and WeightRelaxationFactor

respectively for the rest of experimentation in this chapter.

Before showing the results for all the datasets tested it would be interesting to see the

stability of the W tuning heuristic presented in this section. In figure 8.9 we can see the

evolution of W through the learning process for the wbcd and prt problems The values in the

figure have been scaled in relation to the initial W value. These two problems are selected

because they show two alternative behaviours due to having quite different number of rules

in their optimal solutions. We can see that the differences in the evolution of W for different

executions shrink through the iterations, showing the stability of the heuristic.

Behavior of the MDL-based fitness function

As made for the hierarchical selection, we want to illustrate the general tendency (in the

complexity of the individuals) that the operator shows through the iterations. Figure 8.10

shows the evolution, through the iterations, of the number of alive rules of the best individual

and the average of the population for the bal, bpa and cr-a datasets.

The behavior of MDL is quite different from hierarchical selection , because of the behaviour

of the W control heuristic. This method starts the learning process giving much importance

to the size of the individual, and relaxes this importance through the iterations as dictated by

the heuristic. Therefore, the behaviour is general to specific.

In figure 8.10 we can also see the main problem of the MDL method, which is the over-

relaxation of the W weight. The philosophy of the algorithm we have proposed to tune W
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Figure 8.9: Evolution of W through the learning process
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Figure 8.10: Evolution of number of alive rules for the bal, bpa and cr-a datasets with the
hierarchical selection operator
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is that we relax this weight when it is too strict, that is, when the GA cannot find a better

individual for a certain number of iterations. This condition is sometimes difficult to control,

and maybe if the system was given more iterations, the test performance in some domains

would decrease. This issue needs more work.

8.5.3 Tuning the generalization pressure methods for proper learning

It can be observed in figure 8.10 for the MDL-based fitness function, as well as in figure 8.6

for the Hierarchical selection that the behavior of the system changes drastically at iteration

25. The reason is simple: like the rule-deletion operator, it is not wise to start using these

techniques from the initial iteration, because we can produce a population collapse like the

represented in figure 8.1. Thus, the two operators are activated at iteration 25.

Another question arises: Are 25 iterations enough to guarantee that the population does

not collapse? The answer is yes for most datasets. However it is not a guarantee that the

learning process is performed properly, because we do not have any guarantee that good rules

that have been forgotten because of the activation of the generalization pressure operator are

learned again. As an example of this problem, figure 8.11 shows, for the mmg dataset, a

correlation between the average individual size of each run in the test and the achieved test

accuracy. The figure shows clearly how the runs that evolve smaller individuals because of the

generalization pressure end up having less test accuracy.

Thus, some mechanism that prevents the system from reducing too much the number of

active rules in the population is needed. This mechanism takes the form of a penalty formula

applied to the fitness function. In this way, we can force the system to discard individuals that

can lead to an incorrect learning process. This penalty function is applied if the number of

alive rules in the individual falls below a certain threshold. The penalty function is applied

with the code in figure 8.12. The penalty applied is relative to how far the number of alive

rules is from the threshold. Also, depending on the fitness function used (squared accuracy

for hierarchical selection or the MDL one), the penalty is multiplied (fitness is maximized) or

divided (fitness is minimized) by the raw fitness.

Now the question is the tuning of minThreshold. It is very difficult to decide a global

policy applied on-line, thus, for the experimentation reported in this chapter, the value of

minThreshold was adjusted manually for each dataset. The procedure followed is to initialize

the threshold to 2, and perform some short runs to detect is its learning process is being

constrained by the size of the individuals. If this situation is detected, the threshold is increased

by 1, and the procedure is repeated. The adjusting procedure stops when the parameter reaches

value 6, because higher values could start to constrain too much the learning process. This
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Figure 8.11: Correlation between the average number of alive rules per individual and the test
accuracy for the mmg dataset, if no penalty function is used
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Figure 8.12: Code of the penalty function used to avoid a population collapse

Small individuals penalty function
Input : Individual,minThreshold
aliveRules = Individual.aliveRules
penalty = 1
If aliveRules < minThreshold

penalty = (1− 0.05 ∗ (minThreshold− aliveRules))2

EndIf
rawFitness = Individual.rawFitness
If hierarchical selection is used

finalF itness = rawFitness ∗ penalty
Else If MDL-based fitness function has been used

finalF itness = rawFitness/penalty
EndIf
Individual.fitness = finalF itness
Output : Individual
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aim of this penalty function is to apply a small fitness decrease to individuals with low number

of rules, not to influence dramatically the fitness function.

8.6 Comparing experimentally the generalization

pressure methods

This section describes the extensive experimentation done to analyze the behavior of the

two alternative generalization pressure methods described in previous section: the hierarchical

selection and the MDL-based fitness function. These two techniques will be used in combina-

tion with the rule pruning operator, and the fitness penalty formula also described in previous

section.

The aim of these experiments is not only to determine which of these two methods is the

best, but also to study the behavior showed by each method over a large set of problems. For

this reason, the tests include many different scenarios. First , the four knowledge representa-

tions for which an MDL-formula has been proposed (ADI and UBR for real-valued attributes

and the GABIL and XCS representations for nominal attributes) are tested. Next, it would be

interesting to know if these techniques can be combined with methods that have also showed

to introduce extra generalization pressure, like the ILAS windowing scheme. Thus for each

knowledge representation two configurations of ILAS will be used, using one and two strata

with constant iterations strategy. No comparative tests will be done between settings of ILAS

or between the knowledge representations. This has already been done in previous chapters

of this thesis. Here we are only interested in extracting some patterns of behaviour of each

generalization pressure methods, and determine if these patterns change in different scenarios.

Also, to have an external reference of another recent generalization pressure method used

in a Pittsburgh GBML system, we include in the experimentation the MOLCS method (Llorà,

Goldberg, Traus, & Bernadó, 2002) based on multi-objective optimization (MOO) described in

section 3.6. What has been used in the experimentation is a reimplementation of the technique

inside the framework of GAssist. The introduction of this generalization pressure method in the

experimentation forces us to disable the default rule mechanism defined in chapter 5 that has

been used in the experimentation of all the other chapters. The reason is that the automatic

determination of default class method cannot work together with the MOO because both

techniques use modified selection algorithms, that cannot be mixed easily. Also, the fitness

penalty formula will not be applied here, because it totally contradicts the philosophy of MOO,

whose aim is to evolve solutions that cover all the Pareto front. We would like to remark,

before showing the results of this experimentation, that the results of the MOLCS system
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Table 8.3: Settings of GAssist for the experimentation with generalization pressure methods

Parameter Value

General parameters
Crossover prob. 0.6
Selection algorithm tournament selection
Tournament size 3
Population size 300
Individual-wise mutation prob. 0.6
Initial number of rules per individual 20
Iterations A maximum of 1000
Minimum number of rules for fitness penalty maximum of 6
Default class policy disabled

GABIL knowledge representation
Probability of ONE 0.75

XCS knowledge representation
Probability of ] 0.75

ADI knowledge representation
Probability of ONE 0.75
Probability of Split 0.05
Probability of Merge 0.05
Probability of Reinitialize (begin,end) (0.02,0)
Maximum number of intervals 5
Uniform-width discretizers used 4,5,6,7,8,10,15,20,25 bins

Rule deletion operator
Iteration of activation 5
Minimum number of rules number of classes in dataset + 3

MDL-based fitness function
Iteration of activation 25
Initial theory length ratio 0.075
Weight relax factor 0.90

Hierarchical selection operator
Iteration of activation 25
Threshold 0.01

should be treated with a grain of salt. The environment where this system was designed is

different from GAssist in different aspects, especially the knowledge representations. Thus,

the conclusions that might be extracted from the experimentation in this chapter should be

treated as how this MOO technique works in the framework of GAssist, not as how good it is

in general.

All tests will use the configuration described in table 8.3.

As there are several datasets that contain a mix of real-valued and nominal attributes, we

have decided to use together the ADI and GABIL representation on one hand and UBR and
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Table 8.4: Results averages of the generalization pressure methods experimentation for the
ADI and GABIL representations without ILAS

Method Training acc. Test acc. #rules

MDL 89.56±11.82 81.41±14.04 6.68±3.01
Hierar 88.83±12.45 80.94±14.00 5.79±2.44

MOLCS 91.23±10.66 80.59±14.22 9.67±4.30

XCS on the other hand. The rationale of these two alternative groups is to compare rules

with two different kind of predicates. Conjunctive normal form predicates for the first group

of representations and totally conjunctive predicates on the other hand. Also, the inspiration

of the MDL formula for each group of representations is very similar.

Finally, the following subsection will show the average results over all datasets of the tested

configurations and the statistical tests applied to the results. The results for each dataset are

placed in appendix C.

8.6.1 Experimentation with ADI and GABIL representations and 1 stra-

tum

Table 8.4 contains the average results of the experimentation of this subsection. These

averages show how the three methods have three different degrees of generalization pressure:

Hierar is the method applying more pressure, reflected in the lowest training accuracy and

number of rules (at least with the current setting of 0.01 for its threshold). Then, MDL shows

a middle-point pressure degree (more training accuracy and more number of rules). Finally,

the results show how MOLCS is the system applying less pressure, reflected by the top training

accuracy and number of rules.

However, looking at the test accuracy it can be observed that the top training accuracy

of MOLCS does not translate into test accuracy, reflecting that the system is suffering from

over-learning. On the other hand, the MDL method is the one achieving most test accuracy,

indicating that it is applying the correct degree of generalization pressure. Considering the

performance of the hierarchical selection operator, we can affirm that the system is not learning

properly because there is too much generalization pressure and, consequently, the solutions

generated are over-general.

Statistical t-tests were applied to these results, and are summarized in table 8.5. The

t-tests show how the ranking of test accuracy is equivalent also to robustness, being MDL the

most robust method, and the MOLCS the most weak.
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Table 8.5: Results of the t-tests applied to the results of the experimentation on generalization
pressure methods using ADI and GABIL representations without ILAS, using a confidence level
of 0.05. Cells in table count how many times the method in the row significantly outperforms
the method in the column.

MDL Hierar MOLCS Total

MDL - 4 8 12
Hierar 0 - 4 4

MOLCS 2 2 - 2

Total 2 6 12

Table 8.6: Results averages of the generalization pressure methods experimentation for the
ADI and GABIL representations using ILAS with 2 strata

Method Training acc. Test acc. #rules

MDL 88.20±12.19 81.41±13.93 5.64±2.13
Hierar 88.09±12.52 81.12±14.16 5.27±2.02

MOLCS 87.41±12.14 79.76±14.63 7.24±2.90

8.6.2 Experimentation with ADI and GABIL representations and 2 strata

Table 8.6 contains the average results of the experimentation of this subsection. The

situation here is quite different from the results in the previous subsection. The use of the

ILAS windowing system benefits more the Hierar method than MDL, and now the accuracy

different between both methods is smaller. Also, the results show how MOLCS does not

combine well with ILAS. Now MOLCS has the lowest average training accuracy, reflecting that

it is not learning properly.

Probably the reason for this is that it cannot benefit anymore from the elitism mechanism

used in MOLCS, that copies the best 30% (in accuracy) from the prior population to the

current one. This elitism gap is ineffective now because these individuals were selected based

on a fitness function that is not used in the current iteration. Therefore, the elitism mechanism

which was beneficial without ILAS, is now only a source of noise.

Statistical t-tests were applied to these results, and are summarized in table 8.7. The t-

tests reflect even more the negative interaction between MOLCS and ILAS, being outperformed

significantly by MDL in almost half of the datasets used in the experimentation, and by Hierar

in 10 out of 25 datasets. The tests also show how MDL and Hierar perform very similarly,

with MDL being slightly superior.
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Table 8.7: Results of the t-tests applied to the results of the experimentation on generalization
pressure methods using ADI and GABIL representations with ILAS (2 strata), using a confi-
dence level of 0.05. Cells in table count how many times the method in the row significantly
outperforms the method in the column.

MDL Hierar MOLCS Total

MDL - 1 12 13
Hierar 0 - 10 10

MOLCS 0 1 - 1

Total 0 2 22

8.6.3 Experimentation with UBR and XCS representations and 1 stra-

tum

Table 8.8 contains the average results of the experimentation in this subsection. These

averages show how, comparing them to the experimentation with the other two knowledge

representations, MOLCS increases its performance while the other two methods have its per-

formance degraded. MOLCS still shows some over-learning, if it is compared to MDL, having

lower training accuracy but better test accuracy. The Hierar method it the one having more

accuracy drop, almost 1% which, considering that it is an average over all datasets, is impor-

tant.

Clearly, the hierarchical selection operator is less effective in promoting accurate but com-

pact individuals in this representation. Comparing the average training accuracy of Hierar for

both kinds of knowledge representations (88.83±12.45 for ADI and GABIL versus 89.19±12.17

for UBR and XCS) illustrate this problem. The UBR knowledge representation has more ex-

ploration power that ADI, which is constrained by the information loss introduced by the

discretization algorithms. Therefore, UBR can achieve better training accuracy. However, this

might mean that UBR has more probabilities of learning the noise contained in real datasets,

leading to a lower test accuracy. It is the job of the generalization pressure method to avoid

this situation, but the hierarchical selection operator seems to be unable to perform properly

this task.

The hierarchical selection can only be effective if the difference between the accuracies of

the well generalized solutions and the ones containing over-learning is small. If this gap is

enlarged by using a better exploration mechanism, it is not effective anymore.

The statistical tests applied to these results, summarized in table 8.9, show how now Hierar

and MOLCS have similar levels of performance and robustness. The tests also show how MDL
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Table 8.8: Results averages of the generalization pressure methods experimentation for the
UBR and XCS representations without using ILAS

Method Training acc. Test acc. #rules

MDL 89.42±11.68 81.22±13.93 8.48±3.62
Hierar 89.19±12.17 79.99±13.93 8.04±4.01

MOLCS 89.76±12.44 80.25±14.45 10.36±4.46

Table 8.9: Results of the t-tests applied to the results of the experimentation on generalization
pressure methods using UBR and XCS representations without ILAS, using a confidence level
of 0.05. Cells in table count how many times the method in the row significantly outperforms
the method in the column.

MDL Hierar MOLCS Total

MDL - 6 6 12
Hierar 1 - 3 4

MOLCS 0 3 - 3

Total 1 9 9

is better than both.

8.6.4 Experimentation with UBR and XCS representations and 2 strata

Table 8.8 contains the average results of the experimentation in this subsection. These

results maintain the same tendencies showed by the other two representations when ILAS

was activated: MDL show similar performance, Hierar improves its performance and MOLCS

degrades it. This set of tests does not introduce any new interesting observation, but it is

consistent with the behavior identified by the previous tests.

The statistical tests applied to these results, summarized in table 8.9, show how now there

is again a clear ranking between the methods. MDL is significantly better than Hierar and

Hierar is significantly better than MOLCS. This behavior is different from the observed with

the other two knowledge representations when ILAS was used, where MDL and Hierar showed

very similar performance.
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Table 8.10: Results averages of the generalization pressure methods experimentation for the
UBR and XCS representations using ILAS with 2 strata

Method Training acc. Test acc. #rules

MDL 87.72±12.09 81.16±14.04 6.58±2.58
Hierar 88.27±12.25 80.24±13.79 6.65±2.19

MOLCS 86.63±13.13 79.64±14.59 7.20±2.61

Table 8.11: Results of the t-tests applied to the results of the experimentation on general-
ization pressure methods using UBR and XCS representations with ILAS (2 strata), using a
confidence level of 0.05. Cells in table count how many times the method in the row signifi-
cantly outperforms the method in the column.

MDL Hierar MOLCS Total

MDL - 4 9 13
Hierar 0 - 3 3

MOLCS 0 1 - 1

Total 0 5 12

8.7 Discussion and further work

The results in the previous section seem to show a very clear conclusion: MDL is superior

or equal to the other two tested generalization pressure methods in all the scenarios included

in the experiments. The reality, however is different: so far the only clear thing is that MDL

is better than the other methods in the exact settings used in this experimentation. Can it

be affirmed with high confidence that these results can be generalized to other settings and

scenarios?

How can the performance of the hierarchical selection operator be improved? Looking at

the experimentation with ADI and GABIL representations, the experimentation showed that

it was not learning properly because it was applying too much generalization pressure. To fix

this problem two alternatives could be considered:

• Increase the number of iterations to achieve a proper learning level

• Change the value of threshold from 0.01 to something lower.

The first alternative has two problems: the first one is obviously the extra computational

cost of the method. The second one is that there is no guarantee that extra iterations will lead
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to a proper learning, if the pressure applied blocks any further accuracy improvement of the

population. The second alternative clearly would allow the system to achieve better training

accuracy. However it is necessary to question if this more relaxed generalization pressure

benefits equally all datasets. What happens if in some datasets a lower threshold makes the

method ineffective to avoid over-learning?

On the other hand, if we look at the results of the UBR and XCS representations, the

hierarchical selection operator shows the totally opposite behavior: it suffers from over-learning.

How could we fix this problem? With the opposite solutions to the ones considered so far:

lower the number of iterations or increase threshold. Therefore, it can be affirmed with

confidence that the hierarchical selection operator, unlike MDL, cannot perform well on all the

tested knowledge representations with a single set of parameters.

Nevertheless, using a single set of parameters for each knowledge representation is quite

an acceptable solution. Thus, more tests are required to determine if it is possible to find

another set of parameters that makes the hierarchical selection operator perform well on most

datasets for each knowledge representation.

The results of MOLCS showed two things: First, it seems that it cannot be combined with

ILAS, because of the elitism mechanism that it uses. This is a major drawback, because it

means that in order to perform properly, MOLCS needs almost the double of run-time than

MDL. The previous chapter showed how ILAS is beneficial for the performance of the system

in many different scenarios. A generalization pressure method that cannot be combined with

it automatically is less interesting to use.

Independently of ILAS, can the performance of MOLCS be improved without major changes

to the method? The tests showed how it suffers from over-learning, compared to MDL, in

both kinds of knowledge representations. We have two hypothesis of how can this problem be

fixed:

• Reducing the percentage of population included in the elitism gap of MOLCS from 30%

to something lower. As this elitism set contains the individuals with best accuracy of

the population, independently of their complexity, it is quite probable that some of these

individuals suffer from over-learning.

• Obviously, reducing the number of iterations

These two alternatives have the same problems discussed before for the hierarchical selection

operator. It needs to be determined with more tests if there is a unique set of parameters

that works well on most datasets. It is important to remember that the number of iterations

used in this experimentation for each dataset was determined using the procedure proposed

for the constant learning steps strategy of ILAS, described in the previous chapter. Thus,
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the MDL has a systematic method to tune the number of iterations used in each dataset.

Can an alternative systematic procedure be developed for the hierarchical selection operator

or MOLCS? This is another issue worth studying in further work.

The previous paragraphs have discussed about how the performance of the hierarchical

selection or MOLCS can be improved, to achieve the performance level showed by MDL.

However, another question arises. Can the performance of MDL also be improved? There are

two elements of MDL that we think that can be:

• The heuristic procedure of automatic adjustment of W . This procedure is the reason

that MDL performs well, compared to the other methods, with a single set of parameters.

Thus, it is a very important and positive element of this method. However, it is quite

complex, compared to the alternative generalization pressure methods. Can we find a way

to determine the most suitable value of W for each dataset with a more simple procedure?

Also, as it has been discussed before, the method lacks a criterion to determine when it

is not necessary to modify the value of W anymore during the learning process. This is a

potential source of over-learning in some datasets, if the weight ends up being too small

to block learning wrong knowledge. The experiments showed that this method performs

well compared to the alternatives, but we do not know if it has achieved its maximum

performance. Maybe in some datasets the system suffers from over-learning, and maybe

a good stop criterion for the adaptive procedure to adjust W could fix this problem.

• The formulation used to define the theory length (TL) for each knowledge representation.

So far with the current TL definitions we have avoided answering a question: In the

ADI representations, there are two different elements that need to be minimized: the

number of rules in a rule set and the number of intervals per attribute. Does the current

formulation give a proper balance between these two factors? If we give too much

importance to the minimization of the intervals per attribute ration, the system can

end up with too many irrelevant attributes (having only one interval). If we give too

much importance to the minimization of the number of rules, the danger of a population

collapse is higher. A proper balance is needed. It is necessary to determine if the

current formulation (or an alternative one) provides this balance. The other knowledge

representations have equivalent issues that need to be analyzed.

Finally, there is an important conclusion on the use of MDL. Analyzing the contents of the

rules to extract a measure of complexity, instead of simply counting items in the individual (be

this items rules, intervals, . . . ) has been shown to give better results so far, and this is the

main difference between the generalization pressure method based on MDL proposed in this

thesis to most of the methods reported in the literature. The MDL method probably is one
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of the most complex methods existing, but it performs better, not only because it applies the

correct degree of generalization pressure, but also because it takes into account the content

of the individuals to compute the complexity measures, potentially providing a better method

to explore the search space.

8.8 Summary of the chapter

This chapter focused on solving two problems very closely related. The first problem is a

common issue in evolutionary computation techniques that use variable-length representations:

the bloat effect. It consist in a growth without control of the size of the individuals. The way to

control this problem in the framework of GAssist is a rule deletion operator that eliminates rules

that do not contribute to the fitness of the individual, that is, that are useless. This operator,

properly controlled can be beneficial in two aspects: run-time reduction and introduction of

diversity.

The second problem is related to the machine learning field: the capacity of the learning

system to generate well generalized solutions. Usually a well generalized solution is identified

as an accurate solution of low complexity. Thus, the explicit control of the generalization

issue is also closely tied to the control of the individuals size. Two alternative methods have

been proposed in this thesis to apply generalization pressure in the system. The first one,

the hierarchical selection operator, is very simple. The second one, the MDL-based fitness

function, is much more complex.

These two methods, together with a recent alternative method reported in the literature

were tested in a wide experimentation framework containing many different scenarios and

datasets. The experiments showed how the MDL method was the best in all scenarios. Before

concluding in general that MDL is the best method for a Pittsburgh GBML, it is necessary

to guarantee that the alternative methods perform well. Several fixes have been proposed to

achieve this objective.

Nevertheless, even if other methods can achieve similar performance than the MDL-based

fitness function, this method is still relevant because of its novelty: it is one of the few methods

in this area that considers the content of the individuals in guiding the exploration process,

unlike most methods which only take into account performance (training accuracy) and very

simple measures of complexity.
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Chapter 9

The GAssist system: a global view

and comparison

The four previous chapters have presented the contributions made by this thesis to the Pitts-

burgh model of genetic based machine learning. All techniques presented were tested using

a wide range of datasets, followed by statistical tests. All this experimentation empirically

determined which techniques were the best inside the framework of the GAssist system.

The aim of this chapter is to compare the performance of GAssist (containing the best set

of techniques/parameters) to several machine learning systems. This comparison will include

several paradigms of machine learning, using different kinds of knowledge representation.

With this this global comparison we do not want only to determine if GAssist has competent

performance compared to other modern learning systems, but also to determine why it has

this performance. What is the cause of the low performance, in the datasets were it may be

significantly outperformed and also what is the cause of the good performance, in the datasets

where GAssist is significantly better.

The chapter is structured as follows: Section 9.1 will provide a brief description of the

machine learning systems included in the comparison. Next, section 9.2 will detail the configu-

ration of GAssist included in the comparison. Section 9.3 will summarize the experimentation

done showing its results and the statistical tests applied to these results, followed by section

9.4 containing the analysis made of the results with the objective of explaining the good/poor

performance of GAssist, compared to the other methods. Section 9.5 will contain the conclu-

sions and further work of this experimentation and, finally, section 9.6 will provide a summary

of the chapter.
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9.1 Description of the machine learning systems

included in the comparison

The following systems are included in the comparison:

C4.5 (Quinlan, 1993) Is the well-known decision trees induction algorithm, descendant of

ID3 (Quinlan, 1986). As its predecessor, it uses an entropy-based criterion to decide

which attribute and cut-point appears in the internal nodes, but includes also pruning

techniques to discard over-specific parts of the tree.

IB1 (Aha, Kibler, & Albert, 1991) It is the simplest nearest-neighbour classifier technique. It

uses the whole training set as the core of the classifier and euclidean distance to select

the nearest instance to the new example, using its class as the prediction for the input

instance.

IBk (Aha, Kibler, & Albert, 1991) It is an extension of the previous method. In this case, the

k nearest instances to the input example are selected, and the class prediction provided

by the system is the majority class in these k examples.

NaiveBayes (John & Langley, 1995) It is a very simple bayesian network approach that as-

sumes that the predictive attributes are conditionally independent given the class and

also that no hidden or latent attributes influence the prediction process. These as-

sumptions allow for a very simple learning and predicting process. This version handles

real-valued attributes by either using a gaussian estimator or a non-parametric kernel

density estimator.

PART (Frank & Witten, 1998) This method generates rules from partially built decision

trees, using the C4.5 methodology to build the trees. It also uses an on-line pruning

process that works while the tree is being constructed, instead of applying it after the

construction of the tree.

LIBSVM (Chang & Lin, 2001) This is a library containing implementations of support vector

machine (SVM) for classification and regression. SVMs transform the attribute space

into a higher dimensionality space called feature space where the classes of the domain

can be separated linearly by an hyperplane. This specific implementation is a simplifica-

tion of both SMO (Platt, 1999) and SVMLight (Joachims, 2002).

Majority class As a baseline, a classifier that always predicts the majority class existing in the

training set is also included.

236



CHAPTER 9. THE GASSIST SYSTEM: A GLOBAL VIEW AND COMPARISON

XCS (Wilson, 1995) This is the most popular system of the Michigan approach of GBML.

We selected version of XCS is XCSTS (Butz, Sastry, & Goldberg, 2003), which used

tournament selection instead of the usual fitness-proportionate one.

With the exception of LIBSVM and XCS, we have used the WEKA (Witten & Frank, 2000)

implementation of these algorithms, using the default parameters. For the IBk system we have

used a k of 3, and for the NaiveBayes the two kinds of approaches to deal with real-valued

attributes (gaussian and non-parametric kernel density) have been tested.

The XCS results were provided by Martin Butz, and used different sets of cross-validation

partitions. Therefore, the XCS results will not be included in the statistical tests. Also, the

results for some datasets are missing. Thus, when the average results are computed, they will

only include the datasets for which XCS has results. The settings of this system appear in

(Bacardit & Butz, 2004).

9.2 Configurations of GAssist included in the comparison

In each of the four previous chapters it was decided, for the specific topic of study of the

chapter, which was the best technique in the framework of GAssist. In this chapter we will

not experiment again with all the studied techniques, but use only the best method of each

chapter.

However, in the chapter dealing with the ADI knowledge representation there was no clear

winner. The alternative instances set/1-NN representation had slightly better performance,

but also much higher computational cost. Therefore, both techniques will be included in this

global comparison. Also, in all chapters beside the specific chapter dealing with ADI, the set

of discretization algorithms used for ADI was the set of uniform-width discretizers used in

previous work, instead of the set with a mix of supervised and unsupervised discretizers that

the experimentation in this thesis determined to be the best.

Thus, in this global comparison three sets of discretizers will be tested. The first one is

the old uniform-width set of discretizers and the other two are the ones that obtained better

accuracy in the ADI experimentation. Why include three configurations of ADI? As said in

the conclusions of chapter 6, these sets of discretizers were determined to be the best for

ADI using 15 datasets. 33 datasets (27 of them with real-valued attributes) will be included

in the experimentation of this chapter. Thus, it is an opportunity to validate partially the

performance of these groups of discretizers.
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Table 9.1: Settings of GAssist for the global comparison with other machine learning systems

Parameter Value

General parameters
Crossover prob. 0.6
Selection algorithm tournament selection
Tournament size 3
Population size 400
Individual-wise mutation prob. 0.6
Initial number of rules per individual 20
Iterations A maximum of 3000
Minimum number of rules for fitness penalty maximum of 6
Default class policy auto
Number of strata of ILAS windowing 2

ADI knowledge representation
Probability of ONE 0.75
Probability of Split 0.05
Probability of Merge 0.05
Maximum number of intervals 5

Rule deletion operator
Iteration of activation 5
Minimum number of rules number of classes in dataset + 3

MDL-based fitness function
Iteration of activation 25
Initial theory length ratio 0.075
Weight relax factor 0.90

For the domains containing only nominal attributes the GABIL representation has been

used. Thus, all configuration of GAssist included in the comparison will show the same results

for these datasets. Table 9.1 contains the configuration of GAssist for the experimentation

described in this chapter, and table 9.2 describes the sets of discretizers used.

9.3 Global comparison experimentation

The experimentation will be split into two parts. The first part will deal with the all the

small datasets described in table 4.1 of chapter 4. The second part will be focused on the

medium-size datasets described in table 4.2 of the same chapter.
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Table 9.2: Groups of discretizers used by ADI in the global comparison

Group 1 Group 2 Group 3

Initial prob. of reinit. 0.04 0.03 0.03
Discretization algs. Màntaras Màntaras Uniform-width 4

MDLP MDLP Uniform-width 5
Uniform-width 5 Uniform-width 5 Uniform-width 6
Uniform-width 20 Uniform-width 20 Uniform-width 7
Uniform-width 10 Uniform-width 8
Uniform-width 15 Uniform-width 10
Uniform-frequency 10 Uniform-width 15
Uniform-width 25 Uniform-width 20

Uniform-width 25

9.3.1 Experimentation on small datasets

For this comparison we are interested in reporting two kinds of results: test performance

(obviously) and complexity of the generated solutions. Table 9.3 contains the average results

of training accuracy, test accuracy and size of the solutions for all the learning systems and

configurations of GAssist included in the comparison. The full results of these tests appear in

appendix D.

The size of the solutions (being either number of rules, number of leaves or number of

support vectors) has been extracted from all the learning systems where such measure is

available: GAssist, C4.5, PART and LIBSVM. The population size of XCS was also available,

but it would be unfair to use it as the size of the solution because it contains rules that are

never used in the exploitation stage. In these tables, the learning systems are identified as

follows:

• GAssist with ADI representation and group 1 of discretizers - GAssist-gr1

• GAssist with ADI representation and group 2 of discretizers - GAssist-gr2

• GAssist with ADI representation and group 3 of discretizers - GAssist-gr3

• GAssist with instance set representation - GAssist-inst

• Majority class classifier - Majority

• C4.5 - C4.5

• PART - PART
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Table 9.3: Average results of the global comparison tests on small datasets

System Training accuracy Test accuracy Complexity of solution

GAssist-gr1 89.39±10.99 80.97±13.03 7.40±3.76
GAssist-gr2 89.16±11.05 80.90±12.98 7.29±3.75
GAssist-gr3 89.83±10.97 80.95±13.07 7.76±3.79
GAssist-inst 90.89±10.70 81.39±13.14 17.53±11.81

Majority 52.27±16.87 52.25±16.89
C4.5 90.63±8.63 79.33±12.28 27.46±30.28
PART 91.23±8.43 79.47±12.59 21.53±30.41
IB1 99.07±2.48 78.59±14.37
IBk 88.34±8.89 80.21±13.55

NB-gaussian 80.34±14.75 77.88±15.86
NB-kernel 83.23±12.57 79.72±14.40
LIBSVM 83.53±13.85 79.74±15.08 237.23±249.76

XCS 95.28±10.33 79.66±12.78

• IB1 - IB1

• IBk with k = 3 - IBk

• NaiveBayes with gaussian estimator for real-valued attributes - NB-gaussian

• NaiveBayes with kernel density estimator for real-valued attributes - NB-kernel

• LIBSVM Support Vector Machine library - LIBSVM

• XCS - XCS

Looking at the average test accuracy of the learning systems included in the comparison

we can see how all the configurations of GAssist have the top results of the table. However,

this comparison is somewhat unfair for one reason: the method used to handle missing values.

GAssist uses a substitution policy, detailed in chapter 4 while most of the other methods use

a simpler policy of ignoring the missing values (as if that value was irrelevant) in the match

process. These global averages are split in two tables; table 9.4 containing the averages of the

datasets where more than 10% of the instances have missing values, and table 9.5 with the

rest of datasets.

The average results on the datasets with missing values show how the policy used in

GAssist seems much better than the policies used in the rest of systems. The average accuracy

difference between the worst configuration of GAssist (GAssist-inst) and the best of the other

learning systems (PART) is 2.65%. Moreover, the statistical t-tests applied to these results,

described in table 9.6, confirm this observation because the configurations of GAssist are the

240



CHAPTER 9. THE GASSIST SYSTEM: A GLOBAL VIEW AND COMPARISON

Table 9.4: Average results of the global comparison tests on small datasets with more than
10% of instances with missing values

System Training accuracy Test accuracy Complexity of solution

gr1 89.78±13.03 82.69±16.21 9.36±5.22
gr2 89.81±12.94 82.73±15.96 9.45±5.18
gr3 89.91±13.03 82.81±16.08 9.42±5.20
inst 90.93±12.58 81.68±15.80 15.25±9.67

ZeroR 47.64±22.14 47.60±22.07
C4.5 88.03±10.52 78.94±14.58 23.67±20.64
PART 89.09±9.96 79.03±14.43 17.08±12.78
IB1 97.78±3.97 76.47±16.09
IBk 86.03±11.84 78.51±15.05

NB-gaussian 81.76±12.21 78.10±15.02
NB-kernel 82.62±11.21 78.73±14.29

svm 84.75±12.48 78.68±16.08 190.85±143.14
xcs 89.95±15.11 77.49±14.69

Table 9.5: Average results of the global comparison tests on small datasets with less than 10%
of instances with missing values

System Training accuracy Test accuracy Complexity of solution

GAssist-gr1 88.99±9.81 79.61±11.42 6.55±2.43
GAssist-gr2 88.64±9.94 79.54±11.42 6.36±2.34
GAssist-gr3 89.54±9.79 79.62±11.44 7.03±2.62
GAssist-inst 90.36±9.84 80.50±12.08 18.06±12.37

Majority 54.34±13.24 54.32±13.32
C4.5 91.23±7.59 78.70±11.48 28.17±32.95
PART 91.41±8.09 78.86±12.01 22.56±34.63
IB1 99.64±0.99 78.71±13.64
IBk 88.98±7.06 80.32±12.80

NB-gaussian 79.11±15.57 77.21±16.06
NB-kernel 82.69±13.33 79.45±14.45
LIBSVM 82.29±14.42 79.52±14.60 252.14±275.57

XCS 97.57±6.10 80.59±11.75
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Table 9.6: T-tests applied over the results of the global comparison in small datasets with
missing values, using a confidence level of 0.05. Cells in table count how many times the
method in the row significantly outperforms the method in the column.
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GAssist-gr1 - 0 0 2 9 5 6 6 6 6 6 6 52
GAssist-gr2 0 - 0 2 9 5 6 6 5 5 5 5 48
GAssist-gr3 0 0 - 2 9 5 6 6 5 5 6 6 50
GAssist-inst 0 0 0 - 9 5 5 6 5 5 5 5 45

Majority 0 0 0 0 - 0 0 0 0 0 0 0 0
C4.5 3 3 3 3 8 - 2 6 4 4 4 3 43
PART 3 3 3 3 8 2 - 6 4 4 4 2 42
IB1 3 3 3 3 8 0 1 - 2 3 3 2 31
IBk 1 1 1 2 8 4 2 5 - 3 3 1 31

NB-gaussian 1 1 1 1 9 5 5 5 4 - 0 3 35
NB-kernel 1 1 1 1 9 5 5 5 4 1 - 4 37
LIBSVM 1 1 1 1 9 5 5 7 5 3 3 - 41

Times outperformed 13 13 13 20 95 41 43 58 44 78 39 37

ones significantly outperforming the other learning systems more times than any other system,

and are also the ones being outperformed least.

The results on the datasets with few/no missing values give an slightly different picture.

In these results the configurations of GAssist still have a competent performance, especially

GAssist-inst, but they are not the top performing methods in general. The t-tests applied

to these results, summarized in table 9.7, confirm these observations. Leaving XCS aside

because it could not be included in the t-tests, the best learning system is LIBSVM because

it is the second system being outperformed least, thus it is very robust, and also the one

outperforming the other systems most. The configurations of GAssist are also quite robust,

being outperformed few times, although they are not the at the top of the outperforming count

ranking.

So far the comparison has mixed all kinds of knowledge representations, but it would be

also interesting to split it into orthogonal/non-orthogonal ones. Tables 9.8 and 9.9 contain the

average results and t-tests respectively for orthogonal knowledge representations, and tables

9.10 and 9.11 the average results and t-tests respectively for the non-orthogonal ones. These

results belong to the datasets without missing values.
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Table 9.7: T-tests applied over the results of the global comparison in small datasets without
missing values, using a confidence level of 0.05. Cells in table count how many times the
method in the row significantly outperforms the method in the column.
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GAssist-gr1 - 0 0 4 22 10 11 11 5 10 7 5 85
GAssist-gr2 0 - 0 4 22 10 12 10 5 10 7 5 85
GAssist-gr3 0 0 - 4 22 10 11 9 3 10 8 5 82
GAssist-inst 6 8 7 - 22 10 9 10 8 10 7 5 102

Majority 0 0 0 0 - 1 2 1 1 1 1 0 7
C4.5 2 2 2 3 22 - 3 8 5 10 4 6 67
PART 3 3 3 1 21 5 - 9 5 9 5 5 69
IB1 5 6 6 2 21 8 10 - 3 9 6 5 81
IBk 10 10 10 5 23 11 11 13 - 10 7 4 114

NB-gaussian 8 9 7 6 21 11 12 8 7 - 1 4 94
NB-kernel 9 10 8 8 22 13 11 11 11 10 - 8 121
LIBSVM 14 15 14 11 21 16 16 18 11 14 9 - 159

Times outperformed 57 63 57 48 239 105 108 108 64 165 62 52
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Table 9.8: Average results of the global comparison tests on small datasets with less than 10%
of instances with missing values for the orthogonal knowledge representations

System Training accuracy Test accuracy Complexity of solution

GAssist-gr1 88.99±9.81 79.61±11.42 6.55±2.43
GAssist-gr2 88.64±9.94 79.54±11.42 6.36±2.34
GAssist-gr3 89.54±9.79 79.62±11.44 7.03±2.62

C4.5 91.23±7.59 78.70±11.48 28.17±32.95
PART 91.41±8.09 78.86±12.01 22.56±34.63
XCS 97.57±6.10 80.59±11.75

Table 9.9: T-tests applied over the results of the global comparison in small datasets without
missing values and for orthogonal knowledge representations, using a confidence level of 0.05.
Cells in table count how many times the method in the row significantly outperforms the
method in the column.
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GAssist-gr1 - 0 0 10 11 21
GAssist-gr2 0 - 0 10 12 22
GAssist-gr3 0 0 - 10 11 21

C4.5 2 2 2 - 3 9
PART 3 3 3 5 - 14

Times outperformed 5 5 5 35 37

These results show how the evolutionary methods, XCS and GAssist have the best test

performance. Lacking the statistical tests over XCS, the configurations of GAssist have the

best scores on the t-tests, showing robustness and good performance. Also, the solutions

generated are also the smallest, thus probably more interpretable which is a very interesting

characteristic of a learning system.
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Table 9.10: Average results of the global comparison tests on small datasets with less than
10% of instances with missing values for the non-orthogonal knowledge representations

System Training accuracy Test accuracy Complexity of solution

GAssist-inst 90.36±9.84 80.50±12.08 18.06±12.37
IB1 99.64±0.99 78.71±13.64
IBk 88.98±7.06 80.32±12.80

NB-gaussian 79.11±15.57 77.21±16.06
NB-kernel 82.69±13.33 79.45±14.45
LIBSVM 82.29±14.42 79.52±14.60 252.14±275.57

Table 9.11: T-tests applied over the results of the global comparison in small datasets without
missing values and for non-orthogonal knowledge representations, using a confidence level of
0.05. Cells in table count how many times the method in the row significantly outperforms
the method in the column.
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GAssist-inst - 10 8 10 7 5 40
IB1 2 - 3 9 6 5 25
IBk 5 13 - 10 7 4 39

NB-gaussian 6 8 7 - 1 4 26
NB-kernel 8 11 11 10 - 8 48
LIBSVM 11 18 11 14 9 - 63

Times outperformed 32 60 40 53 30 26

The comparison of the non-orthogonal knowledge representations reflects the same trends

as the overall comparison. Although GAssist-inst and IBk have the best test averages, the t-

tests indicate that LIBSVM has the best performance, followed by NB-kernel and GAssist-inst

with similar results. With only two of the methods including results about the complexity of

the solutions generated, conclusions about this issue cannot be extracted.
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Table 9.12: Average results of the global comparison tests on large datasets

System Training acc. Test acc. Size of sol. Time (s)

GAssist 87.39±9.93 86.91±10.05 10.99±4.88 300.00±0.00
C4.5 95.84±5.35 91.61±8.26 942.57±1839.83 8.51±14.45
NB-kernel 87.66±7.13 87.24±7.20 8.89±13.00
PART 96.32±4.65 91.58±8.41 761.70±1439.81 425.53±1037.80

9.3.2 Experimentation on large datasets

For the experimentation on large datasets we reproduce the results reported in chapter 7,

selecting the configuration with best training accuracy for each dataset with run-time 300, as

the tests showed that is a good strategy. That test used ADI representation and group 3 of

discretization algorithms. No extra tests will be done with other settings of ADI because the

results on small datasets showed that the existing differences between the groups of discretizers

are minor when compared to the differences with other learning systems. This time the IB1, IBk

and LIBSVM methods are not included in the comparison because their run-time is completely

excessive, using more than an hour per run (fold) in some datasets. XCS is also removed

because results are missing for half of the datasets used, so it is difficult to extract proper

conclusions. Finally, as the NB-kernel configuration of NaiveBayes showed in the previous

tests to be much better than NB-gaussian, it is the only one included.

Table 9.12 contains the average results over all datasets of these tests. As usual, the full

detail of these results is in appendix D. These results were analyzed with statistical t-tests,

that are summarized in table 9.13. Clearly, GAssist is not prepared to handle these datasets in

a reasonable time (let us remind that a time limit of 300 seconds was applied to the GAssist

runs). The same statement can be made for the NaiveBayes system. Nevertheless, the small

size of the solutions generated, compared to C4.5 or PART is a very good feature of this

system. Even if these solutions are not as accurate as the ones of the other system, the human

experts will probably extract more useful information due to its small size.

9.4 Analysis of the experimentation results

In this section we will analyze the results reported in the previous section from many

different points of view, and we will try to explain why GAssist performs as it does. Most of

the chapter will be focused on small datasets, because the conclusions extracted from these

datasets are also applicable to the larger ones.
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Table 9.13: T-tests applied over the results of the global comparison in big datasets, using
a confidence level of 0.05. Cells in table count how many times the method in the row
significantly outperforms the method in the column.

GAssist C4.5 NB-kernel PART Times outperforming

GAssist - 0 5 0 5
C4.5 12 - 11 5 28

NB-kernel 7 2 - 3 12
PART 12 4 10 - 26

Times outperformed 31 6 26 8

9.4.1 The handling of missing values

The results of tests reported in the previous section showed why it is crucial to correctly

choose the policy used to handle missing values. In this sense, GAssist showed to have chosen

its policy (of substitution) more correctly than the other systems. Moreover, the statistical

tests showed that GAssist managed to outperform the other systems in 5-6 datasets but it was

outperformed 3 times by C4.5, PART and IB1.

Looking at the specific datasets of these significant differences, we can see that all the

dataset where GAssist was significantly better have something in common: there is a majority

of nominal attributes. On the other hand, we can see two different patterns in the three datasets

where GAssist was outperformed. On one hand we have the only dataset with missing values

where real-valued attributes are majority, and on the other hand we have two datasets with 19

and 24 classes.

Although we only have data on 9 datasets, it seems that the substitution policy for nominal

attributes is much better than the policy for real-valued ones. This in an issue that needs further

work to be able to extract strong conclusions. Also, it seem that GAssist has problems with

datasets with a high number of classes. This last issue will appear again later in this section,

and it is one of the areas where GAssist can be improved in the future.

9.4.2 Generalization capacity of the compared systems

Comparing the averages of training and test accuracies for the small datasets, in table

9.5, we can see three kinds of behaviors. First of all we have three systems (NB-gaussian,

NB-kernel and LIBSVM) where the difference between the achieved training and test accuracy

is quite small (less or equal than 3%). Then, we have the 3 configurations of GAssist using
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ADI representation, with a medium level of difference. Finally, GAssist-inst, C4.5, PART and

especially XCS have the highest difference between training and test accuracies. In this analysis

we have left IB1 and IBk aside because, strictly speaking, it cannot be said that they learn.

We can observe two totally opposite behaviors. First there are NB-gaussian, NB-kernel

and LIBSVM, that show not to have almost any over-learning, but that sometimes cannot

learn all the correct knowledge. On the opposite end there is XCS, showing that it suffers

from a high degree of over-learning but also showing the higher test accuracy, thus showing

that it is able to learn more correct knowledge than the other systems. In the middle there

are the other systems, especially the ADI configurations of GAssist. They suffer from more

over-learning than NaiveBayes and LIBSVM but they are able to learn more correct knowledge

than these methods, showing higher (although the difference is small) test accuracy.

9.4.3 The size of the generated solutions

If we look at the systems that provide a complexity measure of the generated solutions,

the configurations of GAssist (especially the ADI ones) provide the solutions of smaller size.

This is a very good feature of any learning system, and clearly is one of the strongest favorable

points of GAssist.

Although we do not have exact solution size results from XCS they are probably bigger

than the solutions generated by GAssist for two reasons: first of all, it is very difficult to

achieve so high a training accuracy (an average of 97%) with a reduced set of rules. Second,

even if we can filter the population of XCS to extract a reduced set of rules, the final number

of rules probably will be still quite high compared to GAssist. To cite an example of a rule

reduction algorithm for XCS (Wilson, 2002), a reduction of a population of around 1200 rules

to 25 final rules for the wbcd dataset was achieved. However, GAssist generates only 3 rules

for this domain. Therefore, the difference is still large.

The NaiveBayes system creates a probability distribution table for each combination of

attribute and class of the problem. Therefore, the solution size would be still quite big.

Finally, the IB methods use all the training set as the core for its classifier method. Thus, they

are completely out of this comparison.

9.4.4 What datasets are hard for GAssist and ADI?

The general observation that can be extracted from the performance of GAssist on small

datasets is that it has quite good performance, although not the best one. Can we extract

some common pattern from the the results of the datasets where GAssist and, specifically,
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Table 9.14: Performance of GAssist-gr3 and XCS in the small datasets where XCS has better
performance

Dataset System Training acc. Test acc. Size of sol.

bal
GAssist-gr3 86.34±0.65 78.66±3.86 11.12±2.24

XCS 95.19±1.28 81.1±3.8

bpa
GAssist-gr3 82.20±1.54 63.29±8.69 8.51±1.44

XCS 99.97±0.10 67.1±7.5

gls
GAssist-gr3 80.64±1.93 68.30±9.27 6.85±1.04

XCS 97.62±1.37 71.8±8.9

son
GAssist-gr3 97.03±1.16 77.21±8.86 7.20±1.21

XCS 100.00±0.00 77.9±8.0

thy
GAssist-gr3 98.46±0.67 92.13±5.30 5.48±0.65

XCS 99.90±0.44 95.4±4.6

veh
GAssist-gr3 72.62±1.11 67.87±3.42 8.08±1.66

XCS 98.68±0.62 74.3±4.7

wdbc
GAssist-gr3 98.31±0.44 93.82±2.94 4.72±0.82

XCS 100.00±0.00 96.0±2.5

wine
GAssist-gr3 99.51±0.50 93.83±5.43 3.73±0.71

XCS 100.00±0.00 95.6±4.9

zoo
GAssist-gr3 98.06±1.26 91.28±8.31 7.44±0.72

XCS 100.00±0.00 95.1±6.1

Ave.
GAssist-gr3 90.35±9.48 80.71±11.67 7.01±2.08

XCS 99.04±1.57 83.81±11.08

the ADI representation does not perform well? Table 9.14 compares the performance of

GAssist-gr3 and XCS in the datasets where XCS, the best system using orthogonal knowledge

representation, has much better performance.

From the performance of both systems on these datasets, and the features of the dataset

we can extract some patterns. First of all, the average training accuracy of XCS on these

datasets is is 1.5% higher than the global average on datasets without missing values, while

the increase of GAssist is only of 0.81%. Moreover, 6 of these 9 datasets have more than 2

classes, and some of these datasets have a very uneven class distribution. These observations

indicate a problem of GAssist: That it is unable to learn rules that cover few examples when

compared to the average coverage of the rule set. on the other hand, XCS is able to learn

rules covering almost all the training set, something reflected by its high training accuracy.

This problem is well illustrated showing a rule-set generated for the bal dataset where GAs-

sist was unable to induce rules covering the minority class B (having 7.84% of the instances):
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Table 9.15: Performance of GAssist-gr3 and XCS in the small datasets where GAssist has
better performance

Dataset System Training acc. Test acc. Size of sol.

cmc
GAssist-gr3 59.59±1.12 54.74±4.05 10.31±3.03

XCS 71.22±2.34 52.4±3.6

cr-g
GAssist-gr3 82.74±0.92 72.29±4.13 12.69±2.02

XCS 97.92±0.81 70.9±4.3

h-c
GAssist-gr3 93.70±0.76 80.28±6.29 8.08±1.49

XCS 99.81±0.31 76.5±7.9

h-s
GAssist-gr3 92.75±0.87 80.27±8.11 7.45±1.12

XCS 99.85±0.24 75.3±8.1

ion
GAssist-gr3 96.90±0.74 92.71±5.01 2.59±0.93

XCS 99.86±0.24 90.1±4.7

lym
GAssist-gr3 95.89±1.32 80.80±10.82 6.69±1.11

XCS 98.84±0.84 79.8±10.2

pim
GAssist-gr3 83.72±0.81 74.36±5.05 8.71±1.81

XCS 98.90±0.67 72.4±5.3

Ave.
GAssist-gr3 86.47±12.15 76.49±10.73 8.07±2.91

XCS 95.20±9.81 73.91±10.55

0:Att 0 is [2.33333,5],Att 1 is [1.2,5],Att 3 is [1,2.76] → L

1:Att 0 is [1.26667,5],Att 1 is [1,4.2][4.6,4.8],Att 2 is [1,4],Att 3 is [1,1.6] → L

2:Att 0 is [1.26667,5],Att 1 is [2.2,5],Att 2 is [1,3],Att 3 is [1,4.8] → L

3:Att 0 is [4,5],Att 1 is [4,5],Att 3 is [1.4,5] →L

4:Att 0 is [1,3.66667][4.33333,5],Att 1 is [3,5],Att 2 is [1,4.73333],Att 3 is [1,1.16] → L

5:Att 0 is [1.26667,5],Att 2 is [1,4.73333],Att 3 is [1,1.96][2.12,2.6] →L

6:Att 1 is [1.57143,5],Att 2 is [1,1.8] →L

7:Att 0 is [2.33333,5],Att 1 is [2.2,5],Att 2 is [1,4] → L

8:Default rule → R

9.4.5 What datasets are easy for GAssist?

The aim of this subsection is the opposite of the previous one: we want to compare again

the performance of GAssist and XCS but now in the datasets (leaving missing values aside)

where GAssist is better. Table 9.15 contains the results for these datasets.

Looking at the average training accuracy of GAssist and XCS on these datasets we see the

opposite behavior to the one showed by the results on the datasets in the previous subsection.

Both systems suffer a training accuracy drop compared to the global average in table 9.5, with

GAssist having the largest drop. Moreover, most of these datasets have only two classes. Also,

in the three datasets where the test accuracy difference is larger (h-c, h-s and ion), GAssist
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selected the minority class for the default rule using the automatic determination of default

class policy introduced in chapter 5.

The conclusion that emerges from these patterns is that the over-learning problem of XCS

observed previously is amplified in these datasets because it cannot generate rules with almost

perfect training accuracy, thus it is unable to learn all the correct knowledge of the dataset.

On the other hand, GAssist is able to avoid the over-learning problem thanks to the explicit

default rule mechanism for two reasons: (1) the search space reduction due to not using the

default class in the rest of rules is maximum in the datasets with few classes and (2) choosing

the correct class hierarchy by selecting the minority class for the default rule usually creates

more compact (thus better generalized) solutions.

9.4.6 Performance of GAssist on large datasets

The results of the experimentation on large datasets showed in general that GAssist has a

bad performance level. What is the reason for this? First of all, it is necessary to remember

the time limit of 300 seconds used in GAssist. Probably with some more time its performance

would be better. The question is if it is worth using a system that needs much more learning

time. A learning period slightly longer would still be relatively reasonable, but the real solution

would be to know why it is learning so slowly.

The answer to this question can be extracted partially from these results, because the

datasets where the performance of GAssist has been significantly outperformed are the ones

with more classes. Thus, the problem is the same one that was identified for the small datasets,

but much more amplified. Also, it is possible that because of the windowing process, some

minority classes are not represented enough in all the strata and therefore cannot be learned.

9.5 Conclusions and further work

After reporting an extensive experimentation to compare the performance of GAssist with

other learning systems, the general conclusions that we can extract from these tests is that

the contributions presented in this thesis improve the performance of the Pittsburgh model,

and create a system that has competent performance compared to a broad range of learning

paradigms. Moreover, the two kinds of knowledge representations used in GAssist that were

included in this comparison perform well within their respective groups of orthogonal/non-

orthogonal representations.
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However, the experimentation identified some weak points of GAssist that need to be

improved. Most problems detected can be reduced to a single issue: learning low-frequency

rules. It is very difficult for this system to induce rules for an individual that cover very few

examples compared to the rest of the individual rules. This problem is especially critical for

large datasets.

The cause of this problem are the generalization pressure operators of the system, but

probably the system would be able to learn some more rules if the parameters that control

each of the studied generalization pressure operators (the hierarchical selection and the MDL-

based fitness function) were relaxed. However, this relaxation could be bad for the overall

performance of the system for two reasons: (1) the average number of rules generated on

most datasets would be increased. Right now one of the most positive features of GAssist is

that it generates few rules. Is it worth partially losing this capacity? and (2) probably the test

performance of the system on some datasets would be decreased because of over-learning.

Therefore, alternative methods must be studied. Among other options, there are two to

look into:

• Adding some kind of covering operator. The cause of the high training accuracy of XCS

is partially due to an operator, called covering, that deterministically introduces rules

into the population if there are no individuals that are able to match an input instance.

GAssist, by lacking such operator, must generate these rules with the classical blind

genetic operators. If the rule covers few examples it has a really small probability of

surviving in the population because it is almost impossible to create such rule with a

single genetic operation. This problem would disappear if we could deterministically add

the correct rules to the correct individuals. Obviously an operator of this kind would

increase the size of the generated rule set. The question, as usual, is to find the proper

accuracy-complexity balance.

• Adapting the methods used in the machine learning community (Japkowicz & Stephen,

2002). Usually two kinds of methods are reported in the literature:

– Sub-sample the majority class/super-sample the minority class. This approach is

very interesting for our system because it is very close to what the ILAS windowing

schema is already using. Also, if we are able to use properly the stratification

success model developed in chapter windowing, a theoretical model for this issue

could be developed.

– Changing the cost of miss-classifying the examples of different classes based on the

class distribution. This issue would mean, in the context of a Pittsburgh model,

changing the fitness function, which is something relatively easy. However, this is
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only half of the task: the recombination operators of the GA still have to generate

the rules covering the minority class.

Therefore, it seems that this issue can potentially be solved with minor changes to GAssist.

If this is true, it will be the final validation of the contributions presented in this thesis.

9.6 Summary of the chapter

This chapter has reported the experiments that were lacking in the previous chapters,

where each of the contributions presented in this thesis were compared only to some alternatives

inside the framework of GAssist. The experimentation of this chapter compared seven machine

learning systems with GAssist, using all the contributions presented in this thesis.

The experiments revealed several issues. First of all, the policies for handling missing values

used in GAssist are more appropriate than the policies used in the rest of systems. Leaving

this issue aside because it is not strictly related to learning (it is only a pre-processing stage),

GAssist showed a very competent performance compared to the alternative learning systems.

Moreover, the different knowledge representations of GAssist perform well in their respective

kinds of knowledge representations.

Although the results so far validated highly the contributions presented in this thesis, we

were also interested in detecting if the system has some strong and weak points, and why. The

comparison with XCS, the system with orthogonal knowledge representation that had the best

test results, reflected the major problem of GAssist: learning rules that cover few examples of

the training set. This problem also appeared in the experimentation with large datasets, but

even more amplified.

As further work, some solutions were proposed for this problem. Nevertheless, this issue

does not invalidate the contributions presented in this thesis because most of these contribu-

tions are not affected directly by this problem.
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Conclusions and further work
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Chapter 10

Conclusions

In this thesis several kinds of contributions have been presented, tested first in a reduced

comparison framework and later in a larger-scale comparison with many alternative machine

learning systems. Now it is time to extract conclusions from all the research reported in this

thesis. First we will summarize the work done and the contributions extracted for each of the

four kind of contributions presented in this thesis. After, some general conclusions will be

presented.

10.1 Conclusions about the explicit default rule

mechanisms

In chapter 5 we studied some mechanisms that explicitly exploit a certain emergent feature

that appears if the rule-set is used as a decision list: the automatic generation of a default rule.

The initial approach studied was very simple: extend the knowledge representation with an

explicit and static default rule. This means that the class used for this default rule is not used

in the “dynamic” rules of the individual, effectively reducing the search space and potentially

reducing the danger of over-learning, because it generates more compact rule sets.

However, the experiments done discovered that the choice of the class assigned to this

default rule is not trivial. Simple policies such as using the majority/minority class as the

default class perform quite well compared to the original system. However, they perform

poorly on certain datasets that somewhat show a lack of robustness. We can almost integrate

the best results of both policies by using the simple heuristic of selecting the policy with more

training accuracy. This mechanism introduces a good performance boost, but doubles the

run-time.
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As an alternative, a mechanism that can determine automatically the default class was

developed. This technique works by integrating in a single population individuals using all

possible default classes, and letting them compete among themselves. A niching mechanism is

introduced to guarantee that all the niches (default classes) survive in the population enough

time to learn properly and assure that a fair comparison between the default classes is achieved.

This automatic mechanism performed better when we increased the population size, which is

a usual requirement in most systems that use niching. Nevertheless, it showed almost similar

performance to the policy mentioned above of combining the majority/minority policies while

having significantly less run-time.

All the policies for the determination of the default class managed to outperform the

version of the system without explicit default class, validating the mechanism. Moreover, for

the reasons stated above we think that the automatic policy is the best method.

The comparison of GAssist with XCS of the previous chapter showed that the domains

where GAssist is much better than the other system are, indeed, the datasets where this default

class mechanism can be potentially more beneficial: the common behavior of XCS on these

datasets was that it was not able to achieve the usual level of training accuracy, reflecting that

it had problems creating a model for training set. It is in these “tough” datasets where the

search space reduction introduced by the explicit default rule mechanism becomes crucial to

learn properly, validating the benefits that it introduces.

10.2 Conclusions about the ADI knowledge

representation

The second contribution presented in this thesis, in chapter 6 was a knowledge repre-

sentation for real-valued attributes called Adaptive Discretization Intervals (ADI) knowledge

representation. This representation handles real-valued by means of discretization algorithms,

thus being able to reuse well-known nominal representations. This process usually has two pit-

falls: (1) sometimes, especially with non-supervised discretizers, not all generated cut-points

are meaningful therefore wasting exploration power on useless areas of the search space and

(2) dealing with the bias introduced by the discretization algorithm. Does the dimensionality

reduction introduced by a discretization process is adequate for all datasets? The answer most

times is no.

ADI solves the first problem by using adaptive intervals. These intervals are constructed

over the cut-points generated by the discretization algorithm. Therefore, if the cut-point

splitting two intervals is irrelevant, the representation will eliminate it merging the intervals.
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The second problem is solved by using several discretization algorithms at the same time, thus

automatically using for each dataset the most suitable discretization.

The experimentation showed that the approach of combining multiple discretization algo-

rithms is feasible because all the tested combinations of discretizers achieved more average

accuracy than the best single discretization algorithm. Also, inside the framework of GAssist

this representation had better performance that the representation evolving real-valued inter-

vals. Initially it looked like ADI were better at exploring properly the search space but the

experimentation on generalization pressure methods (GPM) in chapter 8 brought more light to

the issue: the studied GPM methods (especially the hierarchical selection operator) were unable

to avoid completely the introduction of some small over-learning in the generated rule sets. In

ADI this problem did not exist because the discretization process eliminates it partially. Thus,

it can be said that ADI, although not explicitly, also introduces some generalization pressure.

The comparison of ADI with XCS, C4.5 and PART showed that it has competent perfor-

mance compared to these systems with orthogonal knowledge representations. XCS was the

only system that was better than GAssist+ADI, and as was discussed in the previous section,

probably the cause of this fact is not strictly related to the knowledge representation, but to

other parts of the system like the covering operator of XCS. Therefore, the global comparison

validated that ADI is a competent orthogonal knowledge representation.

10.3 Conclusions about the windowing mechanisms

Chapter 7 mainly focused on a kind of windowing mechanism, called ILAS (Incremental

Learning with Alternating Strata), that showed some interesting characteristics: beside the

obvious run-time reduction, it introduced extra generalization pressure to the learning process.

The rest of the chapter focused on exploiting these two characteristics: determining the

maximum run-time reduction possible without significant impact in the performance or maxi-

mizing the performance of the system, independently of the run time (for small datasets). In

order to achieve these objectives two models were developed. One about the maximum num-

ber of strata that can be used without degrading the performance of the system. By this we

mean computing the probability that the created strata are still enough representative of the

whole training set. The other one about the run-time of ILAS. Both models were developed

using synthetic (and thus, predictable) datasets.

When these two models were put into practice using real datasets, the experimentation

showed that the stratification representativity model needs to be refined if it has to predict

the number of strata that gives maximum test accuracy. Some ideas of how to do this
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refinement were proposed, that are to be left for further work. The experimentation with real

datasets showed that the run-time model needed to be expanded. The expanded model was

more accurate in small datasets, but it was not usable in large datasets, because of physical

limitations of the experimentation framework.

Nevertheless, the experimentation showed that we can still use deterministic strategies

easy to tune to achieve these objectives and for small and large datasets that in general have

good performance. ILAS can improve the performance of the Pittsburgh model of GBML in

more than one way. The tests showed how ILAS can be used successfully in several different

scenarios, showing its versatility.

However, probably ILAS is partially the cause of the problem that GAssist suffers of being

unable to learn low-frequency rules properly, a problem observed in the global comparison in

previous chapter.

10.4 Conclusions about the bloat control and

generalization pressure methods

Chapter 8 focused on solving two very closely related problems. The first problem is a

common issue in evolutionary computation techniques that use variable-length representations:

the bloat effect. The way to control this problem in the framework of GAssist is a rule deletion

operator that, properly controlled, can be beneficial in two aspects: run-time reduction and

introduction of diversity.

The second problem is related to the machine learning field: the capacity of the learning

system to generate well generalized solutions. Usually a well generalized solution is identified

as an accurate solution of low complexity. Thus, the explicit control of the generalization

issue is also closely tied to the control of the individuals size. Two alternative methods have

been proposed in this thesis to apply generalization pressure in the system. The first one,

the hierarchical selection operator, is very simple. The second one, the MDL-based fitness

function, is much more complex.

The experimentation performed showed that the MDL-based fitness function was the best

method in different aspects: It was the one achieving the test accuracy and it was the one

working well in different knowledge representations with the same set of parameters. These

experiments have to be interpreted with a grain of salt until we can determine if the other two

methods included in the comparison can be tuned properly, because all three methods were

tested under the same circumstances, which maybe are unfair for some methods.
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Nevertheless, even if other methods can achieve similar performance than the MDL-based

fitness function, this method is still relevant because of its novelty: it is one of the few

methods in this area that considers the content of the individuals to guide the exploration

process, unlike most methods that only take into account its behavior (training accuracy) and

very simple measures of complexity.

10.5 Global conclusions of the thesis

The global conclusions that can be extracted from the thesis are positive. All the four

kinds of contributions studied are able to improve the basic Pittsburgh model and, even more

important, can be combined among themselves. The performance of the final GAssist version,

containing the best set of the studied techniques, is very competent compared to several kinds

of machine learning systems. Also, GAssist generates solutions of very reduced size, which is

a very important feature of a learning system from an interpretability point of view.

However, the global comparison showed that GAssist still can be improved in some aspects.

Its comparison with XCS identified the class of datasets that it has difficulties in learning them.

Nevertheless, this issue does not invalidate the contributions presented in this thesis because

most of these contributions are not affected directly by this problem. Perhaps the only method

that has some relation with this problem is the ILAS windowing scheme, and if we properly

develop the stratification success model, this issue can be fixed.
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Chapter 11

Further work

As the previous chapter did for the conclusions of the thesis, this one will to the same for the

further work. First, the further work for each of the four kinds of contributions presented in

this thesis will be reproduced. Next, global further work will be proposed.

11.1 Further work of the explicit default rule

mechanism

From the studied policies for determining the class used in the default rule, the automatic

policy was the best for its balance of accuracy and run-time. However, in order to achieve

good performance, it had to increase the population size due to the niching mechanism it uses

and the mating restriction introduced to avoid creating lethals. It would be useful to study if

there is any feasible way to successfully recombine individuals with different default class. If

we achieve this objective, maybe we can reduce the population size requirements of the auto

policy.

Another alternative is developing more sophisticated heuristics to combine the simple poli-

cies, although they have more computational cost, because the tests show that it cannot

choose correctly the suitable policy in all datasets. More interesting would be to develop a

method that would only need some short runs, instead of running a full test for each candidate

policy. Of course, it is clear that this approach would require a very solid statistical validation

in order to assure that the decision taken is correct.
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11.2 Further work on the ADI knowledge representation

The first item of further work proposed in chapter 6, checking the performance of the

proposed groups of discretizers on a larger set of domains, was already made in the global

comparison experiments reported in chapter 9. This global comparison did not find any sig-

nificant differences between the groups of discretizers, as all of them had good performance.

However, most of the new datasets of that comparison had a high number of nominal at-

tributes and therefore, it is still worth doing a larger comparison specifically focused on the

ADI groups.

The rest of further work deals with assuring that the dynamics of ADI assure that a

proper learning process is achieved. This means assuring that the most suitable discretization

algorithm for each dataset gets selected. This does not always happens because in some runs

even the best discretizer can disappear from the population. The reinitialize operator was

introduced to fix this problem, and some experimentation was made to tune its parameters.

However, it is still worth analyzing other ways to tune this operator, or to find other less

destructive operators than the reinitialize one to fix the problem of the dynamics of ILAS.

Instead of fixing this problem, maybe the alternative is to avoid it, by implementing some

kind of niching mechanism, analogous to the one used for the default rule that is able to assure

that all discretization algorithms survive until a fair competition can be applied. The problem

is that performing a niching process over attributes is difficult, because an individual can in

most datasets contain hundreds of attributes. If we use traditional recombination operators,

this task is very difficult. Maybe, in order to deal with this question we should transform our

system into a kind of estimation of distribution algorithm (Larranaga & Lozano, 2002).

11.3 Further work of the windowing methods

The main further work for the ILAS windowing scheme (or similar alternatives) is to find

the ways to be able to use the information extracted from the stratification success model

to tune the number of strata used on each dataset. Our hypothesis to achieve this objective

would be to find a way to estimate the number of niches in the domain from the number of

rules learned by the system on some short tests. This means filtering the rule set to discard

over-specific rules and merge rules that cover subsets of the same niche.

Why is this objective so important? So far we have found experimentally the general

settings of ILAS that maximize the performance of the system in most datasets, but not on all

264



CHAPTER 11. FURTHER WORK

them. If this model could be used on real datasets we could potentially extract the maximum

performance from ILAS, creating an even more competent system.

11.4 Further work of the bloat control and

generalization pressure methods

This further work, as the title of this subsection, is split in two parts. Small number

of experiments were performed focused specifically on the rule pruning operator. We only

illustrated how it increases the diversity of the population, and a ’rule of thumb’ method was

proposed to adjust its working parameters, based on the beneficial presence of a small quantity

of neutral code in the individuals. This issue needs further study. Is the neutral code always

beneficial? What quantity of dead rules can we leave in each individual? How does all this

combine with the default rule mechanisms, that potentially introduce important changes to

the distribution of examples covered by each rule. All these questions have yes to be answered.

Regarding the generalization pressure methods, the comparison made showed that the

MDL-based fitness function is the best method, although we still have to wonder how general

can this conclusion be. Does it only affect the exact settings used in these experiments or can

it be generalized. Some more tests, changing the settings of the other generalization pressure

methods in the ways suggested in chapter 8 should determine in general which is the best

method.

Also, the MDL method can be improved in two ways. The first one affects the adaptive

heuristic proposed to adjust the parameter that balances accuracy in complexity in this fitness

function. This heuristic can potentially suffer from over-learning because it lacks an stop criteria

to its function. The second way is to analyze the balance created by the current formulations

of theory length, the complexity measure used by MDL. This formulation is crucial to promote

the solutions to the classification process that we consider more suitable, and in some datasets

this means balancing more than one factor, thus needing the proper equilibrium between the

factors.
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11.5 Global further work of GAssist

The most important piece of further work for GAssist is obviously the problem identified

by the global comparative tests in chapter 9, about the difficulties of this system in learning

low-frequency rules. In that chapter several ways to fix this problem were proposed. The first

one is to import some kind of covering operator already used in the Michigan approach. Other

alternatives come from the machine learning field, and deal with ways to assure that the system

really learns for itself these small rules, by either modifying the fitness function to explicitly

reward the individuals that learn them or applying some kind of super-sampling/sub-sampling

to alter the proportions of examples of each class, and thus increasing the frequency of these

rules. These two solutions have one problem: they only solve half of the task, because the

recombination operators of the GA still have to generate the rules covering the minority rules.

The covering operator, of some other kind of smart recombination operators would be the

most suitable solution.

The most crucial issue of all these solutions is to find the proper accuracy-complexity

balance. Right now GAssist generates solutions of very reduced size and this capacity should

not be lost if it is not in exchange for an important performance boost.

Looking at all this description of further work, the same concept has appeared in several

context as the way to improve GAssist: smart recombination. In the general context of evolu-

tionary computation this is an issue that has been studied for more than ten years now, with

names such as estimation of distribution algorithms (Larranaga & Lozano, 2002) or compe-

tent genetic algorithms, and generally (and this is probably a too simplistic definition) means

using machine learning and statistics techniques to learn the structure of the problem being

solved and allow the system to explore better the search space by creating smart exploration

operators.

In GBML we are already in a machine learning context, but blind (or at least not completely

smart) recombination operators are still used, especially in the Pittsburgh approach, because

recently there has been some work (Butz, 2004) in integrating competent genetic algorithms

into XCS. Thus, maybe it is time to take one step forward and introduce more machine learning

into the learning process of GAssist.
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Appendix A

Full results of the experimentation

with the ADI knowledge

representation

A.1 Results of the ADI tests with a single discretizer

Table A.1: Results of the ADI tests with a single discretizer for the bal dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 80.9±2.8 75.6±5.4 7.7±1.0 33.4±5.0
ChiMerge 0.50 85.3±0.7 78.8±4.2 9.8±1.8 37.9±4.7

Uniform frequency 10 85.9±0.8 78.2±4.2 10.6±1.9 40.2±5.8
Uniform frequency 15 85.7±0.7 78.4±4.3 10.6±1.9 38.3±4.8
Uniform frequency 20 85.6±0.7 78.8±4.4 10.3±1.8 39.4±4.4
Uniform frequency 25 85.4±0.8 78.4±4.1 10.2±1.8 38.3±4.2
Uniform frequency 5 85.8±0.6 78.7±3.8 10.9±2.1 40.3±5.1

ID3 85.8±0.7 78.7±4.4 10.7±2.2 36.8±5.2
Màntaras 83.8±1.1 78.9±4.2 8.2±1.2 37.0±5.3
Fayyad 82.1±1.2 76.8±4.0 7.8±1.2 34.9±5.7
Random 74.0±6.2 71.6±7.2 7.0±1.4 31.3±5.3

Uniform width 10 86.3±0.6 79.0±4.2 11.3±2.2 40.6±5.4
Uniform width 15 86.5±0.6 79.0±3.6 11.4±2.0 41.0±5.0
Uniform width 20 86.5±0.7 78.2±4.0 11.3±2.0 41.3±4.9
Uniform width 25 86.6±0.7 78.6±4.4 11.6±2.1 41.4±5.1
Uniform width 5 85.8±0.6 78.9±3.9 10.6±1.9 39.1±5.3

USD 75.9±0.3 69.0±3.0 6.8±0.4 26.5±2.5
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Table A.2: Results of the ADI tests with a single discretizer for the bpa dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 79.7±1.7 63.7±8.3 8.0±1.3 40.2±5.5
ChiMerge 0.50 83.6±1.9 64.8±7.2 9.4±1.8 44.7±6.0

Uniform frequency 10 83.1±1.7 65.5±8.3 10.1±1.7 43.4±5.4
Uniform frequency 15 83.5±1.4 63.5±8.2 10.0±2.0 44.0±5.9
Uniform frequency 20 84.1±1.8 64.8±7.4 10.0±1.9 43.9±5.7
Uniform frequency 25 83.8±1.7 65.2±7.0 10.1±1.8 44.9±6.2
Uniform frequency 5 79.1±1.1 63.7±7.0 9.0±1.5 41.1±4.7

ID3 84.9±1.6 65.3±7.4 9.6±1.8 42.3±6.7
Màntaras 58.6±1.5 57.8±1.3 2.0±0.0 10.3±2.0
Fayyad 63.4±2.1 59.6±4.8 3.4±1.3 24.2±7.1
Random 81.8±2.5 64.1±7.8 9.4±1.7 42.7±6.3

Uniform width 10 79.2±1.5 63.1±7.7 8.4±1.5 39.7±4.9
Uniform width 15 80.1±1.9 64.3±8.8 9.0±1.5 41.0±5.1
Uniform width 20 81.5±1.5 63.2±7.3 9.2±1.6 42.2±5.1
Uniform width 25 81.4±1.5 63.1±7.5 9.2±1.6 40.1±5.3
Uniform width 5 70.5±1.3 56.1±8.1 7.6±1.2 39.2±5.1

USD 83.7±1.5 65.2±8.0 9.3±1.8 41.7±5.5

Table A.3: Results of the ADI tests with a single discretizer for the gls dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 82.1±1.9 68.9±9.1 6.8±0.9 82.7±4.8
ChiMerge 0.50 83.1±1.7 69.2±9.4 7.2±1.1 85.3±5.2

Uniform frequency 10 80.9±1.9 69.7±9.0 7.4±1.2 85.1±5.0
Uniform frequency 15 81.1±1.8 68.2±9.4 7.2±1.2 86.1±5.2
Uniform frequency 20 81.2±1.9 68.7±9.1 7.3±1.2 86.9±5.0
Uniform frequency 25 81.7±2.0 68.6±9.4 7.4±1.2 86.8±7.1
Uniform frequency 5 78.3±2.0 68.3±9.6 7.1±1.1 82.7±4.4

ID3 82.4±1.9 69.6±9.1 7.3±1.1 85.0±5.2
Màntaras 69.5±2.4 65.4±10.1 6.3±0.5 72.7±4.2
Fayyad 77.3±2.0 67.1±9.0 6.6±0.7 80.6±4.5
Random 80.9±2.2 68.2±9.2 7.3±1.1 85.6±5.7

Uniform width 10 74.4±3.0 64.6±9.5 6.9±0.9 84.6±5.3
Uniform width 15 77.9±2.0 66.7±9.6 6.9±0.9 82.7±4.8
Uniform width 20 80.5±1.8 68.3±10.2 7.1±1.0 84.2±5.3
Uniform width 25 78.4±2.1 66.9±9.6 7.2±1.0 84.6±5.2
Uniform width 5 67.0±3.6 56.9±8.6 7.1±1.0 80.3±4.5

USD 82.5±2.0 68.5±9.3 7.4±1.1 83.9±5.3
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Table A.4: Results of the ADI tests with a single discretizer for the h-s dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 89.5±1.0 79.6±8.3 6.8±0.9 23.8±2.2
ChiMerge 0.50 90.2±1.0 78.2±7.7 7.1±1.1 24.0±2.3

Uniform frequency 10 91.7±1.2 78.9±7.3 7.7±1.2 24.3±2.3
Uniform frequency 15 91.4±1.3 78.2±7.7 7.6±1.0 24.3±2.7
Uniform frequency 20 91.0±1.4 78.2±7.0 7.6±1.1 24.2±2.7
Uniform frequency 25 90.9±1.3 78.1±7.1 7.8±1.2 24.4±2.5
Uniform frequency 5 91.6±1.0 80.2±7.1 7.4±1.1 24.8±2.2

ID3 91.5±1.0 79.8±7.2 7.3±1.2 24.7±2.0
Màntaras 88.7±0.9 83.4±6.7 6.4±0.7 21.9±2.2
Fayyad 88.8±0.9 82.6±7.2 6.4±0.6 23.9±3.4
Random 86.1±2.4 73.9±9.0 7.2±1.1 23.7±3.0

Uniform width 10 91.6±1.0 80.4±8.0 7.5±1.0 25.1±2.5
Uniform width 15 91.6±1.1 79.4±7.3 7.5±1.1 25.1±2.6
Uniform width 20 91.6±1.1 81.2±7.3 7.6±1.0 25.1±2.3
Uniform width 25 91.8±1.2 80.6±8.2 7.8±1.1 25.7±2.5
Uniform width 5 91.0±1.0 80.5±7.4 7.2±1.1 24.9±2.5

USD 90.3±1.1 79.4±7.6 7.0±0.9 23.7±2.2

Table A.5: Results of the ADI tests with a single discretizer for the ion dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 98.1±0.9 90.0±5.1 3.2±1.1 62.5±12.7
ChiMerge 0.50 98.3±0.7 89.8±5.2 3.2±1.1 62.7±11.7

Uniform frequency 10 95.9±1.4 90.6±4.8 4.2±1.4 60.2±10.8
Uniform frequency 15 96.2±1.1 89.7±5.4 4.2±1.2 62.6±11.6
Uniform frequency 20 96.5±1.1 89.5±5.2 4.2±1.3 62.1±11.0
Uniform frequency 25 96.7±0.9 89.9±5.2 4.3±1.3 63.8±9.4
Uniform frequency 5 94.7±1.1 88.0±5.3 4.5±1.2 61.0±7.7

ID3 97.7±0.9 90.1±5.5 3.7±1.1 62.2±11.5
Màntaras 94.4±1.4 90.8±4.5 3.3±1.1 44.2±11.0
Fayyad 97.3±0.5 91.5±5.0 2.4±0.6 54.9±10.0
Random 97.2±1.0 90.1±5.6 4.0±1.0 64.8±8.5

Uniform width 10 97.2±0.8 92.5±4.8 3.3±1.0 56.3±11.6
Uniform width 15 97.2±0.8 90.7±5.0 3.3±1.1 56.8±12.5
Uniform width 20 97.5±0.8 91.8±5.1 3.4±1.1 57.5±13.5
Uniform width 25 97.6±0.8 91.5±4.9 3.4±1.3 57.7±14.1
Uniform width 5 96.5±1.0 91.8±5.4 3.5±1.1 53.7±11.1

USD 97.7±0.9 90.5±5.2 3.7±1.3 61.1±11.0
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Table A.6: Results of the ADI tests with a single discretizer for the irs dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 96.7±1.0 93.9±5.8 3.1±0.3 3.6±0.5
ChiMerge 0.50 97.7±0.8 94.8±5.7 3.3±0.6 4.0±0.5

Uniform frequency 10 97.4±0.7 95.2±5.9 3.6±0.7 4.0±0.6
Uniform frequency 15 98.0±0.7 94.7±5.9 3.5±0.7 4.3±0.7
Uniform frequency 20 97.9±0.9 94.9±5.9 3.6±0.7 4.3±0.7
Uniform frequency 25 96.6±0.9 93.8±5.8 3.3±0.5 3.9±0.6
Uniform frequency 5 96.3±1.0 93.1±6.4 3.7±0.8 4.1±0.5

ID3 98.2±0.8 95.0±5.8 3.6±0.7 3.8±0.5
Màntaras 97.3±0.9 95.7±5.5 3.4±0.6 3.9±0.6
Fayyad 96.8±0.9 93.8±5.9 3.2±0.4 4.1±0.6
Random 96.3±2.9 94.1±6.2 3.6±0.7 3.9±0.5

Uniform width 10 97.5±0.6 95.3±5.5 3.4±0.6 3.9±0.5
Uniform width 15 98.0±0.7 96.6±5.1 3.3±0.5 3.9±0.5
Uniform width 20 97.4±0.6 95.5±5.6 3.4±0.6 4.0±0.5
Uniform width 25 97.7±0.8 94.5±6.1 3.6±0.6 4.0±0.6
Uniform width 5 94.9±0.7 93.5±6.4 3.1±0.3 3.6±0.5

USD 97.7±0.8 94.3±5.7 3.3±0.5 3.6±0.5

Table A.7: Results of the ADI tests with a single discretizer for the lrn dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 76.1±0.9 68.5±4.7 8.4±1.7 91.9±8.9
ChiMerge 0.50 76.2±0.9 68.8±5.0 8.8±1.7 93.4±9.0

Uniform frequency 10 75.9±0.9 68.9±4.7 9.2±1.9 90.5±8.6
Uniform frequency 15 76.2±0.9 68.8±4.6 9.1±1.7 92.3±8.0
Uniform frequency 20 76.7±0.9 68.8±5.2 9.5±1.9 93.0±7.5
Uniform frequency 25 76.5±0.9 68.8±4.8 9.0±1.8 92.2±8.1
Uniform frequency 5 73.8±0.9 67.5±4.1 8.4±1.6 88.9±7.5

ID3 76.9±1.0 69.2±5.2 9.2±1.9 88.1±8.2
Màntaras 74.1±0.7 68.0±4.3 8.5±1.6 90.2±9.5
Fayyad 76.5±0.8 69.4±5.4 7.7±1.1 91.1±9.3
Random 76.3±1.2 69.3±5.3 9.0±1.8 90.0±8.9

Uniform width 10 75.0±0.7 67.4±4.3 9.2±1.6 91.2±8.2
Uniform width 15 75.6±0.9 67.4±4.6 9.6±1.7 92.5±8.0
Uniform width 20 76.2±0.8 68.4±4.9 9.0±1.7 92.6±7.7
Uniform width 25 76.2±0.9 68.7±4.5 9.4±2.0 91.1±8.9
Uniform width 5 73.7±0.8 67.6±4.9 8.0±1.3 87.3±8.5

USD 76.9±0.9 69.0±4.9 9.3±1.9 87.2±8.2
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Table A.8: Results of the ADI tests with a single discretizer for the mmg dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 88.0±1.5 65.6±10.1 6.6±0.8 49.4±6.3
ChiMerge 0.50 88.7±1.5 65.4±10.1 6.9±1.1 50.9±6.4

Uniform frequency 10 84.8±1.5 65.9±10.8 7.0±1.0 50.3±5.6
Uniform frequency 15 85.5±1.4 66.9±10.1 7.0±1.0 49.4±5.7
Uniform frequency 20 85.9±1.5 67.3±11.3 7.1±1.1 50.1±6.1
Uniform frequency 25 86.1±1.4 66.6±10.7 7.0±0.9 50.2±6.0
Uniform frequency 5 83.0±1.4 68.0±9.9 6.9±1.0 47.3±5.4

ID3 87.6±1.5 64.9±10.8 7.1±1.1 50.6±6.6
Màntaras 73.8±2.9 66.5±10.3 6.3±0.6 41.4±3.5
Fayyad 74.3±1.8 65.3±11.1 6.2±0.5 43.4±3.5
Random 86.1±1.5 66.3±9.9 7.0±1.1 49.7±6.4

Uniform width 10 82.8±1.5 64.8±9.8 7.0±1.0 47.2±4.6
Uniform width 15 83.7±1.5 65.3±9.5 7.1±1.1 49.3±5.6
Uniform width 20 84.0±1.4 67.3±10.3 7.0±1.1 47.6±5.7
Uniform width 25 84.1±1.6 64.0±9.6 6.9±0.9 49.6±5.4
Uniform width 5 80.4±1.3 69.3±8.6 6.7±0.8 46.2±4.6

USD 87.3±1.5 66.5±8.9 6.9±1.0 49.5±6.1

Table A.9: Results of the ADI tests with a single discretizer for the pim dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 83.4±0.9 73.8±4.9 9.0±1.7 111.9±17.4
ChiMerge 0.50 84.1±0.8 74.2±5.2 10.1±1.9 115.5±18.2

Uniform frequency 10 83.5±0.8 74.0±4.9 10.5±2.1 107.6±13.9
Uniform frequency 15 83.6±0.8 73.7±4.4 10.3±2.1 107.1±11.9
Uniform frequency 20 83.8±0.9 73.7±4.6 10.2±2.2 108.6±16.0
Uniform frequency 25 84.0±0.8 73.6±5.1 10.4±2.2 111.6±14.7
Uniform frequency 5 82.2±0.7 74.4±4.4 9.5±1.8 111.3±14.8

ID3 84.2±0.8 73.7±4.8 9.5±1.9 104.6±15.5
Màntaras 79.1±0.9 74.9±5.1 6.0±1.0 91.4±8.6
Fayyad 80.5±0.7 73.4±4.9 6.1±0.9 103.3±13.6
Random 83.6±0.8 74.2±4.8 9.3±2.0 109.3±15.6

Uniform width 10 82.9±0.8 74.5±4.8 10.1±1.9 108.4±14.2
Uniform width 15 83.2±0.8 74.4±5.2 10.0±1.9 108.0±13.2
Uniform width 20 83.5±0.9 74.5±4.5 10.0±2.0 105.6±14.6
Uniform width 25 83.4±0.9 74.5±5.1 10.1±2.2 106.3±15.0
Uniform width 5 81.1±0.7 74.6±4.7 8.4±1.6 101.6±13.0

USD 84.0±0.7 74.3±5.0 9.3±1.9 97.1±15.2
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Table A.10: Results of the ADI tests with a single discretizer for the thy dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 99.1±0.5 92.6±6.1 5.4±0.6 8.6±1.0
ChiMerge 0.50 99.4±0.5 92.4±5.0 5.4±0.6 8.8±1.0

Uniform frequency 10 98.8±0.6 92.2±5.9 5.5±0.7 8.8±1.0
Uniform frequency 15 99.0±0.7 92.9±5.1 5.6±0.7 8.8±1.0
Uniform frequency 20 98.9±0.6 93.2±5.1 5.6±0.7 8.8±1.0
Uniform frequency 25 99.1±0.6 92.8±5.0 5.4±0.6 8.8±1.0
Uniform frequency 5 97.8±0.8 93.5±5.5 5.3±0.5 8.8±1.0

ID3 99.1±0.7 92.9±5.3 5.4±0.6 8.5±0.9
Màntaras 98.3±0.8 91.8±5.7 5.4±0.6 8.8±0.9
Fayyad 98.2±0.5 91.9±5.4 5.3±0.5 8.8±1.0
Random 98.5±0.9 92.7±4.7 5.5±0.7 8.8±0.9

Uniform width 10 97.2±0.8 92.2±5.7 5.7±0.8 8.5±1.0
Uniform width 15 97.9±1.0 92.3±5.8 5.7±0.7 8.6±0.8
Uniform width 20 97.8±0.9 91.2±6.3 5.6±0.7 8.6±0.9
Uniform width 25 98.1±0.8 91.7±5.4 5.4±0.6 8.6±0.9
Uniform width 5 94.9±0.7 93.9±5.6 5.1±0.3 8.3±0.8

USD 98.9±0.7 93.4±4.4 5.5±0.6 8.3±0.9

Table A.11: Results of the ADI tests with a single discretizer for the wbcd dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 97.9±0.3 95.8±2.4 3.7±0.9 16.8±2.3
ChiMerge 0.50 98.6±0.3 95.8±2.2 3.6±0.9 17.7±2.1

Uniform frequency 10 98.5±0.3 95.6±2.3 3.7±0.8 17.3±2.2
Uniform frequency 15 98.3±0.3 95.8±2.5 3.8±0.9 16.9±2.6
Uniform frequency 20 98.1±0.4 95.8±2.4 3.3±0.8 16.2±2.5
Uniform frequency 25 98.0±0.5 95.6±2.5 2.9±0.7 15.4±2.5
Uniform frequency 5 98.2±0.3 95.7±2.4 3.5±0.6 17.1±1.9

ID3 98.5±0.3 95.7±2.4 3.5±0.7 15.7±2.1
Màntaras 98.2±0.3 95.6±2.5 4.3±0.9 17.0±2.0
Fayyad 97.9±0.3 95.9±2.2 3.5±0.9 17.1±2.2
Random 97.8±0.6 95.7±2.5 3.5±1.0 16.5±2.3

Uniform width 10 98.5±0.3 95.6±2.7 3.5±0.9 17.2±2.1
Uniform width 15 98.5±0.4 95.9±2.4 3.5±0.7 16.9±2.1
Uniform width 20 98.4±0.4 95.7±2.7 3.5±0.7 17.0±2.5
Uniform width 25 98.4±0.4 96.1±2.4 3.3±0.8 16.8±2.4
Uniform width 5 98.3±0.4 95.7±2.5 3.7±0.7 17.2±2.4

USD 97.9±0.3 95.9±2.1 3.2±0.5 14.3±1.8
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Table A.12: Results of the ADI tests with a single discretizer for the wdbc dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 98.9±0.4 94.3±2.9 5.0±1.2 77.8±14.4
ChiMerge 0.50 98.8±0.4 94.4±2.9 4.9±1.0 77.5±15.6

Uniform frequency 10 98.6±0.5 94.7±2.8 5.8±1.5 69.6±15.6
Uniform frequency 15 98.6±0.5 94.6±2.5 5.5±1.2 71.9±14.2
Uniform frequency 20 98.7±0.4 94.3±3.1 5.6±1.3 71.1±12.9
Uniform frequency 25 98.7±0.5 94.0±3.0 5.5±1.3 72.4±13.5
Uniform frequency 5 98.2±0.5 93.9±3.5 5.6±1.4 63.6±13.1

ID3 98.9±0.4 94.2±3.0 5.2±1.2 69.9±15.3
Màntaras 98.2±0.5 94.5±3.1 4.8±0.9 56.0±10.1
Fayyad 98.2±0.4 94.6±2.8 4.4±0.8 55.8±9.6
Random 98.6±0.5 94.0±3.0 5.0±1.1 70.4±15.7

Uniform width 10 97.5±0.7 93.9±2.9 4.9±1.1 56.1±10.8
Uniform width 15 98.1±0.6 94.4±3.3 4.9±1.0 60.3±10.6
Uniform width 20 97.9±0.7 94.1±2.8 4.9±1.0 59.6±11.9
Uniform width 25 97.9±0.6 94.0±3.1 4.9±1.1 58.9±10.5
Uniform width 5 96.9±0.6 93.6±3.1 4.8±1.0 54.3±9.5

USD 98.8±0.5 94.2±3.2 5.0±1.2 67.5±15.8

Table A.13: Results of the ADI tests with a single discretizer for the wine dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 99.8±0.3 93.0±6.1 3.4±0.6 13.9±1.5
ChiMerge 0.50 99.8±0.3 93.7±5.6 3.7±0.7 15.0±1.6

Uniform frequency 10 99.4±0.4 93.8±5.4 4.1±0.8 14.9±1.7
Uniform frequency 15 99.5±0.5 93.1±5.9 4.0±0.8 15.1±1.7
Uniform frequency 20 99.5±0.4 92.9±6.4 3.9±0.8 15.1±1.8
Uniform frequency 25 99.6±0.4 93.7±5.7 4.0±0.8 15.3±1.5
Uniform frequency 5 99.1±0.5 93.6±5.3 4.2±0.6 14.7±1.4

ID3 99.7±0.4 93.7±5.5 3.9±0.8 15.0±1.7
Màntaras 99.2±0.6 93.7±5.7 3.9±0.7 14.0±1.4
Fayyad 99.8±0.4 93.4±5.8 3.4±0.7 13.3±1.2
Random 99.6±0.5 93.8±6.4 4.0±0.8 15.2±1.5

Uniform width 10 99.4±0.6 94.0±5.3 4.1±0.9 14.5±1.4
Uniform width 15 99.7±0.5 94.2±5.5 4.2±0.9 14.8±1.5
Uniform width 20 99.6±0.5 92.2±6.6 4.2±0.9 14.7±1.5
Uniform width 25 99.5±0.5 92.9±6.2 4.1±0.8 14.9±1.5
Uniform width 5 99.5±0.5 94.5±6.0 3.9±0.8 14.3±1.3

USD 99.6±0.4 93.2±5.6 4.1±0.7 14.9±1.5
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Table A.14: Results of the ADI tests with a single discretizer for the wpbc dataset
Discretizer Training acc. Test acc. #rules Run-time (s)

ChiMerge 0.01 94.0±1.8 68.3±9.5 4.2±2.0 40.3±9.0
ChiMerge 0.50 93.9±1.6 69.8±9.7 5.4±2.0 43.6±7.1

Uniform frequency 10 92.1±1.6 72.8±8.6 6.4±1.4 42.7±5.3
Uniform frequency 15 92.1±1.7 72.5±9.2 6.6±1.4 43.3±6.0
Uniform frequency 20 92.2±1.8 73.4±8.6 6.7±1.6 44.8±7.4
Uniform frequency 25 92.2±1.9 73.6±8.6 6.5±1.4 42.5±6.4
Uniform frequency 5 91.2±1.9 74.2±8.7 6.0±1.3 40.5±5.0

ID3 92.5±1.7 73.2±8.8 6.7±1.5 43.7±9.3
Màntaras 76.5±1.1 76.0±4.4 3.0±0.1 16.3±1.7
Fayyad 78.0±2.0 74.5±6.1 2.7±0.5 18.9±4.7
Random 91.4±1.7 71.9±8.5 6.4±1.3 41.8±7.5

Uniform width 10 89.8±2.1 73.0±8.1 5.9±1.4 36.8±7.9
Uniform width 15 89.6±2.5 72.8±9.1 6.0±1.4 37.1±8.4
Uniform width 20 89.1±2.5 73.5±8.6 5.8±1.6 36.1±9.2
Uniform width 25 89.6±2.2 74.0±9.6 6.1±1.4 37.1±8.0
Uniform width 5 89.7±1.8 73.6±8.9 5.4±1.1 35.3±5.1

USD 92.2±1.8 71.4±8.7 6.5±1.6 42.1±6.8
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A.2 Results of the ADI tests with groups of discretizers

without reinitialize

Table A.15: Results of the ADI tests with groups of discretizers without reinitialize for the bal
dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 85.7±0.7 78.6±4.3 10.3±2.0 37.0±5.4
Group 2 85.3±0.8 79.3±3.9 9.6±1.8 36.5±5.2
Group 3 85.9±0.8 77.9±4.0 10.6±1.9 37.4±4.7
Group 4 86.0±0.7 78.4±4.1 11.0±2.0 37.7±5.3
Group 5 84.6±0.8 78.9±4.0 8.8±1.4 35.6±5.0
Group 6 86.0±0.7 78.4±4.4 10.3±1.8 38.3±5.1
Group 7 85.6±0.7 79.0±4.1 10.6±1.9 37.6±4.9

Table A.16: Results of the ADI tests with groups of discretizers without reinitialize for the bpa
dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 79.6±2.2 65.1±7.3 8.0±1.4 39.1±6.0
Group 2 76.3±3.0 63.7±7.3 7.3±1.3 38.0±7.4
Group 3 83.5±1.8 64.6±7.1 9.3±1.6 42.3±6.1
Group 4 83.1±1.8 65.4±7.0 9.1±1.6 42.1±6.8
Group 5 80.9±2.5 65.3±6.9 7.8±1.3 39.5±5.6
Group 6 79.1±2.2 62.7±8.5 8.4±1.5 39.3±5.6
Group 7 82.3±1.7 64.1±8.1 9.3±1.7 41.8±5.9

Table A.17: Results of the ADI tests with groups of discretizers without reinitialize for the gls
dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 78.6±2.0 67.4±9.7 6.9±0.9 80.8±4.3
Group 2 77.0±2.2 66.1±9.3 6.7±0.7 79.0±5.0
Group 3 80.7±1.8 69.2±10.0 7.1±1.0 83.9±5.2
Group 4 80.4±1.9 67.8±8.7 7.0±1.0 84.6±5.9
Group 5 79.9±2.2 68.0±10.1 6.7±0.8 81.6±5.2
Group 6 76.7±2.0 66.8±9.9 6.9±1.0 80.9±5.0
Group 7 80.3±1.9 69.4±9.3 7.2±1.1 84.3±4.7

277



APPENDIX A. FULL RESULTS OF THE EXPERIMENTATION WITH THE ADI
KNOWLEDGE REPRESENTATION

Table A.18: Results of the ADI tests with groups of discretizers without reinitialize for the h-s
dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 90.9±1.0 79.6±8.0 6.9±0.9 24.5±2.1
Group 2 90.3±1.0 80.5±7.1 6.9±1.0 23.6±2.4
Group 3 91.2±1.2 79.6±6.7 7.3±1.2 24.8±2.4
Group 4 91.5±1.1 80.0±7.5 7.4±1.2 24.9±2.5
Group 5 89.7±1.1 80.3±7.3 6.8±0.9 23.4±2.3
Group 6 91.4±1.1 80.6±7.5 7.5±1.1 25.1±2.7
Group 7 91.3±1.1 79.6±7.6 7.3±1.1 24.6±2.5

Table A.19: Results of the ADI tests with groups of discretizers without reinitialize for the ion
dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 96.7±0.9 91.4±5.1 3.0±0.9 61.0±10.4
Group 2 96.7±0.9 91.1±4.7 2.9±0.9 57.2±11.0
Group 3 96.7±1.2 90.8±5.1 3.4±1.2 64.1±11.0
Group 4 97.0±1.0 91.7±4.7 3.3±1.2 61.0±10.7
Group 5 97.0±0.9 91.3±4.9 3.1±0.8 58.4±9.7
Group 6 96.4±1.1 90.6±5.1 3.2±1.0 61.9±11.5
Group 7 95.4±1.3 89.9±5.2 4.0±1.2 65.2±10.5

Table A.20: Results of the ADI tests with groups of discretizers without reinitialize for the irs
dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 97.5±0.9 94.6±6.0 3.6±0.7 4.0±0.5
Group 2 97.5±1.1 94.2±5.9 3.6±0.6 4.0±0.5
Group 3 97.8±1.0 94.8±5.8 3.7±0.6 4.1±0.4
Group 4 97.8±0.9 94.3±5.7 3.7±0.6 4.1±0.5
Group 5 97.8±1.0 95.2±5.5 3.6±0.6 4.0±0.4
Group 6 97.6±0.8 95.0±5.9 3.6±0.6 4.1±0.5
Group 7 97.5±1.0 94.0±6.1 3.8±0.6 4.1±0.5
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Table A.21: Results of the ADI tests with groups of discretizers without reinitialize for the lrn
dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 75.8±1.0 69.0±5.1 8.3±1.7 88.9±9.0
Group 2 75.9±0.8 69.7±5.1 7.9±1.5 87.6±8.0
Group 3 76.2±0.9 68.8±4.7 8.7±1.7 91.0±10.3
Group 4 76.2±0.8 69.0±4.9 8.4±1.6 89.3±8.3
Group 5 76.5±0.8 69.9±4.9 8.1±1.5 88.5±7.3
Group 6 75.4±0.9 68.1±5.0 8.2±1.4 88.1±8.3
Group 7 75.7±0.9 68.9±4.6 8.1±1.6 88.2±7.7

Table A.22: Results of the ADI tests with groups of discretizers without reinitialize for the
mmg dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 83.8±1.6 66.0±11.1 6.7±0.9 47.1±6.2
Group 2 82.8±1.6 67.5±10.5 6.6±0.9 44.9±5.0
Group 3 85.6±1.6 66.5±10.7 6.6±0.8 49.9±5.9
Group 4 85.5±1.5 65.5±9.8 6.9±1.1 49.4±5.6
Group 5 85.4±1.7 65.1±10.1 6.6±0.8 49.5±6.1
Group 6 83.1±1.7 66.6±10.5 6.7±0.8 47.8±5.7
Group 7 84.7±1.3 67.0±10.6 6.9±1.1 48.9±5.8

Table A.23: Results of the ADI tests with groups of discretizers without reinitialize for the pim
dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 82.7±0.8 74.6±4.5 8.4±1.6 101.1±15.5
Group 2 82.0±0.9 74.4±4.8 7.5±1.3 98.1±11.8
Group 3 83.6±0.9 73.9±4.8 9.5±2.1 104.2±15.0
Group 4 83.6±0.8 74.0±4.8 9.7±1.9 103.6±16.2
Group 5 82.8±0.9 73.9±4.7 7.8±1.5 101.1±14.1
Group 6 82.5±0.8 74.3±4.7 9.2±1.8 104.7±14.8
Group 7 83.1±0.8 73.7±5.0 9.1±1.8 104.1±14.1
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Table A.24: Results of the ADI tests with groups of discretizers without reinitialize for the thy
dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.5±0.8 92.3±5.4 5.4±0.6 8.3±0.8
Group 2 98.5±0.6 92.4±5.9 5.3±0.5 8.1±0.9
Group 3 98.9±0.6 92.2±5.3 5.3±0.6 8.4±0.9
Group 4 98.8±0.7 92.4±5.2 5.3±0.5 8.3±0.9
Group 5 98.9±0.6 92.5±4.9 5.4±0.5 8.4±0.9
Group 6 97.5±0.8 91.6±5.8 5.4±0.7 8.2±0.8
Group 7 98.7±0.7 93.7±4.8 5.4±0.6 8.3±0.9

Table A.25: Results of the ADI tests with groups of discretizers without reinitialize for the
wbcd dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.3±0.3 95.8±2.3 3.4±0.8 16.2±2.1
Group 2 98.2±0.3 95.9±2.3 3.5±0.7 15.6±2.1
Group 3 98.3±0.4 95.6±2.3 3.4±0.7 16.0±2.2
Group 4 98.4±0.4 95.6±2.3 3.5±0.7 16.0±2.0
Group 5 98.1±0.3 95.6±2.5 3.4±0.7 15.3±2.1
Group 6 98.4±0.3 95.9±2.5 3.2±0.5 16.0±2.0
Group 7 98.3±0.3 95.7±2.4 3.6±0.7 18.2±5.6

Table A.26: Results of the ADI tests with groups of discretizers without reinitialize for the
wdbc dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.1±0.5 94.1±2.9 4.4±0.9 62.9±12.8
Group 2 98.1±0.5 94.6±2.9 4.5±1.0 57.2±10.6
Group 3 98.4±0.6 94.1±3.1 4.8±1.2 70.9±14.8
Group 4 98.5±0.6 94.2±3.1 4.9±1.4 65.0±12.9
Group 5 98.5±0.5 94.9±2.8 4.6±1.1 64.5±12.7
Group 6 97.6±0.7 94.2±3.1 4.4±0.9 60.0±11.4
Group 7 98.4±0.5 94.3±3.2 5.1±1.1 71.6±14.3
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Table A.27: Results of the ADI tests with groups of discretizers without reinitialize for the
wine dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 99.4±0.6 93.2±6.3 3.7±0.8 14.1±1.2
Group 2 99.5±0.5 93.4±6.1 3.6±0.8 13.7±1.2
Group 3 99.5±0.5 92.8±5.9 4.0±0.8 15.0±1.5
Group 4 99.5±0.5 93.2±5.7 4.0±0.7 14.9±1.6
Group 5 99.6±0.5 94.0±5.3 3.6±0.7 14.1±1.4
Group 6 99.1±0.6 93.3±5.5 4.1±0.8 14.5±1.1
Group 7 99.2±0.6 94.2±5.8 4.0±0.7 14.7±1.3

Table A.28: Results of the ADI tests with groups of discretizers without reinitialize for the
wpbc dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 88.5±2.3 74.6±8.7 4.9±1.3 36.5±5.5
Group 2 86.6±2.4 75.2±9.2 4.3±1.2 33.1±5.4
Group 3 91.1±2.0 72.5±8.2 6.0±1.3 42.9±6.2
Group 4 90.6±1.8 73.1±9.1 5.9±1.4 41.5±6.6
Group 5 88.9±2.5 74.0±9.0 4.7±1.3 36.6±6.2
Group 6 89.2±2.0 72.8±9.9 5.3±1.3 37.3±5.4
Group 7 91.6±1.7 74.9±8.1 5.8±1.2 43.3±5.9
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A.3 Results of the ADI tests with groups of discretizers

with reinitialize

A.3.1 Reinitialize initial probability of 0.01

Table A.29: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the bal dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 85.7±0.7 79.3±4.1 10.2±2.0 36.5±5.6
Group 2 85.3±0.8 79.0±4.1 9.7±1.7 36.0±5.4
Group 3 85.8±0.8 78.8±4.1 10.5±2.0 37.1±5.6
Group 4 85.8±0.7 78.7±4.2 10.4±1.9 36.1±5.2
Group 5 84.7±0.7 78.5±3.8 9.0±1.5 34.5±5.0
Group 6 85.9±0.7 79.1±4.2 10.4±1.9 37.7±5.5
Group 7 85.4±0.6 78.9±3.9 10.2±1.6 35.8±5.6

Table A.30: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the bpa dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 81.3±1.6 65.2±7.7 8.3±1.5 40.0±4.8
Group 2 79.0±1.9 65.0±6.1 7.5±1.3 39.2±5.9
Group 3 83.7±1.6 64.9±7.7 9.3±1.6 42.6±6.1
Group 4 83.5±1.7 65.1±7.4 9.2±1.6 41.6±6.2
Group 5 82.5±1.6 64.9±7.8 8.5±1.5 41.2±5.2
Group 6 80.1±1.7 61.8±8.4 8.3±1.5 39.2±5.3
Group 7 83.1±1.6 64.4±7.1 9.4±1.8 42.2±5.3

Table A.31: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the gls dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 79.8±2.1 69.0±8.9 6.7±0.9 84.1±4.9
Group 2 78.6±2.1 66.5±10.4 6.7±0.8 83.6±6.1
Group 3 81.4±1.9 69.7±10.5 6.9±1.0 87.4±5.2
Group 4 81.5±1.8 69.5±10.0 6.9±0.9 87.2±5.4
Group 5 80.9±2.1 68.9±9.2 6.8±0.9 84.8±6.1
Group 6 78.3±1.9 67.3±10.1 6.7±0.8 84.5±4.9
Group 7 80.6±1.8 68.2±9.8 7.2±1.1 87.2±5.4
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Table A.32: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the h-s dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 91.4±0.9 80.6±7.3 7.3±1.1 25.3±2.4
Group 2 90.9±0.9 81.2±6.9 7.1±1.0 24.5±2.3
Group 3 91.9±1.0 79.8±7.9 7.3±1.1 25.4±2.8
Group 4 92.0±1.0 79.9±7.2 7.5±1.2 25.6±2.2
Group 5 90.3±1.0 80.6±6.8 7.0±0.9 24.0±2.3
Group 6 91.8±1.0 80.9±7.4 7.4±1.1 25.7±2.4
Group 7 91.8±1.0 79.7±7.6 7.4±1.2 25.5±2.2

Table A.33: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the ion dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 97.1±0.6 92.1±4.8 2.5±0.7 57.1±10.9
Group 2 97.1±0.6 92.1±5.0 2.3±0.5 54.7±9.4
Group 3 96.8±0.9 91.4±5.1 2.9±1.1 61.2±12.2
Group 4 97.2±0.8 92.3±4.8 2.7±0.8 59.1±11.6
Group 5 97.2±0.7 91.6±5.1 2.3±0.5 54.3±9.7
Group 6 96.5±0.8 92.3±5.0 2.5±0.8 55.5±9.7
Group 7 95.7±1.2 90.0±4.8 3.7±1.1 63.9±10.0

Table A.34: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the irs dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 97.8±0.9 93.9±6.2 3.7±0.7 4.1±0.5
Group 2 97.7±1.0 94.1±5.9 3.6±0.7 4.0±0.5
Group 3 98.0±0.9 94.9±5.8 3.7±0.6 4.2±0.4
Group 4 98.0±1.0 94.6±5.7 3.6±0.7 4.1±0.5
Group 5 98.0±0.9 94.5±6.0 3.6±0.5 4.0±0.5
Group 6 97.9±0.8 95.2±5.9 3.6±0.5 4.1±0.5
Group 7 97.7±0.9 94.8±6.0 3.8±0.6 4.2±0.5
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Table A.35: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the lrn dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 76.2±1.0 69.3±4.7 7.9±1.6 90.9±9.0
Group 2 76.2±0.8 69.2±5.2 7.7±1.4 90.3±7.5
Group 3 76.2±0.8 68.8±5.2 8.5±1.5 92.3±9.6
Group 4 76.3±0.9 68.5±5.3 8.6±1.5 90.8±8.6
Group 5 76.6±0.8 69.5±5.3 8.0±1.3 90.2±8.8
Group 6 75.7±0.9 69.1±5.0 8.2±1.6 91.4±8.9
Group 7 75.9±1.0 68.5±4.9 8.2±1.7 89.9±9.3

Table A.36: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the mmg dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 84.6±1.3 67.4±9.7 6.7±1.0 47.7±5.3
Group 2 83.5±1.4 68.0±9.6 6.4±0.8 45.1±4.9
Group 3 86.0±1.4 67.3±10.6 6.8±0.9 50.4±6.0
Group 4 85.9±1.5 66.8±9.9 6.7±0.8 49.5±5.7
Group 5 86.1±1.3 65.3±10.4 6.6±0.8 49.5±5.8
Group 6 84.1±1.4 68.5±10.2 6.6±0.8 49.1±5.2
Group 7 85.4±1.2 67.5±10.3 6.9±1.0 49.7±5.8

Table A.37: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the pim dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 83.2±0.8 74.4±4.6 8.3±1.7 105.8±13.7
Group 2 82.8±0.7 74.6±4.5 7.4±1.4 101.5±11.7
Group 3 84.0±0.8 74.5±5.2 9.9±2.1 108.2±15.2
Group 4 83.9±0.8 74.6±4.7 9.6±2.0 105.3±13.6
Group 5 83.4±0.7 74.4±5.0 8.1±1.6 104.3±14.3
Group 6 83.0±0.8 74.3±4.5 9.1±1.9 106.9±15.0
Group 7 83.4±0.7 74.3±4.8 9.2±1.9 107.8±14.8
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Table A.38: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the thy dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 99.0±0.5 92.2±5.5 5.4±0.5 8.5±0.9
Group 2 98.9±0.5 92.1±5.6 5.4±0.6 8.4±0.9
Group 3 99.0±0.6 92.3±5.6 5.4±0.6 8.7±1.0
Group 4 99.1±0.6 92.4±5.8 5.4±0.6 8.6±0.9
Group 5 99.1±0.5 91.9±5.0 5.4±0.5 8.6±1.0
Group 6 98.0±0.7 92.1±6.0 5.3±0.5 8.4±0.9
Group 7 99.1±0.6 93.6±4.4 5.4±0.6 8.6±1.0

Table A.39: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the wbcd dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.3±0.3 95.9±2.3 3.3±0.6 16.2±2.2
Group 2 98.2±0.4 95.9±2.2 3.4±0.7 15.6±2.1
Group 3 98.3±0.4 96.0±2.2 3.2±0.6 16.2±2.2
Group 4 98.4±0.3 95.6±2.3 3.3±0.6 16.1±1.9
Group 5 98.2±0.3 95.7±2.1 3.3±0.7 15.3±2.0
Group 6 98.3±0.4 95.8±2.3 3.2±0.6 16.1±2.2
Group 7 98.3±0.3 95.8±2.5 3.3±0.5 16.4±2.7

Table A.40: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the wdbc dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.2±0.6 94.3±3.0 4.4±0.8 62.3±11.2
Group 2 98.2±0.5 94.2±3.1 4.2±0.8 56.2±10.0
Group 3 98.5±0.5 94.4±2.9 4.7±1.1 69.8±13.4
Group 4 98.4±0.5 94.2±2.9 4.6±1.1 63.3±13.0
Group 5 98.4±0.5 94.1±3.4 4.3±0.9 59.6±11.3
Group 6 97.5±0.5 94.0±3.1 4.2±0.8 62.0±11.4
Group 7 98.4±0.5 94.5±3.1 5.0±1.2 70.2±13.8
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Table A.41: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the wine dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 99.6±0.5 93.4±5.5 3.5±0.7 14.3±1.3
Group 2 99.8±0.4 93.4±5.4 3.4±0.6 14.1±1.2
Group 3 99.6±0.5 93.1±5.7 3.7±0.7 15.0±1.4
Group 4 99.6±0.5 93.8±5.4 3.8±0.7 15.0±1.4
Group 5 99.8±0.4 94.3±4.9 3.3±0.6 14.3±1.4
Group 6 99.3±0.6 93.1±6.0 3.9±0.7 14.9±1.5
Group 7 99.3±0.7 92.8±6.2 3.7±0.7 15.0±1.5

Table A.42: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.01
for the wpbc dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 89.4±1.8 74.1±8.3 4.7±1.1 38.0±5.7
Group 2 87.1±2.2 75.8±8.3 3.8±1.1 33.2±4.8
Group 3 91.7±1.7 73.1±8.7 5.6±1.3 42.8±6.6
Group 4 91.3±1.7 71.6±9.9 5.4±1.3 40.7±6.2
Group 5 90.0±2.1 73.8±8.6 4.3±1.2 36.6±5.4
Group 6 89.2±2.2 73.9±9.2 4.9±1.3 38.6±5.5
Group 7 92.0±1.8 73.9±8.3 5.3±1.3 42.3±5.2
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A.3.2 Reinitialize initial probability of 0.02

Table A.43: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the bal dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 85.5±0.8 78.4±3.9 9.7±1.8 35.6±5.3
Group 2 85.2±0.7 78.9±3.8 9.7±1.8 34.7±5.8
Group 3 85.7±0.8 78.7±4.3 10.5±1.8 36.3±5.5
Group 4 85.8±0.9 78.5±4.2 10.2±2.0 35.7±5.2
Group 5 84.7±0.8 79.5±3.8 9.1±1.5 33.8±5.1
Group 6 85.7±0.8 79.1±4.0 10.3±1.8 36.3±5.5
Group 7 85.3±0.7 78.3±4.1 9.7±1.8 35.5±5.2

Table A.44: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the bpa dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 81.4±1.4 64.7±7.6 8.4±1.4 40.1±4.8
Group 2 79.3±1.5 66.0±6.8 7.6±1.3 38.6±5.5
Group 3 83.8±1.6 64.7±7.3 9.6±1.9 41.6±5.6
Group 4 83.4±1.6 65.5±7.6 8.9±1.5 40.5±5.4
Group 5 82.6±1.6 64.1±6.5 8.4±1.5 40.4±4.3
Group 6 80.3±1.4 63.2±8.0 8.3±1.4 39.1±4.6
Group 7 82.6±1.6 64.7±7.8 9.1±1.6 40.8±5.7

Table A.45: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the gls dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 79.8±1.9 69.0±8.9 6.7±0.8 84.8±5.1
Group 2 78.9±2.2 67.2±9.5 6.6±0.8 84.4±5.9
Group 3 81.2±2.0 68.9±9.9 6.9±1.0 87.7±5.2
Group 4 81.3±1.7 69.2±9.5 6.8±0.9 88.2±5.5
Group 5 80.6±2.2 67.5±9.9 6.7±0.9 85.7±6.2
Group 6 78.5±2.0 68.0±9.4 6.5±0.7 84.8±5.2
Group 7 80.5±2.0 69.1±9.6 6.8±0.9 88.0±5.4
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Table A.46: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the h-s dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 91.5±1.0 80.2±7.1 7.2±1.0 25.8±2.4
Group 2 90.9±0.9 80.5±7.0 7.1±1.1 25.0±2.5
Group 3 92.1±0.9 80.6±7.0 7.4±1.1 25.8±2.2
Group 4 92.0±0.9 80.8±7.4 7.3±1.2 26.1±2.3
Group 5 90.1±0.9 80.8±7.3 6.9±1.0 24.5±2.0
Group 6 91.7±1.0 81.0±8.1 7.2±1.0 25.9±2.3
Group 7 91.8±1.0 80.0±7.5 7.5±1.2 25.7±2.1

Table A.47: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the ion dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 97.0±0.7 92.1±4.9 2.2±0.5 56.8±9.5
Group 2 97.3±0.6 91.9±4.9 2.3±0.6 55.3±9.3
Group 3 96.6±0.7 92.7±4.5 2.5±0.9 57.4±10.0
Group 4 97.0±0.8 93.0±4.5 2.6±1.1 56.4±9.6
Group 5 97.3±0.7 91.4±5.0 2.2±0.4 53.5±8.2
Group 6 96.5±0.7 92.5±5.3 2.4±0.7 54.8±8.1
Group 7 95.0±1.2 90.6±5.1 3.5±1.1 59.1±9.3

Table A.48: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the irs dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 97.8±0.9 94.4±6.0 3.6±0.7 4.2±0.5
Group 2 97.8±0.9 94.4±6.0 3.6±0.6 4.1±0.6
Group 3 98.1±0.9 94.3±6.1 3.8±0.6 4.2±0.5
Group 4 98.2±0.9 94.2±6.0 3.8±0.7 4.2±0.5
Group 5 98.1±0.8 94.4±6.2 3.6±0.6 4.1±0.5
Group 6 98.1±0.9 95.1±5.4 3.7±0.6 4.2±0.5
Group 7 97.8±1.0 94.0±6.6 3.8±0.6 4.3±0.5
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Table A.49: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the lrn dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 76.2±0.8 69.4±4.6 8.0±1.5 92.0±9.2
Group 2 76.2±0.7 69.3±5.1 7.7±1.4 90.4±8.3
Group 3 76.1±0.9 68.9±5.1 8.5±1.7 92.8±9.4
Group 4 76.2±0.9 68.5±4.9 8.7±1.7 92.3±8.9
Group 5 76.5±0.9 69.7±4.7 7.9±1.6 92.6±8.0
Group 6 75.8±1.0 68.7±5.0 8.0±1.6 91.6±9.7
Group 7 75.6±0.8 69.2±4.7 8.3±1.6 90.8±8.8

Table A.50: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the mmg dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 84.4±1.3 66.9±11.5 6.6±0.9 48.3±5.1
Group 2 83.4±1.3 68.0±10.3 6.4±0.6 45.6±5.1
Group 3 85.9±1.2 66.4±11.2 6.7±0.9 50.8±5.9
Group 4 85.8±1.4 68.1±9.9 6.8±1.0 49.2±5.6
Group 5 85.7±1.3 65.5±10.8 6.7±0.9 49.5±6.2
Group 6 84.0±1.1 69.2±10.8 6.5±0.7 47.6±4.9
Group 7 85.1±1.3 67.8±10.9 6.9±1.1 50.2±5.1

Table A.51: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the pim dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 83.5±0.7 74.6±5.2 8.5±1.9 106.2±14.1
Group 2 82.9±0.9 73.9±5.2 7.6±1.4 103.5±11.4
Group 3 84.0±0.8 73.9±5.6 9.3±2.0 109.0±13.9
Group 4 84.0±0.8 74.7±4.8 9.0±2.0 105.6±13.6
Group 5 83.4±0.7 74.4±5.0 8.1±1.7 104.2±13.1
Group 6 83.2±0.7 74.2±4.9 8.6±1.7 107.0±14.2
Group 7 83.5±0.8 74.5±4.8 8.9±1.9 105.5±13.6
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Table A.52: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the thy dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.9±0.6 92.1±5.7 5.3±0.5 8.6±0.9
Group 2 98.9±0.6 91.4±5.5 5.3±0.6 8.6±1.0
Group 3 99.3±0.6 92.7±5.5 5.4±0.6 8.8±0.9
Group 4 99.1±0.6 92.5±4.7 5.3±0.5 8.7±1.0
Group 5 99.2±0.5 92.8±4.6 5.4±0.6 8.8±0.9
Group 6 98.2±0.7 92.3±5.6 5.4±0.6 8.4±0.9
Group 7 99.0±0.6 92.9±5.0 5.4±0.6 8.8±0.9

Table A.53: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the wbcd dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.2±0.4 95.9±2.4 3.2±0.6 15.7±2.3
Group 2 98.1±0.4 95.9±2.4 3.2±0.6 15.5±1.9
Group 3 98.3±0.4 95.6±2.4 3.1±0.5 15.9±2.1
Group 4 98.2±0.4 95.7±2.4 3.0±0.6 15.5±1.9
Group 5 98.1±0.4 95.8±2.2 3.1±0.7 15.0±1.9
Group 6 98.3±0.4 95.8±2.4 3.0±0.6 16.1±2.1
Group 7 98.2±0.4 95.6±2.5 3.1±0.6 16.3±2.7

Table A.54: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the wdbc dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.1±0.5 94.2±3.0 4.1±0.8 63.6±11.7
Group 2 98.0±0.5 94.3±3.1 4.1±0.9 57.0±10.3
Group 3 98.3±0.6 94.0±3.0 4.3±1.0 69.7±13.6
Group 4 98.3±0.5 94.1±2.9 4.3±0.9 65.1±11.7
Group 5 98.4±0.5 94.5±3.0 4.2±0.9 63.5±11.6
Group 6 97.6±0.6 94.0±2.9 4.2±0.9 60.3±11.7
Group 7 98.3±0.5 94.3±3.1 4.8±0.9 70.9±14.6
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Table A.55: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the wine dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 99.7±0.4 92.8±5.6 3.4±0.7 14.6±1.3
Group 2 99.8±0.4 93.1±5.7 3.3±0.6 14.2±1.4
Group 3 99.7±0.4 93.4±6.1 3.6±0.6 15.2±1.3
Group 4 99.6±0.4 93.7±5.5 3.7±0.7 15.0±1.4
Group 5 99.8±0.3 93.5±5.6 3.2±0.4 14.6±1.3
Group 6 99.4±0.5 93.0±5.3 3.9±0.7 14.8±1.4
Group 7 99.3±0.5 93.3±6.1 3.6±0.7 15.1±1.4

Table A.56: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.02
for the wpbc dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 89.3±2.0 75.1±8.9 4.0±1.2 36.7±4.0
Group 2 87.3±2.0 75.9±8.4 3.5±1.1 33.0±3.9
Group 3 91.2±2.0 74.2±8.3 5.0±1.3 41.0±5.2
Group 4 91.1±1.8 73.8±7.5 4.9±1.2 38.9±4.7
Group 5 90.0±1.9 74.7±9.0 3.9±1.0 36.4±4.7
Group 6 89.6±2.0 72.9±8.2 4.8±1.2 37.9±4.5
Group 7 91.6±1.7 75.7±8.7 4.9±1.5 40.6±4.5
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A.3.3 Reinitialize initial probability of 0.03

Table A.57: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the bal dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 85.4±0.8 79.1±4.2 9.9±1.8 34.4±5.3
Group 2 85.1±0.7 79.3±3.5 9.7±1.9 34.2±5.5
Group 3 85.6±0.9 79.0±4.0 10.3±1.8 34.1±4.9
Group 4 85.6±0.8 79.3±4.3 10.2±1.7 34.9±5.1
Group 5 84.6±0.7 79.2±4.1 9.1±1.4 33.1±5.0
Group 6 85.6±0.8 78.7±4.2 10.2±2.0 34.4±5.4
Group 7 85.2±0.7 78.6±4.2 10.1±2.0 33.2±5.1

Table A.58: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the bpa dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 81.3±1.3 65.2±7.8 8.2±1.4 39.3±5.0
Group 2 79.3±1.5 66.8±6.9 7.5±1.3 38.3±5.6
Group 3 83.3±1.7 63.9±6.8 9.1±1.8 41.1±5.6
Group 4 83.2±1.5 64.7±7.6 8.9±1.6 40.8±5.0
Group 5 82.7±1.5 64.9±7.3 8.4±1.6 40.1±4.4
Group 6 80.3±1.5 62.8±7.5 8.4±1.5 38.8±4.7
Group 7 82.7±1.6 66.1±7.4 8.9±1.5 41.1±4.7

Table A.59: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the gls dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 79.7±2.0 68.9±8.6 6.6±0.7 84.8±5.2
Group 2 79.3±2.3 67.3±9.8 6.7±0.8 84.3±6.0
Group 3 81.2±1.7 69.7±9.4 6.9±1.0 87.2±5.8
Group 4 81.0±2.0 69.5±10.0 6.9±1.0 87.2±6.0
Group 5 80.2±2.0 67.9±9.2 6.6±0.8 85.6±5.9
Group 6 78.5±2.0 68.4±9.4 6.8±0.8 85.0±5.7
Group 7 80.5±2.0 69.4±9.6 6.9±1.0 88.6±5.1
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Table A.60: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the h-s dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 91.4±1.0 81.0±7.5 7.3±1.1 25.3±2.2
Group 2 90.7±1.0 81.1±7.7 7.0±0.9 24.4±2.5
Group 3 91.9±1.0 79.8±8.1 7.5±1.2 25.7±2.6
Group 4 91.6±1.1 80.5±6.8 7.2±1.1 25.9±2.1
Group 5 89.9±1.0 80.3±7.4 6.9±1.0 24.1±2.2
Group 6 91.6±0.8 80.2±7.1 7.4±1.2 25.8±2.4
Group 7 91.6±0.9 80.6±7.8 7.4±1.2 25.7±2.2

Table A.61: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the ion dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 97.1±0.6 91.8±5.0 2.2±0.5 56.5±7.9
Group 2 97.2±0.5 92.3±5.0 2.1±0.3 54.5±8.3
Group 3 96.4±0.9 91.5±5.1 2.6±0.9 56.6±8.6
Group 4 96.8±0.7 92.5±4.5 2.4±0.9 56.5±7.9
Group 5 97.4±0.5 91.8±5.2 2.2±0.4 53.3±8.1
Group 6 96.5±0.7 92.7±5.1 2.3±0.7 55.1±8.1
Group 7 94.5±1.0 90.3±5.3 3.3±1.2 56.6±7.0

Table A.62: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the irs dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.0±0.8 93.8±6.4 3.7±0.7 4.1±0.5
Group 2 97.9±0.9 94.4±5.9 3.5±0.6 4.1±0.5
Group 3 98.1±0.9 94.4±5.9 3.8±0.6 4.2±0.5
Group 4 98.2±0.9 94.1±5.9 3.7±0.6 4.2±0.5
Group 5 98.1±0.9 94.8±6.1 3.5±0.6 4.0±0.5
Group 6 98.0±0.9 95.3±5.5 3.6±0.6 4.1±0.5
Group 7 98.1±0.9 94.6±5.8 3.8±0.7 4.2±0.5
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Table A.63: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the lrn dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 76.1±0.9 69.4±5.0 8.1±1.4 93.0±8.1
Group 2 76.0±0.8 69.9±4.7 7.6±1.2 90.8±8.2
Group 3 76.0±0.9 68.5±4.7 8.3±1.6 93.8±8.9
Group 4 76.0±0.9 68.3±5.0 8.5±1.5 92.0±8.2
Group 5 76.4±0.9 69.5±5.1 7.9±1.4 91.6±8.6
Group 6 75.7±0.9 69.1±5.0 8.0±1.4 92.2±9.9
Group 7 75.4±0.8 68.9±4.8 7.9±1.4 91.8±8.3

Table A.64: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the mmg dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 84.1±1.3 67.8±10.3 6.5±0.8 48.4±4.7
Group 2 83.4±1.3 68.7±11.2 6.5±0.7 46.0±4.4
Group 3 85.5±1.3 68.0±10.7 6.8±1.0 50.7±4.7
Group 4 85.5±1.4 67.9±9.4 6.8±1.0 49.1±5.1
Group 5 85.5±1.5 66.7±9.9 6.5±0.8 48.5±5.0
Group 6 83.8±1.3 70.3±9.5 6.7±1.1 48.3±3.9
Group 7 84.5±1.3 69.1±10.6 6.9±1.1 49.8±4.7

Table A.65: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the pim dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 83.4±0.7 74.5±5.0 7.9±1.6 104.8±12.6
Group 2 82.9±0.8 74.9±4.9 7.6±1.4 103.1±11.6
Group 3 83.8±0.9 73.9±5.0 9.3±2.0 105.9±13.9
Group 4 83.9±0.8 73.8±5.1 9.3±1.8 103.3±13.7
Group 5 83.4±0.7 74.4±5.2 7.9±1.6 103.4±11.9
Group 6 83.2±0.8 74.4±4.7 8.9±1.9 104.6±13.4
Group 7 83.5±0.8 74.0±4.8 8.8±1.9 106.0±13.4
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Table A.66: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the thy dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 99.0±0.5 92.5±5.2 5.4±0.6 8.6±0.9
Group 2 99.0±0.5 92.1±5.4 5.3±0.5 8.5±0.9
Group 3 99.2±0.6 92.6±5.4 5.5±0.6 8.7±1.0
Group 4 99.1±0.6 92.3±5.3 5.3±0.6 8.5±0.9
Group 5 99.3±0.5 92.6±5.1 5.4±0.7 8.7±0.9
Group 6 98.2±0.7 91.3±5.6 5.4±0.6 8.4±0.8
Group 7 99.2±0.6 93.2±4.9 5.3±0.5 8.7±0.9

Table A.67: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the wbcd dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.1±0.4 95.9±2.2 3.0±0.6 15.4±2.1
Group 2 97.9±0.4 96.0±2.3 3.0±0.7 14.7±1.8
Group 3 98.2±0.4 95.9±2.3 3.1±0.7 15.5±2.1
Group 4 98.2±0.4 96.0±2.3 3.1±0.7 15.1±1.8
Group 5 97.9±0.4 96.0±2.3 2.9±0.7 14.5±1.9
Group 6 98.2±0.4 95.9±2.4 3.0±0.7 15.7±2.3
Group 7 98.1±0.4 95.7±2.4 3.1±0.6 16.0±3.0

Table A.68: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the wdbc dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.0±0.5 94.2±3.2 4.1±0.9 62.4±11.3
Group 2 98.0±0.5 94.0±3.1 3.9±0.7 54.9±9.3
Group 3 98.1±0.6 94.1±3.3 4.3±1.0 67.3±13.6
Group 4 98.2±0.6 94.2±3.2 4.3±1.1 62.6±11.7
Group 5 98.2±0.6 94.0±3.0 3.9±0.8 57.2±11.2
Group 6 97.5±0.7 94.0±2.9 3.9±0.8 59.5±12.5
Group 7 98.1±0.6 94.0±3.2 4.6±1.1 71.5±12.8
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Table A.69: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the wine dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 99.8±0.4 93.9±5.4 3.4±0.6 14.6±1.2
Group 2 99.9±0.3 93.8±5.6 3.2±0.5 14.3±1.3
Group 3 99.6±0.5 93.3±5.9 3.6±0.7 15.2±1.4
Group 4 99.6±0.4 93.9±5.4 3.5±0.6 14.9±1.5
Group 5 99.8±0.3 93.9±5.7 3.2±0.5 14.7±1.4
Group 6 99.3±0.5 93.6±5.9 3.5±0.6 14.7±1.3
Group 7 99.3±0.6 92.4±6.1 3.5±0.7 15.2±1.3

Table A.70: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.03
for the wpbc dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 89.0±2.1 74.9±8.5 3.8±1.1 35.3±4.2
Group 2 87.2±2.1 76.3±8.1 3.3±1.1 32.4±4.2
Group 3 91.5±1.8 73.8±8.8 4.8±1.2 39.4±5.0
Group 4 90.7±1.8 75.8±8.8 4.7±1.2 37.9±4.2
Group 5 90.1±2.0 74.1±8.6 3.8±1.2 35.7±4.5
Group 6 89.3±1.8 74.7±8.0 4.4±1.1 36.1±4.1
Group 7 91.1±1.7 74.9±8.9 4.4±1.1 39.0±3.9
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A.3.4 Reinitialize initial probability of 0.04

Table A.71: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the bal dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 85.3±0.8 78.9±3.8 9.7±1.7 33.0±4.8
Group 2 84.8±0.8 79.0±3.8 9.5±1.7 32.0±4.6
Group 3 85.4±0.9 79.0±3.9 10.1±1.9 33.9±5.3
Group 4 85.5±0.7 79.1±4.3 10.0±1.8 33.5±4.5
Group 5 84.4±0.8 79.1±3.4 9.1±1.5 31.6±4.5
Group 6 85.4±0.7 78.9±3.9 9.8±1.7 33.2±4.6
Group 7 84.9±0.8 78.0±3.9 9.5±1.6 32.4±4.8

Table A.72: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the bpa dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 81.1±1.4 66.0±6.8 8.0±1.4 39.8±3.8
Group 2 79.2±1.3 65.7±6.6 7.5±1.4 37.6±5.2
Group 3 83.2±1.4 64.8±7.2 9.1±1.7 41.1±4.6
Group 4 82.8±1.5 66.1±7.5 9.0±1.5 40.0±4.8
Group 5 82.2±1.4 65.5±5.9 8.3±1.7 39.3±4.3
Group 6 79.7±1.6 62.4±8.0 8.3±1.5 37.9±3.7
Group 7 82.3±1.5 64.6±6.9 8.9±1.5 40.5±4.4

Table A.73: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the gls dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 79.9±2.1 68.1±9.8 6.8±0.8 85.8±5.1
Group 2 79.1±2.4 66.1±9.1 6.7±0.8 84.4±6.0
Group 3 81.1±2.1 68.8±9.7 7.1±1.0 88.0±6.0
Group 4 80.6±1.8 68.8±9.1 6.9±1.0 87.9±5.8
Group 5 80.3±1.9 67.5±9.3 6.6±0.7 85.6±6.0
Group 6 78.4±2.0 66.5±9.4 6.9±0.9 85.8±4.9
Group 7 80.2±2.1 68.8±10.2 7.0±1.0 88.8±5.9
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Table A.74: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the h-s dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 91.1±0.9 80.8±7.2 7.4±1.2 25.5±2.4
Group 2 90.4±1.0 80.6±7.9 6.9±0.9 24.8±2.1
Group 3 91.6±1.0 81.3±7.9 7.4±1.2 25.9±2.2
Group 4 91.6±0.9 80.6±6.9 7.4±1.1 25.9±2.0
Group 5 89.7±1.0 80.3±7.5 6.8±1.1 23.9±2.0
Group 6 91.3±1.0 81.5±7.2 7.3±1.2 26.0±2.4
Group 7 91.4±0.9 81.2±7.5 7.5±1.3 25.8±2.3

Table A.75: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the ion dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 97.0±0.6 92.2±4.8 2.2±0.5 58.6±8.3
Group 2 97.1±0.5 92.2±4.5 2.1±0.3 55.3±7.9
Group 3 96.5±0.9 91.3±5.3 2.4±0.8 58.9±8.1
Group 4 96.8±0.8 92.5±4.8 2.3±0.6 57.7±8.3
Group 5 97.3±0.7 91.5±4.8 2.2±0.5 55.0±7.4
Group 6 96.4±0.7 92.5±5.1 2.3±0.7 57.5±7.1
Group 7 94.3±1.0 90.0±5.7 3.6±1.6 59.1±6.7

Table A.76: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the irs dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.0±0.9 94.7±5.9 3.6±0.6 4.1±0.5
Group 2 97.8±0.9 94.1±6.2 3.5±0.6 4.1±0.5
Group 3 98.2±0.8 94.8±6.2 3.7±0.6 4.1±0.5
Group 4 98.2±0.9 94.2±5.8 3.8±0.7 4.2±0.5
Group 5 98.1±0.9 94.8±5.8 3.6±0.6 4.1±0.5
Group 6 98.1±0.9 95.4±5.4 3.6±0.6 4.1±0.5
Group 7 97.8±1.0 94.6±6.2 3.7±0.7 4.2±0.5
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Table A.77: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the lrn dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 75.9±0.9 69.5±4.7 7.9±1.4 92.5±8.9
Group 2 76.0±0.8 69.7±5.1 7.9±1.4 90.8±9.3
Group 3 76.0±0.9 68.8±5.0 8.3±1.4 93.3±9.0
Group 4 76.0±0.8 68.5±4.9 8.4±1.6 92.0±8.8
Group 5 76.4±0.8 69.5±4.9 7.9±1.6 91.4±8.7
Group 6 75.5±0.9 68.8±5.1 7.8±1.4 92.0±9.5
Group 7 75.4±0.8 68.9±4.9 8.0±1.6 91.7±9.3

Table A.78: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the mmg dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 83.9±1.4 67.8±9.7 6.5±0.7 48.3±4.6
Group 2 82.9±1.4 67.5±11.1 6.4±0.7 45.7±4.0
Group 3 85.2±1.3 67.7±11.3 6.8±0.9 49.8±5.3
Group 4 85.3±1.4 67.1±10.5 6.9±1.0 48.9±5.0
Group 5 84.9±1.4 66.8±9.9 6.5±0.8 48.6±4.8
Group 6 83.6±1.2 70.4±9.7 6.5±0.8 48.0±4.0
Group 7 84.5±1.2 67.8±11.3 7.0±1.1 49.6±4.2

Table A.79: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the pim dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 83.3±0.8 74.4±5.5 8.2±1.6 105.2±13.1
Group 2 82.8±0.8 74.3±4.6 7.5±1.3 102.8±10.7
Group 3 83.8±0.8 74.5±5.1 9.1±1.9 106.8±12.2
Group 4 83.7±0.7 74.5±4.9 9.2±1.7 104.3±11.6
Group 5 83.4±0.7 74.5±5.0 7.9±1.6 104.0±11.7
Group 6 83.0±0.7 74.4±4.4 8.4±1.7 105.1±12.9
Group 7 83.4±0.8 74.2±4.4 9.1±2.0 106.5±13.9
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Table A.80: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the thy dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 99.0±0.5 92.6±4.7 5.2±0.4 8.5±0.9
Group 2 99.0±0.5 92.0±5.4 5.4±0.6 8.6±0.8
Group 3 99.1±0.6 92.5±5.7 5.3±0.6 8.7±0.9
Group 4 99.2±0.6 92.0±5.0 5.3±0.5 8.5±1.0
Group 5 99.3±0.5 92.1±5.8 5.5±0.7 8.7±1.0
Group 6 98.2±0.7 91.9±5.2 5.4±0.6 8.5±0.8
Group 7 99.2±0.5 93.0±4.8 5.4±0.6 8.7±1.0

Table A.81: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the wbcd dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 98.0±0.4 96.0±2.4 3.0±0.6 15.2±2.0
Group 2 97.8±0.4 95.9±2.5 3.0±0.7 14.8±2.0
Group 3 98.1±0.4 96.1±2.5 3.0±0.6 15.3±2.2
Group 4 98.1±0.4 96.0±2.5 2.9±0.7 14.7±1.9
Group 5 97.8±0.4 95.9±2.2 2.8±0.6 14.5±1.6
Group 6 98.0±0.4 96.1±2.4 2.7±0.7 15.6±2.0
Group 7 97.9±0.4 95.8±2.4 3.0±0.7 15.7±2.8

Table A.82: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the wdbc dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 97.9±0.6 94.3±2.9 4.0±0.8 59.3±11.7
Group 2 97.9±0.5 94.0±2.9 3.9±0.8 55.3±9.2
Group 3 98.1±0.5 94.1±3.0 4.3±1.0 67.7±12.9
Group 4 98.1±0.6 94.2±2.9 4.2±1.0 60.2±11.0
Group 5 98.1±0.5 93.9±3.0 3.8±0.8 56.8±10.0
Group 6 97.3±0.6 93.9±2.8 3.9±0.8 60.6±10.6
Group 7 98.0±0.7 94.0±3.2 4.6±1.1 68.8±13.4

300



APPENDIX A. FULL RESULTS OF THE EXPERIMENTATION WITH THE ADI
KNOWLEDGE REPRESENTATION

Table A.83: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the wine dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 99.7±0.4 93.8±5.4 3.3±0.6 14.8±1.3
Group 2 99.8±0.4 93.6±5.5 3.2±0.5 14.5±1.2
Group 3 99.6±0.5 93.4±5.7 3.4±0.6 15.2±1.4
Group 4 99.5±0.5 93.8±6.2 3.5±0.6 15.2±1.3
Group 5 99.8±0.3 93.8±5.7 3.2±0.4 14.8±1.5
Group 6 99.3±0.5 93.6±4.8 3.6±0.7 15.0±1.3
Group 7 99.3±0.6 92.9±5.9 3.5±0.7 15.5±1.4

Table A.84: Results of the ADI tests with groups of discretizers with reinitialize and prob. 0.04
for the wpbc dataset

Discretizer Training acc. Test acc. #rules Run-time (s)

Group 1 88.6±1.9 75.3±8.7 3.7±1.1 35.5±3.9
Group 2 87.1±2.1 76.3±8.6 3.0±1.0 32.0±3.7
Group 3 91.1±1.9 75.2±8.6 4.6±1.1 37.9±4.6
Group 4 90.6±1.9 73.5±9.1 4.6±1.2 37.2±4.2
Group 5 89.4±1.9 75.8±8.2 3.5±1.1 34.0±3.7
Group 6 88.9±1.8 75.2±8.7 4.2±1.1 35.7±4.0
Group 7 91.1±1.6 76.0±9.4 4.3±1.1 38.5±3.4

301



APPENDIX A. FULL RESULTS OF THE EXPERIMENTATION WITH THE ADI
KNOWLEDGE REPRESENTATION

302



Appendix B

Full results of the experimentation

with the ILAS windowing system

B.1 Results of the tests with the constant learning

steps strategy

Table B.1: Results of the constant learning steps strategy tests of

ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

bal

1 87.09±0.54 79.17±4.00 11.69±1.73 57.38±5.95

2 86.49±0.60 78.89±4.07 11.52±2.24 61.77±7.67

3 85.79±0.72 78.52±3.93 9.50±1.48 65.54±8.44

4 85.38±0.66 79.29±3.88 8.63±1.33 69.97±8.28

5 84.95±0.80 78.70±4.04 8.18±1.28 73.94±8.57

bpa

1 82.08±1.58 62.50±8.60 8.96±1.45 58.66±6.47

2 82.50±1.44 63.70±8.11 8.60±1.45 65.84±6.33

3 81.96±1.51 63.07±7.08 7.92±1.50 74.34±6.26

4 81.13±1.56 61.23±7.08 7.17±1.07 81.88±5.80

5 80.39±1.54 63.26±6.83 6.97±1.01 91.24±5.31

bre

1 89.41±1.75 70.80±8.53 12.04±1.62 43.06±7.37

2 88.06±1.84 70.29±7.19 10.86±1.41 47.28±8.51

3 86.36±2.14 70.65±7.48 9.56±1.33 50.67±9.77

4 85.02±2.25 70.60±6.99 8.86±1.19 57.33±8.93

5 86.05±2.07 71.24±7.46 8.95±1.53 60.88±8.72
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Table B.1: Results of the constant learning steps strategy tests of

ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

cmc

1 59.11±0.88 54.81±4.19 6.25±0.89 123.66±6.11

2 59.66±1.10 54.77±4.06 10.71±3.83 130.89±9.53

3 59.22±1.09 55.01±4.16 8.57±2.22 133.74±7.24

4 59.04±1.05 54.77±3.80 7.93±1.84 140.17±6.67

5 58.83±1.12 54.85±3.90 7.41±1.44 142.47±6.02

col

1 99.67±0.41 92.84±4.51 7.14±1.64 151.56±19.65

2 99.70±0.36 92.94±4.46 7.12±1.44 187.52±21.45

3 99.60±0.50 94.04±4.29 6.86±1.23 220.94±22.55

4 99.33±0.56 93.98±4.39 6.79±0.93 249.89±26.61

5 99.14±0.66 93.93±4.11 6.66±1.02 279.75±29.53

cr-a

1 91.11±0.62 85.19±3.82 5.95±0.83 111.61±7.46

2 91.37±0.69 85.28±3.74 6.25±1.03 123.82±8.67

3 90.84±0.96 85.36±3.90 5.59±0.93 131.69±8.00

4 90.26±0.83 85.58±4.08 5.07±0.84 139.34±8.14

5 89.58±0.88 85.43±3.83 4.73±0.77 152.93±9.06

gls

1 81.72±1.80 67.36±9.07 8.59±1.44 111.44±3.74

2 81.10±1.90 69.06±8.91 6.71±1.00 146.15±4.38

3 80.43±1.76 69.00±9.49 6.61±0.77 180.13±5.28

4 79.91±1.95 68.06±9.91 6.43±0.61 214.56±6.93

5 79.91±2.01 68.63±8.74 6.55±0.73 248.53±7.84

h-c1

1 94.14±0.79 79.57±6.56 8.59±1.22 64.96±5.39

2 93.79±0.84 80.05±5.91 7.89±1.48 77.35±5.29

3 93.03±0.86 79.40±6.22 7.25±1.21 89.32±4.76

4 92.33±0.81 80.24±6.55 7.13±1.23 101.54±4.85

5 91.93±1.02 80.62±6.22 7.21±1.17 113.14±4.25

h-h

1 99.66±0.33 95.39±3.70 5.78±0.61 66.77±9.17

2 99.35±0.42 95.66±3.91 6.01±0.24 86.87±10.43

3 99.00±0.51 95.85±3.64 6.00±0.20 103.87±10.57

4 98.77±0.61 95.61±3.51 6.01±0.20 116.39±10.90

5 98.61±0.57 95.95±3.42 6.00±0.40 127.15±11.85

h-s

1 93.01±0.95 79.75±7.93 7.23±1.10 36.41±2.58

2 93.06±0.90 80.22±6.83 7.39±1.03 44.14±2.70

3 92.35±0.85 80.59±7.13 7.12±1.01 51.87±2.69

4 91.78±0.88 80.07±7.99 6.83±0.87 59.26±2.51

5 91.27±0.98 79.68±7.01 6.87±0.88 66.65±2.29

304



APPENDIX B. FULL RESULTS OF THE EXPERIMENTATION WITH THE ILAS
WINDOWING SYSTEM

Table B.1: Results of the constant learning steps strategy tests of

ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

hep

1 99.55±0.48 87.07±7.15 5.71±0.94 19.33±1.74

2 99.04±0.62 90.60±6.93 5.21±0.52 24.16±2.28

3 98.53±0.77 89.12±7.06 5.12±0.40 29.55±2.36

4 98.08±0.94 88.68±7.49 5.10±0.41 35.26±2.10

5 97.88±1.04 89.88±7.05 5.13±0.42 39.88±2.08

ion

1 97.73±0.60 92.36±4.81 3.35±0.81 81.39±11.69

2 96.97±0.74 92.84±5.15 2.54±0.91 85.68±7.96

3 96.36±0.70 93.07±4.78 2.40±0.89 96.73±8.39

4 96.00±0.65 92.78±4.80 2.21±0.74 108.72±7.92

5 95.62±0.73 93.10±5.04 2.25±0.73 120.80±11.06

irs

1 99.08±0.64 95.11±5.74 4.47±0.73 5.16±0.24

2 98.28±0.82 95.24±5.41 3.75±0.57 6.39±0.29

3 97.56±1.06 94.89±5.73 3.39±0.49 7.67±0.38

4 97.40±0.98 94.40±6.07 3.38±0.51 9.04±0.42

5 96.78±1.11 94.31±5.88 3.29±0.47 10.31±0.43

lab

1 100.00±0.00 97.83±5.85 4.00±0.00 9.65±0.70

2 100.00±0.00 98.17±5.18 4.00±0.00 14.55±0.84

3 100.00±0.00 97.30±6.24 4.00±0.00 19.61±1.01

4 100.00±0.00 97.02±7.89 3.99±0.16 24.26±1.04

5 100.00±0.00 96.97±6.73 4.00±0.00 29.06±0.98

lym

1 98.12±0.88 80.12±10.29 9.85±2.11 37.94±2.96

2 95.86±1.40 80.93±10.74 6.47±0.95 41.89±1.61

3 93.83±1.56 81.68±10.19 5.50±0.86 50.00±1.76

4 92.43±1.81 81.23±10.48 5.12±0.97 59.07±1.72

5 91.00±1.87 80.21±10.85 4.87±0.73 69.05±2.03

pim

1 83.52±0.80 74.54±4.52 8.71±1.62 132.31±12.14

2 83.71±0.79 74.51±4.95 8.97±2.17 145.96±11.73

3 83.13±0.76 74.24±5.08 6.99±1.13 149.75±11.04

4 82.68±0.78 74.80±4.35 6.43±1.22 160.04±8.46

5 82.44±0.78 74.27±4.50 6.05±1.16 167.96±9.06

prt

1 62.37±4.32 48.07±7.49 19.97±3.93 43.58±6.94

2 59.29±4.13 47.90±6.90 13.84±1.96 51.15±5.16

3 57.12±3.78 47.32±6.90 11.96±1.27 59.08±4.86

4 55.33±3.27 47.13±6.83 11.33±0.90 68.38±3.72

5 55.63±2.82 46.64±7.32 11.32±0.75 78.84±4.55
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Table B.1: Results of the constant learning steps strategy tests of

ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

son

1 96.71±1.09 75.97±8.51 7.48±1.37 162.70±10.55

2 97.01±1.21 76.15±9.37 6.93±1.00 212.03±9.20

3 96.74±1.17 77.06±9.37 6.69±0.97 255.86±9.96

4 96.23±1.36 76.49±9.82 6.93±1.21 301.54±10.23

5 95.64±1.27 76.89±9.01 6.69±0.87 345.53±11.49

thy

1 99.03±0.58 92.38±5.91 6.10±0.81 10.38±0.89

2 98.48±0.76 92.12±5.17 5.43±0.57 12.99±0.94

3 97.91±0.78 91.36±5.41 5.20±0.49 15.84±1.01

4 97.42±0.79 91.61±6.00 5.13±0.38 18.63±1.02

5 97.26±0.77 91.79±5.44 5.09±0.29 21.38±1.05

vot

1 99.14±0.23 96.85±3.19 6.19±0.86 10.81±0.69

2 98.95±0.33 96.63±3.50 5.71±0.75 10.83±0.58

3 98.82±0.39 97.13±3.29 5.49±0.72 11.47±0.59

4 98.49±0.57 96.65±3.31 5.12±0.77 12.22±0.69

5 98.33±0.63 96.84±3.04 4.92±0.87 13.07±0.71

wbcd

1 98.92±0.23 95.83±2.51 4.56±0.95 24.95±2.33

2 98.48±0.36 95.97±2.27 3.13±0.48 23.10±1.18

3 97.91±0.50 95.96±2.28 2.64±0.55 22.41±1.24

4 97.40±0.42 96.09±2.35 2.29±0.48 22.56±0.69

5 97.22±0.31 96.19±2.39 2.20±0.42 23.69±0.43

wdbc

1 98.53±0.43 94.19±3.09 5.71±1.10 99.76±14.63

2 98.30±0.45 93.85±2.87 4.57±0.85 95.15±10.46

3 97.99±0.45 94.30±2.86 4.21±0.47 101.72±8.08

4 97.80±0.47 94.07±3.04 4.21±0.52 109.13±7.87

5 97.61±0.51 94.09±3.18 4.11±0.35 119.46±7.24

wine

1 99.93±0.20 92.61±5.99 4.49±0.85 21.04±1.36

2 99.56±0.47 92.67±5.22 3.65±0.63 23.43±1.25

3 99.17±0.59 93.71±5.26 3.43±0.62 27.57±1.31

4 98.62±0.81 93.60±5.17 3.26±0.50 31.99±1.32

5 98.12±1.02 92.05±5.80 3.26±0.52 36.93±1.39

wpbc

1 91.43±1.47 74.57±8.60 5.27±0.91 33.52±3.50

2 91.77±1.36 74.67±7.84 4.38±0.61 38.37±3.59

3 91.03±1.38 74.77±9.44 4.17±0.41 44.39±3.62

4 90.47±1.90 75.18±9.04 4.17±0.44 51.10±4.92

5 89.65±1.83 74.19±9.11 4.15±0.42 57.39±6.22
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Table B.1: Results of the constant learning steps strategy tests of

ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

zoo

1 99.36±0.84 93.70±7.37 8.25±1.12 4.31±0.16

2 98.45±1.19 92.88±7.29 7.49±0.65 5.40±0.18

3 97.18±1.43 91.01±8.11 7.13±0.56 6.61±0.23

4 96.30±1.53 89.89±9.54 6.91±0.53 7.86±0.24

5 95.56±1.95 89.81±10.08 6.65±0.60 9.02±0.27

B.2 Results of the tests with the constant time strategy

Table B.2: Results of the constant time strategy tests of ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

bal

1 87.09±0.54 79.17±4.00 11.69±1.73 57.38±5.95

2 86.34±0.65 78.66±3.86 11.12±2.24 55.15±7.03

3 85.82±0.63 78.49±3.80 9.70±1.62 55.18±6.59

4 85.28±0.75 79.01±3.64 8.73±1.37 52.28±6.47

5 84.98±0.74 78.51±3.73 8.43±1.33 52.37±5.91

bpa

1 82.08±1.58 62.50±8.60 8.96±1.45 58.66±6.47

2 82.20±1.54 63.29±8.69 8.51±1.44 57.18±5.39

3 81.58±1.60 63.03±7.68 7.77±1.21 57.70±4.75

4 80.77±1.62 63.08±8.24 7.33±1.14 57.21±4.15

5 79.85±1.63 62.07±7.51 6.95±1.02 58.23±3.33

bre

1 89.41±1.75 70.80±8.53 12.04±1.62 43.06±7.37

2 87.69±1.81 70.27±7.40 10.71±1.44 41.11±6.55

3 85.89±1.98 71.50±6.58 9.39±1.36 39.19±5.90

4 84.53±2.20 71.56±7.49 8.71±1.31 37.09±5.83

5 83.53±1.95 71.39±8.05 8.23±1.17 36.43±4.67

cmc

1 59.11±0.88 54.81±4.19 6.25±0.89 123.66±6.11

2 59.59±1.12 54.74±4.05 10.31±3.03 123.66±8.23

3 59.17±1.13 54.82±4.00 8.73±2.08 121.86±6.77

4 58.75±1.08 54.94±3.75 7.69±1.68 118.76±6.44

5 58.75±1.19 55.04±4.14 7.43±1.44 117.65±5.49
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Table B.2: Results of the constant time strategy tests of ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

col

1 99.67±0.41 92.84±4.51 7.14±1.64 151.56±19.65

2 99.69±0.38 93.04±4.28 7.24±1.50 158.14±16.53

3 99.48±0.53 93.48±4.64 7.01±1.24 161.41±15.24

4 99.26±0.56 93.36±4.47 7.01±1.22 164.29±16.02

5 99.08±0.63 93.70±4.31 6.85±1.17 165.05±16.20

cr-a

1 91.11±0.62 85.19±3.82 5.95±0.83 111.61±7.46

2 91.28±0.77 85.03±3.73 6.23±1.00 115.04±6.16

3 90.72±0.78 85.27±3.58 5.45±0.92 114.67±6.97

4 90.08±0.87 85.09±3.93 5.17±0.81 115.11±7.12

5 89.48±0.89 85.27±3.99 4.60±0.73 117.37±6.84

gls

1 81.72±1.80 67.36±9.07 8.59±1.44 111.44±3.74

2 80.64±1.93 68.30±9.27 6.85±1.04 120.28±3.86

3 79.97±1.71 68.04±9.60 6.51±0.74 126.84±3.80

4 79.01±2.06 67.93±8.74 6.45±0.58 132.80±4.18

5 78.17±1.79 67.46±9.47 6.37±0.60 137.28±3.88

h-c1

1 94.14±0.79 79.57±6.56 8.59±1.22 64.96±5.39

2 93.70±0.76 80.28±6.29 8.08±1.49 66.28±4.31

3 92.83±0.83 79.90±5.90 7.37±1.31 67.25±3.61

4 92.18±0.85 80.75±6.23 6.95±1.14 67.78±2.90

5 91.70±0.85 80.36±6.59 7.12±1.14 69.01±2.55

h-h

1 99.66±0.33 95.39±3.70 5.78±0.61 66.77±9.17

2 99.39±0.39 95.93±3.06 6.02±0.18 74.63±8.30

3 98.99±0.56 95.97±3.29 6.00±0.20 76.50±8.20

4 98.75±0.58 95.85±3.35 6.04±0.43 77.90±7.50

5 98.54±0.68 95.92±3.45 6.04±0.38 77.34±7.11

h-s

1 93.01±0.95 79.75±7.93 7.23±1.10 36.41±2.58

2 92.75±0.87 80.27±8.11 7.45±1.12 37.48±2.34

3 92.18±0.92 80.17±7.46 7.05±1.09 38.19±2.02

4 91.54±0.96 80.27±7.41 7.02±1.02 38.96±1.67

5 91.17±0.88 80.44±6.65 6.87±1.01 39.38±1.45

hep

1 99.55±0.48 87.07±7.15 5.71±0.94 19.33±1.74

2 98.99±0.72 89.28±8.25 5.19±0.55 19.41±1.79

3 98.41±0.80 88.73±8.97 5.18±0.53 20.01±1.41

4 98.23±0.73 88.28±7.86 5.17±0.49 20.77±1.41

5 97.88±1.03 87.80±8.04 5.14±0.40 20.80±1.07
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Table B.2: Results of the constant time strategy tests of ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

ion

1 97.73±0.60 92.36±4.81 3.35±0.81 81.39±11.69

2 96.90±0.74 92.71±5.01 2.59±0.93 81.30±8.11

3 96.35±0.64 92.84±4.73 2.39±0.89 85.85±8.13

4 95.97±0.63 92.85±4.94 2.18±0.62 90.93±5.71

5 95.68±0.66 92.52±5.01 2.24±0.76 96.77±8.06

irs

1 99.08±0.64 95.11±5.74 4.47±0.73 5.16±0.24

2 98.33±0.79 95.20±5.87 3.91±0.58 5.24±0.25

3 97.72±0.92 94.98±5.86 3.51±0.53 5.31±0.27

4 97.22±1.03 94.58±5.68 3.34±0.47 5.38±0.23

5 96.87±1.12 93.87±6.23 3.33±0.48 5.41±0.24

lab

1 100.00±0.00 97.83±5.85 4.00±0.00 9.65±0.70

2 100.00±0.00 97.03±6.56 4.00±0.00 9.28±0.54

3 100.00±0.00 98.15±5.40 4.00±0.00 9.08±0.41

4 100.00±0.00 97.33±6.33 4.00±0.00 8.96±0.34

5 100.00±0.00 97.92±6.00 4.00±0.00 8.91±0.30

lym

1 98.12±0.88 80.12±10.29 9.85±2.11 37.94±2.96

2 95.89±1.32 80.80±10.82 6.69±1.11 33.11±1.39

3 93.56±1.60 80.11±9.88 5.62±0.92 32.60±1.07

4 91.75±1.67 81.77±10.73 5.09±0.92 32.72±0.95

5 90.57±1.93 80.21±9.08 4.85±0.81 33.36±0.89

pim

1 83.52±0.80 74.54±4.52 8.71±1.62 132.31±12.14

2 83.72±0.81 74.36±5.05 8.71±1.81 136.88±10.63

3 83.12±0.79 74.27±4.56 7.15±1.47 133.37±9.56

4 82.73±0.77 74.93±4.80 6.57±1.30 131.45±7.69

5 82.25±0.79 74.44±4.86 6.13±0.97 132.80±6.76

prt

1 62.37±4.32 48.07±7.49 19.97±3.93 43.58±6.94

2 59.42±4.24 48.29±7.74 13.97±2.32 43.89±4.91

3 56.22±3.67 47.82±7.14 11.87±1.10 43.56±3.14

4 54.87±3.64 47.24±7.01 11.39±0.85 45.20±2.75

5 53.85±3.20 46.49±7.24 11.15±0.69 46.11±2.33

son

1 96.71±1.09 75.97±8.51 7.48±1.37 162.70±10.55

2 97.03±1.16 77.21±8.86 7.20±1.21 171.89±7.41

3 96.17±1.13 76.93±8.77 6.89±1.04 178.88±7.92

4 95.69±1.39 76.92±8.38 7.05±1.07 183.40±6.23

5 94.92±1.54 77.15±9.91 7.08±1.27 186.65±6.42
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Table B.2: Results of the constant time strategy tests of ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

thy

1 99.03±0.58 92.38±5.91 6.10±0.81 10.38±0.89

2 98.46±0.67 92.13±5.30 5.48±0.65 11.06±0.81

3 97.77±0.82 91.84±5.58 5.17±0.40 11.74±0.74

4 97.33±0.82 92.06±4.96 5.15±0.41 12.27±0.65

5 97.11±0.71 92.01±5.80 5.11±0.35 12.59±0.62

vot

1 99.14±0.23 96.85±3.19 6.19±0.86 10.81±0.69

2 98.93±0.32 96.81±3.12 5.75±0.77 10.04±0.53

3 98.79±0.42 96.79±3.36 5.50±0.74 9.92±0.58

4 98.54±0.54 96.93±3.30 5.33±0.81 9.89±0.54

5 98.30±0.58 96.52±3.53 4.85±0.79 9.87±0.49

wbcd

1 98.92±0.23 95.83±2.51 4.56±0.95 24.95±2.33

2 98.52±0.34 95.93±2.19 3.17±0.64 23.74±1.54

3 97.95±0.48 95.92±2.37 2.63±0.56 23.48±1.19

4 97.41±0.41 96.05±2.39 2.27±0.47 24.63±0.71

5 97.25±0.34 96.19±2.28 2.17±0.38 26.78±0.60

wdbc

1 98.53±0.43 94.19±3.09 5.71±1.10 99.76±14.63

2 98.31±0.44 93.82±2.94 4.72±0.82 90.12±10.58

3 97.93±0.44 94.15±2.57 4.22±0.46 94.56±7.32

4 97.80±0.51 93.71±2.98 4.17±0.49 98.44±7.36

5 97.65±0.47 93.91±2.99 4.13±0.41 103.90±6.88

wine

1 99.93±0.20 92.61±5.99 4.49±0.85 21.04±1.36

2 99.51±0.50 93.83±5.43 3.73±0.71 20.11±1.24

3 99.01±0.71 92.92±5.69 3.41±0.57 20.62±0.87

4 98.54±0.81 93.35±5.40 3.25±0.45 21.37±0.90

5 98.07±1.03 92.57±6.00 3.33±0.57 22.21±0.83

wpbc

1 91.43±1.47 74.57±8.60 5.27±0.91 33.52±3.50

2 91.38±1.52 74.79±8.72 4.41±0.64 33.67±3.55

3 90.78±1.57 75.52±8.06 4.15±0.44 34.43±3.19

4 89.93±1.80 75.67±8.29 4.06±0.35 35.04±3.73

5 89.12±2.24 75.65±8.06 4.10±0.46 35.94±4.61

zoo

1 99.36±0.84 93.70±7.37 8.25±1.12 4.31±0.16

2 98.06±1.26 91.28±8.31 7.44±0.72 3.96±0.12

3 96.80±1.57 90.77±8.43 7.01±0.64 3.84±0.12

4 95.31±1.95 89.21±9.10 6.75±0.67 3.75±0.10

5 94.29±2.20 88.25±9.50 6.52±0.65 3.67±0.10
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B.3 Results of the tests with the constant iterations

strategy

Table B.3: Results of the constant iterations strategy tests of ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

bal

1 87.09±0.54 79.17±4.00 11.69±1.73 57.38±5.95

2 86.07±0.69 78.81±4.06 10.75±2.14 29.95±3.70

3 85.51±0.76 79.15±4.17 9.72±1.77 21.52±2.45

4 85.04±0.86 78.46±4.02 9.11±1.61 17.54±1.96

5 84.78±0.84 78.67±3.80 8.57±1.38 15.06±1.50

bpa

1 99.36±0.84 93.70±7.37 8.25±1.12 4.31±0.16

2 81.21±1.54 63.07±7.95 8.60±1.45 32.66±3.19

3 79.97±1.66 63.60±7.51 7.85±1.51 24.20±1.99

4 79.05±1.77 62.55±6.70 7.31±1.07 20.39±1.56

5 78.42±1.67 63.40±7.59 7.24±1.16 18.11±1.11

bre

1 82.08±1.58 62.50±8.60 8.96±1.45 58.66±6.47

2 86.48±1.58 71.46±7.50 9.95±1.38 22.94±4.50

3 84.81±2.08 70.51±7.70 9.04±1.51 16.46±3.00

4 83.83±1.86 71.91±7.59 8.50±1.35 13.59±2.03

5 82.73±1.97 71.41±7.08 8.01±1.36 11.69±1.66

cmc

1 89.41±1.75 70.80±8.53 12.04±1.62 43.06±7.37

2 58.72±1.08 55.02±4.24 6.98±1.22 63.81±3.12

3 58.35±0.99 54.80±3.92 6.92±1.35 44.42±2.09

4 58.11±1.08 55.00±3.85 6.99±1.35 34.55±1.53

5 58.09±1.06 54.41±3.92 7.28±1.39 29.11±1.26

col

1 59.11±0.88 54.81±4.19 6.25±0.89 123.66±6.11

2 99.55±0.42 92.94±4.43 7.45±1.63 91.48±9.87

3 99.30±0.55 92.80±4.61 7.49±1.44 70.90±6.74

4 99.01±0.67 92.71±4.38 7.67±1.45 59.41±4.53

5 98.76±0.93 93.33±4.26 7.53±1.35 53.21±4.38

cr-a

1 99.67±0.41 92.84±4.51 7.14±1.64 151.56±19.65

2 90.76±0.71 85.26±4.24 6.03±1.02 61.08±3.24

3 90.00±0.86 85.50±3.73 5.25±1.02 44.10±2.35

4 89.50±0.98 85.33±3.91 4.98±0.93 35.31±1.88

5 88.99±0.94 85.49±4.19 4.78±0.88 30.64±1.39
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Table B.3: Results of the constant iterations strategy tests of ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

gls

1 91.11±0.62 85.19±3.82 5.95±0.83 111.61±7.46

2 79.54±2.05 68.48±9.44 6.81±0.91 73.01±2.58

3 77.99±1.93 67.33±8.94 6.41±0.64 59.85±1.66

4 77.13±1.71 67.53±9.06 6.51±0.75 53.60±1.26

5 76.33±2.05 66.57±8.93 6.56±0.73 49.93±1.07

h-c1

1 81.72±1.80 67.36±9.07 8.59±1.44 111.44±3.74

2 93.16±0.75 80.23±5.95 8.13±1.40 38.66±2.45

3 92.29±0.85 80.56±6.31 7.47±1.31 29.56±1.61

4 91.68±0.70 80.83±6.34 7.45±1.30 25.26±1.18

5 91.17±0.78 81.32±6.62 7.43±1.30 22.56±0.88

h-h

1 94.14±0.79 79.57±6.56 8.59±1.22 64.96±5.39

2 99.28±0.44 95.60±3.57 6.05±0.29 43.25±4.74

3 98.94±0.57 96.09±3.39 6.06±0.29 33.66±3.23

4 98.68±0.54 95.84±3.56 6.04±0.34 28.42±2.73

5 98.55±0.57 95.88±3.67 6.07±0.54 25.42±2.16

h-s

1 99.66±0.33 95.39±3.70 5.78±0.61 66.77±9.17

2 92.15±0.88 80.67±7.62 7.45±1.20 22.34±1.38

3 91.43±0.91 80.47±7.52 7.27±1.27 17.37±0.85

4 90.86±0.89 80.59±7.05 7.07±1.10 14.92±0.64

5 90.48±0.98 81.26±7.07 7.37±1.22 13.43±0.46

hep

1 93.01±0.95 79.75±7.93 7.23±1.10 36.41±2.58

2 98.90±0.74 89.35±8.23 5.23±0.56 12.15±1.03

3 98.41±0.79 87.84±8.25 5.25±0.57 9.97±0.58

4 97.98±0.91 88.04±7.92 5.25±0.54 8.84±0.44

5 97.63±1.05 88.09±8.79 5.40±0.71 8.18±0.33

ion

1 99.55±0.48 87.07±7.15 5.71±0.94 19.33±1.74

2 96.68±0.74 92.77±4.90 2.50±0.70 46.00±4.88

3 95.93±0.73 92.04±5.25 2.35±0.87 34.92±2.64

4 95.53±0.74 92.52±5.31 2.21±0.64 29.33±1.58

5 95.25±0.78 92.00±5.31 2.25±0.84 26.56±2.28

irs

1 97.73±0.60 92.36±4.81 3.35±0.81 81.39±11.69

2 98.11±0.92 95.07±5.98 3.80±0.65 3.27±0.16

3 97.51±0.94 94.80±5.65 3.41±0.53 2.64±0.11

4 96.96±1.13 93.64±6.17 3.32±0.47 2.33±0.10

5 96.78±1.11 94.44±5.73 3.29±0.47 2.17±0.09
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Table B.3: Results of the constant iterations strategy tests of ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

lab

1 99.08±0.64 95.11±5.74 4.47±0.73 5.16±0.24

2 100.00±0.00 97.02±6.77 4.00±0.00 7.55±0.39

3 100.00±0.00 98.09±5.40 4.00±0.00 6.86±0.29

4 100.00±0.00 97.88±5.79 4.00±0.00 6.40±0.20

5 100.00±0.00 97.85±5.85 4.00±0.00 6.14±0.17

lym

1 100.00±0.00 97.83±5.85 4.00±0.00 9.65±0.70

2 95.13±1.37 80.92±10.60 6.51±1.31 21.43±1.05

3 92.79±1.64 80.33±10.48 5.72±1.13 17.11±0.52

4 91.47±1.92 80.55±10.66 5.22±0.86 15.15±0.38

5 89.82±2.06 80.68±9.96 4.92±0.80 14.09±0.31

pim

1 98.12±0.88 80.12±10.29 9.85±2.11 37.94±2.96

2 82.96±0.74 74.55±4.68 8.43±1.76 70.65±5.73

3 82.42±0.78 74.48±4.74 7.16±1.39 50.09±3.34

4 81.85±0.79 74.73±4.61 6.85±1.27 39.66±2.47

5 81.50±0.85 74.54±4.82 6.56±1.22 33.57±1.88

prt

1 83.52±0.80 74.54±4.52 8.71±1.62 132.31±12.14

2 56.89±4.37 46.92±7.44 12.99±1.87 24.65±2.72

3 54.89±3.69 45.90±6.99 11.75±1.10 19.70±1.63

4 53.88±3.61 45.58±7.13 11.32±0.84 17.25±1.04

5 53.26±3.00 45.78±7.16 11.14±0.74 15.81±0.84

son

1 62.37±4.32 48.07±7.49 19.97±3.93 43.58±6.94

2 95.89±1.32 76.95±9.89 7.55±1.30 105.11±4.57

3 95.08±1.33 75.44±9.97 7.23±1.19 85.10±3.11

4 93.75±1.38 74.71±8.89 7.29±1.34 75.11±2.42

5 93.22±1.66 75.06±9.85 7.39±1.21 68.61±2.09

thy

1 96.71±1.09 75.97±8.51 7.48±1.37 162.70±10.55

2 98.09±0.73 92.11±5.19 5.47±0.64 6.67±0.41

3 97.27±0.86 92.62±4.93 5.24±0.49 5.37±0.28

4 97.10±0.87 91.82±5.80 5.25±0.48 4.75±0.24

5 96.74±0.92 91.48±5.87 5.14±0.38 4.36±0.19

vot

1 99.03±0.58 92.38±5.91 6.10±0.81 10.38±0.89

2 98.93±0.34 96.82±3.62 5.66±0.67 5.59±0.28

3 98.65±0.45 96.85±3.24 5.35±0.82 3.98±0.21

4 98.38±0.56 96.57±3.47 4.89±0.82 3.17±0.17

5 98.24±0.52 96.76±3.14 4.77±0.84 2.73±0.13
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Table B.3: Results of the constant iterations strategy tests of ILAS

Dataset #Strata Training acc. Test acc. #rules Run-time (s)

wbcd

1 99.14±0.23 96.85±3.19 6.19±0.86 10.81±0.69

2 98.38±0.35 95.73±2.61 3.23±0.53 12.38±0.61

3 97.87±0.46 95.95±2.39 2.73±0.59 8.38±0.42

4 97.40±0.44 96.04±2.33 2.39±0.57 6.57±0.27

5 97.19±0.32 96.22±2.36 2.17±0.38 5.52±0.16

wdbc

1 98.92±0.23 95.83±2.51 4.56±0.95 24.95±2.33

2 98.02±0.50 94.24±2.92 4.75±0.82 48.69±5.14

3 97.56±0.49 94.18±2.80 4.34±0.66 34.55±2.54

4 97.31±0.52 94.17±2.77 4.23±0.49 27.95±2.01

5 97.20±0.53 94.01±3.17 4.22±0.47 24.14±1.59

wine

1 98.53±0.43 94.19±3.09 5.71±1.10 99.76±14.63

2 99.48±0.53 93.35±4.79 3.78±0.68 12.49±0.65

3 98.93±0.69 93.46±5.20 3.57±0.70 9.93±0.44

4 98.24±1.07 93.15±5.91 3.49±0.66 8.72±0.31

5 97.57±1.15 92.60±5.73 3.45±0.63 8.00±0.30

wpbc

1 99.93±0.20 92.61±5.99 4.49±0.85 21.04±1.36

2 90.27±1.41 75.34±8.71 4.44±0.71 20.69±1.66

3 89.37±1.38 76.53±9.07 4.33±0.56 16.06±1.22

4 88.75±1.59 75.42±7.95 4.19±0.51 13.69±1.25

5 87.29±2.48 75.95±7.90 4.20±0.60 12.39±1.30

zoo

1 91.43±1.47 74.57±8.60 5.27±0.91 33.52±3.50

2 97.75±1.52 91.98±7.46 7.41±0.69 2.76±0.09

3 96.04±2.20 89.56±8.67 7.03±0.68 2.25±0.10

4 94.60±2.11 88.65±9.77 6.68±0.76 2.00±0.07

5 93.02±2.52 87.77±9.87 6.30±0.72 1.84±0.07

314



Appendix C

Experimentation with generalization

pressure methods

Table C.1: Results of the generalization pressure methods experimen-

tation for the ADI and GABIL representations without ILAS

Dataset Method Training acc. Test acc. #rules

bal

MDL 86.18±0.69 80.12±4.00 9.64±1.89

Hierar 85.01±0.73 78.88±3.92 7.05±0.99

MOLCS-GA 89.04±0.77 81.46±3.77 15.49±1.93

bpa

MDL 78.78±1.54 61.48±8.26 7.18±1.23

Hierar 78.12±2.15 60.85±7.44 6.54±0.94

MOLCS-GA 83.13±2.07 61.16±8.21 12.85±2.02

bre

MDL 88.25±2.05 70.31±7.95 11.73±2.59

Hierar 87.72±1.78 69.54±8.75 8.95±1.63

MOLCS-GA 91.15±1.43 69.86±8.42 15.45±2.10

cmc

MDL 57.77±1.15 54.00±4.15 5.92±1.16

Hierar 56.10±1.10 53.84±3.77 5.00±0.00

MOLCS-GA 61.57±1.09 53.20±3.54 15.80±3.48

cr-a

MDL 89.80±0.83 84.80±4.03 5.79±1.10

Hierar 88.60±0.76 84.83±3.94 4.39±0.62

MOLCS-GA 91.52±0.88 84.62±4.41 10.27±1.69

h-c1

MDL 91.70±1.11 80.51±6.31 7.86±1.39

Hierar 91.16±1.01 79.73±6.05 7.07±1.24

MOLCS-GA 94.28±1.15 79.15±6.58 12.01±1.66
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Table C.1: Results of the generalization pressure methods experimen-

tation for the ADI and GABIL representations without ILAS

Dataset Method Training acc. Test acc. #rules

h-h

MDL 99.41±0.41 95.71±3.70 6.13±0.41

Hierar 98.54±0.52 95.79±3.57 6.01±0.08

MOLCS-GA 99.38±0.44 94.70±4.40 6.17±0.43

h-s

MDL 90.02±1.06 79.46±7.35 6.09±0.31

Hierar 90.04±1.07 79.85±7.86 6.51±0.92

MOLCS-GA 92.51±1.26 78.69±7.57 10.55±2.08

hep

MDL 98.76±0.78 88.34±7.63 5.49±0.78

Hierar 99.05±0.62 88.30±7.80 5.93±1.25

MOLCS-GA 98.86±0.71 88.51±8.39 6.08±1.44

ion

MDL 96.02±0.71 92.40±4.96 2.09±0.33

Hierar 95.32±0.77 91.54±5.22 2.15±0.43

MOLCS-GA 97.49±0.84 90.07±5.75 5.54±1.80

irs

MDL 98.84±0.74 95.33±5.85 4.26±0.89

Hierar 98.80±0.77 94.13±6.57 4.27±0.91

MOLCS-GA 98.73±0.74 94.18±6.32 4.45±0.88

lab

MDL 100.00±0.00 95.90±8.52 4.00±0.00

Hierar 100.00±0.00 94.46±9.65 4.00±0.00

MOLCS-GA 100.00±0.00 98.28±5.47 4.08±0.29

lrn

MDL 76.47±1.39 68.07±4.99 9.43±1.42

Hierar 74.77±1.58 68.74±5.08 6.25±0.61

MOLCS-GA 79.84±1.96 65.84±4.33 16.31±2.54

lym

MDL 97.69±1.47 78.10±10.94 10.63±2.10

Hierar 98.50±1.05 76.79±11.49 12.93±2.72

MOLCS-GA 97.50±1.26 76.76±11.19 9.76±1.59

mmg

MDL 81.95±1.80 65.89±10.59 6.36±0.64

Hierar 80.90±1.57 66.48±10.14 6.21±0.69

MOLCS-GA 85.50±1.87 64.92±10.13 8.91±1.63

pim

MDL 81.72±0.89 73.99±4.93 6.59±1.33

Hierar 79.59±1.05 73.97±4.95 5.07±0.30

MOLCS-GA 84.63±1.15 74.12±4.56 12.66±2.34

prt

MDL 58.91±4.70 47.83±8.11 15.97±3.75

Hierar 55.97±3.46 46.15±7.04 10.10±0.38

MOLCS-GA 61.60±4.68 46.92±7.40 19.52±3.47

thy

MDL 98.38±0.73 91.90±5.78 5.77±0.87

Hierar 97.65±1.29 91.64±5.62 5.55±0.74

MOLCS-GA 98.39±0.71 91.90±5.95 6.17±1.07
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Table C.1: Results of the generalization pressure methods experimen-

tation for the ADI and GABIL representations without ILAS

Dataset Method Training acc. Test acc. #rules

vot

MDL 98.91±0.44 96.53±3.34 6.08±1.12

Hierar 98.29±0.52 96.39±3.25 4.41±0.72

MOLCS-GA 98.99±0.40 96.39±3.34 6.57±1.43

wbcd

MDL 98.06±0.35 95.89±2.51 3.36±0.90

Hierar 96.94±0.39 95.81±2.54 2.05±0.24

MOLCS-GA 98.72±0.33 95.65±2.46 5.73±1.69

wdbc

MDL 97.38±0.69 94.09±2.91 4.68±1.14

Hierar 96.23±0.74 94.13±2.81 3.41±0.79

MOLCS-GA 98.24±0.55 93.98±3.14 7.00±1.40

wine

MDL 99.79±0.32 94.01±5.21 4.59±0.99

Hierar 99.75±0.36 93.02±5.57 4.56±1.07

MOLCS-GA 99.84±0.30 91.84±6.13 5.60±1.19

wpbc

MDL 86.15±2.12 75.50±7.35 3.05±0.94

Hierar 85.51±2.01 75.98±7.55 2.77±1.05

MOLCS-GA 89.98±2.33 71.58±8.37 6.97±1.87

zoo

MDL 98.56±2.18 93.67±7.99 7.65±1.04

Hierar 99.37±1.40 91.69±7.96 7.83±0.96

MOLCS-GA 98.54±2.18 90.31±8.69 8.03±1.14
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Table C.2: Results of the generalization pressure methods experimen-

tation for the ADI and GABIL representations using ILAS with 2 strata

Dataset Method Training acc. Test acc. #rules

bal

MDL 85.36±0.75 79.43±3.88 8.65±1.80

Hierar 84.42±0.83 78.58±4.06 6.41±0.74

MOLCS-GA 86.02±1.07 80.23±4.33 11.75±1.65

bpa

MDL 77.71±1.50 61.32±7.72 6.67±0.94

Hierar 76.55±1.94 61.75±8.16 6.16±0.52

MOLCS-GA 75.11±2.82 59.81±9.11 9.07±1.82

bre

MDL 83.95±1.98 71.89±7.50 7.49±1.36

Hierar 86.95±1.79 69.40±8.02 8.99±1.62

MOLCS-GA 84.36±1.96 68.46±8.56 9.87±2.20

cmc

MDL 57.27±0.84 54.26±3.92 5.87±1.06

Hierar 56.13±1.25 53.96±3.84 5.00±0.00

MOLCS-GA 57.68±1.41 52.08±4.40 10.90±2.23

cr-a

MDL 89.30±0.89 84.52±3.96 5.66±1.25

Hierar 88.42±0.80 84.65±4.00 4.21±0.47

MOLCS-GA 88.99±0.98 83.72±4.46 8.19±1.43

h-c1

MDL 90.58±1.06 80.11±5.51 7.13±1.32

Hierar 90.41±1.07 79.86±5.69 6.83±1.16

MOLCS-GA 88.64±1.67 78.79±7.63 8.67±1.86

h-h

MDL 98.98±0.55 95.85±3.56 6.07±0.29

Hierar 98.90±0.55 95.77±3.57 6.00±0.00

MOLCS-GA 98.11±0.78 95.97±3.69 6.07±0.57

h-s

MDL 89.25±1.15 80.10±7.31 6.55±0.82

Hierar 89.38±0.98 80.42±7.17 6.53±0.93

MOLCS-GA 87.22±1.95 77.33±8.54 7.56±1.53

hep

MDL 97.60±1.10 89.75±7.30 5.15±0.50

Hierar 97.78±1.04 88.59±7.26 5.21±0.57

MOLCS-GA 95.41±1.90 87.99±7.91 5.34±0.68

ion

MDL 94.80±8.05 91.56±9.82 2.13±0.64

Hierar 95.67±0.77 92.47±5.05 2.07±0.29

MOLCS-GA 95.01±1.19 90.42±5.77 3.83±1.29

irs

MDL 97.42±1.16 94.80±5.60 3.34±0.51

Hierar 97.61±0.97 95.47±5.41 3.29±0.50

MOLCS-GA 97.72±0.97 94.84±6.12 3.69±0.75

lab

MDL 100.00±0.00 96.49±7.99 4.00±0.00

Hierar 100.00±0.00 96.77±7.32 4.01±0.08

MOLCS-GA 99.77±0.78 96.63±7.32 3.90±0.41
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Table C.2: Results of the generalization pressure methods experimen-

tation for the ADI and GABIL representations using ILAS with 2 strata

Dataset Method Training acc. Test acc. #rules

lrn

MDL 75.75±1.16 68.29±4.86 7.75±1.39

Hierar 74.29±1.72 68.70±4.89 6.05±0.24

MOLCS-GA 74.29±2.08 64.68±4.76 12.47±1.93

lym

MDL 94.62±2.07 79.27±12.02 6.75±1.60

Hierar 94.72±1.84 77.29±10.40 6.97±1.64

MOLCS-GA 91.43±2.47 75.63±11.88 7.19±1.46

mmg

MDL 80.44±1.58 68.50±10.21 6.48±0.75

Hierar 80.03±1.63 67.20±10.53 6.21±0.55

MOLCS-GA 77.42±2.81 63.97±10.72 6.58±0.93

pim

MDL 81.03±0.88 74.32±4.69 5.67±0.91

Hierar 79.19±1.00 74.24±5.04 5.02±0.14

MOLCS-GA 80.28±1.17 72.69±5.40 9.19±1.82

prt

MDL 54.35±4.57 45.77±6.80 11.41±1.56

Hierar 54.22±3.72 44.95±6.61 10.05±0.43

MOLCS-GA 54.46±4.12 44.19±8.12 13.90±3.07

thy

MDL 97.16±0.90 92.00±5.31 5.14±0.40

Hierar 97.18±1.00 91.82±6.19 5.14±0.38

MOLCS-GA 95.87±1.29 91.41±6.10 5.27±0.62

vot

MDL 98.13±0.60 96.32±3.66 4.73±0.88

Hierar 97.93±0.62 96.37±3.16 4.13±0.41

MOLCS-GA 97.92±0.58 95.95±3.03 4.99±0.96

wbcd

MDL 97.51±0.38 96.32±2.57 2.21±0.51

Hierar 97.13±0.37 96.04±2.51 2.00±0.00

MOLCS-GA 97.77±0.49 95.43±2.52 3.83±0.94

wdbc

MDL 96.62±0.79 93.69±3.04 3.56±0.91

Hierar 95.60±0.80 93.45±3.34 2.85±0.64

MOLCS-GA 96.64±0.82 93.32±3.36 5.05±1.16

wine

MDL 98.92±0.78 92.81±6.06 3.69±0.77

Hierar 98.98±0.75 92.88±5.64 3.60±0.66

MOLCS-GA 97.78±1.42 90.48±6.98 4.51±1.08

wpbc

MDL 83.55±2.88 75.70±7.38 2.52±0.76

Hierar 84.31±2.55 75.81±7.21 2.35±0.62

MOLCS-GA 84.12±2.18 72.46±8.41 4.72±1.35

zoo

MDL 96.42±2.96 90.66±8.54 6.85±0.93

Hierar 98.41±1.97 90.38±8.69 7.36±0.84

MOLCS-GA 95.91±2.63 87.81±10.24 7.23±1.04
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Table C.3: Results of the experimentation with generalization pressure

methods for the UBR and XCS representations without using ILAS

Dataset Method Training acc. Test acc. #rules

bal

MDL 89.55±0.89 82.09±3.62 15.81±2.25

Hierar 86.86±1.03 80.57±4.03 8.23±1.26

MOLCS-GA 90.28±0.79 81.70±3.99 18.08±2.31

bpa

MDL 81.15±2.41 65.55±7.79 10.38±2.56

Hierar 82.30±2.53 63.95±8.38 8.36±2.16

MOLCS-GA 85.19±2.21 64.21±8.04 14.61±2.93

bre

MDL 83.11±1.92 71.83±6.95 12.63±2.79

Hierar 81.80±2.05 71.80±6.71 8.72±2.94

MOLCS-GA 82.00±2.39 71.99±7.08 9.98±3.18

cmc

MDL 58.61±1.34 54.22±4.05 10.11±2.36

Hierar 58.20±1.32 54.46±3.83 5.03±0.21

MOLCS-GA 61.66±1.28 54.07±3.79 16.44±3.63

cr-a

MDL 89.22±1.10 84.79±3.95 8.83±2.29

Hierar 87.96±0.93 84.79±3.79 4.27±0.51

MOLCS-GA 89.45±1.31 84.71±4.04 8.55±2.31

h-c1

MDL 92.37±1.19 78.79±6.96 10.81±1.79

Hierar 92.13±1.29 79.16±6.77 9.37±2.05

MOLCS-GA 93.66±1.28 79.49±6.59 13.08±2.16

h-h

MDL 99.04±0.53 95.86±3.33 6.26±0.62

Hierar 98.89±0.44 95.51±3.47 6.01±0.08

MOLCS-GA 98.86±0.62 95.95±3.78 6.15±0.43

h-s

MDL 91.10±1.65 79.98±7.53 8.33±1.53

Hierar 92.78±1.47 78.12±7.40 12.75±3.39

MOLCS-GA 92.99±1.45 79.21±7.50 12.98±2.22

hep

MDL 98.31±0.93 87.38±7.79 6.91±1.58

Hierar 98.76±0.81 86.04±8.85 7.39±1.73

MOLCS-GA 98.34±0.98 87.69±8.36 6.25±1.41

ion

MDL 96.41±1.01 90.30±5.07 4.26±1.20

Hierar 91.43±5.71 79.02±10.20 21.13±7.45

MOLCS-GA 94.80±4.70 83.76±8.95 17.29±7.41

irs

MDL 98.17±0.81 94.27±6.16 3.74±0.74

Hierar 98.54±0.88 93.56±6.32 4.11±0.90

MOLCS-GA 98.37±0.80 94.49±6.29 3.78±0.84

lab

MDL 100.00±0.00 97.28±6.30 4.00±0.00

Hierar 100.00±0.00 97.21±7.36 4.00±0.00

MOLCS-GA 100.00±0.00 97.97±5.47 4.09±0.29
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Table C.3: Results of the experimentation with generalization pressure

methods for the UBR and XCS representations without using ILAS

Dataset Method Training acc. Test acc. #rules

lrn

MDL 78.17±1.87 67.95±5.13 14.83±2.48

Hierar 76.51±1.81 69.84±5.37 6.62±0.82

MOLCS-GA 80.41±1.84 68.39±4.40 17.44±3.02

lym

MDL 94.51±2.28 78.22±10.67 9.85±1.86

Hierar 95.51±2.12 79.09±10.51 10.29±2.06

MOLCS-GA 94.43±2.34 78.72±11.51 9.22±1.66

mmg

MDL 82.38±2.39 63.21±10.16 7.39±1.31

Hierar 84.19±2.32 63.08±9.56 8.93±2.31

MOLCS-GA 84.97±2.42 62.46±9.98 11.09±2.40

pim

MDL 83.25±1.56 74.70±4.91 11.23±2.92

Hierar 82.49±1.15 73.57±5.12 5.58±0.92

MOLCS-GA 85.57±1.57 73.51±4.54 17.40±4.35

prt

MDL 57.11±4.23 46.15±6.55 16.25±3.06

Hierar 53.17±3.81 45.54±7.44 10.33±0.96

MOLCS-GA 46.63±11.93 40.99±10.59 10.53±2.83

thy

MDL 97.99±1.05 92.41±4.75 6.21±0.96

Hierar 98.19±1.09 92.88±5.22 5.90±0.96

MOLCS-GA 98.17±0.92 91.56±5.43 6.05±1.09

vot

MDL 98.87±0.41 96.38±3.37 6.06±1.11

Hierar 98.38±0.52 96.39±3.24 4.40±0.66

MOLCS-GA 98.95±0.34 96.02±3.49 6.33±1.27

wbcd

MDL 98.54±0.32 95.70±2.58 6.81±1.43

Hierar 97.83±0.41 95.63±2.54 3.25±0.91

MOLCS-GA 98.66±0.36 95.61±2.62 7.59±1.81

wdbc

MDL 96.88±0.80 94.05±2.82 4.40±0.97

Hierar 97.25±0.66 92.00±3.54 7.61±2.59

MOLCS-GA 97.76±0.65 92.59±3.45 8.97±2.43

wine

MDL 99.86±0.28 91.96±6.46 6.33±1.45

Hierar 99.91±0.24 90.37±7.35 6.76±1.64

MOLCS-GA 99.84±0.31 91.52±7.11 5.79±1.43

wpbc

MDL 83.64±3.71 73.80±6.86 4.37±1.40

Hierar 89.24±3.49 65.50±9.44 16.27±6.57

MOLCS-GA 87.09±3.57 69.55±8.49 10.05±3.72

zoo

MDL 97.83±2.37 92.47±8.62 7.83±1.24

Hierar 98.19±1.95 91.74±8.11 7.75±1.15

MOLCS-GA 96.11±3.00 89.96±8.90 6.87±1.06
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Table C.4: Results of the experimentation with generalization pressure

methods for the UBR and XCS representations without using ILAS

Dataset Method Training acc. Test acc. #rules

bal

MDL 87.50±1.29 80.85±4.04 11.77±3.00

Hierar 86.03±1.27 80.87±3.54 7.67±1.21

MOLCS-GA 87.32±1.05 81.34±4.08 12.77±1.83

bpa

MDL 77.27±2.41 63.64±7.92 7.37±1.35

Hierar 79.94±2.57 63.67±7.63 7.46±1.72

MOLCS-GA 77.81±2.69 62.54±7.61 10.02±2.16

bre

MDL 80.89±1.87 72.44±6.74 8.90±2.22

Hierar 81.53±1.78 72.69±7.78 9.56±2.21

MOLCS-GA 78.17±1.58 71.57±6.45 5.84±1.32

cmc

MDL 57.49±1.41 54.18±4.03 6.78±1.35

Hierar 57.84±1.14 54.43±4.12 5.00±0.00

MOLCS-GA 58.56±1.35 54.21±4.20 10.57±2.25

cr-a

MDL 87.93±1.00 84.69±4.08 6.11±1.46

Hierar 87.56±0.73 84.56±4.03 4.12±0.34

MOLCS-GA 87.66±0.98 84.63±4.08 5.81±1.62

h-c1

MDL 89.93±1.35 79.65±7.04 7.92±1.41

Hierar 91.19±1.30 79.24±6.85 8.49±1.78

MOLCS-GA 89.19±1.71 77.97±7.17 8.93±1.74

h-h

MDL 98.57±0.49 96.49±3.33 6.13±0.46

Hierar 98.84±0.52 95.27±4.44 6.01±0.08

MOLCS-GA 97.82±0.91 95.72±3.81 6.07±0.66

h-s

MDL 89.14±1.86 79.53±7.51 7.60±1.48

Hierar 91.74±1.61 77.98±8.02 11.05±2.82

MOLCS-GA 87.93±2.09 77.80±8.11 8.83±1.99

hep

MDL 96.94±1.27 87.54±8.07 5.61±0.88

Hierar 97.69±1.13 85.82±9.15 5.79±0.88

MOLCS-GA 95.33±2.25 86.98±9.03 5.18±0.63

ion

MDL 95.15±1.13 90.34±5.71 3.37±1.15

Hierar 93.51±5.02 84.50±8.41 9.84±4.62

MOLCS-GA 89.28±7.30 81.68±10.50 8.12±2.82

irs

MDL 97.36±1.01 94.44±5.83 3.28±0.49

Hierar 97.91±0.82 94.31±6.32 3.43±0.62

MOLCS-GA 97.79±0.84 94.67±6.11 3.34±0.60

lab

MDL 100.00±0.00 97.43±6.54 4.01±0.08

Hierar 100.00±0.00 95.53±9.35 4.00±0.00

MOLCS-GA 99.80±0.63 97.89±5.82 3.65±0.62
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Table C.4: Results of the experimentation with generalization pressure

methods for the UBR and XCS representations without using ILAS

Dataset Method Training acc. Test acc. #rules

lrn

MDL 75.67±2.20 68.35±4.82 8.76±1.69

Hierar 74.68±2.19 68.29±5.59 6.23±0.51

MOLCS-GA 75.62±1.61 67.59±4.63 12.29±1.88

lym

MDL 89.91±2.88 78.13±10.63 6.85±1.37

Hierar 91.70±2.76 77.87±10.58 7.25±1.36

MOLCS-GA 89.24±2.64 75.95±11.54 6.53±1.37

mmg

MDL 80.59±2.23 63.27±10.26 6.74±0.90

Hierar 81.65±2.51 63.44±10.42 7.57±1.67

MOLCS-GA 78.32±2.74 61.50±10.50 7.53±1.34

pim

MDL 80.59±1.46 74.46±4.51 6.91±1.81

Hierar 81.07±1.20 74.37±4.54 5.13±0.54

MOLCS-GA 81.63±1.30 73.52±4.73 10.99±2.43

prt

MDL 55.58±4.08 45.37±7.69 14.57±2.40

Hierar 53.24±3.66 45.68±7.09 10.39±0.92

MOLCS-GA 44.46±8.06 40.55±8.24 8.68±2.12

thy

MDL 96.71±1.32 92.06±5.13 5.46±0.66

Hierar 97.34±1.26 92.02±5.25 5.57±0.74

MOLCS-GA 96.46±1.51 91.58±6.00 5.39±0.77

vot

MDL 98.20±0.70 96.66±2.97 4.87±0.94

Hierar 97.90±0.66 96.38±3.33 4.29±0.69

MOLCS-GA 97.94±0.64 96.00±3.33 5.02±1.10

wbcd

MDL 98.17±0.45 95.60±2.48 5.45±1.61

Hierar 97.79±0.44 95.81±2.50 3.22±0.92

MOLCS-GA 97.86±0.48 95.53±2.28 5.02±1.29

wdbc

MDL 96.45±0.87 93.64±3.01 4.37±1.05

Hierar 96.79±0.81 92.26±3.45 5.52±1.59

MOLCS-GA 96.19±0.88 91.85±3.73 5.89±1.60

wine

MDL 99.45±0.56 92.55±6.19 5.27±1.25

Hierar 99.71±0.42 91.18±7.63 5.74±1.38

MOLCS-GA 98.92±0.82 92.25±6.45 4.32±1.12

wpbc

MDL 79.84±2.81 75.55±5.47 2.93±0.87

Hierar 85.40±3.69 68.13±8.70 9.02±3.64

MOLCS-GA 81.32±2.97 69.85±8.88 5.39±1.93

zoo

MDL 95.97±3.40 90.94±9.38 7.00±1.07

Hierar 97.35±2.18 91.35±9.46 7.27±0.90

MOLCS-GA 94.39±3.07 88.26±9.72 6.60±0.96
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Appendix D

Full results of the global comparison

with alternative machine learning

systems

D.1 Results on small datasets

Table D.1: Results of global comparative tests on the aud dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 81.01±5.29 70.62±8.72 13.93±1.51
GAssist-gr2 81.01±5.29 70.62±8.72 13.93±1.51
GAssist-gr3 81.01±5.29 70.62±8.72 13.93±1.51
GAssist-inst 81.01±5.29 70.62±8.72 13.93±1.51

Majority 25.22±0.34 25.29±2.89
C4.5 90.20±0.90 77.18±8.18 30.83±1.90
PART 90.74±0.90 79.86±8.28 19.87±1.65
IB1 100.00±0.00 74.01±9.37
IBk 78.29±1.36 69.56±9.91

NB-gaussian 78.55±1.13 71.35±7.98
NB-kernel 78.55±1.13 71.35±7.98
LIBSVM 76.53±1.50 69.17±8.06 193.60±2.74

XCS 89.84±3.72 79.6±12.3
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Table D.2: Results of global comparative tests on the aut dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 81.04±2.55 66.17±10.65 7.83±1.09
GAssist-gr2 81.77±2.66 67.91±10.18 7.71±1.06
GAssist-gr3 81.63±2.35 67.02±10.13 8.11±1.22
GAssist-inst 93.07±1.56 65.98±9.65 37.38±4.42

Majority 32.68±0.32 32.68±2.81
C4.5 93.91±1.33 80.57±8.73 46.90±6.93
PART 92.92±1.77 75.42±9.81 20.57±2.62
IB1 98.57±0.59 73.92±8.35
IBk 85.24±1.21 68.87±7.22

NB-gaussian 67.43±1.84 56.82±9.99
NB-kernel 75.03±1.73 61.45±8.57
LIBSVM 66.89±2.29 57.56±8.36 175.07±2.46

XCS 99.60±0.46 71.2±9.9

Table D.3: Results of global comparative tests on the bal dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 84.90±0.86 79.27±3.98 9.39±1.53
GAssist-gr2 84.76±0.88 79.27±4.16 8.94±1.50
GAssist-gr3 86.34±0.65 78.66±3.86 11.12±2.24
GAssist-inst 92.14±0.28 89.62±2.22 37.59±16.98

Majority 46.18±0.10 45.24±0.89
C4.5 89.93±0.68 77.66±2.91 42.33±4.69
PART 93.39±0.98 83.22±4.59 38.97±3.23
IB1 100.00±0.00 77.42±5.47
IBk 90.53±0.54 86.09±2.72

NB-gaussian 90.70±0.26 90.26±1.71
NB-kernel 91.92±0.25 91.43±1.25
LIBSVM 91.01±0.19 90.90±1.43 174.03±3.18

XCS 95.19±1.28 81.1±3.8

Table D.4: Results of global comparative tests on the bpa dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 81.62±1.52 64.91±6.85 8.29±1.56
GAssist-gr2 78.66±1.57 64.03±7.24 7.71±1.46
GAssist-gr3 82.20±1.54 63.29±8.69 8.51±1.44
GAssist-inst 83.14±1.79 66.64±8.09 27.58±8.31

Majority 57.97±0.13 57.99±1.11
C4.5 86.29±3.90 65.70±7.91 25.70±5.69
PART 77.10±4.96 64.73±6.83 7.67±2.43
IB1 100.00±0.00 61.90±9.69
IBk 82.62±1.37 60.55±8.35

NB-gaussian 56.82±2.52 55.49±8.77
NB-kernel 73.47±1.25 65.15±9.07
LIBSVM 59.43±0.91 58.37±1.82 264.93±1.71

XCS 99.97±0.10 67.1±7.5
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Table D.5: Results of global comparative tests on the bps dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 87.96±0.62 81.54±3.82 7.47±1.49
GAssist-gr2 88.09±0.65 81.97±3.62 7.25±1.48
GAssist-gr3 88.03±0.68 81.76±3.60 7.57±1.52
GAssist-inst 89.97±0.73 84.13±3.77 18.71±7.09

Majority 51.61±0.05 51.61±0.41
C4.5 96.26±1.09 80.30±3.75 50.80±5.10
PART 90.25±2.21 80.73±3.37 13.20±2.70
IB1 100.00±0.00 82.90±3.65
IBk 91.38±0.52 83.91±3.43

NB-gaussian 78.68±0.34 78.42±2.86
NB-kernel 80.72±0.39 79.52±3.98
LIBSVM 86.63±0.43 85.66±3.71 441.10±5.23

Table D.6: Results of global comparative tests on the bre dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 87.69±1.81 70.27±7.40 10.71±1.44
GAssist-gr2 87.69±1.81 70.27±7.40 10.71±1.44
GAssist-gr3 87.69±1.81 70.27±7.40 10.71±1.44
GAssist-inst 87.69±1.81 70.27±7.40 10.71±1.44

Majority 70.28±0.17 70.31±1.50
C4.5 76.83±1.35 73.91±5.83 9.33±9.61
PART 80.78±1.85 67.32±7.13 17.30±4.62
IB1 97.95±0.41 69.84±7.73
IBk 80.02±0.99 73.89±4.24

NB-gaussian 75.43±1.04 72.14±8.18
NB-kernel 75.43±1.04 72.14±8.18
LIBSVM 79.28±1.09 74.35±4.70 172.87±3.84

XCS 93.84±1.20 70.1±8.0

Table D.7: Results of global comparative tests on the cmc dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 58.70±0.98 54.63±3.68 7.01±1.42
GAssist-gr2 58.68±1.04 54.93±4.12 6.89±1.20
GAssist-gr3 59.59±1.12 54.74±4.05 10.31±3.03
GAssist-inst 56.99±1.70 52.54±3.96 14.52±5.45

Majority 42.70±0.04 42.70±0.33
C4.5 71.08±1.44 51.96±4.23 148.00±21.61
PART 75.77±1.00 51.32±4.21 165.77±10.59
IB1 95.57±0.27 43.72±4.41
IBk 69.54±0.59 46.55±5.20

NB-gaussian 51.71±0.63 50.77±3.22
NB-kernel 53.15±0.60 51.69±3.19
LIBSVM 54.79±0.70 48.06±3.15 1228.57±5.70

XCS 71.22±2.34 52.4±3.6
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Table D.8: Results of global comparative tests on the col dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 99.38±0.59 93.39±4.83 6.88±1.38
GAssist-gr2 99.31±0.58 92.84±4.50 7.84±1.61
GAssist-gr3 99.69±0.38 93.04±4.28 7.24±1.50
GAssist-inst 99.02±0.55 89.43±4.89 21.99±9.19

Majority 63.04±0.17 63.07±1.52
C4.5 86.52±0.87 85.50±4.80 5.97±2.01
PART 87.18±0.90 84.23±4.80 9.30±3.10
IB1 98.98±0.26 79.10±6.52
IBk 87.52±0.68 81.45±5.79

NB-gaussian 79.68±0.81 78.50±6.39
NB-kernel 80.53±0.71 79.14±6.00
LIBSVM 89.61±0.44 84.89±4.77 196.27±5.59

XCS 94.25±1.21 84.0±5.8

Table D.9: Results of global comparative tests on the cr-a dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 91.07±0.73 85.62±4.00 5.78±1.08
GAssist-gr2 90.87±0.68 85.56±3.88 5.67±1.00
GAssist-gr3 91.28±0.77 85.03±3.73 6.23±1.00
GAssist-inst 90.61±0.61 85.18±3.82 18.27±7.61

Majority 55.51±0.08 55.51±0.70
C4.5 90.31±0.86 85.55±3.45 22.63±8.58
PART 93.23±0.82 84.23±3.98 31.00±6.58
IB1 99.47±0.11 81.92±4.41
IBk 91.05±0.52 84.73±4.04

NB-gaussian 78.36±0.63 77.55±4.76
NB-kernel 82.58±0.82 81.07±5.32
LIBSVM 55.51±0.08 55.51±0.70 553.60±1.65

XCS 98.90±0.73 85.6±3.5

Table D.10: Results of global comparative tests on the cr-g dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 82.87±0.90 72.18±3.60 12.45±2.48
GAssist-gr2 82.61±0.91 72.17±4.05 11.99±2.22
GAssist-gr3 82.74±0.92 72.29±4.13 12.69±2.02
GAssist-inst 82.13±0.95 72.46±3.98 28.43±11.95

Majority 70.00±0.00 70.00±0.00
C4.5 85.10±1.77 70.93±3.35 87.93±17.63
PART 90.38±0.97 70.60±4.04 68.13±6.33
IB1 100.00±0.00 72.23±3.77
IBk 85.74±0.54 72.47±3.77

NB-gaussian 77.01±0.45 74.80±3.65
NB-kernel 77.37±0.43 74.07±3.86
LIBSVM 82.69±0.58 75.90±3.48 567.27±5.88

XCS 97.92±0.81 70.9±4.3
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Table D.11: Results of global comparative tests on the gls dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 79.78±2.07 68.46±8.83 6.61±0.77
GAssist-gr2 79.20±2.15 67.68±10.00 6.69±0.78
GAssist-gr3 80.64±1.93 68.30±9.27 6.85±1.04
GAssist-inst 87.89±2.10 68.28±9.96 32.10±5.36

Majority 35.52±0.44 35.68±3.72
C4.5 92.91±1.66 68.81±9.56 23.70±2.76
PART 93.08±1.70 69.56±9.17 15.40±1.96
IB1 100.00±0.00 69.72±8.31
IBk 81.12±1.35 70.36±8.44

NB-gaussian 55.81±1.92 48.94±9.72
NB-kernel 57.72±1.88 51.00±7.78
LIBSVM 61.23±2.77 58.89±11.53 178.93±2.84

XCS 97.62±1.37 71.8±8.9

Table D.12: Results of global comparative tests on the h-c1 dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 92.69±0.84 80.34±6.53 7.41±1.29
GAssist-gr2 92.25±0.83 81.18±6.41 7.35±1.14
GAssist-gr3 93.70±0.76 80.28±6.29 8.08±1.49
GAssist-inst 92.23±0.97 81.55±6.68 23.93±8.49

Majority 54.46±0.19 54.47±1.65
C4.5 91.80±1.26 77.55±6.32 27.63±4.48
PART 94.54±1.26 80.32±8.11 19.63±3.09
IB1 100.00±0.00 76.55±5.92
IBk 88.61±0.72 81.48±6.72

NB-gaussian 84.56±0.72 83.63±7.31
NB-kernel 85.93±0.84 84.52±6.68
LIBSVM 88.82±0.70 82.99±5.58 136.73±3.88

XCS 99.81±0.31 76.5±7.9

Table D.13: Results of global comparative tests on the h-h dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 99.32±0.44 95.77±3.09 5.99±0.16
GAssist-gr2 99.20±0.46 95.88±3.52 6.01±0.23
GAssist-gr3 99.39±0.39 95.93±3.06 6.02±0.18
GAssist-inst 99.68±0.24 95.57±3.82 9.76±4.01

Majority 63.95±0.21 63.95±1.86
C4.5 84.26±2.32 79.51±7.38 7.07±4.42
PART 85.74±1.45 80.38±5.60 8.53±2.58
IB1 99.31±0.26 77.76±8.38
IBk 90.27±0.77 81.52±6.13

NB-gaussian 85.59±0.70 84.56±6.03
NB-kernel 85.68±0.76 85.25±5.87
LIBSVM 86.72±0.51 81.78±7.61 113.83±3.24

XCS 98.51±0.96 77.8±8.0
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Table D.14: Results of global comparative tests on the h-s dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 91.30±0.92 81.14±7.32 7.05±1.13
GAssist-gr2 90.88±0.97 80.77±7.25 6.88±1.06
GAssist-gr3 92.75±0.87 80.27±8.11 7.45±1.12
GAssist-inst 92.06±1.13 81.21±7.05 14.50±5.01

Majority 55.56±0.00 55.56±0.00
C4.5 92.19±1.70 79.75±6.54 16.97±3.38
PART 95.73±1.15 78.02±6.55 17.70±2.04
IB1 100.00±0.00 76.54±8.24
IBk 89.62±0.83 79.14±6.73

NB-gaussian 85.69±1.20 84.32±7.93
NB-kernel 86.43±0.87 84.20±6.96
LIBSVM 86.63±1.01 82.72±7.18 120.23±3.94

XCS 99.85±0.24 75.3±8.1

Table D.15: Results of global comparative tests on the hep dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 98.82±0.65 88.06±7.59 5.31±0.68
GAssist-gr2 98.58±0.75 87.20±8.47 5.31±0.57
GAssist-gr3 98.99±0.72 89.28±8.25 5.19±0.55
GAssist-inst 97.18±1.10 83.83±8.32 9.94±4.04

Majority 79.36±0.25 79.38±2.15
C4.5 92.19±2.68 78.24±7.75 8.47±2.94
PART 94.62±1.53 81.77±8.89 8.17±1.46
IB1 97.35±0.64 80.89±9.15
IBk 89.15±0.97 81.48±7.76

NB-gaussian 86.19±1.13 84.33±6.70
NB-kernel 87.12±0.80 84.92±5.63
LIBSVM 91.09±1.06 85.61±6.70 71.70±3.39

XCS 99.66±0.27 80.7±9.2

Table D.16: Results of global comparative tests on the ion dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 96.92±0.78 92.13±5.23 2.32±0.80
GAssist-gr2 97.19±0.51 92.44±4.56 2.16±0.38
GAssist-gr3 96.90±0.74 92.71±5.01 2.59±0.93
GAssist-inst 98.49±0.58 90.43±4.81 18.20±5.39

Majority 64.10±0.18 64.12±1.56
C4.5 98.68±0.54 88.97±5.91 14.60±1.65
PART 98.39±0.96 90.43±5.09 7.47±1.63
IB1 100.00±0.00 87.01±4.41
IBk 90.94±0.59 85.66±4.66

NB-gaussian 83.44±0.89 83.23±8.06
NB-kernel 93.00±0.42 91.50±4.70
LIBSVM 94.19±0.64 92.14±4.62 127.77±3.22

XCS 99.86±0.24 90.1±4.7
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Table D.17: Results of global comparative tests on the irs dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 98.05±0.96 94.13±6.06 3.69±0.65
GAssist-gr2 97.76±1.00 94.31±5.62 3.57±0.57
GAssist-gr3 98.33±0.79 95.20±5.87 3.91±0.58
GAssist-inst 99.47±0.41 94.49±6.34 4.19±0.91

Majority 33.33±0.00 33.33±0.00
C4.5 98.00±0.61 94.22±5.37 4.60±0.61
PART 97.75±0.68 93.78±5.95 3.77±1.31
IB1 100.00±0.00 94.44±7.32
IBk 96.59±0.49 94.89±6.37

NB-gaussian 95.85±0.68 95.78±5.30
NB-kernel 96.67±0.53 96.22±5.36
LIBSVM 97.11±0.64 96.22±4.77 56.07±1.29

XCS 99.10±1.19 94.7±5.1

Table D.18: Results of global comparative tests on the lab dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 100.00±0.00 97.77±5.98 4.00±0.00
GAssist-gr2 100.00±0.00 97.75±5.79 4.00±0.00
GAssist-gr3 100.00±0.00 97.03±6.56 4.00±0.00
GAssist-inst 100.00±0.00 97.30±6.43 4.00±0.00

Majority 64.90±0.57 64.25±4.66
C4.5 91.58±4.00 80.31±17.44 4.43±1.48
PART 94.21±2.34 80.81±16.32 3.67±0.65
IB1 99.67±1.03 86.14±15.86
IBk 98.77±1.55 95.38±7.75

NB-gaussian 97.66±1.16 94.68±9.97
NB-kernel 95.92±1.60 93.76±10.50
LIBSVM 96.04±0.93 93.35±8.32 37.67±1.62

XCS 99.92±0.24 83.5±14.8

Table D.19: Results of global comparative tests on the lrn dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 75.70±0.85 69.31±5.07 7.47±1.45
GAssist-gr2 75.94±0.80 69.36±5.18 7.27±1.29
GAssist-gr3 75.69±0.90 69.19±5.16 7.86±1.45
GAssist-inst 78.54±1.37 66.51±4.47 69.58±18.05

Majority 45.83±0.10 45.84±0.93
C4.5 80.41±1.58 69.20±4.08 41.30±11.56
PART 86.73±1.08 67.49±4.30 57.53±6.32
IB1 99.69±0.13 61.62±4.99
IBk 78.96±0.71 61.85±5.41

NB-gaussian 73.95±0.74 71.46±4.66
NB-kernel 75.43±0.64 71.92±4.23
LIBSVM 73.54±0.78 66.42±3.91 428.67±3.75

331



APPENDIX D. FULL RESULTS OF THE GLOBAL COMPARISON WITH
ALTERNATIVE MACHINE LEARNING SYSTEMS

Table D.20: Results of global comparative tests on the lym dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 94.66±1.47 81.47±11.06 6.36±1.11
GAssist-gr2 94.10±1.27 79.56±11.23 6.36±1.03
GAssist-gr3 95.89±1.32 80.80±10.82 6.69±1.11
GAssist-inst 98.46±0.84 78.16±10.51 16.50±4.67

Majority 54.73±0.35 54.86±3.03
C4.5 92.52±1.85 75.96±10.73 17.90±3.51
PART 93.34±1.83 75.87±11.44 11.10±1.62
IB1 100.00±0.00 80.58±8.10
IBk 91.92±1.10 82.17±8.25

NB-gaussian 87.16±1.26 83.37±8.92
NB-kernel 88.31±1.18 83.36±10.33
LIBSVM 93.54±1.01 84.53±9.32 96.87±2.46

XCS 98.84±0.84 79.8±10.2

Table D.21: Results of global comparative tests on the mmg dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 84.24±1.45 66.52±10.35 6.37±0.74
GAssist-gr2 83.77±1.35 67.50±10.39 6.25±0.56
GAssist-gr3 84.29±1.28 68.52±10.67 6.51±0.81
GAssist-inst 79.59±2.04 64.37±11.33 8.68±2.26

Majority 56.02±0.17 56.04±1.48
C4.5 80.61±6.46 61.91±11.22 9.00±3.61
PART 75.70±5.65 62.06±11.32 4.07±1.75
IB1 100.00±0.00 62.18±10.54
IBk 81.64±1.32 67.36±9.68

NB-gaussian 66.19±1.38 65.20±9.71
NB-kernel 65.78±1.15 64.86±10.01
LIBSVM 67.15±1.13 65.46±11.43 148.00±3.40

Table D.22: Results of global comparative tests on the pim dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 83.11±0.82 74.46±5.19 7.64±1.48
GAssist-gr2 82.63±0.82 74.32±4.75 6.98±1.26
GAssist-gr3 83.72±0.81 74.36±5.05 8.71±1.81
GAssist-inst 84.25±0.93 74.46±5.07 35.86±13.14

Majority 65.10±0.08 65.11±0.70
C4.5 84.43±2.41 75.44±4.79 22.43±7.94
PART 78.88±1.65 74.88±4.79 6.93±1.24
IB1 100.00±0.00 71.09±4.10
IBk 85.67±0.65 74.52±3.91

NB-gaussian 76.42±0.65 75.17±4.46
NB-kernel 77.07±0.61 75.30±4.45
LIBSVM 78.27±0.53 77.32±4.70 405.90±5.92

XCS 98.90±0.67 72.4±5.3
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Table D.23: Results of global comparative tests on the prt dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 59.42±4.24 48.29±7.74 13.97±2.32
GAssist-gr2 59.42±4.24 48.29±7.74 13.97±2.32
GAssist-gr3 59.42±4.24 48.29±7.74 13.97±2.32
GAssist-inst 59.42±4.24 48.29±7.74 13.97±2.32

Majority 24.78±0.25 24.90±2.24
C4.5 60.41±1.66 41.45±6.13 43.20±5.07
PART 62.91±1.36 41.75±6.11 40.47±3.80
IB1 86.76±0.84 34.39±6.20
IBk 56.47±1.39 44.12±5.84

NB-gaussian 56.81±1.15 49.61±7.70
NB-kernel 56.81±1.15 49.61±7.70
LIBSVM 61.98±1.18 47.22±7.24 282.70±3.48

XCS 51.44±3.28 39.8±8.5

Table D.24: Results of global comparative tests on the son dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 94.66±1.46 75.79±8.64 6.86±0.98
GAssist-gr2 94.30±1.37 74.84±8.87 6.51±0.80
GAssist-gr3 97.03±1.16 77.21±8.86 7.20±1.21
GAssist-inst 96.98±1.51 78.39±8.98 18.83±6.19

Majority 53.37±0.26 53.43±2.25
C4.5 97.97±0.51 73.21±8.61 14.27±1.63
PART 98.70±0.49 73.09±10.30 7.73±0.81
IB1 100.00±0.00 87.22±7.43
IBk 92.01±1.38 84.63±10.14

NB-gaussian 72.56±1.18 68.80±10.80
NB-kernel 83.62±1.58 71.89±9.87
LIBSVM 86.20±1.31 80.41±8.74 144.43±2.28

XCS 100.00±0.00 77.9±8.0

Table D.25: Results of global comparative tests on the soy dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 90.10±4.20 87.30±4.64 20.54±3.05
GAssist-gr2 90.10±4.20 87.30±4.64 20.54±3.05
GAssist-gr3 90.10±4.20 87.30±4.64 20.54±3.05
GAssist-inst 90.10±4.20 87.30±4.64 20.54±3.05

Majority 13.47±0.06 13.47±0.52
C4.5 96.03±0.49 91.40±3.50 60.40±5.03
PART 96.07±0.62 91.22±2.67 36.90±2.40
IB1 99.74±0.15 89.75±3.16
IBk 94.22±0.42 91.20±2.30

NB-gaussian 93.59±0.27 92.85±2.39
NB-kernel 93.59±0.27 92.85±2.39
LIBSVM 95.62±0.29 93.39±2.13 543.57±6.89

XCS 78.49±4.01 85.1±4.4
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Table D.26: Results of global comparative tests on the thy dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 98.85±0.55 91.92±5.18 5.34±0.63
GAssist-gr2 98.78±0.58 91.98±5.31 5.25±0.53
GAssist-gr3 98.46±0.67 92.13±5.30 5.48±0.65
GAssist-inst 99.72±0.36 95.54±3.58 5.04±0.94

Majority 69.77±0.26 69.84±2.22
C4.5 98.47±0.54 92.68±5.87 8.20±1.01
PART 98.98±0.39 95.33±4.33 4.57±0.76
IB1 100.00±0.00 96.94±4.31
IBk 97.57±0.65 93.97±5.20

NB-gaussian 97.16±0.46 97.03±3.89
NB-kernel 97.16±0.48 96.42±3.72
LIBSVM 91.33±0.81 90.87±5.99 75.03±2.68

XCS 99.90±0.44 95.4±4.6

Table D.27: Results of global comparative tests on the veh dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 73.09±1.25 67.66±3.91 8.17±1.82
GAssist-gr2 73.23±1.05 68.07±4.12 7.62±1.66
GAssist-gr3 72.62±1.11 67.87±3.42 8.08±1.66
GAssist-inst 81.23±1.52 70.41±5.25 50.07±11.57

Majority 25.79±0.08 25.10±0.58
C4.5 91.83±3.30 73.69±3.14 70.77±10.98
PART 87.75±2.63 72.71±3.60 32.63±4.29
IB1 100.00±0.00 69.70±4.20
IBk 85.60±0.68 70.69±3.56

NB-gaussian 46.87±0.88 45.19±3.90
NB-kernel 64.79±0.56 61.18±4.88
LIBSVM 73.33±0.75 71.50±3.47 674.90±2.96

XCS 98.68±0.62 74.3±4.7

Table D.28: Results of global comparative tests on the vot dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 98.93±0.32 96.81±3.12 5.75±0.77
GAssist-gr2 98.93±0.32 96.81±3.12 5.75±0.77
GAssist-gr3 98.93±0.32 96.81±3.12 5.75±0.77
GAssist-inst 98.93±0.32 96.81±3.12 5.75±0.77

Majority 61.38±0.14 61.39±1.29
C4.5 97.18±0.27 96.30±3.64 5.73±0.51
PART 97.41±0.26 95.85±3.44 6.27±0.96
IB1 99.62±0.14 92.28±4.25
IBk 94.34±0.45 93.04±3.92

NB-gaussian 90.32±0.51 90.20±3.89
NB-kernel 90.32±0.51 90.20±3.89
LIBSVM 98.26±0.32 95.18±3.60 103.23±3.39

XCS 97.81±0.73 95.7±3.1
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Table D.29: Results of global comparative tests on the wbcd dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 97.98±0.45 95.97±2.33 3.01±0.55
GAssist-gr2 97.95±0.38 95.88±2.36 3.09±0.61
GAssist-gr3 98.52±0.34 95.93±2.19 3.17±0.64
GAssist-inst 98.34±0.31 96.08±2.46 7.01±4.50

Majority 65.52±0.05 65.52±0.47
C4.5 98.01±0.50 94.33±2.78 13.03±3.03
PART 98.04±0.80 94.67±3.26 10.13±2.25
IB1 99.59±0.10 95.57±2.13
IBk 97.68±0.34 96.90±1.38

NB-gaussian 96.08±0.33 96.05±2.40
NB-kernel 97.57±0.18 97.52±1.76
LIBSVM 97.22±0.26 96.95±2.20 67.93±3.13

XCS 99.37±0.39 95.9±2.3

Table D.30: Results of global comparative tests on the wdbc dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 98.22±0.40 94.18±3.27 4.72±0.85
GAssist-gr2 98.25±0.38 94.29±3.16 4.55±0.74
GAssist-gr3 98.31±0.44 93.82±2.94 4.72±0.82
GAssist-inst 99.06±0.26 96.53±2.45 6.28±3.32

Majority 62.74±0.07 62.74±0.62
C4.5 98.87±0.44 93.32±3.28 11.17±2.08
PART 99.13±0.43 94.27±2.62 6.77±1.20
IB1 100.00±0.00 95.78±2.43
IBk 98.47±0.28 96.83±1.84

NB-gaussian 93.61±0.33 93.09±2.93
NB-kernel 95.38±0.31 94.55±2.72
LIBSVM 97.22±0.27 96.72±2.29 128.93±2.24

XCS 100.00±0.00 96.0±2.5

Table D.31: Results of global comparative tests on the wine dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 99.67±0.49 94.02±5.30 3.31±0.52
GAssist-gr2 99.78±0.40 93.75±4.78 3.16±0.42
GAssist-gr3 99.51±0.50 93.83±5.43 3.73±0.71
GAssist-inst 100.00±0.05 96.33±4.13 3.84±0.80

Majority 39.89±0.27 39.98±2.39
C4.5 98.86±0.54 92.24±6.44 5.40±0.66
PART 99.15±0.47 91.71±5.62 4.47±0.50
IB1 100.00±0.00 95.62±3.82
IBk 97.27±0.53 96.61±4.02

NB-gaussian 98.58±0.43 96.60±4.09
NB-kernel 98.67±0.45 97.20±3.43
LIBSVM 99.33±0.32 98.10±3.40 73.40±2.48

XCS 100.00±0.00 95.6±4.9
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Table D.32: Results of global comparative tests on the wpbc dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 89.72±1.28 75.06±8.88 4.13±0.47
GAssist-gr2 88.71±1.30 75.88±8.65 4.08±0.39
GAssist-gr3 91.38±1.52 74.79±8.72 4.41±0.64
GAssist-inst 89.44±1.80 76.75±8.45 7.81±3.68

Majority 76.27±0.44 76.44±3.68
C4.5 93.66±2.70 71.11±8.58 13.20±2.24
PART 92.38±3.91 74.00±8.72 7.47±1.73
IB1 99.55±0.22 69.96±10.14
IBk 87.15±1.14 72.95±9.10

NB-gaussian 70.75±1.87 67.46±9.50
NB-kernel 77.41±1.53 68.93±9.18
LIBSVM 76.27±0.44 76.44±3.68 94.37±3.25

XCS 100.00±0.00 74.3±8.9

Table D.33: Results of global comparative tests on the zoo dataset
System Training acc. Test acc. Size of the solution

GAssist-gr1 98.06±1.26 91.28±8.31 7.44±0.72
GAssist-gr2 98.06±1.26 91.28±8.31 7.44±0.72
GAssist-gr3 98.06±1.26 91.28±8.31 7.44±0.72
GAssist-inst 98.06±1.26 91.28±8.31 7.44±0.72

Majority 40.60±0.57 41.10±5.04
C4.5 98.75±0.68 92.45±6.79 10.90±2.65
PART 98.75±0.68 92.75±6.91 7.63±0.48
IB1 100.00±0.00 95.71±5.57
IBk 96.16±0.95 94.66±5.65

NB-gaussian 99.67±0.58 93.74±6.71
NB-kernel 99.67±0.58 93.74±6.71
LIBSVM 99.85±0.47 95.13±6.01 56.37±1.99

XCS 100.00±0.00 95.1±6.1
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D.2 Results on large datasets

Table D.34: Results of the global comparison tests on large datasets
Dataset System Training acc. Test acc. Size of sol. Time (s)

adu

GAssist 85.27±0.24 85.10±0.56 10.63±2.20 300.00±0.0
C4.5 87.53±0.15 86.05±0.38 580.67±97.43 18.28±0.26

NB-kernel 85.30±0.06 85.21±0.51 49.93±1.97
PART 89.37±0.11 85.68±0.52 1056.67±34.95 354.02±20.66

c-4

GAssist 71.92±2.39 71.69±2.32 21.88±8.80 300.00±0.0
C4.5 87.50±0.31 81.02±0.44 4026.47±91.81 14.19±0.25

NB-kernel 72.23±0.07 72.15±0.42 3.97±0.02
PART 90.13±0.08 79.02±0.51 3716.33±42.81 1319.58±63.31

fars

GAssist 76.83±0.57 76.80±0.58 13.58±2.43 300.00±0.0
C4.5 84.11±0.11 79.90±0.32 6216.40±276.83 55.26±0.46

NB-kernel 79.70±0.04 79.49±0.13 14.76±0.10
PART 86.74±0.07 78.74±0.37 4412.90±37.76 3806.33±98.42

hyp

GAssist 94.77±0.50 94.47±0.77 6.85±0.85 300.00±0.0
C4.5 99.81±0.04 99.57±0.27 14.60±0.88 1.61±0.47

NB-kernel 96.35±0.22 95.97±0.71 1.38±0.25
PART 99.83±0.04 99.51±0.28 10.30±1.46 2.02±0.35

krkp

GAssist 97.74±1.14 97.58±1.32 7.46±0.58 300.00±0.0
C4.5 99.64±0.07 99.43±0.40 29.03±2.07 1.47±0.17

NB-kernel 88.16±0.28 87.84±1.91 1.42±0.19
PART 99.72±0.06 99.06±0.65 22.17±2.56 1.76±0.02

mush

GAssist 99.96±0.14 99.95±0.19 4.96±0.78 300.00±0.0
C4.5 100.00±0.00 100.00±0.00 25.00±0.00 1.64±0.38

NB-kernel 95.82±0.09 95.79±0.74 1.30±0.40
PART 100.00±0.00 100.00±0.00 11.67±1.64 1.82±0.36

nur

GAssist 95.39±0.93 95.23±1.10 19.80±7.21 300.00±0.0
C4.5 98.16±0.06 97.18±0.47 356.63±10.04 1.73±0.48

NB-kernel 90.37±0.12 90.28±0.67 1.37±0.37
PART 99.76±0.05 99.14±0.42 196.63±11.18 2.54±0.08

pen

GAssist 72.18±2.68 71.93±2.96 12.68±1.75 300.00±0.0
C4.5 99.27±0.06 96.50±0.44 188.17±5.98 3.71±0.55

NB-kernel 89.09±0.14 88.49±1.07 10.07±0.28
PART 99.56±0.06 96.92±0.60 79.27±4.68 7.15±0.54

sat

GAssist 80.45±0.62 80.00±1.30 8.25±1.56 300.00±0.0
C4.5 97.57±0.25 86.07±1.46 278.83±11.38 4.30±0.57

NB-kernel 82.56±0.19 82.06±1.64 6.64±0.52
PART 98.39±0.40 86.54±1.53 161.37±8.71 15.11±1.13

seg

GAssist 90.89±1.08 90.25±2.11 8.09±1.06 300.00±0.0
C4.5 99.19±0.14 96.54±1.58 41.10±2.41 1.24±0.24

NB-kernel 86.52±0.32 85.82±1.95 4.55±0.58
PART 99.47±0.21 96.78±1.26 27.87±2.20 2.10±0.23

sick

GAssist 98.75±0.23 98.41±0.70 6.33±0.66 300.00±0.0
C4.5 99.63±0.14 98.67±0.51 29.03±4.25 1.80±0.41

NB-kernel 96.02±0.16 95.82±0.95 1.29±0.25
PART 99.63±0.12 98.65±0.54 18.73±2.54 1.84±0.46

spl

GAssist 93.58±2.53 92.46±2.79 11.67±4.23 300.00±0.0
C4.5 96.24±0.22 94.11±1.05 172.93±10.91 1.27±0.36

NB-kernel 95.89±0.18 95.36±1.14 0.97±0.29
PART 97.31±0.26 92.46±1.19 101.60±7.65 2.79±0.36

wav

GAssist 78.28±0.60 76.01±1.97 10.64±1.94 300.00±0.0
C4.5 97.29±0.61 75.93±2.10 294.60±12.97 4.07±0.48

NB-kernel 81.59±0.21 79.89±1.40 17.98±0.28
PART 92.29±1.65 78.07±1.82 86.60±10.08 14.81±1.14
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selection and feature subset selection by estimation of distribution algorithms. A case study in

the survival of cirrhotic patients treated with TIPS. Lecture Notes in Computer Science, 2101 ,

20–29.

Skalak, D. B. (1994). Prototype and feature selection by sampling and random mutation hill

climbing algorithms. In International Conference on Machine Learning pp. 293–301. Morgan

Kaufmann.

Smith, S. (1980). A learning system based on genetic algorithms. Doctoral dissertation,

University of Pittsburgh.

Smith, S. F. (1983). Flexible learning of problem solving heuristics through adaptive search.

In Proceedings of the Eighth International Joint Conference on Artificial Intelligence pp.

421–425. Los Altos, CA: Morgan Kaufmann.

Soule, T., & Foster, J. A. (1998, Winter). Effects of code growth and parsimony pressure on

populations in genetic programming. Evolutionary Computation, 6(4), 293–309.

Stone, C., & Bull, L. (2003). For real! xcs with continuous-valued inputs. Evolutionary

Computation Journal , 11(3), 298–336.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of the third

international conference on Genetic algorithms pp. 2–9. Morgan Kaufmann Publishers Inc.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. fourth edition.

Springer-Verlag. ISBN 0-387-95457-0.

Venturini, G. (1993). Sia: A supervised inductive algorithm with genetic search for learning

attributes based concepts. In Brazdil, P. B. (Ed.), Machine Learning: ECML-93 - Proc. of

the European Conference on Machine Learning (pp. 280–296). Berlin, Heidelberg: Springer-

Verlag.

351



BIBLIOGRAPHY

Vose, M. D. (1999). The simple genetic algorithm : Foundations and theory. Complex

Adaptative Systems. Bradford Books.

Wang, K., & Liu, B. (1998). Concurrent discretization of multiple attributes. In Proceedings

of the 5th Pacific Rim International Conference on Topics in Artificial Intelligence (PRICAI-

98) pp. 250–259. LNAI 1531, Springer-Verlag.

Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for instance-based learning

algorithms. Machine Learning , 38(3), 257–286.

Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation, 3(2),

149–175.

Wilson, S. W. (1999). Get real! XCS with continuous-valued inputs. In Booker, L., Forrest,

S., Mitchell, M., & Riolo, R. L. (Eds.), Festschrift in Honor of John H. Holland pp. 111–121.

Center for the Study of Complex Systems.

Wilson, S. W. (2002). Compact rulesets from xcsi. In Revised Papers from the 4th Interna-

tional Workshop on Advances in Learning Classifier Systems pp. 197–210. Springer-Verlag.

Witten, I. H., & Frank, E. (2000). Data Mining: practical machine learning tools and

techniques with java implementations. Morgan Kaufmann.

Wolberg, W., & Mangasarian, O. (1990). Multisurface Method of Pattern Separation for

Medical Diagnosis Applied to Breast Cytology. PNAS , 87(23), 9193–9196.

Wolpert, D. H., & Macready, W. G. (1995, February). No free lunch theo-

rems for search (Working Papers 95-02-010). Santa Fe Institute. available at

http://ideas.repec.org/p/wop/safiwp/95-02-010.html.

Wong, M. L., Lam, W., & Leung, K. S. (1999). Using evolutionary programming and

minimum description length principle for data mining of bayesian networks. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 21(2), 174–178.

Yang, Y., & Webb, G. I. (2002). Non-disjoint discretization for naive-bayes classifiers. In

Proceedings of the Nineteenth International Conference on Machine Learning (ICML ’02) pp.

666– 673. San Francisco: Morgan Kaufmann.

Zadeh, L. (1965). Information and control. L. Zadeh. Fuzzy Sets. Information and Control,

8:338–353, 1965.

352


