
New Challenges in Learning Classifier
Systems: Mining Rarities and

Evolving Fuzzy Models

Albert Orriols i Puig

Grup de Recerca en Sistemes Intel·ligents
Enginyeria i Arquitectura La Salle

Universitat Ramon Llull

November 2008

Supervisor: Dr. Ester Bernadó i Mansilla

Albert Orriols Puig

sa'un'/wó1,11

W:fDru-g
6feee09t6xD.{
00e zz0 9t6 'pJ
0uola)rog e e0g0
t-['llo^or0lJ 'J

epTrerolsocl

e\ryfirelorces

,
{

b{-U.-irn"{ ; }'ri l- t""l :
F

ll U L/ t,t
')e'é

IecoA

^']
lrl,i--

'?

u , .-;l
il

ffi
3rb

){ttv1 \qJI,LTI Tnv¿

:grcecg¡1enb el tn8unqo lue^eq'slueuErsulos srolcoq s¡ed leruro¡ leunquJ Io lu€^ep

Ilnl-J uolrleu telrsre^run 3l ep

eJlueJ I€

\;0Frepwll}-uIpIe3pesueJeplelse3qI3JolcoClse¡e1senby

rlürr-il rrsrrrB}J lp*Es;reArlrf-l
;H];*

Ieco^

IscoA

vfiueprserd

Resum

Durant l’última dècada, els sistemes classificadors (LCS) d’estil Michigan—sistemes d’aprenentatge au-
tomàtic que combinen tècniques de repartiment de crèdit i algorismes genètics (AG) per evolucionar una
població de classificadors online—han renascut. Juntament amb la formulació dels sistemes de primera
generació, s’han prodüıt avenços importants en (1) el disseny sistemàtic de nous LCS competents, (2)
la seva aplicació en dominis rellevants i (3) el desenvolupament d’anàlisis teòriques. Malgrat aquests
dissenys i aplicacions importants, encara hi ha reptes complexos que cal abordar per comprendre millor
el funcionament dels LCS i per solucionar problemes del món real eficientment i escalable.

Aquesta tesi tracta dos reptes importants—compartits amb la comunitat d’aprenentatge automàtic—
amb LCS d’estil Michigan: (1) aprenentatge en dominis que contenen classes estranyes i (2) evolució de
models comprensibles on s’utilitzin mètodes de raonament similars als humans. L’aprenentatge de models
precisos de classes estranyes és cŕıtic, doncs el coneixement clau sol quedar amagat en exemples d’aquestes,
i la majoria de tècniques d’aprenentatge no són capaces de modelar la raresa amb precisió. La detecció de
rareses sol ser complicat en aprenentatge online ja que el sistema d’aprenentatge rep un flux d’exemples
i ha de detectar les rareses al vol. D’altra banda, l’evolució de models comprensibles és crucial en certs
dominis com el mèdic, on l’expert acostuma a estar més interessat en obtenir una explicació intel·ligible
de la predicció que en la predicció en si mateixa.

El treball present considera dos LCS d’estil Michigan com a punt de partida: l’XCS i l’UCS. Es pren
l’XCS com a primera referència ja que és l’LCS que ha tingut més influencia fins al moment. L’UCS hereta
els components principals de l’XCS i els especialitza per aprenentatge supervisat. Tenint en compte que
aquesta tesi especialment se centra en problemes de classificació, l’UCS també es considera en aquest
estudi. La inclusió de l’UCS marca el primer objectiu de la tesi, sota el qual es revisen un conjunt de
punts que van restar oberts en el disseny inicial del sistema. A més, per il·lustrar les diferències claus entre
l’XCS i l’UCS, es comparen ambdós sistemes sobre una bateria de problemes artificials de complexitat
acotada.

L’estudi de com els LCS aprenen en dominis amb classes estranyes comença amb una anàlisi que
descompon el problema en cinc elements cŕıtics i deriva models per facetes per cadascun d’ells. Aquesta
anàlisi s’usa com a eina per dissenyar guies de configuració que permeten que l’XCS i l’UCS solucionin
problemes que prèviament no eren resolubles. A continuació, es comparen els dos LCS amb alguns dels
sistemes d’aprenentatge amb més influencia en la comunitat d’aprenentatge automàtic sobre una col·lecció
de problemes del món real que contenen classes estranyes. Els resultats indiquen que els dos LCS són els
mètodes més robustos de la comparativa. Aix́ı mateix, es demostra experimentalment que remostrejar els
conjunts d’entrenament amb l’objectiu d’eliminar la presencia de classes estranyes beneficia, en mitjana,
el rendiment de les tècniques d’aprenentatge.

El repte de crear models més comprensibles i d’usar mecanismes de raonament que siguin similars
als humans s’aborda mitjançant el disseny d’un nou LCS per aprenentatge supervisat que combina les
capacitats d’avaluació de regles online, la robustesa mostrada pels AG en problemes complexos i la rep-
resentació comprensible i mètodes de raonament fonamentats proporcionats per la lògica difusa. El nou
LCS, anomenat Fuzzy-UCS, s’estudia en detall i es compara amb una bateria de mètodes d’aprenentatge.
Els resultats de la comparativa demostren la competitivitat del Fuzzy-UCS en termes de precisió i intelli-
gibilitat dels models evolucionats. Addicionalment, s’usa Fuzzy-UCS per extreure models de classificació
acurats de grans volums de dades, exemplificant els avantatges de l’arquitectura d’aprenentatge online
del Fuzzy-UCS.

En general, les observacions i avenços assolits en aquesta tesi contribueixen a augmentar la comprensió
del funcionament dels LCS i en preparar aquests sistemes per afrontar problemes del món real de gran
complexitat. Finalment, els resultats experimentals ressalten la robustesa i competitivitat dels LCS
respecte a altres mètodes d’aprenentatge, encoratjant el seu ús per tractar nous problemes del món real.

Resumen

Durante la última década, los sistemas clasificadores (LCS) de estilo Michigan—sistemas de aprendizaje
automático que combinan técnicas de repartición de crédito y algoritmos genéticos (AG) para evolucionar
una población de clasificadores online—han renacido. Juntamente con la formulación de los sistemas de
primera generación, se han producido avances importantes en (1) el diseño sistemático de nuevos LCS
competentes, (2) su aplicación en dominios relevantes y (3) el desarrollo de análisis teóricos. Pese a eso,
aún existen retos complejos que deben ser abordados para comprender mejor el funcionamiento de los
LCS y para solucionar problemas del mundo real escalable y eficientemente.

Esta tesis trata dos retos importantes—compartidos por la comunidad de aprendizaje automático—
con LCS de estilo Michigan: (1) aprendizaje en dominios con clases raras y (2) evolución de modelos
comprensibles donde se utilicen métodos de razonamiento similares a los humanos. El aprendizaje de
modelos precisos de clases raras es cŕıtico pues el conocimiento clave suele estar escondido en ejemplos de
estas clases, y la mayoŕıa de técnicas de aprendizaje no son capaces de modelar la rareza con precisión. El
modelado de las rarezas acostumbra a ser más complejo en entornos de aprendizaje online, pues el sistema
de aprendizaje recibe un flujo de ejemplos y debe detectar las rarezas al vuelo. La evolución de modelos
comprensibles es crucial en ciertos dominios como el médico, donde el experto está más interesado en
obtener una explicación inteligible de la predicción que en la predicción en śı misma.

El trabajo presente considera dos LCS de estilo Michigan como punto de partida: el XCS y el UCS. Se
toma XCS como primera referencia debido a que es el LCS que ha tenido más influencia hasta el momento.
UCS es un diseño reciente de LCS que hereda los componentes principales de XCS y los especializa para
aprendizaje supervisado. Dado que esta tesis está especialmente centrada en problemas de clasificación
automática, también se considera UCS en el estudio. La inclusión de UCS marca el primer objetivo de la
tesis, bajo el cual se revisan un conjunto de aspectos que quedaron abiertos durante el diseño del sistema.
Además, para ilustrar las diferencias claves entre XCS y UCS, se comparan ambos sistemas sobre una
bateŕıa de problemas artificiales de complejidad acotada.

El estudio de cómo los LCS aprenden en dominios con clases raras empieza con un estudio anaĺıtico
que descompone el problema en cinco elementos cŕıticos y deriva modelos por facetas para cada uno de
ellos. Este análisis se usa como herramienta para diseñar gúıas de configuración que permiten que XCS
y UCS solucionen problemas que previamente no eran resolubles. A continuación, se comparan los dos
LCS con algunos de los sistemas de aprendizaje de mayor influencia sobre una colección de problemas
del mundo real que contienen clases raras. Los resultados indican que los dos LCS son los métodos más
robustos de la comparativa. Además, se demuestra experimentalmente que remuestrear los conjuntos
de entrenamiento con el objetivo de eliminar la presencia de clases raras beneficia, en promedio, el
rendimiento de los métodos de aprendizaje automático incluidos en la comparativa.

El reto de crear modelos más comprensibles y usar mecanismos de razonamiento que sean similares a
los humanos se aborda mediante el diseño de un nuevo LCS para aprendizaje supervisado que combina las
capacidades de evaluación de reglas online, la robustez mostrada por los AG en problemas complejos y la
representación comprensible y métodos de razonamiento proporcionados por la lógica difusa. El sistema
que resulta de la combinación de estas ideas, llamado Fuzzy-UCS, se estudia en detalle y se compara con
una bateŕıa de métodos de aprendizaje altamente reconocidos en el campo de aprendizaje automático.
Los resultados de la comparativa demuestran la competitividad de Fuzzy-UCS en referencia a la precisión
e inteligibilidad de los modelos evolucionados. Adicionalmente, se usa Fuzzy-UCS para extraer modelos
de clasificación precisos de grandes volúmenes de datos, ejemplificando las ventajas de la arquitectura de
aprendizaje online de Fuzzy-UCS.

En general, los avances y observaciones proporcionados en la tesis presente contribuyen a aumentar la
comprensión del funcionamiento de los LCS y a preparar estos tipos de sistemas para afrontar problemas
del mundo real de gran complejidad. Además, los resultados experimentales resaltan la robustez y
competitividad de los LCS respecto a otros métodos de aprendizaje, alentando su uso para tratar nuevos
problemas del mundo real.

Abstract

During the last decade, Michigan-style learning classifier systems (LCSs)—genetic-based machine learning
(GBML) methods that combine apportionment of credit techniques and genetic algorithms (GAs) to evolve
a population of classifiers online—have been enjoying a renaissance. Together with the formulation of first
generation systems, there have been crucial advances in (1) systematic design of new competent LCSs,
(2) applications in important domains, and (3) theoretical analyses for design. Despite these successful
designs and applications, there still remain difficult challenges that need to be addressed to increase our
comprehension of how LCSs behave and to scalably and efficiently solve real-world problems.

The purpose of this thesis is to address two important challenges—shared by the machine learning
community—with Michigan-style LCSs: (1) learning from domains that contain rare classes and (2)
evolving highly legible models in which human-like reasoning mechanisms are employed. Extracting
accurate models from rare classes is critical since the key, unperceptive knowledge usually resides in the
rarities, and many traditional learning techniques are not able to model rarity accurately. Besides, these
difficulties are increased in online learning, where the learner receives a stream of examples and has to
detect rare classes on the fly. Evolving highly legible models is crucial in some domains such as medical
diagnosis, in which human experts may be more interested in the explanation of the prediction than in
the prediction itself.

The contributions of this thesis take two Michigan-style LCSs as starting point: the extended classifier
system (XCS) and the supervised classifier system (UCS). XCS is taken as the first reference of this work
since it is the most influential LCS. UCS is a recent LCS design that has inherited the main components
of XCS and has specialized them for supervised learning. As this thesis is especially concerned with
classification problems, UCS is also considered in this study. Since UCS is still a young system, for which
there are several open issues that need further investigation, its learning architecture is first revised and
updated. Moreover, to illustrate the key differences between XCS and UCS, the behavior of both systems
is compared on a collection of boundedly difficult problems.

The study of learning from rare classes with LCSs starts with an analytical approach in which the
problem is decomposed in five critical elements, and facetwise models are derived for each element. The
analysis is used as a tool for designing configuration guidelines that enable XCS and UCS to solve problems
that previously eluded solution. Thereafter, the two LCSs are compared with several highly-influential
learners on a collection of real-world problems with rare classes, appearing as the two best techniques of
the comparison. Moreover, re-sampling the training data set to eliminate the presence of rare classes is
demonstrated to benefit, on average, the performance of LCSs.

The challenge of building more legible models and using human-like reasoning mechanisms is ad-
dressed with the design of a new LCS for supervised learning that combines the online evaluation capa-
bilities of LCSs, the search robustness over complex spaces of GAs, and the legible knowledge representa-
tion and principled reasoning mechanisms of fuzzy logic. The system resulting from this crossbreeding of
ideas, referred to as Fuzzy-UCS, is studied in detail and compared with several highly competent learn-
ing systems, demonstrating the competitiveness of the new architecture in terms of the accuracy and the
interpretability of the evolved models. In addition, the benefits provided by the online architecture are
exemplified by extracting accurate classification models from large data sets.

Overall, the advances and key insights provided in this thesis help advance our understanding of how
LCSs work and prepare these types of systems to face increasingly difficult problems, which abound in
current industrial and scientific applications. Furthermore, experimental results highlight the robustness
and competitiveness of LCSs with respect to other machine learning techniques, which encourages their
use to face new challenging real-world applications.

Acknowledgments

If belonging to a competitive research group and collaborating, sharing, and enjoying with your
group mates is one the best experiences of a PhD lifetime, I consider myself one of the luckiest
PhD students, since I have been working in three highly-competitive research groups. For this
reason, I am tremendously grateful to all and each one of the people in there. If I tried to write
sounding words to express all my gratitude, these would only give a vague idea of what I mean.
Thence, following my engineering vocation, I would start simplifying and saying “thank you”.

First, I would like to thank Ester Bernadó-Mansilla for accepting me as her first PhD student,
for her advice, and for permitting my successive visits to the Illinois genetic algorithms laboratory
(IlliGAL) and the soft computing and intelligent information systems (SCI2S) group. I would like
to extend this acknowledgment to all the people in the grup de recerca en sistemes intel·ligents
(GRSI) and the computer engineering department of enginyeria i arquitectura la Salle in general,
with which I had interesting discussions, combined with lots of fun, during the last four years.

I am in terrible debt with all the people of the two research groups which I consider as my
second homes: the IlliGAL and the SCI2S. My visits to Champaign and Granada were extremely
fruitful and defined the largest part of the present document.

I am really glad that Prof. Goldberg accepted my visits to the IlliGAL and considered me
one of his students. I still remember when I reached the lab for the first time with a particular
problem to solve and left it with a methodology to face new challenging engineering problems. I
think that Prof. Goldberg’s great ability to see the big picture, to make key points, to formulate
difficult, really interesting questions, to express with strength the ideas in a piece of paper, and,
to, in five minutes, go far beyond my reach will never stop surprising me. I will never know
what I have missed from Prof. Goldberg explanations, but I am extremely glad of all the things
I know I got from him.

I also thank all the great people I met in the IlliGAL. I would especially single out Kumara
Sastry. I am very lucky to have been able to cope with, as defined by him, his not-so-nice
explanation skills. I am really grateful to Kumara for all his explanations, for his help, and for
making the lab a funny place to work. I also enjoyed working with and learned a lot from Pier
Luca Lanzi, who showed me new faces of learning classifier systems that I had never seen before.
I am also grateful for the support of Xavier Llorà and Tian Li Yu in my visits.

I am very grateful to Jorge Casillas for insisting on my first visit to the SCI2S group with the
original idea of mixing learning classifier systems and fuzzy logic and for all the great support
and guidance provided not only during my successive visits, but also during the entire last year
of my PhD. I learned a lot from all our long, daily talks and from Jorge’s eagerness and passion
to face new challenging real-world problems. I would like to extend this acknowledgement to
Francisco Herrera for all his valuable advices and for always being ready to help me and to
answer my questions. My visits to Granada were not only fruitful research-wise but also life-
wise. I really enjoyed our Thursday’s home parties and hanging around Granada with the SCI2S
members. Especially, I would like to thank my flatmates, Pietro Ducange and Manolo Cobo, for
making my stay in Granada so joyful.

The present work is the result of the collaboration with a number of researchers. I would
like to thank my coauthors Ester Bernadó-Mansilla, Jorge Casillas, David E. Goldberg, Pier
Luca Lanzi, Núria Macià, Francisco J. Mart́ınez-López, Sergio Morales-Ortigosa, Joaquim Rios-

Boutin, Kumara Sastry, and Francesc Teixidó-Navarro. I would also thank Xavier Llorà for
really interesting research talks.

Last, but not least, I would like to thank the unconditional support of all my family. I would
like to thank my grandparents Josep and Antònia, my parents Albert and Maria Cinta, and my
sister Gemma for their motivation to go on with my PhD. Also, I would like to especially thank
the person who suffered my busy weekends, my stress when deadlines were approaching, and
the distance while I was abroad the most; M. Carme, thanks for being there despite all this.

This research has been financially supported by the departament d’universitats, recerca i
societat de la informació (DURSI) under a scholarship in the FI research program with reference
2005FI-00252. I also acknowledge the support provided by DURSI in my visits to the IlliGAL,
with two travel grants with references 2006BE-00299 and 2007BE2-00124. Finally, I would
like to acknowledge the ministerio de educación y ciencia for its support under the KEEL and
the KEEL II projects (with references TIC2002-04036-C05-03 and TIN2005-08386-C05-04), and
Generalitat de Catalunya for its support under the grant 2005SGR-00302.

Contents

List of Figures vii

List of Tables xi

List of Algorithms xvii

1 Introduction 1

1.1 Framework: From Holland’s Definition to Current LCSs 2

1.2 Two Critical Challenges in LCSs and Machine Learning 5

1.3 Thesis Objectives . 7

1.4 Road Map . 8

2 Machine Learning with Learning Classifier Systems 11

2.1 Machine Learning . 11

2.1.1 Supervised learning . 14

2.1.2 Unsupervised learning . 14

2.1.3 Reinforcement Learning . 14

2.2 Evolutionary Computation and Genetic Algorithms 15

2.2.1 Biological Principles that Inspire Evolutionary Computation 16

2.2.2 Evolutionary Computation: A Taxonomy 17

2.2.3 Genetic Algorithms . 18

2.2.4 Basic Theory of GA . 21

2.2.5 Genetic Algorithms in Real-World Applications 24

2.3 Genetic-based Machine Learning and Learning Classifier Systems 25

2.3.1 Michigan-style LCSs . 26

2.3.2 Pittsburgh-style LCSs . 28

2.3.3 Iterative Rule Genetic-based Machine Learning 29

2.3.4 Genetic Cooperative-Competitive Learning 30

i

CONTENTS

2.3.5 The Organizational Classifier System . 30

2.4 Summary . 31

3 Description of XCS and UCS 33

3.1 The XCS Classifier System . 34

3.1.1 Knowledge Representation . 34

3.1.2 Learning Interaction . 35

3.1.3 Classifier Evaluation . 36

3.1.4 Classifier Discovery . 38

3.1.5 Class Inference in Test Mode . 39

3.1.6 Why Does XCS Work? . 39

3.2 The UCS Classifier System . 41

3.2.1 Knowledge Representation . 41

3.2.2 Learning Interaction . 42

3.2.3 Classifier Evaluation . 43

3.2.4 Classifier Discovery . 43

3.2.5 Class Inference in Test Mode . 44

3.2.6 Why does UCS work? . 45

3.3 Rule Representations for LCSs . 45

3.3.1 From the Ternary to the Interval-based Rule Representation in LCSs . . . 46

3.3.2 The Unordered Bound Representation . 47

3.4 Summary and Conclusions . 50

4 Revisiting UCS: Fitness Sharing and Comparison with XCS 51

4.1 Fitness Sharing in GAs and LCSs . 52

4.2 A New Fitness Sharing Scheme for UCS . 53

4.3 Methodology . 54

4.4 Analyzing the Fitness Sharing Scheme in UCS 55

4.5 Comparing UCSs with XCS . 60

4.6 Lessons Learned from the Analysis . 64

4.6.1 Fitness Sharing . 64

4.6.2 Explore Regime . 65

4.6.3 Accuracy Guidance . 65

4.6.4 Population Size . 66

4.7 Summary and Conclusions . 66

ii

CONTENTS

5 Facetwise Analysis of XCS for Domains with Class Imbalances 67

5.1 The Challenges of Learning from Imbalanced Domains in Machine Learning . . . 68

5.2 The XCS Classifier System in Imbalanced Domains 70

5.2.1 Hypotheses of XCS Difficulties in Learning from Imbalanced Domains . . 70

5.2.2 Empirical Observations of XCS Behavior on Class Imbalances 71

5.3 Facetwise Analysis of XCS in Imbalanced Domains 73

5.3.1 Design Decomposition in GAs . 73

5.3.2 Carrying the Design Decomposition from GAs to XCS 73

5.3.3 A Boundedly Difficult Problem for LCSs: The Imbalanced Parity Problem 74

5.3.4 Decomposition of the Class Imbalance Problem in XCS 75

5.4 Estimation of Classifier Parameters . 77

5.4.1 Imbalance Bound . 77

5.4.2 Does the Widrow-Hoff Rule Provide Accurate Estimates? 78

5.4.3 Obtaining Better Estimates with the Widrow-Hoff Rule 79

5.4.4 Obtaining Better Estimates with Gradient Descent Methods 80

5.5 Supply of Schemas of Starved Niches in Population Initialization 81

5.6 Generation of Classifiers in Starved Niches . 82

5.6.1 Assumptions for the Model . 83

5.6.2 Genetic Creation of Representatives of Starved Niches 83

5.6.3 Deletion of Representatives of Starved Niches 85

5.6.4 Bounding the Population Size . 85

5.6.5 Experimental Validation of the Models . 86

5.7 Occurrence-based Reproduction: The Role of θGA 89

5.7.1 Including θGA in the Generation Models 90

5.7.2 Experimental Validation . 91

5.8 Takeover Time of Accurate Classifiers in Starved Niches 92

5.8.1 Model Assumptions . 93

5.8.2 Takeover Time for Proportionate Selection 93

5.8.3 Takeover Time for Tournament Selection 97

5.8.4 Experimental Validation of the Takeover Time Models 101

5.9 Lessons Learned from the Models . 104

5.9.1 Patchquilt Integration of the Facetwise Models 104

5.9.2 Solving Problems with Large Imbalance Ratios 105

5.10 Summary and Conclusions . 106

iii

CONTENTS

6 Carrying over the Facetwise Analysis to UCS 109

6.1 Design Decomposition for UCS . 110

6.2 Estimation of Classifier Parameters . 111

6.3 Supply of Schemas of Starved Niches in Population Initialization 112

6.4 Generation of Classifiers in Starved Niches . 113

6.4.1 Assumptions for the Model . 114

6.4.2 Creation and Deletion of Representatives of Starved Niches 114

6.4.3 Bounding the Population Size . 115

6.4.4 Experimental Validation of the Models . 116

6.5 Occurrence-based Reproduction . 119

6.6 Takeover Time of Accurate Classifiers in Starved Niches 120

6.6.1 Conditions for Starved Niches Extinction under Proportionate Selection . 121

6.6.2 Conditions for Starved Niches Extinction under Tournament Selection . . 122

6.7 Reassembling the Theoretical Framework: UCS in Imbalanced Domains 122

6.7.1 Patchquilt Integration: from XCS to UCS 122

6.7.2 Solving Highly Imbalanced Domains with UCS 123

6.8 Summary and Conclusions . 125

7 XCS and UCS for Mining Imbalanced Real-World Problems 127

7.1 LCSs in Imbalanced Real-World Problems: What Makes the Difference? 128

7.1.1 XCS and UCS Enhancements to Deal with Continuous Data 128

7.1.2 What Do we Need to Apply the Theory? 130

7.2 Self-Adaptation to Particular Unknown Domains 132

7.2.1 Online Adaptation Algorithms . 132

7.2.2 Experiments . 134

7.3 LCSs in Imbalanced Real-World Domains . 136

7.3.1 Comparison Methodology . 136

7.3.2 Results . 138

7.4 Re-sampling Techniques . 141

7.4.1 Random Over-sampling . 142

7.4.2 Under-sampling based on Tomek Links . 143

7.4.3 SMOTE . 143

7.4.4 cSMOTE . 144

7.4.5 What Do Re-sampling Techniques Do? A Case Study 146

7.5 Results on Re-sampled Domains . 150

iv

CONTENTS

7.5.1 Experimental Methodology . 150

7.5.2 Statistical Analysis of the Results . 151

7.5.3 Summary . 154

7.6 Discussion . 155

7.7 Summary and Conclusions . 158

8 Fuzzy-UCS: Evolving Fuzzy Rule Sets for Supervised Learning 159

8.1 Why Using Fuzzy Logic in LCSs? . 160

8.2 Fuzzy Logics in GBML . 162

8.2.1 Fuzzy Logic and Fuzzy Systems . 162

8.2.2 Genetic Algorithms in Fuzzy Systems . 163

8.2.3 Related Work on Learning Fuzzy-Classifier Systems 165

8.3 Description of Fuzzy-UCS . 166

8.3.1 Knowledge Representation . 167

8.3.2 Learning Interaction . 169

8.3.3 Classifiers Update . 170

8.3.4 Classifiers Discovery . 171

8.3.5 Fuzzy-UCS in Test Mode . 172

8.4 Sensitivity of Fuzzy-UCS to Configuration Parameters 174

8.5 Knowledge Representation and Decision Boundaries 177

8.5.1 Approximate Fuzzy-UCS . 179

8.5.2 Decision Boundaries: Study on an Artificial Domain 181

8.5.3 Comparison Between Linguistic and Approximate Representations 185

8.6 Comparison of Fuzzy-UCS to Several Machine Learning Techniques 193

8.6.1 Experimental Methodology . 193

8.6.2 Comparison to Fuzzy Rule-Based Classification Systems 194

8.6.3 Comparison with Non-Fuzzy Learners . 200

8.7 Fuzzy-UCS for Mining Large Data Sets . 208

8.7.1 Data Set Description . 209

8.7.2 Results . 209

8.8 Summary, Conclusions, and Further Work . 211

8.8.1 Summary . 211

8.8.2 SWOT Analysis . 212

9 Summary, Conclusions, and Further Work 215

9.1 Summary and Conclusions . 215

v

CONTENTS

9.2 Lessons from LCSs Design and Application . 220

9.3 Further Work . 222

A Description of the Artificial Problems 225

A.1 Parity . 225

A.2 Decoder . 226

A.3 Position . 226

A.4 Multiplexer . 227

A.4.1 Imbalanced Multiplexer . 228

A.4.2 Multiplexer with Alternating Noise . 228

B Statistical Tests 229

B.1 Statistical Tests for Contrasting Hypotheses . 229

B.2 Comparisons of Two Learning Systems . 230

B.2.1 The Wilcoxon Signed-Ranks Test . 230

B.3 Comparisons of Multiple Classifiers . 232

B.3.1 Friedman’s Test . 233

B.3.2 Post-hoc Nemenyi Test . 233

B.3.3 Post-hoc Bonferroni-Dunn Test . 235

B.4 Summary . 236

C Full Results of the Comparison of the Re-sampling Techniques 237

D Empirical Analysis of the Sensitivity of Fuzzy-UCS to Configuration Param-
eters 243

D.1 Configuration Parameters of Fuzzy-UCS . 244

D.2 Experimental Methodology . 244

D.3 Fuzzy-UCS’s Sensitivity to Configuration Parameters 245

D.3.1 Sensitivity to Rule Initialization . 245

D.3.2 Sensitivity to Fitness Pressure . 247

D.3.3 Sensitivity to the GA . 249

D.3.4 Sensitivity to Deletion . 250

D.4 Summary and Conclusions . 253

References 255

Index 279

vi

List of Figures

2.1 Examples of (a) supervised, (b) unsupervised, and (c) reinforcement learning. . . 13

2.2 Evolution of a GA population. 19

2.3 Simplified schematic of Michigan-style LCSs which the typical process organization. 26

2.4 Simplified schematic of Pittsburgh-style LCSs. 28

3.1 Schematic of the process organization of XCS. 35

3.2 Schematic of the process organization of UCS. 42

3.3 Example of covering in the hyper rectangular representation. 48

3.4 A crossover example. (a) plots the two parents and (b) shows the offspring re-
sulting from two cut points occurring in the middle of each interval. 49

3.5 Example mutation in the hyper rectangle representation. 49

4.1 Proportion of the best action map achieved by UCSns and UCSs in the parity,
the position, and the decoder problems. 56

4.2 Proportion of the best action map achieved by (a) UCSns and (b) UCSs in the
noisy 20-bit multiplexer with Px = {0.05, 0.10, 0.15}. 57

4.3 Proportion of the best action map achieved by (a) UCSns and (b) UCSs in the
noisy 20-bit multiplexer with Px = {0.05, 0.10, 0.15} and using β = 0.01 and
θGA = 100. 59

4.4 Proportion of the best action map achieved by UCSs and XCS in the parity, the
position, and the decoder problems. 61

4.5 Proportion of the best action map achieved by (a,c) UCSs and (b,d) XCS in
the noisy 20-bit multiplexer with Px = {0.05, 0.10, 0.15} with (a,b) the original
configuration and with (c,d) the original configuration but setting β = 0.01 and
θGA = 100. 62

4.6 Error of XCS’s classifiers along the over-general/optimal classifier dimension. The
curve depicts how the error of the most over-general classifier ##########:0
evolves as the bits of the classifier are specified, until obtaining the maximally
accurate rule 0000000000:0. 63

4.7 Error of XCS’s classifiers along the over-general/optimal classifier dimension. . . 63

vii

LIST OF FIGURES

5.1 Evolution of (a) the proportion of the optimal population and (b) the product
of TP rate and TN rate in the 11-bit multiplexer with imbalance ratios ranging
from ir=1 to ir=1024. 72

5.2 Histogram of the error of the most over-general classifier with Widrow-Hoff delta
rule at β = 0.2 and different imbalance ratios. 79

5.3 Histogram of the error of the most over-general classifier with Widrow-Hoff delta
rule at β = 0.01 and different imbalance ratios. 80

5.4 Histogram of the error of the most over-general classifier with gradient descent at
β = 0.2 and different imbalance ratios. 81

5.5 Probability of activating covering on a minority class instance given a certain
specificity σ[P] and the imbalance ratio ir. The curves have been drawn from
equation 5.13 with ` = 20 and different specificities. 83

5.6 Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and the default configuration with (a) Widrow Hoff rule update
with adjusted β according to ir and (b) gradient descent parameter update with
β = 0.2. The dots show the empirical results and lines plot linear increases with
ir (according to the theory). 87

5.7 Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and different XCS’s configurations. The dots show the empirical
results and lines plot linear increases with ir (according to the theory). 89

5.8 Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and different XCS’s configurations with θGA = n · m · ir. The
points indicate the empirical values of the minimum population size required
by XCS. The lines depict the theoretical increase calculated with the previous
models, which assumed θGA = 0. 91

5.9 Takeover time in proportionate selection for (a) m=1, (b) m=2, and (c) m=3 and
ρ={0.01,0.10,0.20,0.30,0.40,0.50}. 102

5.10 Takeover time in tournament selection for (a) m=1, (b) m=2, and (c) m=3. . . . 103

5.11 Evolution of (a) the proportion of the optimal population and (b) the product
of TP rate and TN rate in the 11-bit multiplexer with imbalance ratios ranging
from ir=1 to ir=1024. 106

6.1 Histogram of the error of the most over-general classifier in UCS for ir = {1, 10, 100}.112

6.2 Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and the default configuration with (a) tournament selection and
(b) roulette wheel selection The dots shows the empirical results and lines plot
linear increases with ir (according to the theory). 117

6.3 Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and different UCS’s configurations that do not satisfy the initial
model assumptions: (a) using 2-point crossover and (b) using the correct set
size deletion scheme. The dots shows the empirical results and lines plot linear
increases with ir (according to the theory). 118

viii

LIST OF FIGURES

6.4 Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and different UCS’s configurations with θGA = n · m · ir. The
points indicate the empirical values of the minimum population size required
by UCS. The lines depict the theoretical increase calculated with the previous
models, which assumed θGA = 0. 119

6.5 Evolution of (a) the proportion of the optimal population and (b) the geometric
mean of TP rate and TN rate in the 11-bit multiplexer with ir={1, 2, 4, 8, 16,
32, 64, 128, 256, 512, 1024}. 124

7.1 Example of a domain with two niches (a) and examples of possible representatives
of the two niches and over-general classifiers (b) in a two-dimensional problem
with continuous attributes . 129

7.2 Example of two domains with the same imbalance ratio in the training data set
but different niche imbalance ratio. 130

7.3 Example of a domain with oblique boundaries. Several interval-based rules are
required to define the class boundary precisely. 132

7.4 Evolution of (a,c) the proportion of the optimal population and (b,d) the geo-
metric mean of TP rate and TN rate of XCS and UCS, respectively, in the 11-bit
multiplexer with ir={1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}. 135

7.5 Original domain (a) and domains after applying random over-sampling (b), un-
derstampling with Tomek links (c), SMOTE (d), cSMOTE (e). 147

7.6 Models created by C4.5, SMO, IBk, XCS and l’UCS with the original and the
re-sampled data sets. 149

7.7 Comparison of the performance obtained by (a) C4.5, (b) SMO, (c) IBk, (d) XCS,
and (e) UCS with the different re-sampling techniques. Groups of classifiers that
are not significantly different at α = 0.10 are connected. 152

8.1 Schematic of GFRBS architecture. 163

8.2 Schematic illustration of Fuzzy-UCS. The run cycle depends on whether the sys-
tem is under exploration (training) or exploitation (test). 167

8.3 Representation of a fuzzy partition for a variable with (a) three and (b) five
triangular-shaped membership functions. 168

8.4 Graphical comparison between (a) linguistic and (b) approximate fuzzy rule sets. 178

8.5 (a) Domain of the tao problem and (b) decision boundaries obtained by UCS. . . 182

8.6 Decision boundaries obtained by linguistic Fuzzy-UCS with weighted average in-
ference and 5 (a), 10 (b), 15 (c) and 20 (d) linguistic terms per variable. 182

8.7 Decision boundaries obtained by linguistic Fuzzy-UCS with action winner infer-
ence and (a) 5, (b) 10, (c) 15, (d) and 20 linguistic terms per variable. 183

8.8 Decision boundaries obtained by linguistic Fuzzy-UCS with fittest rules inference
and (a) 5, (b) 10, (c) 15, (d) and 20 linguistic terms per variable. 184

8.9 Decision boundaries obtained by approximate Fuzzy-UCS. 184

ix

LIST OF FIGURES

8.10 Comparison of the training performance of all classifiers against each other with
the Nemenyi test. Groups of classifiers that are not significantly different (at
α = 0.10) are connected. 188

8.11 Comparison of the test performance of all classifiers against each other with the
Nemenyi test. Groups of classifiers that are not significantly different (at α =
0.10) are connected. 190

8.12 Evolution of the training and test accuracies with approximate Fuzzy-UCS on the
bal problem. 191

8.13 Comparison of the number of rules evolved by all learners against each other with
the Nemenyi test. Groups of classifiers that are not significantly different (at
α = 0.10) are connected. 191

8.14 Comparisons of one learner against the others with the Bonferroni-Dunn test
at a significance level of 0.1. All the learners are compared to three different
control groups: (1) Fuzzy-UCS with weighted average inference, (2) Fuzzy-UCS
with action winner inference, and (3) Fuzzy-UCS with fittest rules inference. The
learners connected are those that perform equivalently to the control learner. . . 196

8.15 Illustration of the significant differences (at α = 0.05) of the test accuracy among
the fuzzy-methods and Fuzzy-UCS. An edge L1

pvalue→ L2 indicates that the learner
L1 outperforms the learner L2 with the corresponding pvalue. To facilitate the
visualization, Fuzzy-AdaBoost and Fuzzy MaxLogitBoost, the two most outper-
formed algorithms, were not included in the graph. 198

8.16 Examples of part of the models evolved by (a) the GP-based methods, i.e., Fuzzy
GP, Fuzzy GAP, and Fuzzy SAP; (b) the boosting learners, i.e., Fuzzy AdaBoost,
Fuzzy LogitBoost, and Fuzzy MaxLogitBoost; and (c) Fuzzy-UCS for the two-
dimensional tao problem. In the fuzzy learners, we used the following five linguis-
tic terms per variable: {XS, S, M, L, XL}. All fuzzy learners use triangular-shaped
membership functions. Moreover, GP-based learners also use trapezoid-shaped
membership functions. 199

8.17 Illustration of the significant differences (at α = 0.05) of the test accuracy among
non-fuzzy methods and Fuzzy-UCS. An edge L1

pvalue→ L2 indicates that the learner
L1 outperforms the learner L2 with the corresponding pvalue. To facilitate the
visualization, ZeroR and SMO with Gaussian kernels, the two most outperformed
algorithms, were not included in the graph. 205

8.18 Examples of part of the models evolved by (a) SMO, (b) C4.5, (c) Part, (d)
GAssist, (e) UCS, and (f) Fuzzy-UCS for the two-dimensional tao problem. . . . 206

8.19 Evolution of test accuracies and the population size of Fuzzy-UCS with action
winner inference in first 50 000 learning iterations of the 1999 KDD Cup data set. 210

B.1 Comparison of the performance of all classifiers against each other with the Ne-
menyi test. Groups of classifiers that are not significantly different (at α = 0.10)
are connected. 234

x

List of Tables

3.1 Example of two-point crossover, in which the two cut points are in the middle of
each interval. 48

4.1 Accuracy and fitness of UCSns’s classifiers along the generality-specificity dimen-
sion, depicted for the parity problem with ` = 4. 58

7.1 Description of the data sets properties. The columns describe the data set iden-
tifier (Id.), the original name of the data set (Data set), the number of problem
instances (#Ins.), the number of attributes (#At.), the proportion of minority
class instances (%Min.), the proportion of majority class instances (%Maj.), and
the imbalance ratio (ir). 137

7.2 Comparison of C4.5, SMO, IBk, XCS, and UCS on the 25 real-world problems.
Each cells depicts the average value of the product of TP rate and TN rate and the
standard deviation. Avg gives the performance average of each method over the
25 data sets. The two last rows show the average rank of each learning algorithm
(Rank) and its position in the ranking (Pos). 139

7.3 Comparison of C4.5, SMO, IBk, XCS, and UCS on the 25 real-world problems.
For a given problem, the • and ◦ symbols indicate that the learning algorithm of
the column performed significantly worse/better than another algorithm at 0.95
confidence level (pairwise Wilcoxon signed-ranks test). Score counts the number
of times that a method performed worse-better, and Scoreir>5 does the same but
only for the highest imbalanced problems (ir > 5). 140

7.4 TP rate (TPR) i TN rate (TNR) obtained by C4.5, SMO, IBk, XCS and UCS
with the original domain and the re-sampled data sets. 150

7.5 Intra-method ranking for original and re-sampled data sets for C4.5, SMO, IBk,
XCS, and UCS. Rows 1st to 5th indicate the number of times that each re-
sampling technique was ranked in the correspondent position. The last column
shows the average rank and its standard deviation. 154

xi

LIST OF TABLES

8.1 Properties of the data sets. The columns describe: the identifier of the data set
(Id.), the name of the data set (dataset), the number of instances (#Ins), the
total number of features (#Fea), the number of continuous features (#Cnt), the
number of nominal features (#No), the number of classes (#C), the proportion
of instances of the minority class (%Min), the proportion of instances of the
majority class (%Maj), the proportion of instances with missing values (%MI),
and the proportion of features with missing values (%MA). 175

8.2 Configurations used to test the sensitivity of Fuzzy-UCS to configuration param-
eters. 175

8.3 Comparison of the sensitivity of Fuzzy-UCS to configuration parameters. Each
cell shows the average rank of each configuration for a given inference scheme. The
best ranked method is in bold. The ª symbol indicates that the corresponding
method significantly degrades the results obtained with the best ranked method. 176

8.4 Summary of Fuzzy UCS results with interval-based, approximate and linguistic
representation with 5, 10, 15, and 20 linguistic terms per variable in the tao
problem. Columns show the training accuracy and the number of rules for action
winner and weighted average inference schemes. 185

8.5 Comparison of the training accuracy of linguistic Fuzzy-UCS with weighted aver-
age (wavg), action winner (awin), and most numerous and fittest rules inference
(nfit), and approximate Fuzzy-UCS on a set of twenty real-world problems. . . . 187

8.6 Pairwise comparisons of the training accuracy achieved by linguistic Fuzzy-UCS
with the three types of inference and approximate Fuzzy-UCS. 188

8.7 Comparison of the test accuracy of linguistic Fuzzy-UCS with weighted average
(wavg), action winner (awin), and most numerous and fittest rules inference (nfit),
and approximate Fuzzy-UCS on a set of twenty real-world problems. 189

8.8 Pairwise comparisons of the test accuracy achieved by linguistic Fuzzy-UCS with
the three types of inference and approximate Fuzzy-UCS. 190

8.9 Comparison of the population sizes of linguistic Fuzzy-UCS with weighted average
(wavg), action winner (awin), and most numerous and fittest rules inference (nfit),
and approximate Fuzzy-UCS on a set of twenty real-world problems. 192

8.10 Pairwise comparisons of the sizes of the rule sets evolved by linguistic Fuzzy-UCS
with the three types of inference and approximate Fuzzy-UCS. 192

8.11 Comparison of the test accuracy of Fuzzy-UCS with weighted average (wavg),
action winner (awin), and fittest rules (nfit), to Fuzzy GP, Fuzzy GAP, Fuzzy
SAP, Fuzzy AdaBoost, Fuzzy LogitBoost, and Fuzzy MaxLogitBoost. 195

8.12 Pairwise comparison of the test accuracy of fuzzy learners Fuzzy GP, Fuzzy
GAP, Fuzzy SAP, Fuzzy AdaBoost (ABoost), Fuzzy LogitBoost (LBoost), Fuzzy
MaxLogitBoost (MLBoost), and Fuzzy UCS with weighted average inference
(wavg), action winner inference (awin), and fittest rules inference (nfit) by means
of a Wilcoxon signed-ranks test. 197

xii

LIST OF TABLES

8.13 Size of the models evolved by Fuzzy GP, Fuzzy GAP Fuzzy SAP, Fuzzy Ad-
aBoost (ABoost), Fuzzy LogitBoost (LBoost), Fuzzy MaxLogitBoost (MLBoost),
and Fuzzy UCS with weighted average inference (wavg), action winner inference
(awin), and fittest rules inference (nfit). 201

8.14 Pairwise comparisons of the sizes of the models of Fuzzy GP, Fuzzy GAP, Fuzzy
SAP, Fuzzy AdaBoost (ABoost), Fuzzy LogitBoost (LBoost), Fuzzy MaxLogit-
Boost (MLBoost), and Fuzzy UCS with weighted average inference (wavg), action
winner inference (awin), and fittest rules inference (nfit) by means of a Wilcoxon
signed-ranks test. 201

8.15 Comparison of the test accuracy of Fuzzy-UCS with weighted average (wavg),
action winner (Awin), and fittest rules inference (nfit) to ZeroR (0R), C4.5, IB5,
Part, Näıve Bayes (NB), SMO with polynomial kernels of order 3 (SMOp3), SMO
with Gaussian kernels (SMOrbf), and GAssist. 203

8.16 Pairwise comparison of the test accuracy of Fuzzy-UCS with weighted average
(wavg), action winner (Awin), and fittest rules inference (nfit) to ZeroR (0R),
C4.5, IB5, Part, Näıve Bayes (NB), SMO with polynomial kernels of order 3
(SMOp3), SMO with Gaussian kernels (SMOrbf), and GAssist by means of a
Wilcoxon signed-ranks test. 204

8.17 Average sizes of the models build by C4.5, Part, GAssist, UCS and Fuzzy-UCS
with weighted average (wavg), action winner (awin), and fittest rules inference
(nfit). 207

8.18 Properties of the 1999 KDD Cup intrusion detection data set. The columns
describe: the identifier of the data set (Id.), the number of instances (#Inst),
the total number of features (#Fea), the number of real features (#Re), the
number of nominal features (#No), the number of classes (#Cl), the proportion
of instances with missing values (%MisInst), and the dispersion of the data set
(Disp) computed as #Fea/#Inst. 209

8.19 Test performance and number of rules evolved by Fuzzy-UCS with weighted av-
erage (wavg), action winner (awin), and fittest rules (nfit) in the 1999 Kdd Cup
intrusion detection data set at different number of learning iterations. 210

8.20 SWOT analysis of Fuzzy-UCS. 212

A.1 Best action map (first and second columns) and complete action map (all columns)
of the parity problem with ` = k = 4. 225

A.2 Best action map (first column) and complete action map (all columns) of the
decoder problem with ` = k = 4. 226

A.3 Best action map (first column) and complete action map (all columns) of position
with `=6. 227

A.4 Best action map (first column) and complete action map (all columns) of the
multiplexer problem with ` = 6. 227

xiii

LIST OF TABLES

B.1 Comparison of the performance of methods M1 and M2 (second and third col-
umn). The fourth column provides the performance difference, and the fifth
column supplies the rank of the differences. 231

B.2 Comparison of the performance of methods M1, M2, and M3. For each method
and data set, the average rank is supplied in parentheses. The last column pro-
vides the rank of each learning algorithm for each data set. 232

B.3 Critical values for the two-tailed Nemenyi test. 234

B.4 Critical values for the two-tailed Bonferroni-Dunn test. 235

C.1 Comparison of the performance, measured as the product of TP rate and TN
rate, achieved by C4.5 with the original and re-sampled data sets. For each
method and data set, the • and ◦ symbols indicate that the method is statistically
inferior/superior than another of the learners according to a Wilcoxon signed-
ranks test at α = 0.05. Avg provides the performance average of each method
over the 25 data sets. Rows Rank and Pos show the average rank of each learning
algorithm and its position in the ranking respectively. The last row provides
Inf/Sup, where Inf is the number of times that the learner has been surpassed by
another one, and Sup is the number of times that the method has outperformed
another one. 238

C.2 Comparison of the performance, measured as the product of TP rate and TN
rate, achieved by SMO with the original and re-sampled data sets. For each
method and data set, the • and ◦ symbols indicate that the method is statistically
inferior/superior than another of the learners according to a Wilcoxon signed-
ranks test at α = 0.05. Avg provides the performance average of each method
over the 25 data sets. Rows Rank and Pos show the average rank of each learning
algorithm and its position in the ranking respectively. The last row provides
Inf/Sup, where Inf is the number of times that the learner has been surpassed by
another one, and Sup is the number of times that the method has outperformed
another one. 239

C.3 Comparison of the performance, measured as the product of TP rate and TN
rate, achieved by IBk with the original and re-sampled data sets. For each
method and data set, the • and ◦ symbols indicate that the method is statistically
inferior/superior than another of the learners according to a Wilcoxon signed-
ranks test at α = 0.05. Avg provides the performance average of each method
over the 25 datasets. Rows Rank and Pos show the average rank of each learning
algorithm and its position in the ranking respectively. The last row provides
Inf/Sup, where Inf is the number of times that the learner has been surpassed by
another one, and Sup is the number of times that the method has outperformed
another one. 240

xiv

LIST OF TABLES

C.4 Comparison of the performance, measured as the product of TP rate and TN
rate, achieved by XCS with the original and re-sampled data sets. For each
method and data set, the • and ◦ symbols indicate that the method is statistically
inferior/superior than another of the learners according to a Wilcoxon signed-
ranks test at α = 0.05. Avg provides the performance average of each method
over the 25 data sets. Rows Rank and Pos show the average rank of each learning
algorithm and its position in the ranking respectively. The last row provides
Inf/Sup, where Inf is the number of times that the learner has been surpassed by
another one, and Sup is the number of times that the method has outperformed
another one. 241

C.5 Comparison of the performance, measured as the product of TP rate and TN
rate, achieved by UCS with the original and re-sampled data sets. For each
method and data set, the • and ◦ symbols indicate that the method is statistically
inferior/superior than another of the learners according to a Wilcoxon signed-
ranks test at α = 0.05. Avg provides the performance average of each method
over the 25 data sets. Rows Rank and Pos show the average rank of each learning
algorithm and its position in the ranking respectively. The last row provides
Inf/Sup, where Inf is the number of times that the learner has been surpassed by
another one, and Sup is the number of times that the method has outperformed
another one. 242

D.1 Comparison of the test accuracy obtained with the three types of inference and
the three configurations which vary P#. Rank gives the average rank of each
configuration for each one of the three inference schemes. Pos shows the absolute
position in the ranking. Frd reports the p-value obtained with the multiple-
comparison Friedman test performed for each inference methodology. 246

D.2 Comparison of the model sizes obtained with the three types of inference and
the three configurations which vary P#. Rank gives the average rank of each
configuration for each one of the three inference schemes. Pos shows the absolute
position in the ranking. Frd reports the p-value obtained with the multiple-
comparison Friedman test performed for each inference methodology. 246

D.3 Comparison of the test accuracy obtained with the three types of inference and
the three configurations which vary the fitness pressure ν. Rank gives the average
rank of each configuration for each one of the three inference schemes. Pos shows
the absolute position in the ranking. Frd reports the p-value obtained with the
multiple-comparison Friedman test performed for each inference methodology. . 248

D.4 Comparison of the model sizes obtained with the three types of inference and the
three configurations which vary the fitness pressure ν. Rank gives the average
rank of each configuration for each one of the three inference schemes. Pos shows
the absolute position in the ranking. Frd reports the p-value obtained with the
multiple-comparison Friedman test performed for each inference methodology. . 248

xv

LIST OF TABLES

D.5 Comparison of the test accuracy obtained with the three types of inference and
the five configurations varying θGA, θdel, and θsub. Rank gives the average rank
of each configuration for each one of the three inference schemes. Pos shows
the absolute position in the ranking. Frd reports the p-value obtained with the
multiple-comparison Friedman test performed for each inference methodology. . 250

D.6 Comparison of the model sizes obtained with the three types of inference and
the five configurations varying θGA, θdel, and θsub. Rank gives the average rank
of each configuration for each one of the three inference schemes. Pos shows
the absolute position in the ranking. Frd reports the p-value obtained with the
multiple-comparison Friedman test performed for each inference methodology. . 251

D.7 Pairwise comparison of the test accuracy of Fuzzy-UCS obtained with the three
types of inference and the five configurations varying θGA, θdel, and θsub by means
of a Wilcoxon signed-ranks test. 251

D.8 Comparison of the test accuracy obtained with the three types of inference and
the two configurations which vary the deletion pressure δ. Rank gives the average
rank of each configuration for each one of the three inference schemes. Pos shows
the absolute position in the ranking. PW reports the p-value obtained with the
pairwise Wilcoxon signed-ranks test performed for each inference methodology. . 252

D.9 Comparison of the model sizes obtained with the three types of inference and the
three configurations which vary the deletion pressure δ. Rank gives the average
rank of each configuration for each one of the three inference schemes. Pos shows
the absolute position in the ranking. PW reports the p-value obtained with the
pairwise Wilcoxon signed-ranks test performed for each inference methodology. . 252

xvi

List of Algorithms

2.2.1 Pseudo code of a simple GA. 21

7.2.1 Pseudo code for the online adaptation algorithm in XCS. 133

7.2.2 Pseudo code for the on-line adaptation of β. 133

7.2.3 Pseudo code for the online adaptation algorithm in UCS. 134

7.4.1 Pseudo code for the Tomek Links algorithm. 142

7.4.2 Pseudo code for the SMOTE algorithm. 144

7.4.3 Pseudo code for the cSMOTE algorithm. 145

xvii

Chapter 1

Introduction

In the last few decades, there has been increasing interest in machine learning (Mitchell, 1997,
2006; Nilson, 2005; Bishop, 2007), a field in artificial intelligence (Feigenbaum and Feldman,
1995; Brooks, 1990; Russell and Norvig, 2002; McCharthy, 2007) that is concerned with the
development of machines that can learn from the experience. The appeal of machine learning is
based on the idea of having computers that teach themselves to solve new challenging problems
instead of programming them with a deterministic behavior. This approach appears to be
especially attractive in applications (1) that are too complex for human experts to manually
design and implement the solver, or (2) that require the software to improve or refine itself
continuously. Therefore, the ultimate aim of machine learning is to solve problems that are too
complex for human beings to solve or to give instructions on how to solve them.

Machine learning does not only aim at solving engineering problems, but it is also closely
related to different fields such as logic and philosophy, theoretical computer science, statistics,
biology, experimental psychology, cognitive science, and communication theory among others
(Buchanan, 2005). For example, several machine learning techniques derive from works of psy-
chologists that try to understand animal and human behavior through computational modeling.
Similarly, machine learning research and biological learning are related, and research in each area
benefits from the other one resulting in a fruitful crossbreeding among the techniques studied
in the two areas. Thence, machine learning holds promise not only in empowering computers
so that they can solve new challenging problems, but also in providing a framework to study
artificial intelligence.

One of the most appealing machine learning techniques is learning classifier systems (LCSs),
whose theoretical foundation was early outlined by Holland (1962). With the purpose of creat-
ing true artificial intelligence itself, Holland (1971, 1976) envisioned LCSs as cognitive systems
that received perceptions from their environment and, in response to these perceptions, per-
formed actions in the real world to achieve certain goals; besides, the policy of these programs
evolved with their interaction with the changing environment, refining the policies with the aim
of achieving a maximum reward—which was aligned to the goals of the system—while adapting
to the changes found in the environment. Since the first definition by Holland, there has been
an augmenting research on LCSs, which has led to design new systems and to solve increasingly
complex and challenging problems. Currently, LCSs are competent machine learning techniques
that are able to solve hard problems that range in different disciplines. Nevertheless, some chal-

1

CHAPTER 1. INTRODUCTION

lenges, most of the times shared by the machine learning community, still need to be addressed
to scalably and efficiently solve new complex real-world problems.

This thesis is concerned about advancing in the research on LCSs to gain a better understand-
ing of their behavior and to improve them to deal with current problems in science, engineering,
and industry. Further, we elaborate the framework of this thesis in more detail, providing some
historical remarks on the LCSs’s research. Taking the original definition of Holland, we follow
the contributions that have led to the current LCSs’ architectures. Then, we identify two im-
portant challenges in LCSs and machine learning systems alike, which are later articulated in
the objectives of this work. Finally, we provide the road map of the entire document.

1.1 Framework: From Holland’s Definition to Current LCSs

Holland (1971, 1976) proposed the original idea of LCSs as cognitive systems that infer environ-
mental patterns from experience and associate appropriate response sequences with them. The
initial schemas of learning classifier systems already pointed out three key aspects, which have
been preserved up to the most recent implementations: (1) a knowledge representation based on
classifiers—usually implemented as production rules—that enables the system to map sensorial
states with actions, (2) an apportionment of credit algorithm which shares the credit obtained
by the machine among classifiers, (3) an algorithm to evolve the knowledge base—typically, a
genetic algorithm (GA) (Holland, 1975). Since the first definition of LCS, more than 30 years
ago, several systems have been designed following Holland’s initial definition; also, slightly dif-
ferent angles of the same problem resulted in different types of LCSs, shaping the LCS branches
that currently exist. As proceeds, we review some of the most important aspects of these 30
years of history.

The first successful implementation of LCSs was the cognitive system one (CS-1) by Holland
and Reitman (1978), which was designed to imitate animal behavior. The goal of the system
was to satisfy its needs by means of obtaining a finite number of resources that were maintained
in different reservoirs. CS-1 acted in a stimulus-response way; given each sensorial input, the
machine performed an action to the environment, which in turn responded with a reward. The
system implemented the three aforementioned key aspects in the following way. CS-1 used
simple string rules to code the internal policy. An epochal apportionment of credit system was
employed to share the resources among rules. This algorithm tracked the utility of rules during
an epoch—that is, a certain time in which payoff events were received—and, at the end of the
epoch, distributed the payoff according to the value of each rule. Learning was accomplished
through a GA. CS-1 was faced to two maze-running tasks in which different units of food and
water were placed around the maze. The experimental results showed that CS-1 could evolve
an accurate policy to reach the system goals, highlighting that LCSs held promise for machine
learning.

Subsequently to the development of CS-1, several authors continued on the design and im-
plementation of new LCSs based on Holland’s original ideas. Booker (1982) adopted an LCS
with an architecture inherited from CS-1 to study the connections between LCSs and cognitive
science. The system was tested on environments where the classifier wandered in a feature
space with the aim of avoiding aversive stimuli (poison) and reaching attractive stimuli (food).
Contemporaneous with this work, Wilson (1981, 1985a) proposed an LCS for the sensory-motor

2

1.1. FRAMEWORK: FROM HOLLAND’S DEFINITION TO CURRENT LCSS

coordination on movable video camera, addressed as the EYE-EYE system. Later, Wilson
(1985b) simplified the LCSs architecture and applied the system to the modeling of an artifi-
cial animal—i.e., the animat problem. Thereafter, to investigate further on the system, Wilson
(1987) simplified the learning task by designing a non-sequential problem that provided imme-
diate reward at each learning iteration. Approximately together with the development of these
works, Goldberg applied LCSs to the learning control of a simulated gas pipeline (Goldberg,
1983, 1985a,b, 1987a,b).

In parallel to Holland’s work on CS-1 and its derivations, Smith (1980) took a different
approach and developed a new type of LCSs. Regarding learning as an adaptive search procedure,
Smith raised the focus of operation one notch and developed the learning system 1 (LS-1) (Smith,
1980, 1983, 1984), a system that used a GA to evolve rule sets instead of evolving individual
classifiers or rules as in Holland’s approach. Therefore, genetic manipulation worked at rule set
level instead of at rule level. This permitted sidestepping the apportionment of credit algorithm.
That is, as the rules belonged to a set, the need to compute the individual contribution of each
rule to the whole model disappeared. This LCS model was furthered in new implementations
(Jong et al., 1993; Janikow, 1993). Therefore, CS-1 and LS-1 defined two different ways to
perform learning by means of GAs. After some years of development, the algorithms resulting
from both approaches were distinguished and addressed with different names: Holland’s LCSs
were referred to as Michigan-style LCSs, whilst Smith’s LCSs were addressed as Pittsburgh-style
LCSs. In this thesis, we focus our research on Michigan-style LCS.

Despite these promising designs and first applications on attractive problems, LCSs did not
reach a general acceptance in the machine learning community, probably due to their lack of
mathematical foundation and their restricted applications. Consequently, after a period of strong
research in the late 1970s and early 1980s, the late 1980s were known as the LCSs winter, in
which the problems detected in the first LCSs seemed to cloud the whole field. At the end of the
1980s, Wilson and Goldberg (1989) published a critical review of LCSs, identifying the critical
factors and problems that hindered the success of the LCSs of that time. These problems were
associated with (1) the difficulties of distributing credit among the rules, (2) the inadequacy
of the decision-making process and the tendency to produce over-general rules, and (3) the
limits of the classifier syntax. Besides, the authors also pointed out the need for theory, such as
population size models, to gain a better understanding of how these systems worked.

Some years after the critical review, Wilson (1994) first presented the zeroth-level classifier
system (ZCS) and, one year after, Wilson (1995) proposed the extended classifier system (XCS),
heralding the second spring and summer of the LCSs field. XCS came to give answer to most
of the key problems that were identified in previous LCSs. XCS introduced a new credit appor-
tionment algorithm—which was adapted from a well-known reinforcement learning technique
(Sutton and Barto, 1998), Q-learning (Watkins, 1989)—to solve the difficulties in distributing
credit. The tendency of producing a large number of over-general classifiers was corrected by
(1) basing the classifier fitness on the accuracy of the prediction instead of the prediction itself
and (2) using appropriate niching techniques and fitness-sharing schemes. Besides, the system
architecture was simplified with respect to the initial LCSs’ architecture. Already in the original
paper, XCS was shown to be able to evolve accurate models for single step tasks—in partic-
ular, the multiplexer problem (Wilson, 1987)— and to learn optimal policies in maze-running
environments, problems that previously eluded solution.

3

CHAPTER 1. INTRODUCTION

The first publication of XCS promoted an increasing amount of research in the LCSs area,
resulting in the so-called LCSs renaissance. Ad hoc with the implementation of XCS, there
have been crucial advances in (1) enhancements of the learning architecture and design of new
operators, (2) theoretical analyses for design, and (3) applications in important domains. With
respect to the learning architecture, the original scheme of XCS was first refined by Wilson (1998)
and later by Kovacs (1999), resulting in the standard XCS scheme currently used. Also, there
have been notorious works on inclusion of new knowledge representations (Wilson, 2000, 2001,
2008; Lanzi, 1999a; Lanzi and Perrucci, 1999; Bull and O’Hara, 2002; Butz et al., 2008), analyses
and improvements of the credit apportionment algorithm (Butz et al., 2005a; Drugowitsch and
Barry, 2008), and enhancements of some genetic operators (Butz et al., 2005b,c). Second, there
have been several theoretical analyses that enabled a better understanding of the system (Butz
and Pelikan, 2001; Butz et al., 2004b, 2005a, 2007; Drugowitsch and Barry, 2008; Drugowitsch,
2008). Finally, XCS and similar systems have been applied to important applications such as
data mining (Bull, 2004; Bull et al., 2008), function approximation (Wilson, 2002b; Butz et al.,
2008), reinforcement learning (Lanzi, 1999b, 2002; Lanzi et al., 2005; Butz et al., 2005a), and
clustering (Tamee et al., 2006, 2007), demonstrating the competitiveness of LCSs, and XCS
in particular, with respect to other machine learning techniques from other paradigms such as
decision trees (Quinlan, 1995) or neural networks (Widrow and Lehr, 1990). Besides, Michigan-
style LCSs provide a competitive advantage with respect to other machine learning techniques:
they evolve the knowledge online from a stream of examples. Therefore, the data can be made
available in streams, which is very common in current industrial applications where large volumes
of data are generated online (Aggarwal, 2007; Gama and Gaber, 2007).

Along with the application of XCS to important domains, there have been some proposals
in which the learning architecture of XCS has been modified for specific types of tasks (Wilson,
2002b; Bernadó-Mansilla and Garrell, 2003; Bull, 2005; Tamee et al., 2006). In the particular
case of data classification tasks, Butz et al. (2003) detected that XCS produced a deceptive
pressure toward the optimal solution in some specific problems. In order to overcome this prob-
lem, Bernadó-Mansilla and Garrell (2003) proposed the supervised classifier system (UCS), a
system that inherits the main components of XCS, but specializes them for supervised learning—
specifically, for classification tasks. The advantages of the new architecture with respect to UCS
were analyzed on a set of boundedly difficult problems—problems in which the complexity along
different dimensions can be controlled—, illustrating that the system could overcome the de-
tected problems and solve complex applications more efficiently than XCS. Nonetheless, UCS
is still young and, as pointed out by Bernadó-Mansilla and Garrell (2003), there are some open
issues that still need to be addressed to enhance the system and gain a better comprehension of
the implications of the changes introduced to the original XCS.

In summary, starting from Holland’s idea of creating true artificial intelligence, during the
last decade, research on LCSs has been enjoying a renaissance, which has been mainly promoted
by the creation of XCS. Currently, LCSs have reached a mature state and are ready to face new
challenging problems in machine learning. Furthermore, Michigan-style LCSs have two main
assets that distinguish them from machine learning techniques alike:

1. They have a flexible knowledge representation that can be easily adapted to deal with new
types of data.

2. They build the model online, which is crucial to succeed in problems with large volumes

4

1.2. TWO CRITICAL CHALLENGES IN LCSS AND MACHINE LEARNING

of data or where the data is made available in data streams.

For this reason, the present work focuses on LCSs as promising alternatives for machine learning.
Despite the recent improvements and applications proposed in the field of LCSs, there are still
important challenges—which are not particular to LCSs, but shared by the machine learning
community in general—that need to be addressed to scalably and efficiently solve real-world
problems. In the following section, we identify the two key challenges in the machine learning
and LCSs community from which we define the objectives of this thesis.

1.2 Two Critical Challenges in LCSs and Machine Learning

Research on machine learning has resulted in the design of several learning techniques, such as
LCSs, that can extract accurate models from the experience. Due to the maturity of the area,
the machine learning community has started to address new important challenges that appear
when applying learning techniques to real-world problems. Among the different research lines,
the following two key challenges have received especial attention:

1. Learning from domains that contain rare classes.

2. Building more understandable models and bringing reasoning mechanisms closer to human
ones.

A more detailed discussion of why these two items represent a critical challenge not only for
LCSs but for machine learning in general is provided as follows.

Learning from domains that contain rare classes. The advances in machine learning have led to
the application of learning algorithms to new complex real-world problems—for which humans
cannot provide an accurate solution—with the aim of extracting novel, interesting, and useful
knowledge. It has been identified that, in these types of problems, the key knowledge usually
is hidden in examples that are rare in nature (Chan and Stolfo, 1998; den Bosch et al., 1997;
Grzymala-Busse et al., 2000; Kubat et al., 1998). In fact, for this reason it is too complex
for human beings to identify this key, hidden knowledge. Empirical studies have shown that
traditional machine learning techniques may not be able to extract critical information from
these rarities. Therefore, a new field has emerged with the aim of creating new approaches
to enhance the extraction of the key knowledge from rare classes. The problem of modeling
rare classes has taken several names such as the problem of mining rarities (Weiss, 2004),
the problem with the small disjuncts, (Holte et al., 1989) or the class-imbalance problem
(Japkowicz and Stephen, 2002). In the three of them, the goal is the same: model patterns or
examples that occur infrequently accurately.

While this critical problem has been widely studied in the context of traditional machine learn-
ing techniques—which learn from collections of static data—little research has been conducted
on online learners and, specifically, on LCSs. Two main reasons explain this lack of analyses
in LCS. First, as mentioned in the previous section, the first successful LCS’s architecture was
designed in 1995, and most of the research conducted during the last decade has been cen-
tered on the analysis and improvement of this architecture. This has resulted in mature LCSs

5

CHAPTER 1. INTRODUCTION

that are now ready to face new challenges. On the other hand, the first studies of the small
disjuncts problem started in the late 1980s (for example, see (Holte et al., 1989)). Therefore,
the problem of rare classes has received much more attention in traditional learning techniques
than in LCSs. Second, learning from rare classes poses more complex challenges to LCSs since
they have an online architecture that learns from a stream of examples. That is, the online
system receives a stream of examples, and it has to learn from the upcoming rarities on the fly.
Besides, due to this online architecture, techniques developed for traditional machine learning
techniques cannot be applied to LCSs. Note that the study and improvement of LCSs to ex-
tract accurate models from rarities that come infrequently in a stream of examples appears to
be a crucial task to address, accurately and efficiently, the new problems that are more often
presented to machine learning techniques.

Building more understandable models and bringing reasoning mechanisms closer to human
ones. Besides extracting accurate models from rare classes, a second important challenge in
machine learning is to build learning techniques that represent the knowledge and apply rea-
soning mechanisms that are similar to the human ones. This point is especially important in
classification tasks where human experts may need explanations about the decisions taken by
the systems. For example, in medical domains, human experts are sometimes more interested
in the explanation that yields a prediction than in the prediction itself (Robnik-Sikonja et al.,
2003). As proceeds, we discuss why LCSs may evolve poorly interpretable models and present
fuzzy logic as a competent approach to create highly legible models.

Michigan-style LCSs evolve models that consist of classifiers—typically rules—which can be
individually interpreted by human experts. Nevertheless, it has been detected that Michigan-
style LCSs evolve a large number of rules when dealing with problems that have continuous-
valued attributes (Bernadó-Mansilla and Ho, 2005; Bacardit and Butz, 2004; Wilson, 2002a;
Dixon et al., 2004; Fu et al., 2001), which can be found usually in real-world problems. Besides,
the reasoning mechanisms of LCSs may not be natural for human experts. Until recently, few
alternatives of new reasoning mechanisms, as well as the first pieces of theory that explain how
they work, have been developed for some particular LCSs (Brown et al., 2007). Despite these
first promising results, more research needs to be conducted to approach reasoning mechanisms
to human reasoning.

Contemporaneous with the recent advances on LCSs, there has been a strong research on fuzzy
systems, that is, systems that use fuzzy logic (Zadeh, 1965, 1973) to create highly legible models
from environments with uncertainty and imprecision. Essentially, the fuzzy set theory provides
a robust reasoning mechanism that approaches human reasoning. Therefore, the combination
of fuzzy systems with LCSs appears as an appealing alternative to improve their explicative
capabilities. As a consequence, the first attempts to mix both disciplines have been taken
(Valenzuela-Rendón, 1991; Nomura et al., 1998; Parodi and Bonelli, 1993; Furuhashi et al.,
1994; Velasco, 1998; Ishibuchi et al., 1999b; Casillas et al., 2007); but, so far, no competitive
Michigan-style LCSs that creates fuzzy classification models online from streams of examples
and uses fuzzy reasoning mechanisms have been designed.

Therefore, the scope of this thesis is to address these two challenges in the context of LCSs.
Specifically, we consider XCS and UCS as starting point. We select XCS since it is, by far, the
most influential Michigan-style LCS, representing the state of the art in the LCS field. Besides,
we incorporate UCS since it was specifically designed for supervised learning, and this work

6

1.3. THESIS OBJECTIVES

is especially concerned with classification problems. With these two challenges in mind, the
following section explicitly articulates the objectives of this thesis.

1.3 Thesis Objectives

The general goal of the present work is to address the two aforementioned key challenges with
LCSs, particularly focusing on XCS and UCS. As stated in the previous sections, UCS is a
young promising system derived from XCS that, although having shown to be competitive
with respect to other machine learning techniques, still has some open issues that have to
be addressed before applying it to new complex problems. Thus, before approaching the two
particular challenges defined in the previous section, we first study the UCS classifier system
in detail and update its architecture. Furthermore, to understand its differences with XCS,
we empirically compare both systems on a set of boundedly difficult problems. Thereafter, we
take XCS and the revised version of UCS as a departure point to analyze and improve LCSs to
model rare classes accurately. For this reason, we propose to follow an analytical approach to
study the LCSs’ behavior on problems with rare classes, improve the systems, and apply them
to real-world problems with class imbalances. Furthermore, we also propose to include fuzzy
logic in an LCS architecture to bring the reasoning mechanisms closer to the human’s ones.
Specifically, this leads to the definition of the following four objectives:

1. Revise and update UCS and compare it with XCS.

2. Analyze and improve LCSs for mining rarities.

3. Apply LCSs for extracting models from real-world classification problems with rarities.

4. Design and implement an LCS with fuzzy logic reasoning for supervised learning.

As follows, each one of the four objectives is elaborated in detail.

Revise and update UCS and compare it with XCS. Whereas XCS has received an increasing
amount of attention during the last decade, resulting in many improvements in the architec-
ture, UCS is still a young system which has received no further modifications since its initial
design. Nevertheless, Bernadó-Mansilla and Garrell (2003) detected some critical aspects that
needed to be investigated in more detail. The most important one was the lack of fitness
sharing in the credit apportionment algorithm. That is, differently from almost all the current
Michigan-style LCSs, the rules in UCS are evaluated independent of the remaining rules in
the population. Bernadó-Mansilla and Garrell (2003) took this approach since the benefits of
a credit apportionment algorithm that shared the fitness among individuals were not clearly
identified, and further analysis on sharing algorithms was pointed out as an important future
work line. Therefore, the first objective of the thesis is to design a fitness-sharing scheme
similar to those proposed by GAs and XCS, introduce it to UCS, and analyze the advantages
that the new credit apportionment algorithm provides to UCS. We also aim at analyzing the
differences between UCS and XCS on supervised learning problems.

Analyze and improve LCSs for mining rarities. In this second objective, we address the chal-
lenge of extracting accurate models from domains that contain rare classes with LCSs—in

7

CHAPTER 1. INTRODUCTION

particular, with XCS and UCS. Specifically, the goal is to study the intrinsic capacities of both
LCSs to learn from rare classes, identifying critical factors for the success of the systems. For
this purpose, we propose to use design decomposition (Goldberg, 2002) to separate the prob-
lem of learning from domains with rarities in several critical elements and to derive facetwise
models for each element. The integration of these models would permit us to draw the domain
of applicability of both LCSs and to extract critical bounds on their behavior on imbalanced
domains. Moreover, we aim at extracting lessons from the analysis that help improve the
systems and enable them to extract accurate models from problems with rare classes that
currently elude solution.

Apply LCSs for extracting models from real-world classification problems with rarities. After
studying and improving LCSs for mining rarities, we aim at applying both LCSs to a set of
real-world classification problems with rare classes. To analyze their performance, we propose
to compare the accuracy of the models evolved by the two LCSs with the accuracy of the models
created by several highly influential machine learning techniques. As we seek to extract highly
accurate models, we also propose to include and analyze the impact of some of the most known
re-sampling techniques (Japkowicz and Stephen, 2002; Chawla et al., 2002; Batista et al., 2004),
that is, pre-processing methods that try to remove rare classes from the original data sets.

Design and implement an LCS with fuzzy logic reasoning for supervised learning. In the
last objective of this thesis, we address the second aforementioned challenge and take an
inventiveness approach to mix the ideas of the fuzzy systems and the LCSs fields. That is, we
purpose to create a hybrid system that mixes the best characteristics of LCSs—as accurate
online classifier’s evaluators—, GAs—as robust search mechanisms—, and fuzzy logic—as a
human-like approach to represent the knowledge and to reason for decision making.

Each one of these objectives gets, at least, a chapter of the present thesis. The overall
structure of the document is provided in the following section.

1.4 Road Map

This thesis is organized, in addition to the present chapter, in eight chapters whose content is
introduced in what follows.

Chapter 2 starts with a concise introduction to machine learning and to the types of prob-
lems that we can find in this discipline, which is followed by an introduction to evolutionary
computation. This gives way to the presentation of the current LCS families and to what we
currently understand as GBML. That is, while in the present chapter we have provided a brief
history of LCSs, in chapter 2 we review the current branches, draw a big picture of different
learning methodologies that use evolutionary algorithms, and place LCSs in this picture.

Chapter 3 provides a detailed explanation of both XCS and UCS, which can be used as im-
plementation guidelines. Thence, chapters 2 and 3 give all the background material that is
necessary to start with the contributions of this work. Thus, each of the subsequent chapters
focuses on one of the objectives of the thesis.

8

1.4. ROAD MAP

Chapter 4 reviews UCS and updates the system with a new fitness-sharing scheme. Then, UCS
with fitness sharing is empirically compared with the original UCS on a set of four artificial
problems that have different complexities that are usually present in real-world problems.
Therefore, the comparison enables us to highlight the benefits of having a credit apportionment
algorithm that shares fitness in UCS. Later, we also introduce XCS in the comparison with
the aim of emphasizing the advantages that the modifications introduced by UCS supply in
problems with certain characteristics.

Chapter 5 starts with the study of how LCSs can learn from domains that contain rare classes.
Although the chapter is focused on XCS, we first take a general approach and intuitively
analyze the problems that may arise in a general LCS architecture when learning from rare
classes. With this intuition in mind, we decompose the problem and identify five elements
that need to be satisfied by any LCS and systems alike to learn, efficiently and scalably, from
domains with rare classes. Thence, we create a general framework from learning from class-
imbalanced problems without getting tied to any particular LCS architecture. Subsequently,
we look at the particular architecture of XCS and derive facetwise models that explain each
one of the different elements. During the analysis of each facet, we assume that the remaining
facets behave in an ideal manner. The integration of all these models enables us to draw the
domain of applicability of XCS, detecting the sweet spot where XCS can efficiently extract
accurate models from instances that come infrequently. At the end of the chapter, we show
that the lessons extracted from the analysis enable us to solve problems with infrequent classes
that previously eluded solution.

Chapter 6 carries over the facetwise analysis to UCS. We start reviewing the general framework
proposed in the previous chapter and analyze the components that UCS changes with respect
to XCS. We derive new models for these components and plug them into the initial framework,
thus, adapting the domain of applicability to UCS. Lastly, we show that UCS has similar
learning capabilities to XCS in imbalanced domains.

Chapter 7 moves the theory developed in the previous two chapters to real-world problems, in
which the characteristics of the domains are not known. We design two heuristic procedures
that gather information from the population evolution and self-adapt XCS and UCS according
to the lessons learned from the theory. Then, we test both LCSs on a collection of real-world
problems that contain rare classes. To evaluate the performance of both systems, we compare
them to three of the most influential machine learning techniques. Later, we introduce pre-
processing techniques that try to remove the rare classes by changing the distribution of the
training examples and analyze the impact of applying these techniques in combination with
each one of the five learners.

Chapter 8 presents Fuzzy-UCS, a hybrid between LCSs, GAs, and fuzzy systems. Fuzzy-UCS is
inspired by UCS, but includes a fuzzy representation and usual reasoning mechanisms in fuzzy
systems, which approach human reasoning. This chapter performs a large experimentation to
show the excellence of Fuzzy-UCS with respect to other machine learning techniques in data
classification tasks. We compare Fuzzy-UCS with several top-notch fuzzy learners and show
that Fuzzy-UCS outperforms them all. Moreover, we also compare the system to some the
most influential non-fuzzy learners. Fuzzy-UCS appears to be, at least, as accurate as the best
performer among the tested learners. Besides, we show that the models evolved by Fuzzy-UCS

9

CHAPTER 1. INTRODUCTION

are clearly more interpretable than those created by UCS. Finally, we finish the chapter by
demonstrating the value of Fuzzy-UCS to mine large volumes of data. We use Fuzzy-UCS
to evolve classification models from the data provided in the KDD’99 cup intrusion detection
data set (Hettich and Bay, 1999). The data set consists of 494 022 instances, 21 classes, and
41 attributes. It is worth noting that most of the learners used in the comparison are not able
to learn from such a large data set. The online architecture of LCSs enables Fuzzy-UCS to
deal with this large amount of data.

Chapter 9 finishes with the contributions of this thesis by summarizing, providing key conclu-
sions, reviewing the main lessons extracted from this work, and gathering future work lines.

The material presented in the nine chapters is complemented with four appendices. Ap-
pendix A describes all the boundedly difficult problems used along the experiments of the
thesis. Appendix B gives details about the statistic tests employed in different chapters to
compare results. Appendix C supplies the detailed tables of results of the comparison of sev-
eral machine learning techniques with LCSs on a collection of real-world problems with rare
classes performed in chapter 7. Finally, Appendix D provides an analysis of the sensitivity of
Fuzzy-UCS to its configuration parameters.

10

Chapter 2

Machine Learning with Learning
Classifier Systems

This chapter provides a brief introduction to learning classifier systems (LCSs) as one of the
most appealing alternatives for machine learning (ML). The chapter starts with a concise defi-
nition of machine learning, and then, presents a task-oriented taxonomy of ML techniques which
divides ML methods—depending on the type of problems that they can solve—in supervised
learning, unsupervised learning, and reinforcement learning techniques. Next, evolutionary com-
putation—a field of study devoted to the design and implementation of problem solvers inspired
by principles of natural evolution and genetics—is briefly introduced. This introduction is fol-
lowed by a more detailed explanation of genetic algorithms, one of the most promising techniques
in evolutionary computation, since they guide the discovery process in LCSs. Finally, the cur-
rent branches or families of algorithms that use GAs for machine learning—usually addressed as
genetic-based machine learning systems (GBML)—are presented, identifying both Pittsburgh-
and Michigan-style LCSs in this taxonomy. For each one of these families, a picture of their
process organization is provided, and the main differences among them are discussed.

2.1 Machine Learning

Machine learning is concerned with the design of computer programs that are able to learn
from the experience and with the definition of the fundamental laws that govern all learning
processes (Mitchell, 1997, 2006; Nilson, 2005; Bishop, 2007). This definition covers a large
variety of learning tasks such as (1) the design of goal-oriented agents that learn behavioral
policies from their interaction with the real world, (2) the extraction of frequent, interesting
patterns from large volumes of plain data generated, for example, from industrial processes, and
(3) the modeling of specific domains from examples. As a unified vision of all these learning tasks,
Mitchell (2006) considers that a machine learns with respect to a certain task T , a performance
metric P , and a type of experience E, if the system reliably improves its performance P at task
T by following the experience E. Therefore, any application that falls under this definition can
be considered as a machine learning method. With this broad definition in mind, this section
discusses the relationship of ML with other scientific fields as well as the necessity of having
computers that use their own experience to program themselves.

11

CHAPTER 2. MACHINE LEARNING WITH LEARNING CLASSIFIER SYSTEMS

ML is not an isolated discipline, but it is closely related to other fields such as computer
science, statistics, and psychology and neuroscience. On the one hand, computer science and
ML share a common objective; that is, they are concerned about building machines that can
solve problems. However, the main difference is that computer science is mainly focused on
building deterministic programs, while ML aims at creating programs that learn by themselves.
On the other hand, statistics and ML share the common goal of inferring patterns, behaviors, or
conclusions from data. Nevertheless, the key difference between both resides in the fact that ML
involves additional questions, such as algorithmic scalability, that aim at the creation of machines
that can efficiently, accurately, and scalably deal with complex real-world problems. In addition,
ML is closely related to the study of human and animal learning in fields such as psychology
and neuroscience. For example, several ML techniques derive from works of psychologists that
try to understand animal and human behavior through computational modeling. Similarly, ML
and biological learning are related, and research in each area benefits the other one, resulting in
fruitful crossbreeding of ideas and techniques.

Of course, the idea of having computers teaching themselves is not easy to implement in
practice. Therefore, the question that arises is why we should spend efforts in building machines
that learn to solve new complex problems instead of relying on humans to code hard-wired
solutions for these problems. The need for further research on ML can be explained with two
main reasons. From the pure learning point of view, ML can help understand animal and
human learning processes, thus providing key insights to psychologist and neuroscientists. From
a pure engineering point of view, ML has already provided, and is expected to supply, efficient
algorithms to solve new challenging, complex engineering problems whose solution is not known.
More specifically, the most important reasons that may lead to the application of ML to solve
engineering problems are enumerated as follows.

1. Difficulty of human experts to describe the problem and manually design an algorithm to
solve it.

2. Necessity of programs that continuously adapt to changing environments.

3. Necessity of processing overwhelming volumes of data with hidden concepts.

Below, each item is elaborated in more detail.

The application of ML is mandatory when the problem is too complex to manually design
and code an algorithm to address it properly. These types of complex problems abound in engi-
neering, having some specific examples in speech recognition (Karat et al., 2003), or computer
vision (Jahne et al., 1999). For instance, recognizing faces is a simple task for humans, but
manually programming a system to perform this task is too complex. Nevertheless, collecting
some examples and training a computer vision program that recognizes these objects—with a
certain accuracy—is a more straightforward manner of facing the problem.

Another reason that makes the use of ML necessary is in changing environments. Indepen-
dent of whether we can provide an initial solution to the problem, the system may need to
adapt to changing situations. For example, in speech recognition systems, the program can be
provided with an initial speaker-independent voice-recognition system, plus a learning system
that adapts to the characteristics of each particular person. Other examples where adaptation
is necessary can be found in robot control.

12

2.1. MACHINE LEARNING

Classification of the input examples

hello

(a) Supervised Learning

Clustering of the input examples

Length of the stem

(b) Unsupervised Learning

(c) Reinforcement Learning

Figure 2.1: Examples of (a) supervised, (b) unsupervised, and (c) reinforcement learning.

The last reason that may lead us to the application of ML is when overwhelming volumes
of data need to be processed to extract novel, interesting, and useful knowledge from patterns
hidden in these data. Actually, this is a definition of data mining (Frawley et al., 1992). In this
case, ML can be applied to build programs that use heuristics to extract potentially interesting
and novel patterns from the data.

Therefore, ML gathers a large variety of techniques, and several classification criteria can
be used to group them in different families. As follows, we present a classic taxonomy of ML
techniques that is based on the task to perform. New trends in ML may incorporate new groups
or subgroups to this taxonomy; nonetheless, the provided taxonomy gives the three fundamental
types of learning: supervised learning , unsupervised learning , and reinforcement learning .

13

CHAPTER 2. MACHINE LEARNING WITH LEARNING CLASSIFIER SYSTEMS

2.1.1 Supervised learning

Supervised learning is the process of extracting a function or model that maps the relation
between a set of descriptive input attributes and one or several output attributes. Depending on
the type of output attributes, supervised learning can be further classified as data classification
or data regression. That is, for categorical output attributes (which represent the classes of
the examples), the task is addressed as data classification; in this case, the goal is to find a
model that predicts the class of new instances. Otherwise, for continuous output attributes, the
problem is referred to as data regression; thence, the goal is to find a function that predicts the
output value of new instances. Thus, in general, a supervised learner has to build a function or
model that predicts the output value for any valid input object by means of generalizing from
the known data.

As follows, we present an application example of supervised learning. Let us imagine that
we aim at designing a machine capable of distinguishing poisonous mushrooms from edible
mushrooms. Suppose we have been provided with 1 000 examples of poisonous mushrooms and
1 000 examples of edible mushrooms, which form our training data set. Moreover, let us assume
that the mushrooms are represented by two characteristics or attributes: the length of the stem
and the diameter of the mushroom. These characteristics define the inputs of the classification
problem. The problem has a single output attribute that can take two values, which represent
whether the mushroom is poisonous or edible. Figure 2.1(a) shows how the different examples
are distributed in the feature space (each class is depicted with a different color). By only
considering the 2 000 known examples, the given ML technique has to be able to generalize and
extract a classification model, which will be used to predict the class of new unlabeled examples.

2.1.2 Unsupervised learning

In unsupervised learning , the machine receives a set of examples that consist of input attributes,
but that have no associated output attributes. Then, the goal of unsupervised machine learning
is to build representations from the input that identify novel, interesting knowledge. The result-
ing representations can be used for decision making, predicting future inputs, grouping similar
inputs, or creating prototypes that are fed to other machine learning techniques among others.
Two cornerstones of unsupervised learning are clustering and dimensionality reduction.

Figure 2.1(b) presents an example of clustering. Note that, differently from figure 2.1(a),
the training examples have no associated output (all points are depicted with the same color).
Without any further information about the data rather than the input attributes, unsupervised
learners would group the examples in different clusters according to some proximity criterion (in
the example of the figure, the center of each cluster is depicted with a black dot). This type of
learning is very common when hidden patterns are searched on large volumes of data. A typical
example can be found in the characterization of customer habits from information about their
purchases.

2.1.3 Reinforcement Learning

Reinforcement learning lies between supervised and unsupervised learning. In this type of
task, an agent interacts with an environment in the following manner: the machine receives

14

2.2. EVOLUTIONARY COMPUTATION AND GENETIC ALGORITHMS

perceptions from the environment—which provide total or partial information about its state—
and performs actions to this environment with the aim of achieving a particular, or several,
goals. The machine eventually receives positive or negative rewards as consequence of its actions.
Therefore, reinforcement learning aims at learning a behavioral policy to maximize a notion of
long-term reward—that is, to maximize not the immediate but the total reward received from
the environment.

Figure 2.1(c) shows an example of reinforcement learning problem in which an ant or agent
aims at reaching its goal—that is, to find the food—as fast as possible without falling in any
trap. The agent may receive negative rewards from the interaction with the environment—for
example, if it finds a trap—and positive rewards if it reaches a goal. Thence, the aim of the
agent is to learn a behavioral policy that maps the best action for each possible sensorial input.
Provided that there may be a large number of possible sensorial states and actions for each state,
generalization over these sensorial states has become a key aspect in reinforcement learning to
scalably solve real-world problems.

In this section we presented a classic taxonomy that identifies three types of learning. Dif-
ferent machine learning techniques have been developed to perform some or several of the afore-
mentioned tasks. One of the most promising approaches to face the problems that range in the
three aforementioned families is learning classifier systems (Holland, 1971, 1976; Holland and
Reitman, 1978). Originally implemented by Holland and Reitman (1978) with the aim of sim-
ulating the animal behavior—therefore, falling under the category of reinforcement learning—,
current LCSs have been extended to deal with the other two types of learning, that is, supervised
learning (Bacardit and Butz, 2004; Bernadó-Mansilla and Garrell, 2003; Fu et al., 2001; Wilson,
2000) and unsupervised learning (Tamee et al., 2006, 2007; Orriols-Puig et al., 2008g). Thence,
LCSs represent a general learning architecture that can be used for different tasks ranging from
extracting classification models from streams of labeled data to building clusters online, also
including reinforcement learning problems. The flexibility of their architecture is one of the
most valuable assets of LCSs with respect to other machine learning techniques, which tend to
be designed specifically for one of the three types of machine learning.

The remainder of this chapter is focused on LCSs. We first provide a brief introduction to
evolutionary computation, which is followed by a more detailed explanation of GAs, since they
are the core of the discovery component of LCSs. Then, we present the different types of GBML
systems, which represent different ways of using GAs for machine learning, and place LCSs in
this big picture.

2.2 Evolutionary Computation and Genetic Algorithms

Evolutionary computation (EC) is a field of study devoted to the design, implementation, and
analysis of computation techniques that are inspired by the evolution of biological life in the
natural world (Jong, 2006). Actually, evolutionary computation does not refer to a single type of
algorithm, but to a series of parallel efforts that shared the idea of using an evolutionary process
for computer problem solving. In the following sections, we provide a brief introduction to the
biological principles that inspire evolutionary computation methods and propose a taxonomy
of the different methods that fall under the definition of evolutionary computation; then, we
focus our explanation on genetic algorithms (Holland, 1971, 1975), one of the most prominent

15

CHAPTER 2. MACHINE LEARNING WITH LEARNING CLASSIFIER SYSTEMS

techniques in the field of evolutionary computation.

2.2.1 Biological Principles that Inspire Evolutionary Computation

At the beginning of the nineteenth century, the first evolutionary theories, which promoted the
hypothesis that the species are a result of the natural evolution, started to emerge. Jean Batista
Lamark was one of the first researchers that rejected the essentialist thought, which was the
theory mainly considered at the time. Essentialism relied on the idea that living forms were
unchanging. Lamark proposed some revolutionary theories based on the concept of evolution,
which were overlooked by the scientific community at that time. Some decades later, several
researchers were inspired by these theories. Among them, there were Wallace and Darwin
who independently developed the idea of the mechanism of natural selection; this research
culminated in the publication of the book The Origin of Species by Darwin (1859). From
then on, many researchers have adhered to this hypothesis and, currently, the most accepted
collection of evolutionary theories is the new-Darwinian paradigm. As proceeds, we provide
a brief introduction to the basic concepts of these theories, since evolutionary computation
methods are inspired by the evolutionary model proposed by them.

In brief, the evolutionary theory argues that the individuals of a population have a genetic
program—i.e., genotype—, which defines the genetic constitution of the individual. This geno-
type, together with the interaction with the environment, forms the phenotype of the individual,
that is, the observable constitution of the organism. Then, the theory states that life can be
accounted for by four physical processes operating on and within populations of species: repro-
duction, mutation, competition, and selection. That is, individuals of a population:

1. are reproduced, transferring the genotype of parents to offspring;

2. are mutated ; that is, errors in the process of information transfer inevitably occur;

3. compete, as a consequence of creating new individuals—over-reproducing the species—in
an environment with finite resources; and

4. are selected, as an inevitable result of competition due to the existence of finite resources.

Therefore, this results in a cycle where species evolve by means of individual competition for a
limited amount of resources. Individuals whose phenotypes are better adapted to the environ-
ment are stronger and have higher probability to survive in competition with poorly adapted
individuals.

Note that stochastic processes play a key role in the theory of evolution. That is, genetic
variation by means of mutation is a chance phenomenon, since errors in information transfer are
unpredictable. Also, selection is probabilistic; although the quality of the individual is one of
the most important aspects for its survival, there are many external factors that may influence
the selection process.

The ideas briefly presented in this section were taken as inspiration by different researchers
who identified the evolutionary process as an appealing approach to solve optimization prob-
lems. Consequently, several authors started their ways on designing optimization methods that

16

2.2. EVOLUTIONARY COMPUTATION AND GENETIC ALGORITHMS

simulate different aspects of evolution, which, nowadays, have been grouped under the evolu-
tionary computation term. A taxonomy of these different methods is provided in the following
section.

2.2.2 Evolutionary Computation: A Taxonomy

In the 1950s, some researchers started to develop the idea of using biological principles to de-
sign evolutionary problem solvers. At that time, there were the first attempts to apply these
types of computer problems solvers to automatic programming—that is, to find a program that
calculates input-output functions—(Friedberg, 1958; Friedberg et al., 1959), to numerical opti-
mization problems (Bremermann, 1962), and to the design and analysis of industrial experiments
(Box, 1957; Box and Draper, 1969). These early efforts were followed by the establishment, in
the middle 1960s, of three main forms of evolutionary computation: genetic algorithms (Holland,
1967, 1971, 1975), evolution strategies (Rechenberg, 1965, 1973; Schwefel, 1981), and evolution-
ary programming (Fogel, 1962, 1964). Over the next 25 years, these three branches developed
quite independently; not until the early 1990s, was the term evolutionary computation created
to embrace these different technologies, which were considered different “dialects” of biology-
inspired problem solvers.

Since then, the strong research on evolutionary computation has resulted in new branches of
evolutionary solvers. Two of the most significant of these new approaches are genetic program-
ming (Koza, 1989, 1992)—introduced as an extension of genetic algorithms to evolve computer
programs—and estimation of distribution algorithms (EDAs) (Pelikan et al., 2000b; Larrañaga
and Lozano, 2002; Pelikan et al., 2006)—a new approach that creates probabilistic models to
solve optimization problems. In what follows, each one of these families is shortly introduced.

Genetic algorithms (GAs) were originally created by Holland (1967, 1971, 1975) with the initial
aim of understanding the underlying principles of adaptive systems, and further propelled by
Goldberg, who presented GAs to a broad audience by simply and precisely presenting theory
and applications of GAs (Goldberg, 1989a); later, Goldberg (2002) proposed a methodology to
design competent GAs. The key idea of Holland’s work was to use a combination of competition
and innovation to build machines that could adapt to changing environments and could respond
to unanticipated events; Holland simulated this process with a simple model of evolution that
considered the notions of survival of the fittest and continuous production of offspring. The first
implementations of this model used a binary representation and were based on the interaction
of population size, crossover, and mutation. These ideas are still valid in current GAs.

Evolution strategies (ESs) were originally proposed by Bienert, Rechenberg, and Schwefel in
1964. The earliest idea of Bienert et al. did not aim at devising a new optimization method,
but at building a robot that performed a series of experiments in a slender three-dimensional
body so as to minimize its drag; the minimization method relied on changing one variable at
each iteration and testing whether this change produced any improvement. ESs were born
from this initial idea plus a random process to decide the variable changes (Rechenberg, 1965).
The first versions of ESs used a single solution with continuous attributes that was mutated by
means of a binomial distribution. The current ESs incorporate a population of solutions and
perform a cycle that is similar to GAs, involving crossover, a normally distributed mutation,

17

CHAPTER 2. MACHINE LEARNING WITH LEARNING CLASSIFIER SYSTEMS

and selection. In addition, ESs incorporate mechanisms for self-adapting the mutation operator
to each particular individual.

Evolutionary programming (EP) was originally introduced by Fogel (1962, 1964) with the aim
of creating a machine with adaptive behavior that could achieve its goals in a range of envi-
ronments. For this purpose, Fogel identified that the machine should be able (1) to predict its
environment and (2) to take appropriate actions in light of the predicted next state. Finite-
state machines were found as useful to represent the behavior of the machine. Therefore,
the evolutionary programming approach proposed to evolve a set of finite-state machines by
using mutation as the primary reproductive operator. This general approach was applied to
problems in prediction, identification, and automatic control (Fogel, 1964; Fogel et al., 1966).

Genetic programming (GP), initially proposed by Koza (1989, 1992), is an extension of GAs to
evolve computer programs. To achieve this, GP usually employs a tree-based representation,
whose internal nodes are represented with a set of primitive functions and the leaf nodes
consist of terminals—usually variables of the problem. GP is based on the same GA cycle,
thus involving crossover, mutation, and selection—which are redefined to let them cope with
the new representation—on a finite population. GP have been applied to a large variety
of problems, ranging from circuit design to quantum computing, which have result in the
discovering of several inventions, which were already patented, and new patentable inventions
(Koza et al., 2003).

Estimation of distribution algorithms (EDAs) are optimization methods that were recently
derived from the field of GAs with the aim of building probabilistic models instead of coding
the solution in populations of individuals (Pelikan et al., 2000b; Larrañaga and Lozano, 2002;
Pelikan et al., 2006). Also addressed as probabilistic model-building GAs, EDAs replace both
crossover and mutation with a probabilistic model—built from a data base that contains indi-
viduals from the previous generation—from which the new population is sampled. Although
removing these two primary operators in evolutionary computation, EDAs can be considered as
evolutionary computation methods since they use selection to choose good subsets of samples.

GAs appear as one of the most appealing alternatives among the five branches of evolutionary
computation since they were initially designed with the general purpose of understanding natural
adaptive systems and designing robust adaptive artifacts instead of specifically focusing on
optimization techniques (Rechenberg, 1965) or intelligent agents (Fogel et al., 1966). This is one
of the reasons that explain why GAs, as opposed to ESs or EP, have been selected as the primary
discovery approach in GBML systems. Due to their importance, the next section explains how
GAs work in more detail.

2.2.3 Genetic Algorithms

Genetic Algorithms (Holland, 1971, 1975; Goldberg, 1989a, 2002) are methods for search, op-
timization, and machine learning that are inspired by natural principles and biology. The key
characteristics that differentiate GAs from other optimization techniques are:

• GAs learn from the objective function without assuming any structure or underlying dis-
tribution.

18

2.2. EVOLUTIONARY COMPUTATION AND GENETIC ALGORITHMS

Population 1 Population 1

Population 2

Population 3

Population 4
GA Cycle

Evaluation

Selection

CrossoverMutation

Replacement

Initialization

Figure 2.2: Evolution of a GA population.

• GAs search from a population of points that represent candidate solutions, not from a
single point.

• GAs code potential solutions instead of directly tuning the decision variables of the prob-
lem.

• GAs use random, local operators instead of deterministic, global rules.

As follows, we describe the basic work flow of genetic algorithms, briefly review some existing
theory that explains how and why GAs work, and present some of the real-life applications to
which GAs have been applied in the fields of engineering, science, and industry.

Description of Genetic Algorithms

GAs evolve a population of rules, where each individual in the population represents a potential
solution to the problem. Analogous to genetics, individuals are represented by chromosomes,
which encode the decision variables of the optimization problem with a finite-length string. Each
of the atomic parts of the chromosome is referred to as genes, and the values that the gene can
take are addressed as alleles. For example, in the traveling salesman problem (Applegate et al.,
2006), a chromosome represents a whole route—a sequence of cities—, and a gene represents a
city.

To implement natural selection and competition among candidate solutions, GAs incorporate
an evaluation function that is responsible for assessing the quality of each solution; the quality
of each individual is made explicit with a fitness value that is given to the individual. Several
evaluation functions have been used in GAs, such as mathematical functions provided by human
experts or subjective functions where users choose the best solutions from a set of candidates.
The design of a fitness function that correctly distinguishes between good solutions and poor
solutions is a key point in the success of GAs, since the evolutionary process would push toward
the fittest solutions in the population.

19

CHAPTER 2. MACHINE LEARNING WITH LEARNING CLASSIFIER SYSTEMS

The population of individuals is evolved by a continuous process of selection, crossover,
mutation, and replacement of individuals. Figure 2.2 schematically illustrates the cycle of a
GA. Algorithm 2.2.1 complements the explanation with the pseudo code of a simple GA. In
the beginning of the run, the population is initialized typically with random individuals—if
available, domain-specific knowledge can be incorporated to the initialization process. Then,
each individual is evaluated; therefore, each individual has a fitness that indicates the quality
of the solution. Next, the GA performs a loop where the following for operators are iteratively
applied:

• Selection: The selection operator chooses the fittest individuals in the population, sim-
ulating the survival-of-the-fittest mechanism. So far, several selection schemes have been
presented with the common idea of biasing the selection toward the fittest individuals.
For example, roulette-wheel selection (Holland, 1975; Goldberg, 1989a) and stochastic
universal selection (Baker, 1985; Grefenstette and Baker, 1989) give each individual a se-
lection probability that is proportional to its fitness. Other selection schemes such as
tournament selection (Goldberg et al., 1989; Sastry and Goldberg, 2001) and truncation
selection (Mühlenbein and Schlierkamp-Voosen, 1993) rank a set of individuals according
to their fitness and select the fittest ones.

• Crossover: The crossover operator combines the genetic information of two or more
parental solutions to create new, possibly better offspring. Recombination plays a key
role in GAs, since it should detect important traits of parental solutions and exchange
them with the aim of generating better individuals that are not identical to their parents.
Several selection operators designed under this goal can be found in (Goldberg, 1989a, 2002;
Pelikan et al., 2000a; Pelikan, 2005; Pelikan et al., 2006; Sastry and Goldberg, 2003a).

• Mutation: Mutation introduces random errors on the transference of the genetic in-
formation from parents to offspring. Thence, this operator acts on single individuals.
Although different mutation operators have been designed (Bäck, 1996; Beyer, 1996; Gold-
berg, 1989a), the commonality among them is that they introduce one or more random
changes applied to individual genes. Competent genetic operators that identify important
traits of parental solutions and search in the structural neighborhoods of these solutions
have been developed Lima et al. (2006); Sastry and Goldberg (2004).

• Replacement: After the selected individuals have gone through crossover and mutation,
the offspring population replaces the original one. Several replacement schemes could be
followed. For example, in a generational GA, all the offspring population may replace
the parent population. Other schemes are elitist replacement—the elite individuals of
the parent population are copied to the new population—or steady state replacement—
the best individuals of the offspring population are copied to the original one, removing
classifiers with poor fitness.

The synergy of all these operators pressures toward the evolution and selection of the best
solutions, which are recombined yielding new promising offspring. Goldberg (2002) emphasized
the idea that, while selection, crossover, and mutation can be shown to be ineffective when
applied individually, they might produce a useful result when working together. This was
explained with the fundamental intuition of GAs, which argues that the combination of the

20

2.2. EVOLUTIONARY COMPUTATION AND GENETIC ALGORITHMS

Algorithm 2.2.1: Pseudo code of a simple GA.
Data: t is the time stamp and P(t) is the population at time t
Algorithm: GA1

t := 02

P(t) := Initialize randomly P(t)3

P(t) := Evaluate P(t)4

while not finish do5

t := t+16

P’(t) := Select individuals from P(t-1)7

P’(t) := Apply crossover to P’(t)8

P’(t) := Apply mutation to P’(t)9

P(t) := P’(t)10

P(t) := Evaluate P’(t)11

end12

selection and crossover operators introduces a process of innovation or cross-fertilizing, whereas
the combination of selection and mutation represents the continuous improvement or local search
process.

After outlining a GA procedure and discussing the role of the most important operators, the
next section briefly reviews some theory that provides key insights that help explain why GAs
work.

2.2.4 Basic Theory of GA

Since the initial definition of GAs, several authors have developed formal theory to explain their
behavior. In the following, we first go back to Holland (1975) and introduce the schema theorem,
which uses the concept of building block (BB) to give some insights on how GAs work. Then, we
present the work by Goldberg (2002), who adheres to the ideas proposed by the schema theorem
and proposes a methodology for designing competent selecto-recombinative GAs.

Intuitive Idea of Why GAs Work: the Schema Theorem

We have just seen that the operation of GAs is based on the exchange of information from
parents to offspring. Along the description of GAs, we already pointed out that key operators
such as crossover should detect important traits from parents and exchange them properly to
create new children. In this section, we further this idea and present the schema theorem, which
is concerned about accounting for how the key solutions evolve in a population. We start with
the definition of schema and then reproduce the schema theorem proposed by Holland (1975).

The schema theorem is based on the idea of schema or building blocks (BBs), that is, a
template that identifies a subset of individuals. A schema is represented with a string s =
(s1, s2, ..., s`) where each bit si can take a different value of the ternary alphabet {0,1,*} (` is
the total number of bits of the schema). Thence, a schema represents a subspace Bn = {0, 1}n

21

CHAPTER 2. MACHINE LEARNING WITH LEARNING CLASSIFIER SYSTEMS

so that a binary string x belongs to this schema (x ∈ Bn) if

xi 6= si ⇔ si = ∗ ∀i = 1, 2, ..., n. (2.1)

Thence, for example, provided the schema 1**001, instances 101001 and 111001, among others,
belong to this schema.

Before proceeding to the formalization, the following two concepts need to be defined:

• The order of the schema h, o(h), is the number of fixed positions in the schema, that is,
the number of bits that are 0- or 1-valued. For example, o(∗ ∗ 10∗) = 2.

• The length of the schema h, δ(h) is the distance between the first and the last specific
positions. For instance, δ(∗ ∗ 10 ∗ ∗) = 1.

Provided the definitions above, the schema theorem models how the different schemas evolve
along a GA run. For this purpose, it considers the effects of the selection, the crossover, and the
mutation operators. Moreover, it assumes fitness-proportionate selection, one point crossover,
and gene-wise mutation. Then, the schema theorem demonstrates that the expected number of
offspring that belong to schema s at iteration t + 1, i.e., E[NS(P (t + 1))|P (t)], satisfies that

E[Nh(P (t + 1))|P (t)] ≥ Nh(P (t))
f(h, t)
f(t)

(
1 − δ(h)

` − 1
pc

)
(1 − pm)o(h), (2.2)

where NS(P (t)) is the number of individuals in the population P (t) that belong to schema h at
time t; f(h, t) is the average fitness of the individuals that belong to h at time t; and f(t) is the
average fitness of the population. The effect of fitness-proportionate selection is given by the
term f(h,t)

f(t)
, which increments the expectation of the number of individuals in the next generation

if the average fitness of the individual that belong to schema h is greater than the average fitness
of the population. The effect of crossover is reflected in the term 1− δ(h)

`−1 pc, which indicates that
the probability that a schema survives depends on the length of the schema and the crossover
probability. Finally, the effect of mutation is modeled by the term (1 − pm)o(h), which denotes
that the probability that the schema is preserved to the next generation is inversely proportional
to the mutation probability and exponentially proportional to the number of fixed bits of the
schema (o(h)).

Thence, the schema theorem demonstrates that the expected number of individuals that
belong to schema h at time t + 1 grows exponentially if the average fitness of the individuals
that belong to schema h at time t is greater than the average fitness of the population at time t.
Therefore, the effect of reproduction becomes quantitatively clear; that is, reproduction allocates
exponentially increasing number of trials to schemas whose fitness is above the average.

Design Decomposition: Goldberg’s Approach to Competent GA Design

Although some researchers have strongly criticized or even rejected the schema theorem, Gold-
berg proposed a framework to design selecto-recombinative GAs based on the initial Holland’s
notion of building block. Goldberg (2002) suggested thinking of building blocks as a kind of

22

2.2. EVOLUTIONARY COMPUTATION AND GENETIC ALGORITHMS

matter and to ensure (1) that we have an initial stock of them, (2) that good ones grow in the
market share, (3) that good decisions are made among them, and (4) that they are exchanged
well to solve a large class of difficult problems.

In order to satisfy the four aforementioned points, Goldberg (2002) decomposes the problem
of designing competent selecto-recombinative GAs in the following seven aspects:

1. Know that GAs process BBs.

2. Know the BB challengers.

3. Ensure adequate supply of raw BB.

4. Ensure increased market share for superior BBs.

5. Know BB takeover and convergence times.

6. Make decision well among competing BBs.

7. Mix BBs well.

Goldberg (2002) proposed to examine these items by means of facetwise analysis, which suggests
analyzing separately each one of these elements, assuming that the other ones behave in an
ideal manner. As proceeds, we elaborate on each one of the elements and mention some of the
approaches by which GA researchers have studied each element.

The primary idea of this theory is that selecto-recombinative GAs work through a mechanism
of decomposition and reassembling. That is, GAs implicitly decompose the problem and identify
sets of well-adapted features, which form a building block. Then, these building blocks have to
be correctly processed.

The second key idea in this theory is that complex problems are those problems whose
building blocks are difficult to acquire. This could be a result of having large, complex building
blocks, having building blocks that are hard to separate, or having a deceptive guidance toward
high-order building blocks (Goldberg, 2002).

After identifying the first two key concepts, the next four items of the theory analyze how
these building blocks evolve in a market economy of ideas. First, we need to ensure that the mar-
ket is provided with enough stock of BBs. As GA populations are usually initialized randomly,
one way to obtain more variability is to use larger populations (Goldberg, 1989b; Goldberg et al.,
2001; Holland, 1975).

Having provided the population with an initial stock of BBs, the next two important aspects
are (1) that the best BBs should grow and take over a dominant market share of the population,
and (2) that this growth should be neither too slow—so, delaying the convergence time—, nor
too quick—, thus increasing the risk of falling in a local optimum. Different approaches have been
taken to understand time and convergence, which cover the fourth and fifth elements of the design
decomposition. Three of the most important approaches are (1) takeover time models, which
model the dynamics of the best individual (Bäck, 1994; Cantú-Paz, 1999b; Goldberg and Deb,
2003), (2) selection-intensity models, where the dynamics of the average fitness of the population
are modeled (Bäck, 1995; Miller and Goldberg, 1995, 1996; Mühlenbein and Schlierkamp-Voosen,
1993; Thierens and Goldberg, 1994a,b), and (3) high-order cumulant models, where models of

23

CHAPTER 2. MACHINE LEARNING WITH LEARNING CLASSIFIER SYSTEMS

the dynamics of average and high-order cumulants are developed (Blickle and Thiele, 1995, 1996;
Cantú-Paz, 1999a).

Yet, just ensuring an initial adequate supply of raw BBs is not enough; in addition, good
decisions among competing BBs need to be taken to ensure that the best BBs will grow in
the market. It has been acknowledged that as we increase the population size, we increase the
likelihood of making the best possible decisions (Jong, 1975; Goldberg et al., 1992; Goldberg
and Rudnick, 1991; Harik et al., 1999). Therefore, decision making has been studied from the
perspective of population sizing.

The last item of the design decomposition relies on the idea that the correct identification
and exchange of BBs is the critical path to innovative success. That is, when designing a
competent GA, one of the key challenges that needs to be addressed is how to identify BBs
and exchange them effectively. In this regard, facetwise models have been developed to show
that fixed-recombination operators, such as uniform crossover, may fail to effectively identify
and exchange BBs, resulting in an exponential scaling up of the population size in boundedly
difficult problems—that is, problems that, for example, have large sub-solutions that cannot be
decomposed in simpler sub-solutions, have several optima, or are affected by noise—(Goldberg
et al., 1993; Sastry and Goldberg, 2002, 2003b). In contrast, recombination operators that can
automatically identify and exchange BBs efficiently have shown to scale up polynomially with
the population size in these boundedly difficult problems (Goldberg, 2002; Pelikan, 2005; Pelikan
et al., 2006).

The design decomposition and facetwise analysis has resulted in a better understanding of
the underlying processes of GAs, creating a formal framework formed by different pieces of
theory. Furthermore, these analyses have been used as a tool for designing competent GAs,
genetic algorithms that can solve boundedly difficult problems quickly, reliably, and accurately
(Goldberg, 2002). The first designs of competent GAs can be found in messy GA (Goldberg
et al., 1989). Currently, there are several implementations of competent GA such as the linkage
learning genetic algorithm (Harik, 1997), the extended compact genetic algorithm (Harik, 1999;
Sastry and Orriols-Puig, 2007), or the Bayesian optimization algorithm (Pelikan et al., 1999).
The maturity in the GA field has promoted the use of GAs in real-world problems. The next
section reviews some of these important applications.

2.2.5 Genetic Algorithms in Real-World Applications

All the success and better understanding of genetic algorithms has led to their application to a
large variety of problems in science, engineering, and industry. Therefore, GAs have not been
stuck in “toyish” problems but have been applied to complex, previously unsolved, real-world
problems. We review some of the most important applications in what follows.

In the scientific field, GAs have been employed in different applications such as the detec-
tion of coronary problems (Grefenstette and Fitzpatrick, 1992), the design and interaction in
computer games (Jo and Ahn, 2002), and the generation of music (Goksu et al., 2005). But the
application of genetic algorithms, differently from other optimization techniques, is not merely
limited to a scientific field. GAs have been successfully applied to complex problems in industry,
providing novel solutions. For instance, GAs were used to partially design the Japanese bullet
train N700; specifically, the shape of the front of the train was optimized by a GA. Another

24

2.3. GENETIC-BASED MACHINE LEARNING AND LEARNING CLASSIFIER SYSTEMS

significant example is the EvoFIT tool1, a system based on GAs that makes robot pictures,
which was used by the Northamtonshire police.

There are also some companies that use GAs as the heart of their applications such as Op-
timatics and Schema. Optimatics 2 is a world leader provider of innovative and customized
optimization solutions to water industry. This company uses GAs as an essential tool for opti-
mization. The results provided by the company highlight that the GA-based optimization has
resulted in savings of about 20%-30%, on average, in their projects. Schema3 is a global provider
of end-to-end network optimization solutions for transport and mobile networks that uses GAs
in their applications. Some of the most significant projects of this company are missile balanc-
ing, synthetic aperture radar, optimal container stowage, and frequency allocation for cellular
networks.

Therefore, GAs have been used as competent optimization tools in some complex scientific
and industrial applications, assisting the creation of commercial products. In addition to these
applications in the optimization realm, GAs have also been used as the heart of several machine
learning techniques, yielding to a discipline which has been referred to as genetic-based machine
learning. The next section reviews the main branches of the algorithms that fall under these
definitions, which includes both Michigan- and Pittsburgh-style LCSs.

2.3 Genetic-based Machine Learning and Learning Classifier Sys-
tems

The application of GAs has not been restricted to optimization problems, but they have also
been used as the primary discovery heuristic in machine learning procedures. Since Holland
(1962) outlined his theory for adaptive systems, GAs have been used as the main discovery com-
ponent in Michigan-style LCSs (Holland, 1976; Holland and Reitman, 1978) and Pittsburgh-style
LCSs (Smith, 1980, 1983, 1984), which conform the two original branches of GBML. Further-
more, the population-based search, robustness, and knowledge-representation flexibility of GAs,
coupled with the recent advances in efficiency and competent GAs (Goldberg, 2002; Pelikan,
2005; Pelikan et al., 2006; Goldberg et al., 2007), has promoted the use of genetic search as
the primary discovery heuristic in several machine learning techniques that belong to different
learning paradigms that range from neural networks (Kitano, 1990; McInerney and Dhawan,
1993; Liu et al., 2004; Wierstra et al., 2005; Mierswa, 2007) to probabilistic classifiers (del Jesus
et al., 2004; Otero and Sánchez, 2006; Yalabik and Fatos, 2007). This has resulted in several
new approaches to use GAs in machine learning, which have shown to be highly competitive
with respect to traditional non-evolutionary systems (Orriols-Puig et al., 2008e,d).

The purpose of this section is to describe the five main branches of GBML. We start with
the description of Michigan- and Pittsburgh-style LCSs. As several particular implementa-
tions have been designed for both types of systems, we provide a general schema for each LCS.
Then, we present three other forms of GBML that have received a special amount of attention
during the last decade: Iterative rule learning (IRL) (Venturini, 1993), genetic cooperative-
competitive learning (GCCL) (Giordana and Neri, 1995; Greene and Smith, 1993), and the

1http://www.evofit.co.uk
2http://www.optimatics.com
3http://www.schema.com

25

CHAPTER 2. MACHINE LEARNING WITH LEARNING CLASSIFIER SYSTEMS

Population

Classifier1

Classifier2

Classifier3

...
Classifiern

Action/class decision process

Evaluation of selected classifiers

Classifier Evaluation System

Search algorithm (GA)
Selection, crossover, mutation, and replacement

Classifier Discovery System

ENVIRONMENT (stream of examples)

Example
Predicted action

or class
Feedback

Figure 2.3: Simplified schematic of Michigan-style LCSs which the typical process organization.

organizational classifier system (OCS) (Wilcox, 1995). All these three approaches are combines
of Michigan- and Pittsburgh-style LCSs. The IRL approach uses a Michigan-like representa-
tion in a Pittsburgh-style LCSs to learn a set of rules incrementally. GCCL systems define a
framework where both competition in system niches and cooperation among all rules are per-
formed. OCS distributes classifiers in organizations and takes ideas from the economic study of
transaction costs to control the sizes of these organizations. A general schema of the process
organization of each branch of GBML is presented as follows.

2.3.1 Michigan-style LCSs

Since the first successful implementation of a Michigan-style LCSs (Holland and Reitman, 1978),
research on Michigan-style LCSs has resulted in new systems that have been applied to different
types of learning tasks. Therefore, although initially designed to simulate animal behavior—later
inspiring the whole field of reinforcement learning (Sutton and Barto, 1998)—, current LCSs
can be applied to a large variety of learning tasks such as supervised learning and data mining
(Bernadó-Mansilla and Garrell, 2003; Bull, 2004; Bull et al., 2008), function approximation
(Wilson, 2002b; Butz et al., 2008), reinforcement learning (Lanzi, 1999b, 2002; Lanzi et al.,
2005; Butz et al., 2005a), and clustering (Tamee et al., 2006, 2007). As proceeds, we present a
general architecture that highlights the common points among the different implementations.

Figure 2.3 illustrates the common process organization of current Michigan-style LCSs. That
is, all Michigan-style LCSs share three key components that distinguish them from other GBML
and machine learning techniques:

1. a knowledge representation based on classifiers, which maps the inputs with classes or
actions,

26

2.3. GENETIC-BASED MACHINE LEARNING AND LEARNING CLASSIFIER SYSTEMS

2. a classifier evaluation system which evaluates the population of classifiers online, and

3. a classifier discovery system that is triggered with a certain frequency and is responsible for
discovering new promising classifiers and adapting the knowledge base to eventual changes
in the environment.

It is worth highlighting that the system learns online from an environment, which can represent
either the environment in which an agent lives or a set of examples that are made available in
a data stream.

The core of the system maintains a population of classifiers. Each classifier consists of (a)
a structure that maintains an input/output mapping, identifying to which inputs the classifier
is applicable and which action should be performed in case of matching, and (b) several param-
eters that maintain different statistics of each classifier, such as its fitness. The structure that
maintains the input/output mapping has usually been implemented with production rules (Hol-
land and Reitman, 1978; Wilson, 1994, 1995, 2001; Bernadó-Mansilla and Garrell, 2003); other
implementations such as neural networks (Bull and O’Hara, 2002), first-order logic expressions
(Mellor, 2005), messy representations (Lanzi, 1999a), LISP s-expressions (Lanzi and Perrucci,
1999), and gene expression programs (Wilson, 2008) have also been used. In any case, note
that each classifier covers a restricted set of sensorial inputs; therefore, the solution of a given
problem is the whole population.

Michigan-style LCSs update the parameters of these classifiers online by means of interacting
with the environment. That is, at each learning iteration, the environment provides a new input
example. Then, the system uses a sub-population of classifiers to decide the action or class that
should be taken according to the current input. This action is given to the environment, which,
in turn, returns a feedback that indicates the quality of the prediction. Then, the evaluation
component uses this information to adjust the quality of the classifiers that have participated
in the action decision process. Moreover, with a certain frequency, the rule discovery system
is triggered, generating new promising classifiers. Usually, a niche-based steady-state GA is
employed, which selects a group of classifiers, applies genetic operators to create new ones, and
introduces them into the population removing other classifiers if there is no room for the new
ones. Other search procedures such as evolution strategies have recently been used to guide the
classifier discovery system of LCSs (Morales-Ortigosa et al., 2008a,b).

Several Michigan-style LCSs have been designed since the first implementation of CS-1 by
Holland and Reitman (1978), such as the EYE-EYE system (Wilson, 1981, 1985a), the Boole
system (Wilson, 1985b, 1987)—which took some inspiration from Goldberg (1983) work on
LCSs—, and the NewBoole method (Bonelli and Parodi, 1991). Although these systems were
able to solve some specific applications, several drawbacks, mainly associated with the achieve-
ment of accurate generalizations, hindered their success. Further research resulted in the design
of the extended classifier system (XCS) by (Wilson, 1995), supposing a tipping point in the
LCSs research. As were its ancestors, XCS was originally devised to solve reinforcement learn-
ing tasks. Since then, several new Michigan-style LCSs have been designed based on the XCS’s
architecture. One of these derived systems can be found in UCS (Bernadó-Mansilla and Garrell,
2003), which inherits the main components of XCS, but specializes the system for supervised
learning.

27

CHAPTER 2. MACHINE LEARNING WITH LEARNING CLASSIFIER SYSTEMS

Population

Solution1

Solution2

Solution3

...
Solutionn

Evaluation of the fitness of
each individual as a whole

Evaluation of new solutions

Search algorithm (GA)
Crossover and mutation

Discovery of new solutions

Buffer of Training
Examples

selection

replacement

Classifieri1

Classifieri2

...
Classifierin

Solutioni

Figure 2.4: Simplified schematic of Pittsburgh-style LCSs.

2.3.2 Pittsburgh-style LCSs

Contemporaneous with the research on Michigan-style LCSs, some authors took another ap-
proach and extended GAs to machine learning, resulting in the so-called Pittsburgh-style LCSs.
Pittsburgh-style LCSs have three fundamental differences with respect to Michigan-style LCSs:
(1) the knowledge representation, (2) the evaluation system, and (3) the application mode of
the GA and the definition of the genetic operators. In this section, we examine these differences,
describe a general process organization of Pittsburgh-style LCSs, and review some of the most
significant implementations in this area.

Figure 2.4 illustrates the process organization of a Pittsburgh-style LCSs, which is directly
extended from the typical process organization of a simple GA. In Pittsburgh-style LCSs, indi-
viduals are complete solutions to the whole problem; that is, each individual should cover all
the feature space, instead of only covering a portion of it as in the Michigan approach. Usually,
Pittsburgh-style LCSs represent individuals as a disjunction of rules—which in most cases are
made available as a decision list (Rivest, 1987). Nonetheless, other representations such as a set
of decision trees (Llorà and Garrell, 2001; Llorà and Wilson, 2004) have also been used. In the
remainder of this section, for consistency with the Michigan approach, we use the term classifier
to refer to each one of fundamental parts of an individual.

Since each individual maintains a set of classifiers, which jointly cover the whole problem,
there is no need for evaluating the quality of each of these classifiers on its own. Therefore, dif-
ferently from the Michigan approach, the classifier apportionment algorithm can be sidestepped;
instead, a single measure is enough to evaluate the quality of the whole individual. Different
indicators have been used to evaluate the quality of individuals, the prediction accuracy and
the generality of the individuals being the most common ones. Thence, immediately after its

28

2.3. GENETIC-BASED MACHINE LEARNING AND LEARNING CLASSIFIER SYSTEMS

creation, each individual is evaluated offline with a set of examples, which either have been pro-
vided at the beginning of the run in the form of a static data set or have been collected during
the learning process. Note that, under this approach, there is no control about the contribution
of each classifier to the performance of the whole individual.

Then, the population is evolved by means of genetic algorithm cycles. That is, at each
iteration, the system selects a set of individuals, which are crossed, mutated, and inserted
into the population replacing other probably low fit individuals. The crossover and mutation
operators are adapted to deal with the representation of the individuals. At the end of the
learning process, the best individual in the population is used to predict the output of new test
examples.

After the implementation of LS-1 (Smith, 1980, 1983, 1984), the first Pittsburgh-style LCS,
there have been some successful developments of Pittsburgh-style LCSs for supervised learning
such as GABL (Jong and Spears, 1991) and GIL (Janikow, 1993). In GABL, each individual
is encoded with a variable-length set of rules, and each rule follows a fixed-length, binary rep-
resentation. Rules have no class associated since GABL performs concept learning, that is, it
learns only positive or negative examples. The fitness is computed as the squared accuracy
function. The system uses the typical genetic operators except for crossover, which is restricted
to ensure that the operator selects the same position to cut the variables of two parents. GIL
follows a similar scheme but uses rules defined in the VL1 logic (Michalski et al., 1986) and
a fitness function that tries to balance the accuracy-complexity tradeoff of the individuals. In
addition, the system is provided with several operators that modify the rules at the semantic
level. A more recent implementation of a Pittsburgh-style LCS, which overcomes the scalability
problems detected in previous approaches (Freitas, 2002), can be found in GAssist (Bacardit,
2004).

2.3.3 Iterative Rule Genetic-based Machine Learning

Iterative rule learning (IRL) follows a separate-and-conquer methodology (Pagallo and Haussler,
1990) to learn a set of rules. The separate-and-conquer methodology proposes to iteratively learn
rules that cover a subset of the input instances. That is, the following two steps are iteratively
performed: (1) learn a rule that covers part (or all) of the training examples, and (2) remove
the covered examples from the training set. This process is repeated until no training examples
remain. At the end of the process, the solution is the concatenation of the rules created at
each iteration. Notice that this approach incrementally creates new rules and, at the same time,
reduces the search space since the covered examples are removed from the training data set.
This method has also been referred to as the covering strategy (Michalski, 1969).

Thence, IRL defines a general learning architecture in which different learning procedures
could be applied to extract the individual rules. Among others, GAs have been used to discover
these rules. That is, at each learning iteration, a GA is applied to induce a population of rules.
Therefore, the knowledge representation in the GA is the same as in the Michigan approach,
but rules compete with all the other rules in the population and are evaluated offline as in the
Pittsburgh approach.

The first proposal of IRL in the context of GAs can be found in the SIA system (Venturini,
1993). SIA generates an initial population from generalizations of randomly selected instances,

29

CHAPTER 2. MACHINE LEARNING WITH LEARNING CLASSIFIER SYSTEMS

and a GA is used to evolve these rules. Rules are evaluated according to their complexity and
accuracy. The process stops when the best rule remains stable for a certain number of genera-
tions. More recent approaches can be found in the HIDER system (Aguilar-Ruiz et al., 2003,
2007) and the NAX method (Llorà et al., 2007) for classification tasks and the HIRElin tech-
nique (Teixidó-Navarro et al., 2008) for function approximation tasks. A common characteristic
of these three learning algorithms is that they make the rules available as a decision list (Rivest,
1987). GAs for IRL have also been extensively used in in genetic fuzzy systems (Cordón et al.,
2001a; González and Pérez, 1999).

2.3.4 Genetic Cooperative-Competitive Learning

Genetic cooperative-competitive learning was initially designed as a synthesis of aspects of both
Michigan- and Pittsburgh-style LCSs (Greene and Smith, 1993). This approach combines the
offline rule processing of Pittsburgh-style LCSs with the idea of Michigan-style LCSs that the
solution is the whole population, and so, that rules need to collaborate to cover all the input
space. Below, we provide a general schema of this type of GBML systems in some detail.

GCCL was born with the purpose of explicitly addressing the goal of constructing highly
accurate and as-simple-as-possible decision models from a set of examples. To achieve this,
GCCL systems approach this problem by assuming that the examples of the training data set
correspond to niches in an ecology. The exact number of niches is not known, but it is assumed
to be less than the total number of examples in the data set; therefore, several examples can
be placed in the same ecological niche. Then, the population is considered to be the whole
model, which represents all the niches of the ecology, and each individual is a representation of
a particular niche. Individuals are coded as single rules, and the examples that are correctly
predicted by the individual are assigned to this rule. Then, the objective is to learn the minimum
number of niches or individuals that can cover all the input instances accurately.

The first proposal of a GCCL system can be found in COGIN (Greene and Smith, 1993)
which was designed after several works on the application of GAs to symbolic induction problems
that produced significant systems such as ADAM (Greene, 1987; Greene and Smith, 1987) and
GARGLE (Greene, 1992). Later, Giordana and Neri (1995) designed a new GCCL addressed as
REGAL, which was based on their previous work on concept learning based on GAs. The main
novelty of the system is that it provided a new selection operator that allowed the population
to converge, on average, to an equilibrium state.

2.3.5 The Organizational Classifier System

The organizational classifier system takes ideas from both Michigan- and Pittsburgh-style LCSs
to debate on appropriately sizing organizations, simulating the economic idea of transaction
costs. In what follows, we briefly review the architecture of OCS and discuss the novelties of
this approach.

OCS inherits the main ideas of simple classifier systems and focuses on the problem of trying
to distinguish rules that lead to optimal decisions from those that lead to suboptimal decisions
in order to evolve ideal rule sets. For this purpose, the system distributes the classifiers of the
population in different organizations of variable size. These organizations can interact among

30

2.4. SUMMARY

themselves. To control the size of the organizations, OCS incorporates ideas from transaction
cost theory by using reputation for organizational recruitment and by paying attention to efficient
organization sizing. That is, on the one hand, OCS includes a credit-allocation scheme that
distributes reputation among classifiers and organizations and a conflict-resolution method that
uses rules and organizations reputation to determine the interactions among classifiers and
organizations. On the other hand, the system implements an organizational growth component
that controls the sizes of the organizations by applying different genetic operators to enlarge or
shrink organizations, which preserve the idea that organizations with larger reputation may be
larger than organizations with lower reputation.

Despite the novelty of the ideas proposed in the OCS framework, research on OCS systems
alike has been scarce during the last decade. Recently, these concepts have been applied by
Vallim et al. (2008) to deal with problems of multi-label classification.

In this section, we presented four branches of GBML, which share the use of a GAs for
machine learning. Among them, this thesis is focused on Michigan-style LCSs. The most
important reasons that led us to research on these types of LCSs is that Michigan-style LCSs

1. Evolve a distributed solution in parallel, applying local search procedures to niches instead
of optimizing a set of classifiers globally.

2. Create individual classifiers whose contribution to the whole is determined by the system;
therefore, each individual classifier can be regarded as an expert in the region of the feature
space that it covers.

3. Learn the model online from a stream of examples. This is not only useful for reinforce-
ment learning problems—where instances come online as the agent finds new sensorial
states while moving around its environment—, but also for tackling current industrial and
scientific applications in which large volumes of data are generated online, and the learning
systems need to extract the key information that resides in the stream of data on the fly.

These three characteristics, together with the increasing application of LCSs to new real-world
problems, encouraged us to take this approach in the present work.

2.4 Summary

This chapter provided a brief introduction to ML and to the use of GAs in ML. Starting from
a brief description of ML and a classic taxonomy of the different ML tasks, we introduced
evolutionary computation methods in general, and GAs in particular, as robust optimization
techniques. Then, we explained different types of algorithms that use GAs to evolve their
knowledge representation, placing LCSs in this context.

The present work focuses on Michigan-style LCSs, the original approach to use GAs for
machine learning. While this chapter has provided a general introduction to these types of
systems, the next chapter focuses on the two approaches studied in this thesis: XCS and UCS.
We consider XCS since it is, by far, the most influential Michigan-style LCS, which has been
widely used to solve different types of problems. Besides, this thesis is also interested in UCS,

31

CHAPTER 2. MACHINE LEARNING WITH LEARNING CLASSIFIER SYSTEMS

an extension of XCS that restricts the learning architecture to supervised learning with the aim
of dealing with classification problems more efficiently. In the next chapter, these two LCSs are
described in detail.

32

Chapter 3

Description of XCS and UCS

The design of the extended classifier system (XCS) by Wilson (1995) supposed a milestone in
the history of learning classifier systems. Wilson proposed XCS after several years of research
that yielded important results such as the boole system (Wilson, 1985b, 1987) or the most
recent zeroth-level classifier system (ZCS) (Wilson, 1994). The success of XCS was mainly
due to its “simplified” structure which addressed the different challenges of LCSs at that time.
XCS avoided the evolution of an excessive number of over-general classifiers by basing fitness
on the accuracy of the reward prediction instead of on the prediction itself. Besides, XCS
provided intrinsic generalization capabilities due to the combination of a niche-based GA and a
population-wise deletion operator.

Since its first proposal in 1995, a lot of research has been conducted on formalizing the
algorithmic structure (Butz and Wilson, 2001), enhancing the system with new operators (Wil-
son, 1998; Kovacs, 1999; Butz et al., 2003), and deriving theory for a better understanding of
its underlying processes (Butz and Pelikan, 2001; Butz et al., 2004b, 2005a, 2007; Drugowitsch
and Barry, 2008; Drugowitsch, 2008). Besides, new systems have been derived from XCS for
specific types of learning tasks. In the context of supervised learning, Bernadó-Mansilla and
Garrell (2003) defined the supervised classifier system (UCS), an LCS that inherited the process
organization from XCS, but was specialized for supervised learning. Since in this thesis we are
especially concerned about solving supervised learning tasks, we consider both XCS—as being
the general learning architecture—and UCS—as being specialized for these types of tasks.

The purpose of this chapter is to provide a concise description of both XCS and UCS. Section
3.1 introduces the XCS architecture and further details the different components of the system
and the process organization; besides, we provide some theory that explains why XCS is able
to generalize from a set of examples. Section 3.2 presents UCS, focusing on the modifications
introduced with respect to the online architecture of XCS. In both cases, we assume a ternary
representation. Section 3.3 reviews some new representations proposed to deal with new types
of data more effectively. Finally, section 3.4 summarizes the chapter.

33

CHAPTER 3. DESCRIPTION OF XCS AND UCS

3.1 The XCS Classifier System

XCS (Wilson, 1995, 1998) is a Michigan-style LCSs that evolves a population of classifiers—
usually, production rules—online by means the interaction with an environment. A steady
state genetic algorithm is responsible for evolving these classifiers online. The main differences
between XCS and other Michigan style LCSs are (1) that XCS simplifies the architecture of other
Michigan-style LCSs—for example, removing the message list—and (2) that XCS computes the
classifiers’s fitness based on the accuracy of the reward prediction instead of calculating the
fitness from the reward prediction itself. Due to the latter aspect, XCS creates a set of maximally
general and accurate classifiers that map the problem space completely; that is, classifiers with
both low and high expected prediction reward are evolved by the system, creating the so-called
complete action map.

As follows, we explain the learning architecture of XCS in detail. First, we review the
knowledge representation assuming that the classifiers are represented with ternary rules, as
done in the first versions of the system. Then, we explain the process organization of the
system, which includes the learning interaction, the classifier evaluation system, the discovery
component, and the reasoning mechanism to infer the action of a new input instance. Finally, we
review theory that explains why XCS is able to generalize and learn a set of maximally general
and accurate classifiers. All the explanation assumes that XCS is working in single step tasks.
For more details about the architectural changes needed to deal with multiple step problems,
the user is referred to (Wilson, 1995, 1998; Butz et al., 2005a).

3.1.1 Knowledge Representation

XCS evolves a distributed knowledge represented by a population [P] of classifiers, where each
classifier contains a rule and a set of parameters that estimate the quality of the rule. Different
rule representations have been designed for XCS so far. In general, XCS can evolve any type
of rule—or even, other types of representations such as trees or neural networks—provided
that the genetic operators are properly redefined. In this section, we consider the ternary rule
representation, since this was the representation originally designed with the system. Later, in
section 3.3, we present different types of rules representations that have been designed for XCS
and UCS in the last few years.

A rule takes the form

if condition then action. (3.1)

That is, it consists of a condition, which is formed by a set of variables in disjunctive normal
form that specify when the classifier is applicable, and an action, which determines the predicted
action or class. Each variable of the condition can take a value of the ternary alphabet {0, 1,
#}`, where ` is the number of input variables. The don’t care symbol ‘#’ allows for rule
generalization; that is, ‘#’ indicates that the given variable matches any input value. Therefore,
a rule k matches an input example e if for each variable vi: vk

i = ei ∨ vk
i = #.

Besides the rule, a classifier also contains a set of parameters that maintain different statistics
of the rules. The most important parameters associated with a classifier are:

34

3.1. THE XCS CLASSIFIER SYSTEM

1 Cà A P eF num as tsexp
2 Cà A P eF num as tsexp
3 Cà A P eF num as tsexp
4 Cà A P eF num as tsexp
5 Cà A P eF num as tsexp
6 Cà A P eF num as tsexp

…

Population [P]

ENVIRONMENT

Problem
instance

Match set
generation

1 Cà A P eF num as tsexp
3 Cà A P eF num as tsexp
5 Cà A P eF num as tsexp
6 Cà A P eF num as tsexp

…

Match Set [M]

1 Cà A P eF num as tsexp
3 Cà A P eF num as tsexp
5 Cà A P eF num as tsexp
6 Cà A P eF num as tsexp

…

Action Set [A]

c1 c2 … cn

Prediction Array

Genetic Algorithm

Selection, reproduction,
and mutation

Deletion

Selected
action

Classifier
Parameters

Update

REWARD

Random Action

Figure 3.1: Schematic of the process organization of XCS.

1. The payoff prediction p, an estimate of the payoff that the classifier will receive if its
condition matches and its action is chosen.

2. The prediction error ε, an estimate of the average error between the classifier’s prediction
and the received payoff; that is, it computes the mean absolute deviation of the prediction
error with respect to the received rewards.

3. The fitness F , an estimate of the scaled, relative accuracy1 of the payoff prediction.

4. The action set size as, an estimate of the size of the action sets in which the classifier has
participated (see section 3.1.2).

5. The experience exp, which reckons the number of examples that the classifier has matched
during its life.

6. The numerosity n, which indicates the number of copies of the classifier in the population.
In this way, identical classifiers can be represented as a single individual in the population,
speeding up the runtime since the matching time (as well as the time required for other
operations) decreases.

To completely understand the knowledge representation, in the following sections we detail
how the different components of XCS interact to evaluate the existing rules and to create new
promising classifiers.

3.1.2 Learning Interaction

XCS learns online by interacting with an environment which provides a new training example
at each iteration. Figure 3.1 schematically illustrates this process. The system works in two

1Relative accuracy is computed with respect to other classifiers in the same action set.

35

CHAPTER 3. DESCRIPTION OF XCS AND UCS

different modes: exploration or training and exploitation or test. In exploration mode, XCS
seeks to evolve a maximally general rule set that minimizes the prediction error of the rules.
In exploitation mode, XCS uses the rule set to decide the best action for a new input example.
As proceeds, we discuss in more detail how the different components of XCS interact to learn a
population of maximally general and accurate classifiers from the interaction with this environ-
ment; that is, we focus on the exploration phase. In section 3.1.5, we explain how the evolved
knowledge is exploited to predict the action of new inputs.

XCS usually starts the exploration phase with an empty population. At each learning iter-
ation, the system is provided with a new instance e. Then, the system builds a match set [M]
containing all the classifiers in [P] whose conditions match e. If the number of classes repre-
sented in [M] is less than the θmna threshold (θmna is usually set to the total number of possible
classes of the problem), the covering operator is triggered, creating as many new classifiers as
required to cover θmna different classes. The condition of the new classifiers created by covering
is generalized from e. That is, each variable is set to ‘#’ with probability P# (where P# is a
configuration parameter); otherwise, the variable takes the corresponding value in e. The class
of the new classifier is randomly selected among the classes that are not covered in [M]. The
parameters of the new classifiers are set to initial values; typically, p = 10, ε = 0, and F = 0.01.
These parameters are initialized with a value close to zero to avoid an excessive influence of
young classifiers in the selection and inference procedures; as long as these classifiers participate
in action sets, the parameter update procedure adjusts their parameters to their real value.
Besides, the numerosity is set to 1, the experience to 0, and the action set size to the size of the
match set where the covering has been fired.

Next, the system computes the system prediction P (ci) for each possible class, which esti-
mates the payoff that the system will receive if ci is selected as output. P (ci) is calculated as
the fitness weighted average of the predictions of the classifiers in [M] that advocate class ci;
that is:

P (ci) =

∑
cl.class=ci∧cl∈[M] cl.p · cl.F∑

cl.class=ci∧cl∈[M] cl.F
, (3.2)

where cl.class, cl.p, and cl.F refer to the class, the reward prediction, and the fitness of the
classifier respectively. Then, XCS selects one of the classes randomly. Thus, XCS explores
the consequences of all classes for each possible input. Notice that other exploration regimes,
such as giving each class ci a selection probability proportional to Pci , could be applied as well.
The chosen class determines the action set [A], which consists of all classifiers advocating that
class. The action set works as a niche where the parameters update procedure and the genetic
algorithm take place. The next subsections explicate these two procedures in detail.

3.1.3 Classifier Evaluation

In training mode, after XCS sends the chosen class to the environment, a reward R is returned. R
is maximal if the proposed class is the same as the training example (usually 1000), and minimal
(usually zero) otherwise. Then, in single step problems, classifier parameters are updated with
respect to the immediate reward in the current action set. As proceeds, we detail this parameter
update procedure.

36

3.1. THE XCS CLASSIFIER SYSTEM

The prediction of each classifier cl is first updated according to the Widrow-Hoff rule (Widrow
and Hoff, 1988) as

cl.p ← cl.p + β(R − cl.p), (3.3)

where β (0 < β ≤ 1) is the learning rate. The learning rate fixes the adaptivity of the parameters
to the received rewards. That is, large values of β would produce large corrections in the
prediction parameter each time the classifier participates in [A], whilst low values of β will cause
small corrections. A typical value for this parameter is β = 0.2 (Butz and Wilson, 2001). Next,
the prediction error cl.ε is computed as

cl.ε ← cl.ε + β(|R − cl.p| − cl.ε). (3.4)

Then, the fitness is updated as follows. First, the accuracy cl.κ of each classifier cl in [A] is
calculated as

cl.κ =

α(cl.ε/ε0)−ν cl.ε ≥ ε0;

1 otherwise.
(3.5)

Note that cl.κ is an inverse function of the error. The formula uses a power function with expo-
nent ν (ν is a configuration parameter), enabling in this way to tune the pressure toward highly
accurate classifiers; besides, when the classifier has a prediction error lower than the configura-
tion parameter ε0, the system considers this classifier maximally accurate. The accuracy cl.κ is
used to compute the relative accuracy cl.κ′ as

cl.κ′ =
cl.κ · cl.n∑

cli∈[A] cli.κ · cli.n
, (3.6)

which reflects the relative accuracy of the classifier with respect to the other classifiers in the
same action set. Thence, using this procedure, all the classifiers in the niche share the global
resources of that niche. Then, cl.κ′ is employed to update the fitness as

cl.F = cl.F + β(cl.κ′ − cl.F). (3.7)

Thus, the fitness is an estimate of the accuracy of the classifier prediction relative to the accura-
cies of the overlapping classifiers. This provides fitness sharing among the classifiers belonging
to the same action set. Finally, the action set size is updated as

cl.as = cl.as + β(|[A]| − cl.as), (3.8)

where |[A]| is the size of the current action set. At the end of this process, the experience of the
classifier is incremented.

Classifier’s parameters p, ε, and as are updated differently in the first iterations of XCS.
That is, to let the classifier parameters move to quickly to their real values at the beginning
of the classifier life, the moyenne adpative modifiée technique (Venturini, 1994) is used. This
technique sets the parameters of the classifiers directly to the average value computed with the
instances that the classifier has matched. This process is applied while the experience of the
classifier is less than 1/β.

Once the parameters of the classifiers in [A] have been evaluated, the GA can be applied to
the current niche. The next section explains the genetic search in more detail.

37

CHAPTER 3. DESCRIPTION OF XCS AND UCS

3.1.4 Classifier Discovery

XCS uses a steady-state niche-based genetic algorithm (GA) (Goldberg, 1989a) to discover new
promising classifiers. The GA is triggered in the current action set if the average time since
its last application to the classifiers in [A] is greater than θGA. Here, we explain the basic
mechanisms of the GA.

The GA selects two parents from the current [A] following either proportionate selection
(Wilson, 1995) or tournament selection (Butz et al., 2005c) and copies them. Under proportion-
ate selection, each classifier has a probability psel(cl) to be selected proportional to its fitness;
that is,

psel(cl) =
cl.F∑

cli∈[A] cli.F
. (3.9)

Under tournament selection, a proportion of the action set, specified with the configuration
parameter σ, is selected to participate in the tournament. The classifier with maximum fitness
in the tournament is chosen.

The copies undergo crossover with probability χ and mutation with probability µ per allele.
Two crossover schemes have been used for XCS: two-point crossover and uniform crossover. Two-
point crossover copies the two parents into two offspring, selects two cut points in the offsprings,
and swaps all the variables between the two points. Uniform crossover decides, for each variable,
from which parent the information is copied. If crossover, is not applied, the offspring are exact
copies of the parents. After this, mutation is applied as follows. For each input variable, the
mutation operator randomly decides whether the variable needs to be changed. In this case, it
randomly chooses a new value for the variable. The class of the rule also undergoes the same
process.

The offspring parameters are initialized as follows. If crossover is not applied, the prediction,
the error, and the fitness parameters are copied from the selected parent. Otherwise, these
parameters are set to the average value between the corresponding parameters in the parents.
In both cases, the fitness is decreased to 10% of the parental fitness. Experience and numerosity
are initialized to 1.

The resulting offspring are introduced into the population via subsumption (Wilson, 1998).
That is, if there exists a sufficiently experienced (cl.exp > θsub) and accurate (cl.ε < ε0) classifier
cl in [A] whose condition is more general than the new offspring, the numerosity of this classifier
is increased. Otherwise, the new offspring is introduced into the population. Two classifiers are
removed if the population is full. The deletion probability of a classifier is proportional to the
action set size estimate of the classifier; moreover, the deletion probability is increased if the
classifier cl is experienced enough (cl.exp > θdel) and its fitness cl.F is smaller than a proportion
of the average fitness of the population F (cl.F < δF) (Kovacs, 1999). That is, the deletion
probability pdel of a classifier cl is computed as

cl.pdel =
cl.d∑

∀cli∈[P] cli.d
, (3.10)

38

3.1. THE XCS CLASSIFIER SYSTEM

where

cl.d =

{
cl.n·cl.as·F[P]

cl.F if cl.exp > θdel and cl.F < δF[P];
cl.as · cl.n otherwise,

(3.11)

where F[P] is the average fitness of the population. This deletion scheme biases the search toward
highly fit classifiers and, at the same time, balances the classifiers’ allocation in the different
action sets.

Once the learning finishes, the evolved population is used to infer the class of new unlabeled
instances. The next section provides the reasoning mechanism used by XCS.

3.1.5 Class Inference in Test Mode

The final solution of XCS consists of a set of rules with minimal error that cover all the problem
space. This means that, in classification tasks, the system would evolve two types of rules: (1)
rules with high prediction and low error and (2) rules with low prediction—thence, predicting
the wrong class—and low error. For this reason, it is said that XCS evolves a complete action
map (Wilson, 1995; Kovacs and Kerber, 2001). In test or exploitation mode, all the matching
classifiers in the population are used to infer the class of a new input instance. The reasoning
mechanism works as follows. Firstly, XCS creates [M] with all the matching classifiers; covering
is not applied in any case. Then, the prediction array is formed as explained in section 3.1.2,
and the most voted class is returned as output. Note that during test, the population is never
modified.

In summary, XCS is an online system which represents individuals as classifiers that contain
single rules, uses adapted reinforcement learning techniques to evaluate the quality of these
classifiers, employs a steady-state niche-based GA to discover new promising rules, and applies
a fitness-based voting policy to infer the class of test instances. XCS process organization is
based on the activation of classifiers to form match sets and action sets, and on the application
of the parameter update procedure and the GA on these action sets or niches. In the next
subsection, we explain how this process leads to the evolution of accurate rule sets.

3.1.6 Why Does XCS Work?

After defining the learning process and the reasoning mechanism of XCS, we now intuitively
explain the mechanisms that let XCS evolve a set of maximally general and accurate classifiers.
For this purpose, we revise the work by Butz et al. (2004b), and explain the five evolutionary
pressures identified by the authors that lead the system to evolving a set of optimal classifiers.
The explanations are maintained in an abstract level, and the details of the mathematical
formulation are not provided. The user is referred to (Butz et al., 2004b) for the details.

Butz et al. (2004b) identified five evolutionary pressures that guide the learning process in
XCS:

1. The set pressure.

2. The mutation pressure.

39

CHAPTER 3. DESCRIPTION OF XCS AND UCS

3. The deletion pressure.

4. The subsumption pressure.

5. The fitness pressure.

In what follows, each item is briefly explained.

Set pressure. The set pressure is mainly due to the combination of the application of the GA
in niches and the deletion in the whole population. This pressure was early explained by
Wilson (1995), who formulated the following hypothesis: if two classifiers are equally accurate
but have different generalizations, then the most general one will participate in more action
sets, having more reproductive opportunities and finally displacing the specific classifier. This
hypothesis was later investigated by Kovacs (1997), defining the optimality hypothesis, and
formalized by Butz et al. (2004b). In brief, this supports the fact that the most general and
accurate classifiers will take over their niches, displacing both over-general and most specific,
accurate classifiers.

Mutation pressure. Whereas the set pressure moves the population toward generality and accu-
racy, Butz et al. (2004b) identified that mutation, in its own, causes the population to tend to
more specific classifiers. That is, mutation changes the value of a variable, which can take one
value from the ternary alphabet {0,1,#}. As two of these values are specific, i.e., {0,1}, and the
last one is general, mutation pushes toward a distribution of 66.7%/33.3% of specific/general
bits. Obviously, the intensity of this pressure depends on the period of application of the GA
and the mutation probability.

Deletion pressure. The population-wise deletion operator removes classifiers depending on their
action set size estimate and their fitness. As classifiers that belong to large action sets are
given a higher deletion probability, the operator makes pressure towards even distribution of
classifiers in the different system niches. Furthermore, the deletion operator also pushes toward
removing classifiers with low fitness, driving the search toward the fittest individuals.

Subsumption pressure. The subsumption pressure pushes towards generalization inside the
niche. Once several accurate classifiers have been found, subsumption deletion causes the
system to prefer the maximally general classifiers over the most specific ones. That is, GA
subsumption checks, for each offspring, if there exists any accurate classifier in [A] whose con-
dition includes the offspring’s condition; if so, the numerosity of this classifier is incremented.
Therefore, subsumption produces an additional pressure toward generalization.

Fitness pressure. Finally, the fitness pressure is present in all the mechanisms of XCS, and
influences the four aforementioned pressures as well. In general, fitness pressure pushes the
population from over-general to more specific and accurate classifiers. It interacts with the
other pressures since selection, mutation, and subsumption depend on classifier’s fitness. In
summary, the interaction of the five pressures drives the population toward a population of
accurate maximally general classifiers.

With the explanation provided in this section we have covered the technical details and have
glimpsed the ideas that explicate why XCS works. Notice that, in essence, XCS is a general

40

3.2. THE UCS CLASSIFIER SYSTEM

architecture—which evaluates rules online and uses a robust search mechanism to discover new
promising rules—rather than a specific architecture particularly designed for solving a concrete
set of tasks. For this reason, the learning architecture of XCS has been applied—sometimes with
few modifications—to solve different types of problems. In the following section, we present one
of this system modifications that specializes XCS to deal with data classification tasks more
efficiently. The new architecture is addressed as the supervised classifier system (UCS).

3.2 The UCS Classifier System

UCS is an accuracy-based LCS that inherits the main components of XCS, but specializes the
online learning architecture for classification tasks (Bernadó-Mansilla and Garrell, 2003). The
aim of the system is to take advantage of having the class of the training instances, so focusing the
exploration process toward classifiers that predict the correct class accurately. Therefore, UCS
does not evolve a complete action map—including classifiers with low prediction and error—,
but it does create the best action map, which consists of a set of maximally general and accurate
classifiers that predict the correct class. With this modification, UCS is expected to

1. evolve a solution quicker than XCS, since it only explores the correct class, and

2. require less population to store the solution, as it only needs to maintain the best action
map.

Furthermore, UCS adapts the classifier’s parameters to supervised learning. As follows, we
review the learning mechanism of UCS, especially focusing on the novelties with respect to the
XCS architecture. Therefore, we first revisit the knowledge representation, which introduces new
parameters to assess the quality of the rules. Then, we analyze the differences in the learning
interaction, rule evaluation, rule discovery, and reasoning mechanism to infer the class of new
input instances.

3.2.1 Knowledge Representation

As XCS, UCS evolves a population [P] of classifiers, where each classifier contains a rule and
a set of parameters. The rule representation is copied from XCS. Therefore, rules consist of a
condition that advocates a class. Besides, the classifiers have the following parameters:

1. The accuracy acc, which maintains an average of the proportion of matching examples
that have been correctly classified by the rule.

2. The fitness F , which is computed as a function of the accuracy.

3. The correct set size cs, an estimate of the size of the correct sets in which the classifier
has participated (see section 3.2.2).

4. The experience exp, which reckons the number of examples that the classifier has matched
during his life.

5. The numerosity n, which indicates the number of copies of the classifier in the population.

41

CHAPTER 3. DESCRIPTION OF XCS AND UCS

1 Cà A acc F num cstsexp
2 Cà A acc F num cstsexp
3 Cà A acc F num cstsexp
4 Cà A acc F num cstsexp
5 Cà A acc F num cstsexp
6 Cà A acc F num cstsexp

…

Population [P]

Classifier
Parameters

Update
Match set
generation

1 Cà A acc F num cstsexp
3 Cà A acc F num cstsexp
5 Cà A acc F num cstsexp
6 Cà A acc F num cstsexp

…

Match Set [M]Problem instance
+

output class

3 Cà A acc F num cstsexp
6 Cà A acc F num cstsexp

…

Correct Set [C]

correct set
generation

Genetic Algorithm

Selection, reproduction,
and mutationDeletion

ENVIRONMENT

Figure 3.2: Schematic of the process organization of UCS.

Therefore, UCS inherits the experience and the numerosity parameters, redefines the accuracy
and the fitness parameters, and introduces the correct set size parameter. Note that one of the
key differences with respect to XCS is that, in UCS, fitness is based on accuracy, which is directly
computed as the true proportion of correct predictions of the given rule. With the modification
of the knowledge representation in mind, the next subsections describes the changes on the
learning interaction proposed by UCS to adapt the online learning architecture to supervised
learning tasks.

3.2.2 Learning Interaction

Figure 3.2 illustrates the process organization of UCS, which redefines the process organization
of XCS according to a supervised learning scheme. The main difference with respect to XCS
is that, in UCS, the class of each learning instance is provided by the environment. Therefore,
the learning architecture takes advantage of this information to explore only the class of each
sampled input example. As proceeds, this procedure is explicated in detail.

As XCS, UCS starts the exploration phase with an empty population. At each learning
iteration the system receives a new input example e with its class c. Then, the system creates
the match set [M], which contains all the classifiers in the population [P] whose condition matches
e. Next, all the classifiers in [M] that predict the class c form the correct set [C]. If [C] is empty,
the covering operator is activated, which creates a new classifier whose condition is generalized
from e (as in XCS), and whose predicted class is set to c. Hence, covering aims at discovering a
single classifier that predicts the sampled input instance correctly; besides, some generalization
is added by setting each variable to ‘#’ with probability P#. The parameters of the new classifier

42

3.2. THE UCS CLASSIFIER SYSTEM

are set to: exp = 1, num = 1, cs = 1, acc = 1 and F = 1. As fitness and accuracy are estimated
from a single instance—and so, the estimate may be poor—UCS does not let young classifiers
have a strong participation in the genetic selection and the reasoning mechanism until they do
not receive a minimum number of parameter updates.

After this, the parameters of all classifiers in the match set are evaluated, and eventually, the
correct set—which defines a niche of classifiers with similar conditions and the same predicted
class—receives a genetic event. Note that the parameter update procedure is applied to [M]
instead of to [C]. UCS moves this procedure to the match set since the accuracy of all the
matching classifiers that predict the input instance wrongly needs to be decreased. Also, notice
that the correct set size acts as a niche where the genetic algorithm is applied, following the
same idea of XCS. These two procedures are detailed in the following two subsections.

3.2.3 Classifier Evaluation

Each time a classifier participates in a match set, its experience, accuracy, and fitness are
updated. Firstly, the experience is increased. Then, the accuracy is computed as the percentage
of correct classifications:

cl.acc =
number of correct classifications

cl.exp
. (3.12)

Thus, accuracy is a cumulative average of correct classifications over all matches of the classifier.
Next, fitness is updated according to the following formula:

cl.Fmicro = (cl.acc)ν , (3.13)

where ν is a constant set by the user that determines the strength pressure toward accurate
classifiers (a common value is 10). Thus, differently from XCS, fitness is calculated individually
for each micro-classifier, and it is not shared. The fitness of a macro-classifier cl.Fmacro is
obtained by

cl.Fmacro = cl.Fmicro · cl.n. (3.14)

Finally, each time the classifier participates in [C], the correct set size cl.cs is updated. cl.cs is
computed as the arithmetic average of the sizes of the correct sets in which the classifier has
taken part.

Once the parameters of the classifiers in [M] have been evaluated, the GA can be applied to
the current correct set. The following subsections explain this process.

3.2.4 Classifier Discovery

UCS uses a steady-state niche-based GA as the primary search mechanism to discover new
promising rules. The GA is applied to [C] following the same procedure as in XCS. Here, we
briefly review this process and explain in more detail the rule deletion mechanism, which is
slightly modified with respect to XCS’s one.

The GA is triggered in the current correct set if the average time since its last application
to the classifiers in [C] is greater than θGA. If so, the GA selects two parents from [C]. The

43

CHAPTER 3. DESCRIPTION OF XCS AND UCS

two selection schemes of XCS are also applicable here: proportionate selection and tournament
selection. The only difference is that the fitness of young classifiers (exp < θdel) is divided by
θdel to avoid their influence in the selection process. Then, the two parents are copied, creating
two new offspring, which are recombined and mutated with probabilities χ and µ respectively.
The crossover and mutation operators are directly inherited from XCS (see section 3.1.4). The
parameters of the offspring are initialized as follows. The experience and the numerosity are set
to 1. The accuracy and the fitness are also set to 1 (these parameters will go quickly to their real
values as they participate in successive match sets). Finally, cs is set to the size of the current
correct set.

Finally, both offspring are introduced into the population. First, each offspring is checked
for subsumption with the classifiers in [C]. The subsumption mechanism is adapted from XCS
as follows: if one of the classifiers cl in [C] is sufficiently experienced (cl.exp > θsub), accurate
(cl.acc > acc0) and more general than the offspring, then the offspring is not introduced into the
population and the numerosity of the subsumer classifier is increased. If the offspring cannot be
subsumed, it is inserted in the population, deleting another classifier if the population is full.
The deletion probability pdel of a rule cl is calculated as:

cl.pdel =
cl.d∑

∀cli∈[P] cli.d
, (3.15)

where

cld =

{
cl.cs·cl.n·F[P]

cl.Fmicro
if cl.exp > θdel and cl.Fmicro < δF[P];

cl.cs · cl.n otherwise,
(3.16)

where δ and θdel are configuration parameters, and F[P] is the average fitness of the population.
In this way, deletion will tend to balance resources among the different correct sets, while
removing low-fitness classifiers from the population. As fitness is computed from the proportion
of correct classifications of a classifier, classifiers that predict wrong classes are not maintained
in the population, and so, only the best action map is evolved.

The whole process is iterated during several learning steps in which a new instance is sampled
and the processes of match set creation, parameter evaluation, and genetic algorithm application
take place. After this, the system results in a population of highly general and accurate classifiers,
which are used to infer the class of new input instances. The next subsection provides the
reasoning mechanism implemented in UCS.

3.2.5 Class Inference in Test Mode

In test mode, a new input example e is provided, and UCS has to predict the associated class.
For this purpose, UCS implements a reasoning mechanism which is similar to the one of XCS.
That is, firstly, the match set is created. Then, all classifiers in [M] emit a vote, weighted by
their fitness, for the class they predict. The vote of young classifiers (i.e., exp < θdel) is decreased
by multiplying its vote by exp/θdel to diminish their influence with respect to more experienced
classifiers. The most-voted class is chosen. New inference schemes have been proposed in Brown
et al. (2007), showing that the current inference schemes of XCS is one of the best among the
compared ones. Under test mode, the population of UCS does not undergo any change; that is,
all update and search mechanisms are disabled.

44

3.3. RULE REPRESENTATIONS FOR LCSS

So far, we have detailed the key differences between the architectures of XCS and UCS. In
essence, UCS follows the same mechanisms of XCS, but introduces some little modifications
to take advantage of knowing the class of the training examples. With this new architecture,
UCS is not expected to perform better than XCS, but to be able to evolve a solution spending
less computational resources. That is, UCS needs to evolve and maintain a lower number
of classifiers—since UCS does not evolve low rewarded rules— and is expected to solve the
problem more quickly than XCS, since it only explores the “correct class”. Nonetheless, note
that the key concepts of XCS, such as the accuracy-based approach, the incremental parameter
update procedure, and the steady-state niche-based GA are still present in UCS. In the following
subsection, we argue that the same ideas introduced in section 3.1.6 to explain why XCS works
are still valid in UCS.

3.2.6 Why does UCS work?

As XCS, UCS is guided by the following five evolutionary pressures:

1. The set pressure.

2. The mutation pressure.

3. The deletion pressure.

4. The subsumption pressure.

5. The fitness pressure.

The main differences with respect to XCS is that, now, the fitness definition differs. Therefore,
the system no longer pressures toward obtaining classifiers with low prediction error, but toward
highly accurate classifiers. The consequences of this is that, as already discussed, UCS evolves
the best action map instead of a complete action map. The other pressures do not need to be
redefined as a consequence of the change in the architecture. That is, the set pressure pushes
[P] toward the most general classifiers. The mutation pressure pushes toward specificity. The
deletion pressure maintains an even distribution of classifiers in the different niches, giving more
deletion probability to the classifiers with the lowest fitness with respect to the average fitness
of the population. And finally, the subsumption pressure makes UCS prefer the most general
classifiers that are still accurate to more specific, accurate classifiers. The overall interaction of
these pressures, as in XCS, guides the search toward maximally general and accurate classifiers.

3.3 Rule Representations for LCSs

Thus far, we have described XCS and UCS with a ternary rule representation. During the
last few years, several new rule representations have been introduced to XCS and UCS to let
the systems deal with real-world problems such as interval-based representations (Wilson, 2000,
2001), hyper elipsoidal representations (Butz et al., 2006, 2008), and convex hulls (Lanzi and
Wilson, 2006). Other more general approaches that have been used to codify the classifiers
rules are neural networks (Bull and O’Hara, 2002), messy representations (Lanzi, 1999a) LISP

45

CHAPTER 3. DESCRIPTION OF XCS AND UCS

s-expressions (Lanzi and Perrucci, 1999), and gene expression program representations (Wilson,
2008). Besides, fuzzy representations have been designed for some Michigan-style LCSs (e.g.,
see Valenzuela-Rendón (1991)); fuzzy representations will be presented in detail in chapter 8.
In here, we introduce one of the most-used representations to deal with continuous attributes
in XCS, that is, the interval-based representation. As follows, we first provide some histori-
cal remarks about the different proposals of interval-based rule representation for LCSs, and
introduce the one used in the present work.

3.3.1 From the Ternary to the Interval-based Rule Representation in LCSs

Initially designed with a ternary representation, LCSs faced a new challenge when dealing with
continuous or quantitative attributes, which are often present in real-world problems. That is,
the ternary rule representation was not suitable for directly dealing with continuous data. Data
preprocessing techniques could be used to transform the continuous values into discrete values;
nonetheless, this could result in an undesirable loss of information. Recently, interval-based rule
representations have been designed to to effectively deal with continuous attributes. The most
significant of these representations are reviewed as follows.

Wilson (2000) designed one of the first interval-based representation for XCS, addressed as
center-spread representation. The center-spread representation codifies each rule variable with
a pair of values (ci, si) that defines a rectangle with center in ci and spread si. Besides, the
representation has to satisfy the constraint that ci − si/2 ≥ maxi and ci + si/2 ≤ mini, where
maxi and mini are respectively the maximum and the minimum values that the attribute can
take.

This representation empirically demonstrated to be able to evolve accurate models in artificial
problems with continuous attributes. Nevertheless, the truncation caused by guaranteing the
constrain on the maximum and the minimum values might result in an inefficient exploration of
the feature space, as later shown by Stone and Bull (2003). To overcome this problem, Wilson
(2001) presented another interval-based representation, referred to as min-max representation
in which each attribute codifies the lower `i and the upper ui limit of the interval of values where
the attribute is applicable. Although the effects of truncation are not present, this representation
still has the problem of invalid intervals eventually caused by the genetic operators. That is,
genetic operators may generate intervals where `i > ui, in which the classifier would not match
any input instance. This situation could be fixed in several ways by modifying the value of the
interval bounds.

A simple approach to deal with this effect was proposed by Stone and Bull (2003), who
introduced the unordered-bound representation. The unordered-bound representation proposes
to use the min-max representation but without prefixing which of the two bounds are the upper
bound and the lower bound. That is, the unordered-bound representation codifies each variable
as an interval (pi, qi); the smaller of these two values is considered as the lower bound of the
interval and the larger value is considered the upper bound. This has been, probably, the most
used representation for continuous attributes in the last few years.

New efforts in the definition of representations for continuous attributes were made after
the presentation of the unordered-bound representation. For example, Dam et al. (2005) argued
that the unordered-bound representation produces large changes in the semantics of the intervals

46

3.3. RULE REPRESENTATIONS FOR LCSS

when an operator exchanges the lower bound with the upper bound of an interval. Therefore,
this may thwart the correct propagation of the building blocks of the problem. In order to solve
this, Dam et al. (2005) proposed to represent an attribute with the pair (mi, pi), where mi is
the lower bound of the interval and pi is a proportion used to compute the length of the interval
si as

si = pi(pmax − mi), (3.17)

in which pmax is the maximum value that the attribute i can take. Thus, the pair (mi,pi) can
easily be translated to the lower bound `i and upper bound ui of the interval by recognizing
that

`i = mi, (3.18)
ui = mi + si (3.19)

However, the empirical results did not clearly show an improvement with respect to the unordered-
bound representation. For this reason, we used the unordered-bound representation in the
present work. The next section provides more details about this representation.

3.3.2 The Unordered Bound Representation

We now describe the unordered-bound representation in more detail and explain how the genetic
operators were adapted to deal with the new representation. As aforementioned, the new repre-
sentation codifies each variable with an interval (pi, qi), where the minimum value between the
two bounds represents the lower bound, and the maximum value represents the upper bound.
For example, a classifier whose condition is defined by the two variables <[1,2], [10,8]> matches
any input instance whose first variable ranges in [1,2] and its second variable ranges in [8,10]. As
proceeds, we explain how the covering operator, the different genetic operators that deal with
the representation—i.e., crossover and mutation—, and the subsumption operator are redefined
to deal with the new representation. For simplicity, we assume that all the input attributes have
been normalized, and so, that their values range in [0,1].

Covering Operator

The covering operator creates a new classifier whose condition is generalized from the input
example e. For this purpose, the interval of each variable i of the new classifier is initialized as

pi = ei − rand(0, r0) and (3.20)
qi = ei + rand(0, r0), (3.21)

where r0 is a configuration parameter (0 < r0 ≤ 1), and rand(0, r0) returns a random number
between 0 and r0. Therefore, this operator creates an interval that includes the value of the
corresponding attribute, and r0 controls the generalization in the initial population (it is equiv-
alent to P# in the ternary representation). An example of covering is graphically illustrated in
figure 3.3.

47

CHAPTER 3. DESCRIPTION OF XCS AND UCS

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0

a2

a1

Figure 3.3: Example of covering in the hyper rectangular representation.

< [0.20, 0.80], [0.45, 0.65] > < [0.20, 0.85], [0.25, 0.65] >
=⇒

< [0.60, 0.85], [0.25, 0.75] > < [0.60, 0.80], [0.45, 0.75] >

Table 3.1: Example of two-point crossover, in which the two cut points are in the middle of each
interval.

Crossover Operator

In real-world problems, two-point crossover is usually applied. It randomly selects two cut
points, which can occur either between or within an interval predicate. Then, the offspring are
created by shuffling the information of both parents. The process is detailed in the example
of table 3.1, in which the two parents are crossed, selecting a cut point in the middle of each
interval and generating two new offspring. Figure 3.4 visually illustrates this example in the
feature space.

Mutation Operator

The mutation operator is applied to each of the bounds of the interval. If it decides to change
an interval bound, this is mutated by adding a random value that ranges in (−m0, m0), where
m0 is a configuration parameter. Figure 3.5 shows an example of the mutation operator.

Subsumption Operator

To consider a classifier as a candidate subsumer, the same conditions defined in the ternary
representation need to be satisfied. That is, the subsumer classifier has to be experienced

48

3.3. RULE REPRESENTATIONS FOR LCSS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

a2

a1

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

a2

a1

(b)

Figure 3.4: A crossover example. (a) plots the two parents and (b) shows the offspring resulting
from two cut points occurring in the middle of each interval.

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0

a1

a2

Figure 3.5: Example mutation in the hyper rectangle representation.

enough, accurate, and its condition has to include the condition of the subsumed classifier. For
an interval-based representation, the condition of rule cl1 includes that of rule cl2 if for each
variable i: cl1.`i ≤ cl2.`i and cl1.ui ≤ cl2.ui, where `i and ui are respectively the smaller and
greater value of the two bounds of the interval.

49

CHAPTER 3. DESCRIPTION OF XCS AND UCS

3.4 Summary and Conclusions

This chapter provided concise descriptions of XCS and UCS, which can be utilized as imple-
mentation guidelines. Besides, we explained the evolutionary pressures that guide both systems
to evolve a minimal set of maximally general and accurate classifiers. Finally, we presented the
interval-based representation used by the two LCSs to deal with continuous attributes.

During the explanation, we highlighted the differences between XCS and UCS, which are
due to the specialization of UCS for supervised learning. Basically, the two key aspects that
UCS modifies with respect to XCS are:

1. The fitness computation.

2. The exploration scheme.

The fitness computation procedure of UCS introduces two changes with respect to the one
in XCS: (1) UCS computes the fitness based on the rule’s accuracy on classifying the input
instances instead of on the accuracy of the rule’s prediction and (2) UCS does not share the
fitness among the rules in the same niche. The former modification makes UCS push toward rules
that predict all the matching instances correctly; therefore, the system evolves the best action
map. Conversely, XCS evolves rules that are accurate in the prediction reward, regardless of
whether they predict the correct class; thence, XCS builds the complete action map. Therefore,
UCS spends less computational resources with respect to XCS since UCS only evolves and
maintains the rules that predict the correct class. On the other hand, UCS does not use a
fitness-sharing scheme; instead, it computes the fitness as a power of the raw accuracy. The
advantages of not sharing fitness, if neither, are not clear and demand further investigation.

The exploration of UCS was also modified to speed up the convergence in classification
problems. That is, as long as the system only needs to evolve the best action map and as the
class is made available with each input example, UCS only explores the correct class. Hence, in
addition to using less computational resources to store the final population, the system is also
expected to obtain the optimal solution more quickly than XCS.

In the next chapter, we further investigate the impact of the architectural changes proposed
by UCS. We first carefully study the effect of not sharing fitness in UCS. For this purpose, we
design a fitness-sharing scheme, similar to the XCS’s one, and incorporate it to UCS. Then,
we empirically analyze the advantages of the new fitness computation method. Thereafter, we
examine the behavior of UCS with respect to the XCS one in a collection of boundedly difficult
problems. Thus, we include XCS in the comparison and analyze how the new fitness computation
and the new exploration scheme of UCS affects the learning performance and the convergence
to the optimal population.

50

Chapter 4

Revisiting UCS: Fitness Sharing and
Comparison with XCS

The previous chapter explained the mechanisms of XCS and UCS in detail and reviewed the
most important differences in the architecture of both systems. In brief, UCS performs a more
focused search since its architecture is specialized for supervised learning tasks. The two main
differences introduced by UCS affected (1) the fitness computation and (2) the exploration
regime. With these changes, UCS was expected to evolve an accurate solution spending less
computational resources than XCS1. These initial hypotheses were already supported by the
experimental results provided by Bernadó-Mansilla and Garrell (2003). In there, the authors
compared the original scheme of UCS with XCS on a collection of three boundedly difficult
problems. The experimental results enabled the authors to emphasize the differences between
both architectures and to demonstrate that, in general, UCS could solve these problems more
quickly than XCS. Although these were promising results, there were still some open issues that
needed to be addressed. The most important aspect in this list is fitness sharing. That is, the
lack of fitness sharing in UCS was identified as a potential weakness of the system. Nonetheless,
no further study about the effect of not sharing fitness has been conducted so far.

The purpose of this chapter is to study whether fitness sharing can provide benefits to UCS
and further compare UCS with XCS in an extension of the collection of boundedly difficult
problems used by Bernadó-Mansilla and Garrell (2003). To achieve this, we design a fitness-
sharing scheme which is inspired by the XCS’s one. Then, we test the three systems on four
boundedly difficult problems. The experimental results illustrate the benefits of fitness sharing
and highlight how the modifications introduced in the learning architecture of UCS affect the
system’s behavior with respect to the XCS’s one in classification problems.

The remainder of this chapter is organized as follows. In section 4.1, we introduce the concept
of fitness sharing and motivate its use in UCS by highlighting its importance in the GAs and
LCSs realms. Section 4.2 specifies the new fitness-sharing scheme for UCS and section 4.3 draws
the analysis methodology. Section 4.4 compares UCS with fitness sharing with the original
UCS, showing the benefits of the fitness-sharing scheme. Section 4.6 extends the comparison by
analyzing the differences between UCS and XCS. Finally, section 4.6 gathers the key observations

1Note that UCS can only be applied to supervised learning, while XCS is a much broader architecture that
can be used for both supervised learning and reinforcement learning in general

51

CHAPTER 4. REVISITING UCS: FITNESS SHARING AND COMPARISON WITH XCS

drawn from the experiments, and section 4.7 summarizes and concludes this chapter. Appendix
A supplies a full explanation of all the problems used along the comparison.

4.1 Fitness Sharing in GAs and LCSs

Before proceeding with the description of the fitness-sharing scheme designed for UCS, we first
introduce the concept of fitness sharing and how this has been used in both GAs and LCSs.
Holland (1975, 1992) initially presented the concept of fitness sharing as a way to accomplish
niching. In his early work, Holland discussed the concept of limiting the number of individuals
that occupy a niche. The underlying idea is that if each niche had associated a particular
payoff or objective fitness, and if each individual in this niche were forced to share this payoff
with the other individuals in the same niche, then a stable situation, where each niche contains
approximately the same number of individuals, would arise. Therefore, niching methods that
distribute the payoff among the individuals of the same niche are addressed as fitness-sharing
methods.

In the GA field, fitness sharing has been used to maintain and evolve diverse solutions in
multi-modal optimization problems. Goldberg and Richardson (1987) initially introduced the
concept of explicit fitness sharing into GAs to optimize multi-modal functions. The proposed
scheme derated the fitness of an individual by an amount related to the number of similar
individuals in the population. More specifically, the method computed the shared fitness f i

s of
an individual i, whose objective fitness is f i as

f i
s =

f i∑n
j=1 sh(d(i, j))

, (4.1)

where sh is a function of the distance d between two solutions. sh returns ‘1’ if the elements
are equal, and ‘0’ if they exceed some threshold of dissimilarity, σshare. That is, if the distance
between two solutions is greater than σshare, sh = 0, indicating that none of the two individuals
affects the fitness of the other. One of the most usual sharing functions is:

sh(d) =

1 −

(
d

σshare

)α
if d < σshare,

0 otherwise;

where α is a configuration parameter that permits regulation of the proximity of the solutions
that are considered to be in the same niche. Further analysis investigated other sharing schemes
and their capacities to solve multi-modal problems. For example, Deb (1989) empirically demon-
strated that GAs with fitness sharing were able to solve a large variety of multi-modal functions.
Theoretical models of the effect of different types of sharing can be found in (Mahfoud, 1995)
and (Horn, 1997).

Fitness sharing has also been used in LCSs. Smith and Valenzuela-Rendón (1989) modeled
a generational GA with infinite population size for LCSs and showed that fitness sharing was
necessary to facilitate the coverage in difficult problems. In fact, the majority of new LCS
designs present some form of niching or fitness sharing. This is the case of XCS. As seen in
the previous chapter, XCS intrinsically performs niching by grouping the classifiers in action

52

4.2. A NEW FITNESS SHARING SCHEME FOR UCS

sets. The system also incorporates fitness sharing since the classifier’s fitness depends on the
classifier’s relative accuracy, and the relative accuracy of each classifier is computed with respect
to the accuracies of all the other classifiers in the same niche (see section 3.1.3). Some more
recent LCSs such as XCSF (Wilson, 2002b; Butz et al., 2008) also adopt the same, or a similar,
fitness-sharing scheme.

Although fitness-sharing schemes have been shown to be beneficial to Michigan-style LCSs,
UCS was originally designed without a fitness-sharing scheme. Fitness sharing was not incorpo-
rated in UCS to keep the initial architecture as simple as possible, which would enable a more
detailed analysis of the system. Nonetheless, the combination of the niche-based GA application
with the lack of resource sharing in UCS seems to be counterintuitive since both approaches
have historically come tied together. Therefore, in this chapter, we provide a fitness-sharing
scheme to UCS and empirically analyze its advantages over the original parameter update pro-
cedure. The next section introduces fitness-sharing scheme, similar to that of XCS, for UCS.
Then, we present the experimental methodology, run UCS with both fitness sharing and the
original parameter update procedure, and carefully analyze the results.

4.2 A New Fitness Sharing Scheme for UCS

XCS intrinsically performs niching by grouping similar classifiers in action sets. The niching is
considered (1) by the GA, which selects and crosses classifiers from the same niche, and (2) by
the parameter update procedure, which shares the fitness among all classifiers in the same niche.
As does XCS, UCS performs niching in the first sense because it applies the GA to the niches.
Nevertheless, in the original UCS, the resources are not shared among the classifiers in the same
niche. Therefore, here, we propose to incorporate the resource sharing in UCS. As follows, a
new fitness-sharing scheme for UCS, which is inspired by the one of XCS, is presented, reviewing
how all the parameter update procedure works after introducing the new fitness computation.
For the sake of clarity, in the remainder of the chapter, UCS without sharing is referred to as
UCSns, and UCS with sharing is addressed as UCSs.

The new parameter update procedure works as follows. The experience (exp), the correct
set size (cs), and the accuracy (acc) parameters are computed as in UCSns (see section 3.2).
However, fitness is shared among all classifiers in [M]. First, a new accuracy cl.k is calculated,
which discriminates between accurate and inaccurate classifiers. For classifiers belonging to [M],
but not to [C], the accuracy is set to zero; that is, ∀cl ∈![C]cl.k = 0. For each classifier cl
belonging to [C], cl.k is computed as follows:

cl.k =

1 if cl.acc > acc0;

α
(

cl.acc
acc0

)ν
otherwise.

Then, the relative accuracy cl.k′ is calculated as

cl.k′ =
cl.k · cl.n∑

cli∈[M] cli.k · cli.num
, (4.2)

and the fitness is updated from cl.k′:

cl.F = cl.F + β(cl.k′ − cl.F). (4.3)

53

CHAPTER 4. REVISITING UCS: FITNESS SHARING AND COMPARISON WITH XCS

Let us note that, under this scheme, the computed fitness corresponds to the macro-classifier
fitness, as the numerosities of the classifiers are involved in computation of the relative accuracy.
Whenever the micro-classifier’s fitness is needed, we divide this value by the numerosity of the
classifier.

This parameter update procedure is incorporated into UCSs, replacing the traditional scheme.
In the next sections, we empirically analyze the advantages provided by this new scheme.

4.3 Methodology

The experimental analysis consists of two separate parts. First, we compare UCSns with UCSs,
focusing on the advantages provided by the fitness-sharing scheme. Then, XCS is compared
with UCS with the aim of highlighting the practical impact caused by the architectural changes
introduced by UCS. In brief, UCS introduces (1) a new fitness computation which is based on
the classification accuracy instead of on the accuracy of the prediction and (2) a new exploration
scheme, which only explores the class of the input examples and maintains the best action map
instead of the complete action map (see chapter 3). Therefore, we aim at analyzing how these
two modifications influence the learning process in classification problems. The methodology
used in both comparisons is detailed in what follows.

To analyze the behavior of the three systems, we took a systematic approach and compared
their performance on four artificial problems that gather some complexity factors said to affect
the performance of LCSs (Kovacs and Kerber, 2001; Bernadó-Mansilla and Garrell, 2003): a)
a binary-class problem, the parity ; b) a multi-class problem, the decoder ; c) an imbalanced
multi-class problem, the position ; and d) a noisy problem, the multiplexer with alternating
noise . Given a binary input of length `, with k relevant bits (k ≤ `), these problems are
defined as follows. The parity problem returns the number of one-valued bits modulo two. The
decoder problem gives the decimal value of the input as output. The position problem returns
the position of the left-most one-valued bit; if the input does not contain any one-valued bit,
it returns zero. The multiplexer problem takes the first log2` bits as the address bits, and the
remaining bits as the position bits; then, the output is the value of the position bit referred by
the decimal value of the address bits. We added noise to the training instances of the multiplexer
problem by flipping the class of the input instances with probability Px; the test instances are
free of noise. For a detailed description of each problem the reader is referred to appendix A.
The parity, the decoder, and the position problems were configured with input lengths ranging
from ` = 3 to ` = 9. The multiplexer was configured with 20 input bits. These boundedly-
difficult problems permit varying the complexity along different dimensions such as input length,
size of the optimal population, specificity of the optimal classifiers, number of classes, and class
imbalance ratio. For further information, the reader is referred to appendix A. UCSns, UCSs,
and XCS were run with each problem.

We configured the systems as follows. We used a standard configuration for XCS: P# =
0.6, β = 0.2, α = 0.1, ν = 5, θGA = 25, χ = 0.8, µ = 0.04, θdel = 20, δ = 0.1. In UCS, the
parameters that are shared with XCS took the same values, except for ν = 10; additionally
acc0 = 0.999. In both cases, tournament selection was applied. Subsumption was activated
in the genetic algorithm with θsub = 20. The maximum population size of XCS and UCS was
configured depending on the size of the optimal population that the systems were expected to

54

4.4. ANALYZING THE FITNESS SHARING SCHEME IN UCS

evolve. As explained in section 3.1, XCS evolves a complete action map [O], which consists of
all rules with low error, regardless of whether they have high or low reward prediction. On the
other hand, UCS evolves the best action map [B], which includes only highly rewarded rules. As
proposed by Bernadó-Mansilla and Garrell (2003), we set population sizes to N = 25 · |[O]| in
XCS and to N = 25 · |[B]| in UCS. All the results are averages of 25 runs with different random
seeds.

We decided against using the training accuracy to evaluate the performance of the three
LCSs since it does not provide enough evidence of effective genetic search, as highlighted by
Kovacs and Kerber (2004). Instead of accuracy, the achieved proportion of the optimal action
map %[O] was proposed by Kovacs and Kerber (2001) as being a better indicator of the progress
of the genetic search. However, UCS and XCS evolve different optimal populations: XCS creates
a complete action map, whereas UCS represents a best action map. To allow a fair comparison,
we only consider the proportion of best action map %[B] achieved by each system. That is, we
only count the proportion of consistently correct rules. To review the best action map of each
of the four problems, the reader is referred to appendix A.

When required, we used statistical tests to compare the convergence curves between pairs of
algorithms. As our aim was to compare pairs of learning systems, we used the non-parametric
Wilcoxon signed-ranks test (Wilcoxon, 1945), which was fed with the performance measures
taken during the learning process. For further details on this statistical test, the reader is
referred to appendix B.

Having described the experimental methodology, we are now in position to analyze the results
obtained on the four problems. The next section starts with the comparison of UCSns and UCSs.
Later, XCS is introduced in the comparison.

4.4 Analyzing the Fitness Sharing Scheme in UCS

Figures 4.1 and 4.2 depict the proportion of the best action map %[B] achieved by UCSns and
UCSs in the parity, the decoder, the position, and the 20-bit multiplexer with alternating noise
problems. The results show that UCSs could discover the optimal population more quickly than
UCSns in the parity, the decoder, and the position problems. These differences were significant
in the decoder for ` > 4, in the position for ` > 3, and in the parity with any input length
according to a Wilcoxon signed-ranks test at α = 0.05. Oppositely, these benefits could not
be observed in the multiplexer with the highest levels of noise; that is, for Px = {0.10, 0.15},
UCSns significantly outperformed UCSs. As proceeds, we examine these two different behaviors
in more detail.

Benefits of fitness sharing. The improvement provided by the fitness-sharing scheme in the
parity, the decoder, and the position problem—especially for the largest input lengths—can
be explained as follows. Under fitness sharing, the progressive discovery of more accurate
classifiers makes the fitness of less accurate, over-general classifiers that participate in the same
correct sets decrease quickly. That is, when a better classifier is discovered, it gets a higher
proportion of the shared fitness, causing a decrease in the fitness of less accurate classifiers that
exist in the same niche. Therefore, fitness-sharing produces (1) a higher pressure toward the
deletion of over-general classifiers and (2) a higher selective pressure toward the most accurate

55

CHAPTER 4. REVISITING UCS: FITNESS SHARING AND COMPARISON WITH XCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Par3
Par4
Par5
Par6
Par7
Par8
Par9

(a) UCSns in Par

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Par3
Par4
Par5
Par6
Par7
Par8
Par9

(b) UCSs in Par

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Dec3
Dec4
Dec5
Dec6
Dec7
Dec8
Dec9

(c) UCSns in Dec

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Dec3
Dec4
Dec5
Dec6
Dec7
Dec8
Dec9

(d) UCSs in Dec

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Pos3
Pos4
Pos5
Pos6
Pos7
Pos8
Pos9

(e) UCSns in Pos

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Pos3
Pos4
Pos5
Pos6
Pos7
Pos8
Pos9

(f) UCSs in Pos

Figure 4.1: Proportion of the best action map achieved by UCSns and UCSs in the parity, the
position, and the decoder problems.

56

4.4. ANALYZING THE FITNESS SHARING SCHEME IN UCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Px=0.05
Px=0.10
Px=0.15

(a) UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Px=0.05
Px=0.10
Px=0.15

(b) UCSs

Figure 4.2: Proportion of the best action map achieved by (a) UCSns and (b) UCSs in the noisy
20-bit multiplexer with Px = {0.05, 0.10, 0.15}.

classifiers in the GA. Without fitness sharing, over-general classifiers maintain the same fitness
along the whole learning process.

The effect of fitness sharing was especially beneficial in the decoder and the position problems,
while it was more modest in the parity problem. To explain the excellent results in the two
former problems, let us first focus on the position problem and then extend the conclusions to
the decoder problem. In the position problem, the system has to evolve a best action map that
consists of classifiers with different degrees of generality ranging from a classifier in which all
bits except one are set to ‘#’ to a classifier with all specific bits (see section A.3). Note that
UCS with fitness sharing could solve the position problem for all the tested input lengths, while
UCS without fitness sharing was not able to discover the complete action map for ` = 9. A
more detailed analysis of the results showed that the final populations of UCSns did not contain
the most specific optimal classifiers. Moreover, it was also identified that, even though the most
specific optimal classifiers were created in some of the runs, they were lost during the genetic
search. This behavior was a result of the combination of the occurrence-based reproduction
with the fitness computation without sharing. To illustrate this, let us assume the case that
the system discovers the most specific classifier for ` = 9, that is, 000000000:0. This classifier
is activated once every 29 sampled instances. Once activated, this classifier may compete with
a set of over-general classifiers. If fitness is not shared, the fitness of over-general classifiers
remains constant regardless of whether the niche contains a high proportion of over-general
classifiers or not. Therefore, as the number of over-general classifiers increases, it is more likely
that the selection procedure chooses one of these over-general classifiers. This, coupled with
the low activation rate of the most specific optimal classifiers, and so, their low reproductive
opportunities, discourages their evolution. In these cases, the fitness-sharing scheme plays
a key role to decrease the fitness of competing over-general classifiers, and so, promotes the
maintenance of the most specific optimal classifiers.

These conclusions can be extended to the decoder problem. In this problem, all the optimal
classifiers are maximally specific, and so, fitness sharing is necessary to promote the selection

57

CHAPTER 4. REVISITING UCS: FITNESS SHARING AND COMPARISON WITH XCS

Table 4.1: Accuracy and fitness of UCSns’s classifiers along the generality-specificity dimension,
depicted for the parity problem with ` = 4.

Condition Class Accuracy Fitness
1 #### 0 0.5 0.00097
2 0### 0 0.5 0.00097
3 00## 0 0.5 0.00097
4 000# 0 0.5 0.00097
5 0000 0 1 1

of these specific classifiers. In general, fitness sharing appears to be crucial in problems where
some of the optimal classifiers are activated with a low frequency. This is the case in problems
that (1) contain class imbalances or (2) permit little generalization.

On the other hand, it is worth noting that the improvement in the parity problem was not as
accentuated as the one in the decoder and position problems. This is due to the lack of fitness
guidance toward optimal classifiers in this particular problem. That is, the best action map
of the parity problem consists of classifiers in which all the variables are specific. Therefore,
no generalization is allowed in the optimal population (see section A.1 for further details).
Nonetheless, at the beginning of the run, the covering operator introduces generalization in
the initial population, and UCS has to drive the population from over-generality to optimal
classifiers. However, the fitness pressure does not correctly lead to specificity. That is, spec-
ifying one bit of an over-general classifier does not increase its accuracy unless all bits are
specific. Therefore, although approaching the optimum, all the classifiers in the niche receive
the same amount of resources. Only when an optimal classifier is discovered, its accuracy is
set to 1, and so, the fitness of all the over-general classifiers that participate in the same niche
is decreased. Differently, in the decoder and the position problem, the accuracy guided to
the optimal classifiers; for this reason, the improvement in the convergence time provided by
fitness sharing was larger in these two problems.

To further illustrate the lack of fitness guidance in the parity problem, table 4.1 shows the
evolution that the most over-general classifier needs to go through to become an optimal
classifier in UCSns for the problem with four input bits. At each step, one of the don’t care
bits is specified. Note that accuracy, and so, fitness, remain constant during all the process
until the optimal classifier is achieved. However, we would expect that the specification of
one bit should result in a fitter classifier, since it approaches the optimum classifier (in which
all the bits are specific). Therefore, the fitness is not guiding toward optimal solutions. This
problem is a type of needle-in-a-haystack problem, in which an optimal classifier can only be
obtained randomly. For this reason, the improvement provided by fitness sharing, although
existing and being statistically significant, is not as strong as the one in the decoder and the
position problems.

Fitness sharing in noisy problems. Figure 4.2 shows that UCSns achieved higher performance
than UCSs in the multiplexer problem, especially for the highest levels of noise. In particular,
UCSns significantly outperformed UCSs for Px = {0.10, 0.15} according to a Wilcoxon signed-
ranks test at α = 0.05. This behavior cannot be directly attributed to the fitness-sharing

58

4.4. ANALYZING THE FITNESS SHARING SCHEME IN UCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Px=0.05
Px=0.10
Px=0.15

(a) UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Px=0.05
Px=0.10
Px=0.15

(b) UCSs

Figure 4.3: Proportion of the best action map achieved by (a) UCSns and (b) UCSs in the noisy
20-bit multiplexer with Px = {0.05, 0.10, 0.15} and using β = 0.01 and θGA = 100.

scheme, but to the fact that, with the new parameter computation, UCSs calculates a windowed
average of fitness by means of the learning parameter β. In noisy environments, the parameter
averages oscillate and cannot stabilize properly, especially with the value of β employed in
this configuration (i.e., β = 0.2). So, high levels of noise require low values of β. As UCSns
computes fitness as a power of the accuracy, the parameter values of experienced classifiers
remained steady.

To confirm this hypothesis, we repeated the same experiments but decreased β. That is,
we configured UCSns with β = 0.01. In addition, we set θGA = 100 to have more reliable
parameters estimates before the GA triggered. Figure 4.3 shows the proportion of the best
action map achieved by UCSns and UCSs. The results show a clear improvement of UCSs
with respect to the original configuration. This supports our hypothesis that higher levels of
noise require lower β values to allow for better parameter stabilization, coupled with higher
θGA to let the genetic algorithm operate with better estimates. UCSs especially benefits from
this, reaching almost 100% of the best action map in few iterations. Note that, for all the
noise proportions, UCSs was still able to classify about 99% of the input instances correctly.
That is, even when UCSs was trained with environments with 15% of alternating noise—i.e.,
15% of the incoming instances are wrongly labeled—UCSs was able to classify nearly all the
new free-noise instances correctly. This shows up the robustness provided by the inference
scheme of UCS, which infers the class by means of a rule vote policy. The results of UCSns are
practically the same as those obtained with the original configuration, as UCSns does not use
β in the fitness estimate. Under this configuration, UCSs significantly outperformed UCSns
for all the proportions of noise according to a Wilcoxon signed-ranks test at α = 0.05.

Overall, this section evidenced the benefits of fitness sharing in the four boundedly difficult
problems. This promotes the use of UCS with fitness sharing in the remainder of this thesis. In
the next section, we extend this study and compare UCSs with XCS.

59

CHAPTER 4. REVISITING UCS: FITNESS SHARING AND COMPARISON WITH XCS

4.5 Comparing UCSs with XCS

This section introduces XCS in the comparison and empirically analyzes the effect of the architec-
tural changes proposed by UCS with the aim of solving classification problems more effectively.
Figures 4.4 and 4.5 show the proportion of the best action map achieved by UCSs and XCS on
the four boundedly difficult problems. The results of UCSs are the same as those provided in
the previous section. In all the problems, except for the parity problem, UCSs was significantly
quicker in evolving the best action map than XCS according to a Wilcoxon signed-ranks test at
α = 0.05. UCS’s improvement on these problems is mainly result of (1) the exploration regime
and (2) the new accuracy computation, and so, the fitness guidance of UCSs. As follows, these
advantages, as well as the slightly poorer results obtained by UCSs in the parity problem, are
analyzed in more detail.

Advantages due to the exploration regime. The first aspect that made UCSs evolve the optimal
population more quickly than XCS is the exploration regime. That is, there are two reasons that
explain, in general, why XCS requires more time than UCS to evolve the optimal population:
(1) XCS needs to explore all the possible actions for a given input instead of only the class of
the input and (2) XCS has to maintain the complete action map instead of only maintaining
the best action map. This behavior is necessary in reinforcement learning problems where the
consequences of each action have to be explored and modeled. Notwithstanding, this results in
a delay in the convergence curves for the decoder, the position, and the multiplexer problems
with respect to those of UCSs. Especially, note the large differences between XCS and UCSs
in the decoder and the position problems. Although not as noticeable, UCSs also significantly
outperformed XCS in the multiplexer problem with the two tested configurations according to
a Wilcoxon signed-ranks test at α = 0.05.

To exemplify the disadvantages of exploring the complete action map—as XCS does—, let us
consider the decoder problem. The decoder problem is defined by 2` classes. As XCS explores
uniformly each class, only 1 of each 2` explores will be made on the class of the input instance.
The other 2` − 1 explores will be focused on classifiers that predict wrong classes. Therefore,
the system will spend the proportion of (2` − 1)/2` iterations to explore regions of the feature
space that do not need to be explored in supervised learning problems. This issue takes on
especial importance as the number of classes increases. This example is applicable to the
other problems, but is especially important in the decoder and the position problems since the
number of classes increases exponentially (for the decoder) and linearly (for the position) with
the number of input bits.

On the other hand, the exploration regime seems not to provide UCSs with any advantage in the
parity problem. That is, XCS was able to achieve the best action map in an amount of time that
was significantly smaller than the time required by UCSs according to a Wilcoxon signed-ranks
test at α = 0.05. Our hypothesis is that the exploration of consistently incorrect rules may help
XCS discover consistently correct rules in this particular problem. That is, the parity problem
has the particularity that, for each optimal classifier that predicts the correct class, there
exists another one with the same condition but the wrong class in the complete action map.
Therefore, mutation can easily generate a highly rewarded optimal classifier while exploring a
niche with low rewarded classifiers. For example, if a consistently incorrect classifier such as
0001:0 is evolved, XCS may discover the consistently correct classifier 0001:1 by mutating the

60

4.5. COMPARING UCSS WITH XCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Par3
Par4
Par5
Par6
Par7
Par8
Par9

(a) UCSs in Par

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Par3
Par4
Par5
Par6
Par7
Par8
Par9

(b) XCS in Par

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Dec3
Dec4
Dec5
Dec6
Dec7
Dec8
Dec9

(c) UCSs in Dec

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Dec3
Dec4
Dec5
Dec6

(d) XCS in Dec

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Pos3
Pos4
Pos5
Pos6
Pos7
Pos8
Pos9

(e) UCSss in Pos

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Pos3
Pos4
Pos5
Pos6
Pos7
Pos8
Pos9

(f) XCS in Pos

Figure 4.4: Proportion of the best action map achieved by UCSs and XCS in the parity, the
position, and the decoder problems.

61

CHAPTER 4. REVISITING UCS: FITNESS SHARING AND COMPARISON WITH XCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Px=0.05
Px=0.10
Px=0.15

(a) UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Px=0.05
Px=0.10
Px=0.15

(b) XCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Px=0.05
Px=0.10
Px=0.15

(c) UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f
th

e
 B

e
s
t

A
c
ti
o

n
 M

a
p

Learning Iterations

Px=0.05
Px=0.10
Px=0.15

(d) XCS

Figure 4.5: Proportion of the best action map achieved by (a,c) UCSs and (b,d) XCS in the
noisy 20-bit multiplexer with Px = {0.05, 0.10, 0.15} with (a,b) the original configuration and
with (c,d) the original configuration but setting β = 0.01 and θGA = 100.

class of the rule. Conversely, UCSs would never maintain an inconsistently correct rule, since
the selection operator would never choose a rule with acc = 0, and the deletion procedure
would eventually remove this rule. As a consequence, UCSs cannot benefit from exploring
low rewarded niches. This, coupled together with the fact that XCS is configured with a
larger population size, results in that XCS can evolve the optimal population more quickly
than UCSs. Nonetheless, note that, still, UCSs uses less computational resources since it is
configured with a smaller maximum population size.

Advantages due to the fitness guidance. Although the explore regime explicates why UCSs
can converge more quickly than XCS to the best action map, this may not be enough to explain
the large differences observed in the decoder and the position problems. Here, we show that,
as indicated by Butz et al. (2003), the fitness computation of XCS may provide a deceptive
guidance toward the obtention of optimal classifiers in these two problems—and problems with

62

4.5. COMPARING UCSS WITH XCS

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10

E
rr

o
r

o
f

th
e

 c
la

s
s
if
ie

r

Length of the decoder problem

Error along the over-general/optimal classifier dimension in XCS

(a) XCS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

E
rr

o
r

o
f

th
e

 c
la

s
s
if
ie

r

Length of the decoder problem

Error along the over-general/optimal classifier dimension in UCS

(b) UCSs

Figure 4.6: Error of XCS’s classifiers along the over-general/optimal classifier dimension. The
curve depicts how the error of the most over-general classifier ##########:0 evolves as the bits
of the classifier are specified, until obtaining the maximally accurate rule 0000000000:0.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14

E
rr

o
r

o
f

th
e

 c
la

s
s
if
ie

r

Length of the position problem

Error along the over-general/optimal classifier dimension in XCS

000000000:0/000000001:1
00000001#:2
0000001##:3
000001###:4
00001####:5
0001#####:6
001######:7
01#######:8
1########:9

Figure 4.7: Error of XCS’s classifiers along the over-general/optimal classifier dimension.

similar characteristics. Furthermore, we show that the fitness computation of UCSs overcomes
this problem.

To exemplify the fitness misguidance in XCS in some particular problems, let us first focus
on the decoder problem. The best action map of the decoder consists of maximally specific
classifiers whose class is the decimal value of the binary input. Then, let us suppose that we
have an over-general classifier cl1 1###:8, whose theoretical prediction and prediction error
estimates are P=125 and ε = 218.75. XCS is expected to drive cl1 to the classifier 1000:8.
Imagine now that the genetic search generates the classifier cl2 10##:8, whose prediction
estimate is P=250 and whose prediction error is ε = 375. Note that the error increases as
we are approaching the optimal classifier, that is, 1000:8. Figure 4.6(a) extends this example
and shows the evolution of the error from the over-general to the maximally general dimension

63

CHAPTER 4. REVISITING UCS: FITNESS SHARING AND COMPARISON WITH XCS

for the decoder problem with ` = 10. Note that the error curve has an exponential increase
as the classifier moves from the over-general to the maximum general side; the error abruptly
decreases to zero when the optimal classifier is reached. Therefore, as long as the classifier
moves toward the right direction, it gets smaller fitness, which consequently means fewer genetic
opportunities and higher deletion probabilities. Thus, there is a misleading fitness pressure
toward optimal classifiers.

This fitness misguidance is also present in the position problem, although the effect is not as
important as in the decoder problem. To illustrate this, figure 4.7 shows an example of how the
prediction error increases for each one of the optimal classifiers in the position problem with
` = 9. Note that the misleading pressure is larger as the optimal classifier has more specific
bits; that is, the Hamming distance from the maximally over-general classifier to the optimal
classifier is larger as the optimal classifier is more specific, and so, the deception also increases.

This misleading pressure, which was termed as the fitness dilemma by Butz et al. (2003), does
not only appear in these two problems, but in any problem whose optimal population contains
specific classifiers. UCSs overcomes the fitness dilemma because the accuracy is calculated as
the proportion of correct classifications instead of as a function of the accuracy of the prediction
estimate. To exemplify this, figure 4.6(b) depicts the evolution of the error (that is, one minus
the classifier’s accuracy) along the over-general/maximally general dimension for the decoder
problem with ` = 10. Note that, in UCSs, the error diminishes as the classifiers approach the
optimal one. In this way, UCSs accuracy guidance does not mislead the genetic search. This
conclusion is also applicable to the original UCS, that is, UCSns.

Hence, the results provided in this section highlight that, as hypothesized in the previous
chapter, UCS can evolve the best action map more quickly than XCS and spending fewer compu-
tational resources. Moreover, we also showed that the architecture of UCS does not suffer from
the fitness dilemma. In the following section, we summarize all the observations provided in the
present and the previous sections, identifying the key conclusions of the comparative analysis.

4.6 Lessons Learned from the Analysis

The empirical study performed in the last two sections provided many useful insights about the
advantages of fitness sharing and the benefits of the UCS’s architecture with respect to that of
XCS in supervised learning problems. The purpose of this section is to gather and summarize
all the observations. In particular, we first group the observations about the new fitness-sharing
scheme of UCS. Then, we summarize the advantages provided by the explore regime and the
accuracy guidance of UCS with respect to those of XCS. Each one of these aspects is elaborated
in the following subsections.

4.6.1 Fitness Sharing

Fitness sharing speeded up UCS’s convergence in all the tested problems. Especially, we argued
that fitness sharing was the key to solve problems with class imbalances, where some optimal
classifiers are activated with a lower frequency than other optimal and over-general classifiers.
UCSns only yielded better performance in a single configuration of the 20-bit multiplexer with

64

4.6. LESSONS LEARNED FROM THE ANALYSIS

alternating noise, which corresponded to a parameter setting that was not suited to solve the
problem. In any case, this effect cannot be attributed to the presence or absence of fitness
sharing, but rather to the way in which fitness is estimated. Recall that UCSns computes fitness
as a power of accuracy, while UCSs computes fitness as a weighted windowed average with
learning parameter β.

4.6.2 Explore Regime

In the comparison between XCS and UCS, the explore regime of UCS has shown to be a crucial
aspect to speed up the convergence time of UCS with respect to the one presented by XCS
in classification problems. That is, in general, exploring the best action map instead of the
complete action map enables UCS to find the optimal solution more quickly than XCS, while
spending fewer computational resources. On the other hand, we empirically illustrated that XCS
may benefit from exploring the complete action map in problems, such as the parity problem,
where the Hamming distance among the optimal classifiers that predict the wrong class and
those that predict the correct class is small. Nevertheless, even in this case, UCS presented
similar convergence times while using half of the maximum population size during the learning
process, thus, saving computational resources.

Finally, it is worth noting that other exploring mechanisms could be adopted in XCS. That
is, XCS uses a pure explore regime, where each available class is uniformly explored for each
possible input. Nonetheless, as already pointed out by Wilson (1995) in the original design
of the system, other exploration/exploitation schemes could be easily adapted to the system.
For example, training in XCS could be based on an exploration regime that gradually changes
from pure exploration toward increasing exploitation, similar to schemes such as ε-greedy or
softmax that can be found in the reinforcement learning literature (Sutton and Barto, 1998).
Changing the exploration regime may help XCS converge more quickly to the optimal solution;
nonetheless, even with a new exploration/exploitation scheme, XCS would need to explore the
different actions and evolve a complete action map, which prevent the system from being as
competitive as UCS in solving hard classification tasks.

4.6.3 Accuracy Guidance

The results provided along the experiments showed that XCS may suffer from not only a lack
of fitness guidance toward accurate classifiers, but also a deceptive guidance toward the optimal
classifiers in some classification domains. This problem, already identified by Butz et al. (2003),
was termed the fitness dilemma. Here, we showed that the problem appeared in almost all the
tested problems, especially as the number of specific bits of the optimal classifiers increased.
More specifically, we showed that XCS strongly suffered from the fitness dilemma in the decoder
and, to a lower degree, in the position problems. As these problems gather some characteristics
of real-world problems, this seems to indicate that XCS could suffer from the fitness dilemma
in complex real-world classification problems. To alleviate the effect of the fitness dilemma
in XCS, Butz et al. (2003) proposed a new error computation scheme that was addressed as
bilateral accuracy. On the other hand, note that UCS could overcome the fitness dilemma since
it computes the accuracy as the proportion of correct classifications.

65

CHAPTER 4. REVISITING UCS: FITNESS SHARING AND COMPARISON WITH XCS

4.6.4 Population Size

In the tested problems, UCS evolved best action maps with fewer learning iterations. Also,
smaller population sizes were used in UCS in all the tested problems. The population evolved
by XCS is generally larger, but comparable to that of UCS in terms of readability. In fact,
by removing low-rewarded classifiers from XCS’s final population, we get a set of rules similar
to that of UCS. Thus, the advantage of having smaller populations in UCS is the reduction of
computational resources.

4.7 Summary and Conclusions

In this chapter, we set the double objective of (1) revisiting the architecture of UCS by intro-
ducing a fitness-sharing scheme and (2) empirically comparing XCS with UCS. With the first
objective, we aimed at improving UCS to deal effectively with new challenging problems. The
purpose of the second objective was to illustrate empirically how the modifications introduced
by UCS to solve classification problems more scalably than XCS actually affected the system’s
behavior.

We illustrated that the new fitness-sharing scheme enabled UCS to solve the four boundedly
difficult problems more quickly. In essence, the fitness-sharing scheme helped UCS eliminate
over-general classifiers as long as the first competing optimal classifiers were discovered; there-
fore, this speeded up the learning process. This was especially important in imbalanced domains
such as the position problem, where highly specific, optimal classifiers had to compete with
over-general classifiers. In this case, fitness sharing played a key role in decreasing the fitness
of over-general classifiers, and so, in preventing these over-general classifiers from taking over a
large proportion of the population, removing more specific, optimal classifiers. Thence, these
observations promote the use of UCS with the new sharing scheme, instead of the original fitness
computation, as a competitive tool for supervised learning, and, in particular, for learning from
imbalanced domains. For this reason, we adopt this system in the remainder of our work.

The comparison with XCS allowed for a better understanding of the implications produced
by the architectural changes introduced to UCS. In brief, we showed that UCS could solve the
four classification problems spending fewer computational resources than XCS. Also, the analysis
highlighted that UCS does not suffer from the fitness dilemma detected in XCS. Although the
results and conclusions are limited to artificial problems, the experimental test bed contained
many complexity factors present in real-world problems: multiple classes, noisy instances, and
imbalanced classes, among others. Therefore, this encourages the use of UCS as a competent tool
for supervised learning. It is worth noting that XCS is a broader architecture that can be applied
to reinforcement learning, in general, and to some other tasks such as function approximation.

After the improvement of UCS and the empirical analysis provided herein, now we are in
position to address the second and third objectives of this thesis, which study the performance of
the two LCSs on domains that contain rare classes. Therefore, in the three subsequent chapters,
we conduct a detailed analysis of the behavior of both LCSs on imbalanced domains and improve
the ability of LCSs to extract accurate models from rare classes.

66

Chapter 5

Facetwise Analysis of XCS for
Domains with Class Imbalances

The previous two chapters described XCS and UCS in detail, enhanced UCS with a new fitness-
sharing scheme, and empirically compared the performance of these systems. This provided
background information on how the two systems work and the key differences between them and
led to the choice of using the fitness-sharing scheme instead of the original parameter update
procedure in UCS. Although the experimentation empirically showed that both XCS and UCS
can effectively solve boundedly difficult problems, there are still some challenges that need to
be addressed to solve, scalably and efficiently, real-world problems.

A particular important challenge—shared by traditional machine learning techniques and
GBML systems alike—is learning from domains that contain class imbalances. Learning from
rare classes is a crucial aspect since the key knowledge usually resides in the minority class, and
it has been shown that many traditional learning techniques are not able to extract accurate
models from rare classes (Weiss, 2004). Therefore, the machine learning community has recently
started to design new approaches that aim at improving the model discovery from rare classes
(Chawla et al., 2004). Nonetheless, this aspect has been largely overlooked in online learning
architectures. Imbalanced domains still pose more challenges to online learning systems, since
the learner receives a stream of examples from which rare classes have to be modeled on the fly.
The dearth of examples of rare classes may bias the parameter update procedure, forgetting the
feedback provided by these examples, and so, hampering LCSs from evolving accurate classifiers
that represent these rarities. In the following three chapters, we address this problem in the
context of XCS and UCS, going from an analytic approach to the application of the system to
solve real-world imbalanced problems.

This chapter studies the behavior of XCS on imbalanced domains and takes the lessons
provided by the analysis to improve the modeling of rare classes. Although the analysis is
centered on XCS in this chapter, we methodologically analyze the critical elements that any
LCSs should satisfy to extract knowledge effectively from rare classes. Thence, we aim at
providing a methodological framework rather than an analysis centered on a particular system.
That is, we decompose the problem of learning from imbalanced domains in several critical
elements and derive facetwise models (Goldberg, 2002) for each one of them. The integration
of these models permits us to detect several crucial conditions that need to be met to ensure

67

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

that the system would extract the key knowledge from rare classes; in addition, we also identify
critical bounds on the system behavior (Orriols-Puig et al., 2008a). The lessons learned from
this analysis result in several configuration recommendations that, when followed, enable XCS
to solve highly imbalanced classification problems that previously eluded solution. In the next
section, we show that the whole framework can also be applied to UCS.

The remainder of this chapter is organized as follows. Section 5.1 presents the class-imbalance
problem, reviews how the machine learning community has faced the problem with offline learn-
ing techniques, and places the problem in the context of online learning. Section 5.2 tests XCS
on an imbalanced problem, intuitively discusses the complexities that learning from imbalanced
domains may pose to the system, and empirically shows limits on the class-imbalance degree
that the system can handle. Section 5.3 introduces the facetwise analysis methodology and spec-
ifies the steps that we follow in the present analysis. In sections 5.4, 5.5, 5.6, 5.7, and 5.8, we
derive the different facetwise models. Section 5.9 integrates all the facetwise models, highlights
the lessons learned along the analysis, and uses them to solve the 11-bit multiplexer problem
(Wilson, 1995) with large degrees of class imbalance, which previously eluded solution. Finally,
section 5.10 summarizes and concludes the chapter.

5.1 The Challenges of Learning from Imbalanced Domains in
Machine Learning

During the last few decades, the increasing research on machine learning has led to the appli-
cation of several learning techniques to real-world problems with the aim of extracting novel,
interesting, and useful knowledge from these domains (Duda et al., 2000). One of the main
characteristics of real-world problems is that some of the sub-concepts or classes may be poorly
represented in the training data set due to either the scarcity of these concepts in nature or the
cost—or inadequacy of the techniques used—to extract positive samples that represent these
concepts. The purpose of this section is to highlight the importance of extracting accurate
models from these rare concepts or classes in machine learning tasks. We begin emphasizing
the high number of real-world applications in which we have class imbalances. Then, we briefly
review how the machine learning community in general, and the GBML field in particular, has
approached this problem, accentuating the differences between the challenges that learning from
rare classes poses to offline learners and to online systems.

Examples of problems that contain rare classes abound in literature and include identifying
fraudulent credit card transactions (Chan and Stolfo, 1998), learning word pronunciation (den
Bosch et al., 1997), predicting pre-term births (Grzymala-Busse et al., 2000), detecting oil spills
from satellite images (Kubat et al., 1998), and predicting telecommunication equipment failures
(Weiss and Hirsh, 1998) among others. In these domains, while regularly occurring patterns
can be modeled easily, learners tend to fail to extract accurate models from the rare classes
(Japkowicz and Stephen, 2002; Japkowicz and Taeho, 2004; Weiss, 2004). Nonetheless, these
rare classes are of primary interest, since they usually contain key knowledge. For this reason,
strong research has recently been conducted on designing new approaches, or modifying existing
machine learning techniques, with the aim of creating models that represent the rare classes
more accurately (Weiss and Provost, 2003; Fawcett, 2008). All these approaches have been
designed for offline supervised learning techniques, that is, methods that learn from static data

68

5.1. THE CHALLENGES OF LEARNING FROM IMBALANCED DOMAINS IN MACHINE LEARNING

sets in which the examples are provided at the beginning of the learning process. In online
learning, knowledge acquisition from imbalanced domains poses more severe challenges, since
systems receive instances and rare classes have to be detected on the fly.

The many different approaches that have been designed to enhance the discovery of useful
models of rare classes in offline learning can be grouped in methods working at (1) the learner
level or at (2) the sampling level. Learner-level methods usually modify the error calculation of
an existing system by either introducing a more appropriate inductive bias (Carvalho and Freitas,
2002) or assigning a misclassification cost per class (Pazzani et al., 1994). Their main drawback
is that they are designed for specific learning algorithms, and so, they cannot be adapted to other
learning techniques in a straightforward manner. For this reason, sampling-level methods have
received much more attention than learner-level approaches. Sampling-level methods, usually
known as re-sampling techniques, eliminate rare classes by balancing the proportion of examples
per class of the training data set. As they are data-preprocessing methods, they can be generally
used in any learning architecture. Notwithstanding, these methods can only be applied to static
data sets. Many works have shown the benefits of re-sampling the training data sets in some
specific imbalanced problems (Chawla et al., 2002; Japkowicz and Stephen, 2002; Batista et al.,
2004; Garćıa and Herrera, 2008).

While the class-imbalance problem has been extensively analyzed for classical machine learn-
ing techniques that learn from static data sets, analyses and new approximations to overcome
the problem in online learning are scarce. The typical approaches designed for offline learning
to overcome the class-imbalance problem can barely be applied to online learning schemes, since
they need to know the distribution of examples in the training data set. That is, in online
learning, strategies such as over-sampling the occurrence of instances of the minority class or
introducing a higher misclassification cost for minority class instances are impractical solutions.
In this case, as we do not have a static data set, we can neither estimate the imbalance ratio to
re-balance the training data nor assign a misclassification cost per class to favor the rare classes.
Therefore, models for the minority class have to be learned online from a set of samples that
come infrequently. This is the case of Michigan-style LCSs.

Although some ad hoc strategies have been proposed to alleviate this problem in particular
LCSs (Holmes, 1998; Orriols-Puig and Bernadó-Mansilla, 2005a,b), these strategies cannot be
directly extended to other LCSs. In general, these approaches have shown to improve LCSs
performance on imbalanced domains. However, it is not clear how they affect the learning pro-
cesses of LCSs; besides, they do not help increase our understanding of the actual problems that
imbalanced domains pose to LCSs. Thence, in this chapter, we propose to start with a system-
atic analysis that explains the capabilities and limitations of the online learning architecture
of LCSs to extract useful information from instances that come very infrequently. Specifically,
we first apply the analysis to XCS and, in the next chapter, we carry it over to UCS. Before
proceeding with the analysis, the next section provides an intuitive description of the problems
that Michigan-style LCSs may face when learning from domains with rare classes. Then, the
analysis methodology is introduced and all the study is developed in the subsequent sections.

69

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

5.2 The XCS Classifier System in Imbalanced Domains

As mentioned in the previous section, LCSs may have other problems, in addition to those
presented by classical machine learning techniques in learning from imbalanced domains, since
the model is learned online. With the system description provided in chapter 3 in mind, in
this section we first appeal to the intuition to discuss the possible difficulties that XCS may
find when learning from class imbalances, and we take advantage of the discussion to provide
some notation that will be used in the remainder of this work. Then, before proceeding with
a systematic study, we empirically analyze whether XCS is robust to class imbalances; to do
this, we test the system on an artificial problem that is unbalanced by progressively removing
instances of the minority class and check the maximum amount of under-sampling that the
system can accept before failing to discover the concepts of the minority class.

5.2.1 Hypotheses of XCS Difficulties in Learning from Imbalanced Domains

Holland (1975) early defined the term of schema as a template that identified a subset of
individuals, and used this notion to derive theory that explained how the good solutions are
propagated along a GA run. Here, we take the same notion to define the concepts of problem
niche and representative of a niche in LCSs, which will be used to study the effect of class
imbalances in XCS. With these definitions, we review the components of the online learning
architecture that may malfunction when learning from rare classes.

XCS evolves a distributed set of sub-solutions. In the remainder of this analysis, we use the
term problem niche (or simply niche) to refer to a problem subspace where a maximally general
sub-solution applies1. Each niche is represented by a schema (Holland, 1975), which defines the
value of the relevant attributes of the given problem niche, and the class or action of region
covered by the schema. The order o of the schema is the number of relevant attributes of the
niche. Then, we define that a representative of a niche is a classifier whose condition specifies
the o relevant attributes of the niche schema correctly and that predicts the class or action of
the sub-solution that the niche represents. Conversely, classifiers that do not match any problem
schema and cover examples of different classes are referred to as over-general classifiers.

For instance, let us suppose that we have a niche represented by the schema 01*0** and whose
class is 0. This means that all the examples matching 01*0** belong to class 0. Generalizing
any of the o specific bits of the schema will cause the schema to cover instances of other classes,
thence, not representing an accurate sub-solution anymore. Any classifier whose condition has
the same value for the o specific bits and predicts the niche class is a representative of the niche.
For example, classifiers 01#0##:0, 0110##:0, and 010010:0 are representatives of the niche.
The maximally general representative of a niche is the classifier that only fixes the o relevant
bits of the schema and predicts the action of the sub-solution, i.e., 01#0##:0. An example of
an over-general classifier is #1#0##:0, since it generalizes the first fixed bit of the schema.

Therefore, Michigan-style LCSs evolve niches in a distributed manner, and the population
consists of classifiers that represent niches and over-general classifiers. Then, a niche—and all
the matching classifiers—is activated every time that an instance that matches the niche schema
is sampled and the class niche is selected for exploration. In imbalanced domains, instances that

1In XCS and UCS terms, an action set and a correct set, respectively, represent a niche.

70

5.2. THE XCS CLASSIFIER SYSTEM IN IMBALANCED DOMAINS

belong to rare classes are sampled with a lower frequency; thence, niches that match these
instances are activated with a lower frequency than the other niches of the system. In the
remainder of this analysis, we address the niches that are activated by instances of the majority
class as nourished niches. Conversely, niches activated by instances of the minority class are
referred to as starved niches. We also define the imbalance ratio ir as the ratio of the number of
examples of the majority class to the number of instances of the minority class that are sampled
to the system.

Provided these definitions, we now intuitively analyze the possible difficulties that XCS
may need to face in imbalanced domains by reviewing how the online architecture works. In
the beginning of the learning process, the covering operator initializes the population with a
set of classifiers that are generalized from the first sampled input instances. Therefore, the
initial population consists mostly of over-general classifiers. Then, the system relies on (1) the
parameter update procedure to obtain trusty estimates of classifier parameters online and (2)
the evolutionary pressures (see section 3.1.6) to drive the population from a set of over-general
classifiers to a set of maximally general and accurate classifiers that represent all niches. Both
processes may be biased by the presence of rare classes.

The first peril that appears is that the parameter update procedure provides poor estimates
of the parameters of the classifiers that match examples of different classes, that is, over-general
classifiers. In XCS, classifier’s parameters are estimated by means of a weighted window average.
Therefore, the system gives more importance to recently received rewards as opposed to older
rewards, with the result that the reward provided by a particular example is forgotten after a
certain number of learning iterations. Therefore, in imbalanced domains, it could be that exam-
ples of the minority class come so infrequently that the rewards provided by them are forgotten
before receiving the next minority class instance, biasing the estimation of the parameters of
over-general classifiers.

The evolutionary pressures may also be misled by the scarce sampling of minority class
instances. Due to the occurrence-based reproduction of XCS, intuition seems to indicate that
the system may suffer to discover representatives of starved niches, since these niches will be
infrequently activated with respect to the other niches of the system. Hence, this low number of
genetic opportunities combined with the other evolutionary pressures—which promote the most
general classifiers—may discourage XCS from evolving representatives of starved niches.

In our study, we take all these hypotheses, systematically analyze the difficulties that XCS
may face as the imbalance ratio increases, and provide solutions to let the system learn from
highly imbalanced domains. To do this, we define several elements that need to be satisfied
and derive models that relate these conditions with the imbalance ratio of the problem. Before
proceeding with this analysis, in the next subsection we empirically show the behavior of XCS
on an artificially imbalanced domain. The same experimentation is repeated after conducting
the facetwise analysis and integrating all the models, emphasizing the importance of the lessons
obtained from the analysis.

5.2.2 Empirical Observations of XCS Behavior on Class Imbalances

Here, we show the performance of XCS on the imbalanced multiplexer problem (Orriols-Puig and
Bernadó-Mansilla, 2006a), a redefinition of the multiplexer problem where one of the classes is

71

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+006 1e+007 1e+008

ir = 1
ir = 2
ir = 4
ir = 8

ir = 16
ir = 32
ir = 64

ir = 128
ir = 256
ir = 512

ir = 1024

(a) %[O]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+006 1e+007 1e+008

ir = 1
ir = 2
ir = 4
ir = 8

ir = 16
ir = 32
ir = 64

ir = 128
ir = 256
ir = 512

ir = 1024

(b) TP rate · TN rate

Figure 5.1: Evolution of (a) the proportion of the optimal population and (b) the product of TP
rate and TN rate in the 11-bit multiplexer with imbalance ratios ranging from ir=1 to ir=1024.

progressively unbalanced with respect to the configuration parameter ir. That is, given a certain
imbalance ratio ir, the sampling process of the multiplexer problem is modified such that the
system receives ir instances of the majority class for each instance of the minority class. Thence,
we empirically show the maximum imbalance ratio ir that XCS, using a standard configuration
reported in the literature, could solve.

For this purpose, we ran XCS on the imbalanced multiplexer problem with imbalance ratios
of ir ={1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}. We set XCS with standard values used in
the literature for its configuration parameters, that is:

α = 0.1, ε0 = 1, ν = 10, χ = 0.8, µ = 0.04, θdel = 20, δ = 0.1, θsub = ir, P# = 0.6.

We used tournament selection, two point crossover with χ = 0.8, and bitwise mutation with
µ = 0.04. We applied GA subsumption, setting θsub = ir to avoid having poorly evaluated
over-general classifiers considered as accurate subsumers. We ran XCS during 40 000 · ir itera-
tions; thus, given a problem, we ensured that the system received the same number of genetic
opportunities for all imbalance ratios. Finally, to prevent having young over-general classifiers
with poorly estimated parameters in the final population, we introduced 5 000 · ir iterations with
the GA switched off at the end of the learning process.

Figure 5.11(a) illustrates the evolution of the proportion of the optimal population %[O]
achieved by XCS. That is, XCS was expected to evolve 32 optimal classifiers, each one repre-
senting a different niche. In this way, we measured the capacity of XCS to generalize and obtain
the best representative of each niche at high imbalance ratios. Figure 5.1(b) depicts the evolu-
tion of the product of TN rate—i.e., the proportion of correct classifications of the over-sampled
class—and TP rate—i.e., the proportion of correct classifications of the under-sampled class.
Note that XCS can evolve all the optimal population and yield 100% of the product of TP rate
and TN rate only for ir ≤ 32. As the imbalance ratio increases, XCS is able to discover a lower
proportion of the optimal population; particularly, the classifiers that represent starved niches

72

5.3. FACETWISE ANALYSIS OF XCS IN IMBALANCED DOMAINS

are not created and maintained by the system. For ir ≥ 64, the system cannot discover the
knowledge that resides in the minority class.

Therefore, these preliminary experiments show that XCS is robust at moderate imbalance
ratios, but that it fails to provide accurate representatives of the minority class for high imbalance
ratios. In the next section, we explicate the facetwise methodology used to analyze the possible
causes of this failure. We enumerate the different elements that need to be guaranteed to learn
accurate models from rare classes; then, models for each one of the elements are elaborated in
the subsequent sections.

5.3 Facetwise Analysis of XCS in Imbalanced Domains

In this section, we follow a design decomposition approach to systematically analyze the different
sources of difficulty that XCS may find when learning from imbalanced domains. We first
briefly introduce the design decomposition methodology adopted by Goldberg (2002) as a design
approach to competent genetic algorithms and review how it has been transported to XCS. Then,
we follow this approach to decompose the problem of learning from imbalanced domains in XCS.

5.3.1 Design Decomposition in GAs

Goldberg (2002) emphasizes the relevance of design decomposition and facetwise analysis for
advancing in the design and the understanding of complex systems. The design decomposition
methodology separates the working process of complex systems into different elements, and
each one of these elements is analyzed separately assuming that all the others are behaving in
an ideal manner. All these models provide key insights into the working of the complex system,
increasing our understanding of the underlying processes of the system. Furthermore, they also
can be used as a tool for designing new competent and efficient complex systems that satisfy
the requirements identified by the different models. Besides, the individual facetwise models
can be combined, identifying the sweet spot where the algorithm actually scales. For further
details about the application of this methodology to the design of competent GAs, the reader is
referred to section 2.2.4.

As described in the previous section, similarly to GAs, LCSs are complex systems in which
several components interact to evolve a set of maximally general and accurate classifiers. Due
to this complexity, efforts have recently been made to apply the design decomposition and the
facetwise analysis methodology to LCSs. In the next section, the existing work on carrying the
design decomposition approach to LCSs domain is briefly reviewed.

5.3.2 Carrying the Design Decomposition from GAs to XCS

The application of facetwise modeling to LCSs, and specifically XCS, has provided key insights
into XCS working processes, enabling the solution of more complex problems. As follows, we
review these analysis in more detail.

One of the first works toward the definition of a theory based on facetwise analysis for XCS
can be found in (Butz et al., 2004b). In this work, the authors studied the learning pressures in

73

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

XCS and derived critical bounds on the system convergence. In particular, the authors derived
two boundaries beyond which the convergence of XCS could not be guaranteed, which were
addressed as the covering challenge and the schema challenge. Continuing the analysis of the
different pressures of XCS, Butz et al. (2003) analyzed the fitness pressure and derived the so-
called reproductive opportunity bound, which sets the population size required to warrant that
a classifier, with a certain specificity, will have reproductive opportunities. Later, Butz et al.
(2004a) complemented the previous study by deriving models of the learning time in XCS. The
models were simplified by not considering crossover and by assuming a domino-convergence
model (Thierens et al., 1998). More recently, Butz et al. (2007) presented a Markov chain
analysis of niche support in XCS. The analysis showed that the number of classifiers of a niche
followed a binomial distribution, which yielded another population size bound to ensure effective
problem sustenance.

However, these facetwise models do not explain all the aspects of XCS. Whereas these models
have provided considerable insights and increased our understanding of XCS, they do not fully
capture the effect of dealing with problems that contain class imbalances. Hence, in this thesis,
we follow a design decomposition methodology to study whether XCS can efficiently deal with
rare classes. As follows, we first present an artificial problem that will enable us to identify
the different difficulties that we may face when learning from imbalanced domains. Later, we
present the problem decomposition.

5.3.3 A Boundedly Difficult Problem for LCSs: The Imbalanced Parity Prob-
lem

The first step before proceeding to the facetwise analysis is to design a proper test problem
that highlights the difficulties that are to be studied and that serves to validate the developed
models. Following this analogy, we designed the imbalanced parity problem, whose description
is provided as follows.

The imbalanced parity problem extends the parity problem (Kovacs and Kerber, 2001) by
introducing a parameter that permits controlling the complexity along the imbalance dimension.
The problem is defined as follows. Given a binary string of length `, where there are k relevant
bits (0 < k ≤ `), the output is the number of one-valued bits in the k relevant bits modulo two.
This corresponds to the original definition of the parity problem. We introduce the imbalance
complexity to this definition by starving the class labeled as ‘1’. That is, ir denotes the ratio
of examples of the majority class to the number of instances of the minority class. For ir = 1,
the problem has, approximately, the same number of instances per class. For ir > 1, there are
ir instances of the majority class for each instance of the minority class. Independent of the
imbalance ratio, the optimal population for this problem consists of 2k+1 classifiers that have
specific values for the k relevant attributes and all the remaining attributes are set to ‘#’ (see
appendix A.1).

Note that the complexity of the problem can be moved along two dimensions: the building
block size k and the imbalance ratio ir. Larger values of k pose more challenges to XCS, since the
system needs to discover larger, more complex building blocks whose bits have to be processed
together. Moreover, k also defines the number of irrelevant attributes which XCS must gener-
alize to obtain the optimal population. On the other hand, increasing ir implies a progressive
under-sampling of instances of the minority class, which may hinder XCS in discovering optimal

74

5.3. FACETWISE ANALYSIS OF XCS IN IMBALANCED DOMAINS

classifiers for this class.

Now that we have defined the parity problem and analyzed its possible sources of complexity,
the next section introduces the particular decomposition proposed for Michigan-style LCSs in
general.

5.3.4 Decomposition of the Class Imbalance Problem in XCS

With the intuitive difficulties of XCS in learning from rare classes discussed in section 5.2.1
and adhering to the design decomposition methodology proposed by Goldberg, we are now in
position to articulate the different elements that need to be satisfied to successfully deal with
problems that contain class imbalances. Our major concern is to guarantee that representatives
of starved niches will win in competition with over-general classifiers even for high imbalance
ratios. Thus, we decompose the problem and consider all the facets that are likely to be affected
by the dearth of examples of the minority class. Then, we derive facetwise models that model
each one of the subproblems. More specifically, we consider the following five subproblems:

1. Estimate the classifier parameters correctly—prediction, error, and fitness of classifiers.

2. Analyze whether representatives of starved niches can be provided in initialization.

3. Ensure the generation and growth of representatives of starved niches.

4. Adjust the GA application rate.

5. Ensure that representatives of starved niches will take over their niches.

Estimate the classifier parameters correctly. The primary factor that needs to be satisfied is
that the evaluation procedure obtains accurate estimates of the parameters of all classifiers, and
especially of over-general classifiers. In XCS, classifier parameters are updated online according
to the reward received at each time step by means of the Widrow-Hoff rule (Widrow and Hoff,
1988). This method makes a temporal windowed average of the received rewards, which gives
more importance to the last received rewards as opposed to the older rewards. Consequently,
the dearth of sampling of examples that represent one of the classes may cause poor estimations
in over-general classifiers, since infrequent negative rewards can be forgotten. This aspect is
really important since it may completely mislead the genetic search. That is, if the error of
over-general classifiers is underestimated, XCS may promote these over-general classifiers when
they are competing with accurate classifiers in the same niche. We investigate the accuracy of
the parameter update procedure and provide some alternative parameter evaluation methods
in section 5.4.

Analyze whether representatives of starved niches can be provided in initialization. Once
ensuring that classifier parameters can be properly evaluated, we have to analyze whether XCS
initialization process can supply the initial population with classifiers that contain schemas of
starved niches in the beginning of the run (Orriols-Puig et al., 2007c). That is, XCS starts
with an empty population. Then, the covering operator is applied in the first iterations of the
learning process, providing classifiers whose conditions are generalized from the first instances
that are sampled to the system. Covering should initialize the population with several classifiers

75

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

that, although not being maximally accurate, contain schemas that represent niches of different
classes. Nonetheless, intuition seems to indicate that, for highly imbalanced domains, covering
is mainly triggered on instances of the majority class; therefore, covering may fail to provide
schemas of niches that represent the minority class. Furthermore, this problem is even more
severe as the schema of starved niches gets larger (in the parity problem, this translates to
having larger values of k). In section 5.5, we derive models that formally explain this behavior.
The remainder of the analysis is derived assuming a covering failure.

Ensure the generation and growth of representatives of starved niches. After the population is
initialized, the genetic algorithm drives the search toward more accurate and general classifiers.
We already appealed to the intuition that the occurrence-based reproduction of XCS may
hamper the discovery of maximally general and accurate classifiers for starved niches. In section
5.6, we derive facetwise models that systematically analyze the effect of class imbalances in the
(1) generation and (2) growth of representatives of starved niches. Consequently, we derive
bounds on the population size to guarantee that XCS will be able to learn classifiers that
belong to starved niches. All the analysis is performed assuming that the GA is applied at
each learning iteration.

Adjust the GA application rate. Having ensured the discovery of representatives of starved
niches, section 5.7 introduces the frequency of application of the GA into the analysis and
theoretically shows that decreasing the frequency of application of the GA results in a counter-
balancing effect that may help XCS discover representatives of starved niches.

Ensure that representatives of starved niches will take over their niches. Discovering the first
representatives of starved niches is not enough. That is, once discovered, the accurate repre-
sentatives of starved niches should take over their niches, removing competing over-general,
less accurate classifiers. Nonetheless, the effect of the occurrence-based reproduction may pro-
duce the opposite effect, resulting in situations where over-general classifiers take over starved
niches. In section 5.8, we study the takeover time of the best representative in starved niches,
following the methodology used in the genetic algorithms literature for these types of analy-
ses (Goldberg and Deb, 2003). Takeover time expressions are derived for the two most-used
selection techniques in XCS: proportionate selection (Wilson, 1995) and tournament selection
(Butz et al., 2005c). Moreover, conditions for starved niches extinction, i.e., deletion of the
best representatives of starved niches in favor of over-general classifiers, are also derived for
both selection schemes.

In the remainder of this chapter, each of these facets is covered in a different section in
which the technical argument will be developed more completely. Moreover, all the models are
experimentally validated with the imbalanced parity problem. Then, in section 5.9, we unify
all the models, emphasizing the lessons derived from each one. Specifically, the patchquilt
integration of the models results in a domain of applicability of XCS for imbalanced domains,
which (1) determines under which conditions and imbalance ratios the system will be able to
successfully represent the minority class in the evolved model and (2) provides guidelines of
how to set the system for different imbalance ratios. The insights supplied by these models
are crucial to increase our understanding of how XCS evolves classifiers that represent starved
niches, enabling the solution of highly imbalanced problems that previously eluded solution. We

76

5.4. ESTIMATION OF CLASSIFIER PARAMETERS

show, as example, that all the acquired knowledge enables us to appropriately set XCS so that
it can solve the multiplexer problem (Wilson, 1995) with large amounts of class imbalances.

5.4 Estimation of Classifier Parameters

In this section, we analyze whether the Widrow-Hoff rule provides accurate estimates of the
parameters of over-general classifiers as the imbalance ratio increases. We especially focus on
the prediction error of over-general classifiers, since it determines the classifier’s fitness. If
the prediction error is underestimated, over-general classifiers may be considered as accurate
classifiers by the system; hence, they will win in competition with more specific but accurate
classifiers. Thence, as follows, we first theoretically relate the error of over-general classifiers with
the imbalance ratio, deriving a bound beyond which the system will not be able to distinguish
between over-general classifiers and accurate representatives. Then, we empirically analyze
whether the parameter update procedure of XCS can provide estimates that accurately predict
the theoretical bound.

5.4.1 Imbalance Bound

We start the derivation of the maximum imbalance bound by considering that, according to
Butz et al. (2003), the prediction p of a classifier can be approximated by

p = Pc(cl) · Rmax + (1 − Pc(cl)) · Rmin, (5.1)

where Pc(cl) is the probability that a classifier predicts the matching input correctly, Rmax is
the maximum reward, and Rmin the minimum reward given by the environment. Then, the
error of a classifier can be approximated as

ε = |p − Rmax| · Pc(cl) + |p − Rmin| · (1 − Pc(cl)). (5.2)

For classification problems, Rmin is usually 0, so that the prediction of a classifier can be
estimated by p = Pc(cl) ·Rmax. Substituting p into formula 5.2, we get the following prediction
error estimate:

ε = 2Rmax · (Pc(cl) − Pc(cl)
2). (5.3)

Now, let us relate Pc(cl) with ir (Orriols-Puig and Bernadó-Mansilla, 2006a, 2008a). In average,
over-general classifiers will match ir examples of the majority class for each example of the
minority class. Assuming that p is correctly estimated, a classifier would correctly predict the
output for the ir instances of the majority class, and would give an erroneous prediction for the
example of the minority class. Thus, Pc(cl) can be approximated as

Pc(cl) =
ir

1 + ir
, (5.4)

and its error estimate as

ε = 2 · Rmax
ir

(1 + ir)2
. (5.5)

77

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

An over-general classifier will be considered inaccurate as long as

ε ≥ ε0. (5.6)

Using equation 5.5, we obtain that

2 · Rmax
ir

(1 + ir)2
≥ ε0, (5.7)

which can be written as

−ir2ε0 + 2ir(Rmax − ε0) − ε0 ≥ 0. (5.8)

This represents a parabola where ε takes values higher than ε0 for ir ranging between ir` and iru,
where ir` < iru. We are concerned about the maximum imbalance ratio up to which XCS would
consider over-general classifiers as inaccurate; that is, iru. Solving equation 5.8, and assuming
that ε0 << Rmax, we obtain the following expression:

iru ≈ 2Rmax

ε0
. (5.9)

That is, the maximum imbalance ratio up to which XCS will be able to detect over-general
classifiers grows linearly with Rmax and decreases linearly with ε0. Substituting ε0 = 1 and
Rmax = 1000, the maximum imbalance ratio is: iru ≈ 2000. Nonetheless, the experiments
provided in section 5.2.2 illustrated that XCS failed to extract all the knowledge that resides in
the minority class for ir > 32. As proceeds, we analyze whether this deviation between theory
and experiments can be caused by a deviation of the real value of the error with respect to its
theoretical estimate.

5.4.2 Does the Widrow-Hoff Rule Provide Accurate Estimates?

Here, we empirically analyze if XCS can obtain reliable estimates as ir increases. For this
purpose, we ran the imbalanced parity problem with ` = 11, k = 4, and ir = {1, 10, 100}. We
initialized XCS with the optimal population plus the most over-general classifier predicting class
0 (i.e., ###########:0) and deactivated the GA. We set β = 0.2, which is a typical value used
in the literature. Figure 5.2 shows a histogram of the error estimate of the most over-general
classifier along a complete run. Results are averages over 10 runs. The vertical line shows the
theoretical value for each case.

Theoretically, the error of the most over-general classifier should be ε = {500, 165.28, 19.60}
for imbalance ratios ir = {1, 10, 100} respectively. For a completely balanced domain (see figure
5.2(a)), the error oscillates around the theoretical value, i.e., ε = 500. For ir = 10, the error of
the most over-general classifier is around zero with high frequency. For ir = 100, the classifier
error is zero most of the time. That is, as the classifier receives instances of the majority class,
its error keeps on decreasing until becoming approximately zero. At some point, an instance of
the minority class is sampled, which causes an increase in the error of the over-general classifier.
For ir = 100, as 100 instances of the majority class are sampled for each instance of the minority

78

5.4. ESTIMATION OF CLASSIFIER PARAMETERS

0 100 200 300 400 500 600
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Prediction Error

(a) β = 0.2, ir = 1

0 100 200 300 400 500 600
0.0

0.5

1.0

1.5

2.0

2.5

Prediction Error

(b) β = 0.2, ir = 10

0 50 100 150 200 250 300
0.0

0.5

1.0

1.5

2.0

Prediction Error

(c) β = 0.2, ir = 100

Figure 5.2: Histogram of the error of the most over-general classifier with Widrow-Hoff delta
rule at β = 0.2 and different imbalance ratios.

class, the error of the most over-general classifier is underestimated during most of the time.
Note that when ε < ε0, XCS considers that the classifier is accurate (a typical value for ε0 = 1).
This is the case during large part of the training time for ir = 10 and, especially, for ir = 100.
Besides, as the classifier is the most over-general possible, it will be favored to the detriment of
highly accurate but more specific classifiers.

The problem of having non-stable estimates for over-general classifiers does not appear ex-
clusively in highly imbalanced domains. This topic has been studied for multi-step problems
with large delayed rewards, and several approaches have been designed to propagate the error
effectively along the previous action sets when several steps have to be taken before reaching
a reward. Herein, we consider two methods to obtain better parameter estimates. First, we
show that the Widrow-Hoff rule can obtain better parameter estimates if β is properly tuned.
Then, we adapt one of the most relevant methodologies for parameter evaluation designed for
multi-step problems to single step tasks: gradient descent (Butz et al., 2005a). The next two
sections show that the two methods allow for better estimates in highly imbalanced domains.

5.4.3 Obtaining Better Estimates with the Widrow-Hoff Rule

In the Widrow-Hoff rule, the parameter β determines the proportion of update in the classifier
parameters. As the Widrow-Hoff rule works as a temporal windowed average, β also fixes the
capacity to forget past rewards. That is, high values of β produce large modifications of classifier
parameters every time a new reward is received, forgetting perviously received rewards quickly.
Usually, this allows for a faster convergence of the classifier parameters to their real values.
However, we have already seen the harmful effect in imbalanced domains.

Here, we show that a simple solution to prevent the oscillation of the parameters of over-
general classifiers is to decrease β, considering in this way a longer history of rewards. Lower
values of β would cause smaller corrections, and so, less oscillations. Nonetheless, they would
also imply slower convergence. For very small values of β, accurate offspring classifiers may lose
against over-general parents at the beginning of the run, since their fitness increases slowly. This
may impair XCS’s ability to discover new accurate and more specific rules. Thence, β should

79

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

400 450 500 550 600
0

2

4

6

8

10

12

14

Prediction Error

(a) β = 0.01, ir = 1

0 50 100 150 200 250 300 350
0.0

0.5

1.0

1.5

2.0

2.5

Prediction Error

(b) β = 0.01, ir = 10

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

Prediction Error

(c) β = 0.01, ir = 100

Figure 5.3: Histogram of the error of the most over-general classifier with Widrow-Hoff delta
rule at β = 0.01 and different imbalance ratios.

be the highest value that prevents over-general classifiers from having zero error.

Figure 5.3 shows a histogram of the error estimate of the most over-general classifier along
a complete rule for β = 0.01. For all the cases, the histograms are centered on the theoretical
value of the error. Thus, over-general classifiers have precise estimates of their parameters most
of the time. The standard deviation of the histograms increases with the imbalance ratio, since
the rewards generated by the minority class examples are less frequent.

5.4.4 Obtaining Better Estimates with Gradient Descent Methods

Here, we study another approach, originally adapted from a gradient descent methodology, to
obtain better parameter estimations. Butz et al. (2005a) introduced a gradient descent method
to improve the parameter estimation of XCS in multi-step problems that involve a large number
of state-action pairs. The new approach relies on identifying that the gradient term for a classifier
is F∑

[A] Fi
, in which Fi is the fitness of classifier i of the action set. Thus, classifier prediction is

updated as

p = p + β(R − p)
F∑
[A] Fi

, (5.10)

where R is the received reward. The rest of the parameters are updated as usual (see section
5.2). Note that this procedure aims at stabilizing classifier prediction. In consequence, the
classifier error will also be stabilized since it tracks the prediction error.

The results provided by Butz et al. (2005a) illustrate that the gradient descent technique
enables XCS to solve multi-step problems that eluded solution in XCS with Widrow-Hoff rule.
Such improvement is explained by noting that the gradient term in the prediction update is
actually an adaptive learning rate that prevents parameters from large corrections when the
fitness of the updated classifier is much lower with respect to the fitness of the other classifiers
in the same action set. Thereupon, gradient descent uses a heuristic procedure to automatically
tune β depending on the fitness of each classifier. Then, the difference between gradient descent
and decreasing β is that gradient descent automatically uses the aforementioned heuristic to

80

5.5. SUPPLY OF SCHEMAS OF STARVED NICHES IN POPULATION INITIALIZATION

450 500 550
0.0

0.5

1.0

1.5

2.0

Prediction Error

(a) β = 0.2, ir = 1

100 200 300 400 500 600 700 800
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Prediction Error

(b) β = 0.2, ir = 0.1

0 100 200 300 400
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Prediction Error

(c) β = 0.2, ir = 0.01

Figure 5.4: Histogram of the error of the most over-general classifier with gradient descent at
β = 0.2 and different imbalance ratios.

determine the most suitable value for β instead of requiring the user to tune this parameter.

We repeated the same experiments with the imbalanced parity problem but now used gra-
dient descent with β = 0.2. Figure 5.4 plots the histograms of the error estimate of the most
over-general classifier along a complete run for gradient descent. XCS with gradient descent
maintains fairly accurate estimates of the error of the most over-general classifier for all the
imbalance ratios, even though a high value of β is used. However, note that these estimates are
not as accurate as the ones obtained with Widrow-Hoff rule with a proper configuration of β.

In summary, this section showed that the Widrow-Hoff rule may provide poor estimates of the
error of over-general classifiers for high class imbalances. This effect is undesirable since this may
cause XCS to consider over-general classifiers as accurate. Two approaches, i.e., decreasing β for
Widrow-Hoff rule and gradient descent provided more reliable parameter estimates. Although
these methods would result in a slower convergence of XCS, their use is critical to guarantee
that XCS will be able to obtain reliable estimates and converge to an optimal population. In
the remainder of the analysis, we consider that classifier parameters are accurately estimated
by the procedures presented above, and thus, that the genetic search is not misled. With this
assumption, the next sections study the generation and growth of representatives in starved
niches.

5.5 Supply of Schemas of Starved Niches in Population Initial-
ization

Here, we study whether the covering operator is able to supply classifiers that represent schemas
of starved niches for high imbalance ratios. As explained in section 5.2, covering is activated in
the first stages of the learning process, creating new classifiers from the first sampled instances.
To provide representatives of starved niches, the covering operator has to be triggered on minor-
ity class instances. However, as ir increases, fewer minority class instances are sampled. Thus,
covering will be mainly activated from majority class instances. Then, most of the classifiers
will be generalized from majority class instances, and so, classifiers representing schemas of the

81

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

minority class will be scarce. To analyze this effect, here we derive the probability that covering
is triggered on the first minority class examples sampled to the system.

For this purpose, we first consider the probability that one instance is covered by, at least,
one classifier P (cover). According to Butz et al. (2004b), this probability is

P (cover) = 1 −

[
1 −

(
2 − σ[P]

2

)`
]N

, (5.11)

where ` is the input length, N is the population size, and σ[P] is the specificity of the population.
During the first learning stage of XCS, we can approximate σ[P] ≈ 1 − P#.

Now, let us relate this probability to the imbalance ratio ir. We consider the worst case
where (1) XCS receives ir instances of the other classes before receiving the first instance of the
minority class and (2) the covering operator is triggered for each instance supplying n classifiers
per instance (where n is the number of classes; thus θmna = n). In this case, the probability
that the population contains, at least, a matching classifier for each class is

P (cover) = 1 −

[
1 − 1

n

(
2 − σ[P]

2

)`
]n·ir

. (5.12)

In this equation, we assumed that N > n · ir, i.e., that XCS will not delete any classifier during
the first ir iterations. This assumption is usually satisfied since covering is only applied for the
first input examples, when there is room in the population. It is worth noting that, given a fixed
` and σ[P], the term in brackets in the right hand of the equation decreases exponentially as
the imbalance ratio increases. Thus, the probability of having classifiers in the population that
match the first minority class instances tends to one exponentially with the imbalance ratio.
Notice that the matching classifiers would have been generated from majority class instances,
and so, would not represent schemas of starved niches.

With equation 5.12, we can derive the probability of activating covering having sampled a
minority class instance. Provided that the probability of activating covering is 1 − P (cover),
and recognizing that (1 − r/n)n ≈ e−r, we obtain that

P (activate cov. on. min.) = 1 − P (cover) ≈ e−ir·e−
`σ[P]

2 , (5.13)

which decreases exponentially with the imbalance ratio and, in a higher degree, with the con-
dition length and the initial specificity. Figure 5.5 depicts the equation for ` = 20, n = 2,
and different initial specificities, showing that the probability of activating covering on the first
sampled instance of the minority class decreases exponentially with the imbalance ratio.

Thence, this analysis manifests that the covering operator fails to supply classifiers repre-
senting correct schemas of the minority class for moderate and high imbalance ratios. In the
next section, we assume a covering failure in providing schemas of starved niches and study
whether the genetic search can discover representatives of starved niches.

5.6 Generation of Classifiers in Starved Niches

Assuming a covering failure to provide classifiers that represent schemas of starved niches, we
now study how the GA can evolve representative classifiers for these starved niches. As follows,

82

5.6. GENERATION OF CLASSIFIERS IN STARVED NICHES

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Imbalance Ratio (ir)

P
ro

ba
bi

lit
y

Probability of Activating Covering on the first Minority Class Instance

σ[P] = 1.0 / P
#
 = 0.0

σ[P] = 0.8 / P
#
 = 0.2

σ[P] = 0.6 / P
#
 = 0.4

σ[P] = 0.4 / P
#
 = 0.6

σ[P] = 0.8 / P
#
 = 0.2

Figure 5.5: Probability of activating covering on a minority class instance given a certain
specificity σ[P] and the imbalance ratio ir. The curves have been drawn from equation 5.13
with ` = 20 and different specificities.

we first enumerate the assumptions of the models and then analyze the probabilities of creating
and maintaining representatives of starved niches. Finally, we use the different models to derive
a population size bound to ensure the discovery of starved niches.

5.6.1 Assumptions for the Model

Before proceeding with the theoretical derivations, we first enumerate the assumptions made to
develop the models. The analysis is focused on the evolution of starved niches. We assume a
simplified scenario model where: (1) we do not consider crossover and contemplate mutation as
the main operator for discovery, assuming low probabilities of mutation µ (µ < 0.5) as usual in
practice; (2) we assume that the GA is applied at each learning iteration (i.e., θGA = 0); and (3)
we consider random deletion. Subsequently, we relax all these constraints and experimentally
analyze the impact of breaking each one of the assumptions. We experimentally examine the
effect of introducing two point crossover. Furthermore, we investigate the biases caused by the
enhanced deletion technique used currently in XCS (see section 3.1.4). In the next section, we
study the effect of θGA theoretically and empirically.

5.6.2 Genetic Creation of Representatives of Starved Niches

In the first step of the analysis, we derive the time until the creation of the first representatives
of starved niches, assuming that covering has not provided any of them. To achieve this, we first
derive the probability to obtain the first accurate representative clmin of the starved niche i,
which is represented by a schema with order km. Thence, we study the probabilities of creating
clmin when sampling (1) instances of the minority class and (2) instances of the majority class.
Recognizing that the probability of sampling a minority class instance is 1/(1 + ir) and the

83

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

probability of sampling a majority class instance is ir/(1 + ir), we can write that

P (clmin) =
1

1 + ir
P (clmin|min. inst) +

ir

1 + ir
P (clmin|maj. inst). (5.14)

Let us first derive P (clmin|min. inst), that is, the probability of generating a representative
of a starved niche when sampling a minority class instance. As we assumed that there are no
representatives of starved niches in the population, the match set will only consist of over-general
classifiers. Then, the system will choose a class randomly and will explore it, running a genetic
event on the selected action set. Regardless of the selected class, and considering that there are
only over-general classifiers in [M], a representative of a starved niche can be created if all the
km bits are correctly set to the values of the niche schema. Here, we consider the worst case and
assume that all the km bits need to be mutated. Thence, the probability of getting the correct
schema is (µ

2)km . Besides, the class of the rule needs to be set to the class of the niche. If the
system selected to explore the minority class (which will be selected with probability 1/n, where
n is the number of classes), we have to ensure that the mutation operator would not change
this class (that is, with probability (1 − µ)). Otherwise, we have to require that the mutation
operator change this class to the niche class (with probability µ/(n − 1)). Therefore,

P (clmin|min. inst) =
1
n

(µ

2

)km

· (1 − µ) +
n − 1

n

(µ

2

)km

· µ

n − 1
=

1
n

(µ

2

)km

. (5.15)

The same procedure can be followed to derive the probability of creating clmin when sampling
an instance of the majority class, i.e., P (clmin|maj. inst). In this case, the match set will consist
of both over-general classifiers and representatives of nourished niches. Again, we consider the
worst case and assume that, to create a representative of a starved niche, all the km bits of
the niche schema need to be mutated. Moreover, if the system chooses to explore the minority
class, the class of the classifier must be preserved; otherwise, the class has to be changed to the
minority class. This results in exactly the same probability as before, i.e.,

P (clmin|maj. inst) =
1
n

(µ

2

)km

. (5.16)

Substituting equations 5.15 and 5.16 into equation 5.14 we obtain that

P (clmin) =
1
n

(µ

2

)km

. (5.17)

Then, we can derive the time required to discover the first representatives of starved niches tclmin

as

tclmin
=

1
Pclmin

= n

(
2
µ

)km

, (5.18)

which depends linearly on the number of classes and exponentially on the order of the schema,
but does not depend on the imbalance ratio.

Thus, even though covering fails to provide classifiers representing schemas of the minority
class, XCS will be able to generate the first correct classifiers of the minority class independent
of the imbalance ratio. In the following, we derive the time until the deletion of these classifiers.
With both the generation and deletion time, we calculate the minimum population size to
maintain these classifiers and ensure that the best representatives of starved niches will receive,
at least, one genetic event.

84

5.6. GENERATION OF CLASSIFIERS IN STARVED NICHES

5.6.3 Deletion of Representatives of Starved Niches

We now provide an approximate time to the extinction of representatives of starved niches. The
time to extinction of classifiers mainly depends on the applied deletion procedure. The current
deletion scheme of XCS (Kovacs, 1999) gives the classifiers a deletion probability proportional
to their action set estimate as. This approach permits balancing the allocation of rules in
the different niches in problems for which the frequency of the different niches is similar, i.e.,
balanced problems. Nonetheless, in highly imbalanced problems, the action set size estimate of
accurate classifiers of starved niches may be negatively biased by over-general classifiers. That
is, as over-general classifiers participate in the same action sets as accurate classifiers of starved
niches, the action set size of these accurate classifiers may be overestimated.

As our model is developed for highly imbalanced domains, we consider the worst case, i.e.,
that the deletion procedure gives the same probability to each classifier to be deleted. Since
two classifiers are deleted at each GA application, we obtain that the deletion probability is
P (delete cl) = 2/N , where N is the population size. From this formula, we derive the time
until deletion:

t(delete cl) =
N

2
. (5.19)

In the next section, we use both the creation and the extinction time of representatives of
starved niches to derive the minimum population size that guarantees the discovery, mainte-
nance, and growth of starved niches.

5.6.4 Bounding the Population Size

The population size is a critical aspect that determines the niches that the system could maintain.
In this section, we use the formulas calculated above and derive population size bounds to
guarantee (1) that XCS will be able to maintain accurate representatives of starved niches, and
(2) that representatives of starved niches will receive genetic events before being removed.

Minimum Population Size to Guarantee Representatives

In the previous section, we theoretically showed that XCS would be able to create representatives
of starved niches regardless of the imbalance ratio. To guarantee that these classifiers will be
preserved in the niche, we require that, before deleting any representative of a starved niche,
another representative for the given niche be generated. Therefore, we use the formulas derived
in the previous section and require that the time until deletion be greater than the time until a
new representative of a the starved niche is created. That is, we require that

t(delete clmin) > t(clmin). (5.20)

Using formulas 5.18 and 5.19, the expression can be rewritten as

N > 2n
(µ

2

)km

. (5.21)

85

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

which indicates that the population size has to increase linearly with the number of classes and
exponentially with the order of the schema to guarantee that representatives will be maintained
in starved niches. Note that this formula does not depend on the imbalance ratio. This means
that XCS will be able to maintain accurate classifiers in starved niches regardless the imbalance
ratio.

Population Size Bound to Guarantee Reproductive Opportunities

To ensure the growth of starved niches, we not only should guarantee that XCS would maintain
representatives of starved niches, but that these representatives receive, at least, a genetic op-
portunity. Otherwise, XCS could be continuously creating and removing classifiers from starved
niches, but not searching toward better classifiers. Therefore, here we derive a population size
bound to ensure this condition.

In our model, we assume that the selection procedure chooses one of the strongest classifiers
in the niche (the effect of different selection schemes will be studied in more detail in the next
section). Then, the time required for a classifier of a starved niche to receive a genetic event is
inversely proportional to the probability of activation of the niche to which it belongs, i.e.,

t(GA nichemin) = n · (1 + ir), (5.22)

which depends on the imbalance ratio and the number of classes.

To guarantee that these accurate classifiers of starved niches receive a genetic opportunity
before being deleted, we require that t(delete nichemin) > t(GA nichemin), from which we
derive the population size bound

N > 2n · (1 + ir). (5.23)

That is, the population size has to increase linearly with the number of classes and the imbalance
ratio to warrant that accurate classifiers of starved niches will receive, at least, a genetic event
before being deleted.

Thereupon, the models derived in this section explained the creation, the maintenance, and
the growth of starved niches, showing that XCS is able to maintain representatives of starved
niches regardless of the imbalance ratio and that the population size has to increase linearly
with the imbalance ratio if we want to ensure that the niche will grow. In the next section, we
empirically validate the population size bounds with a set of artificial problems.

5.6.5 Experimental Validation of the Models

In this section, we experimentally evaluate whether the population size bound increases linearly
with ir as predicted by the bound in equation 5.23. We first analyze whether the theory fits
the experimental results when all the assumptions are made. Later, we study the impact of
breaking each one of the assumptions.

Experimental Validation When the Assumptions Are Satisfied

To examine whether the theory approximates accurately the empirical results when all the
assumptions are met, we performed the following experiments. We ran XCS on the imbalanced

86

5.6. GENERATION OF CLASSIFIERS IN STARVED NICHES

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5
x 10

4

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e
Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(a) Default configuration

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5
x 10

4

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e

Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(b) Gradient descent

Figure 5.6: Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and the default configuration with (a) Widrow Hoff rule update with adjusted
β according to ir and (b) gradient descent parameter update with β = 0.2. The dots show the
empirical results and lines plot linear increases with ir (according to the theory).

parity problem with k = {1, 2, 3, 4}, ` = 10, and ir = {1, 2, 4, 8, 16, 32, 64, 128}, and we used
the bisection procedure to obtain the minimum population size required to solve the problem.
That is, for each parity problem and imbalance ratio, we ran XCS with an initial, randomly
selected population size. If the run succeeded, we decreased the population size. Otherwise,
we increased the population size. This procedure was repeatedly applied until we obtained the
minimum population size with which XCS was able to solve the problem. We employed the
following procedure to determine if an XCS run was successful. After training, we tested XCS
with all the training instances and measured the proportion of correct classifications of instances
of the majority class (TN rate) and the proportion of correct classifications of the minority class
(TP rate). All these results were averaged over 50 different random seeds. We considered that
XCS succeeded if the product of TP rate and TN rate was greater than a certain threshold θ
(we set θ = 0.95).

XCS was configured so that all the assumptions of the model were satisfied. Therefore,
crossover was deactivated (χ = 0), random deletion was used, and the GA was applied every
time a niche was activated (θGA=0). The other parameters were set as α = 0.1, ε0 = 1, ν = 10,
µ = 0.04, θdel = 20, δ = 0.1, θsub = ir, P# = 0.6. We used tournament selection for the GA. We
ran XCS during {10 000 · ir, 20 000 · ir, 40 000 · ir, 80 000 · ir} iterations for the parity problem
with k = {1, 2, 3, 4} respectively; thus, given a problem, we ensured that the system received the
same number of genetic opportunities for all imbalance ratios. Finally, to prevent having young
over-general classifiers with poorly estimated parameters in the final population, we introduced
5, 000·ir iterations with the GA switched off at the end of the learning process. In the remainder
of this chapter, this configuration is referred to as the default configuration.

The two parameter update procedures proposed in section 5.4 were used: (1) Widrow-Hoff
rule and (2) gradient descent. For the former method, we used the following heuristic procedure

87

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

to tune β. For each run, we supposed the worst case and assumed that over-general classifiers
received 1 instance of the minority class and then ir instances of the majority class. Thus, we
set β so that the error calculated for the most over-general classifier was approximately the
same as the theoretical error provided by equation 5.9. We followed an iterative approach that
incrementally discounted the value of β until a value that yielded error estimates that were close
to the theoretical ones was found.

Figure 5.6 shows the minimum population size required to solve the parity with different
building block sizes (k = {1, 2, 3, 4}) and imbalance ratios from ir = 1 to ir = 128 for Widrow-
Hoff rule (figure 5.6(a)) and gradient descent (figure 5.6(b)). For each plot, the points depict the
empirical values and the lines show the theoretical bounds. Note that the theory approximates
the empirical results accurately for the two parameter update procedures and the different
configurations and imbalance ratios. These results also permit establishing a comparison among
the two parameter update procedures. The pairwise Wilcoxon statistical test (Wilcoxon, 1945),
at α = 0.05, indicated that gradient descent needed significantly smallest populations to solve
the different configurations of the parity problem.

The results provided herein indicated that the theory nicely predicts the experiments when
the assumptions of the models are met. In the next section, we investigate whether the popula-
tion size bound is still valid when the different assumptions are not satisfied.

Impact of Breaking the Assumptions

Here, we repeated the experiments done in the previous section, but breaking each assumption.
That is, we used the default configuration specified in the last section. Widrow-Hoff rule was
employed for parameter estimation. Then, we ran XCS with (1) crossover, setting χ = 0.8, and
(2) the typical deletion scheme of XCS, configuring θdel = 20 and δ = 0.1. Moreover, we also
analyzed (3) the effect of replacing tournament selection with proportionate selection and (4)
the impact of increasing the specificity in the initial population by setting P# = 0.4. Figure 5.7
shows the minimum population size required in each configuration.

Several conclusions can be drawn from these results. First of all, it is worth noting that
the theory nicely approximates the empirical results for all the experiments, although the initial
assumptions were not satisfied. Figure 5.7(a) shows the curves obtained by XCS with crossover,
which are equivalent to those evolved with the default configuration (see figure 5.6(a)) according
to a Wilcoxon signed-ranks test at a significance level of 0.05. This suggests that the models
are still valid although crossover is used in the experimental runs. Figure 5.7(b) plots the
curves resulting from running XCS with the typical deletion scheme of XCS. The results clearly
evidence the decrease in the population size required to solve the different configurations (the
Wilcoxon signed-ranks test confirmed this observation). In any case, note that the the minimum
population size still increases linearly with the imbalance ratio, as predicted by the theory.
The configuration with proportionate selection (see figure 5.7(c)) yielded equivalent results to
those obtained with the default configuration according to a Wilcoxon signed-ranks test at a
significance level of 0.05. Finally, figure 5.7(d) illustrates the results obtained when there was a
higher specificity in the initial populations. The pairwise analysis supports the hypothesis that
a higher initial specificity requires larger population sizes to solve the parity with k = 1. For
the other parity problems, no statistical differences were found.

88

5.7. OCCURRENCE-BASED REPRODUCTION: THE ROLE OF θGA

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5
x 10

4

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e
Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(a) Crossover

10
0

10
1

10
2

0

500

1000

1500

2000

2500

3000

3500

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e

Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(b) Fitness deletion

10
0

10
1

10
2

0

0.5

1

1.5

2
x 10

4

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e

Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(c) RWS

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5
x 10

4

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e

Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(d) P#=0.4

Figure 5.7: Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and different XCS’s configurations. The dots show the empirical results and
lines plot linear increases with ir (according to the theory).

The overall experimentation conducted in this section showed an agreement between theory
and experiments, even when the initial assumptions were not satisfied. Notice that no experiment
broke the assumption that the GA is applied at each learning iteration. The effect of varying
the frequency of application of the GA is carefully studied in the next section.

5.7 Occurrence-based Reproduction: The Role of θGA

Throughout all the analysis performed in the last section, we assumed that the different niches
of the system receive a genetic opportunity each time they are activated (i.e., θGA=0). Conse-
quently, nourished niches received more genetic events, and so, generated more offspring. This

89

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

section takes in consideration the effect of having θGA > 0, revisits the models derived in the
previous section, and shows that we can use θGA to re-balance the number of genetic opportuni-
ties that both starved and nourished niches receive. Finally, the new models are validated with
the imbalanced parity problem.

5.7.1 Including θGA in the Generation Models

To analyze the impact of varying θGA, let us consider again the occurrence-based reproduction
of both types of niches and calculate the period of application of the GA to the different niches.
The frequency of activation of nourished niches (Foccmaj) and the frequency of activation of
starved niches (Foccmin) are

Foccmaj =
1

n · m
ir

1 + ir
(5.24)

and

Foccmin =
1

n · m
1

1 + ir
, (5.25)

where m is the number of niches2. From these frequencies, we can compute the period of
activation of each type of niche as

Toccmaj = n · m1 + ir

ir
(5.26)

and

Toccmin = n · m(1 + ir). (5.27)

Once activated, the niche will receive a genetic event if the time since the last application of the
GA on the niche exceeds θGA. Therefore, the period of application of the GA (TGA) on a niche
is

TGA =

{
Tocc if Tocc > θGA

θGA otherwise.
(5.28)

That is, if the period of activation of a niche is greater than θGA, the classifiers that belong to
the niche will receive a genetic event every time the action set is formed; thus, the period of
application of the GA equals the period of niche activation. This is the case of the theoretical
model, in which we assumed θGA = 0. On the other hand, if Tocc ≤ θGA, TGA is approximately
θGA.

To give all niches the same number of genetic events, TGA should be approximately the same
for all the niches. Note that this can be easily satisfied by setting θGA = T ∗

occ, where T ∗
occ is the

period of the niche that is activated less frequently, i.e., T ∗
occ = Toccmin . Therefore, θGA should

be set as follows:

θGA ≈ n · m · (1 + ir). (5.29)

2We introduce the number of niches in these equations since we are now modeling the occurrence of a specific
niche

90

5.7. OCCURRENCE-BASED REPRODUCTION: THE ROLE OF θGA

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5
x 10

4

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e
Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(a) Default configuration

10
0

10
1

10
2

0

500

1000

1500

2000

2500

3000

3500

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e

Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(b) Fitness deletion

Figure 5.8: Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and different XCS’s configurations with θGA = n · m · ir. The points indicate
the empirical values of the minimum population size required by XCS. The lines depict the
theoretical increase calculated with the previous models, which assumed θGA = 0.

Note that if the restriction of equation 5.29 is satisfied, all niches will receive approximately the
same number of genetic events; moreover, as deletion is only activated after a GA application,
the time of deletion of a classifier (see equation 5.19) would now increase linearly with the
imbalance ratio. Therefore, XCS will be able to maintain starved niches without increasing the
population size. The next section experimentally validates this assertion.

5.7.2 Experimental Validation

To validate the theory derived in the previous section, we ran the same experiments with the par-
ity problem proposed in section 5.6.5. We configured the system with the default configuration,
but we set θGA = n · m · ir; Widrow Hoff rule was used to update classifier parameters. Figure
5.8(a) shows the minimum population size required to solve the parity problem with different
building block sizes (k = {1, 2, 3, 4}) and imbalance ratios from ir = 1 to ir = 128. The points
depict the empirical values. To analyze the differences introduced by adjusting θGA = n ·m · ir,
the lines depict the population size increase predicted by the theoretical model calculated for
the same configurations but with θGA = 0 (see figure 5.6(a)).

The figure shows that, with the default configuration, the population size remained nearly
constant for all the tested parity problems and imbalance ratios. This is because the effect of
the imbalance ratio was counter-balanced by the increase of the period of application of the
GA, as deduced in the previous section. The population size only presented a slight increase
for ir = 128. This behavior can be easily explained as follows. At such imbalance ratios, the
parameter update procedure decreases the value of β to prevent the oscillation of the parameters
of over-general classifiers. For very small values of β, accurate offspring classifiers may lose
against over-general parents at the beginning of the run, since their fitness increases slowly. As

91

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

the deletion procedure is random and these offspring receive a low number parameter updates,
they may be removed before their parameters are correctly adjusted to the real value. Therefore,
slightly larger populations may be set to let new accurate offspring persist in the population
until their parameters are sufficiently updated.

To contrast this hypothesis, we ran the same experiments but used the typical deletion scheme
of XCS. Figure 5.8(a) illustrates the minimum population sizes required for each configuration of
the parity problem. The experimental results show that the population size remains constant as
the imbalance ratio increases, even for the largest imbalance ratios. That is, the typical deletion
scheme of XCS protects the young classifiers by giving more deletion probability to over-general,
experienced classifiers.

With the present study, we have theoretically and empirically demonstrated that representa-
tives of starved classifiers will be evolved independent of the population size. In the next section,
we analyze the takeover time of these classifiers in more detail.

5.8 Takeover Time of Accurate Classifiers in Starved Niches

The study provided so far showed that XCS is able to create accurate classifiers of starved niches,
and that these classifiers will receive, at least, a genetic opportunity before being deleted. This
facet of the analysis set the population size requirements to guarantee that starved niches are
represented. Also, the effect of increasing θGA was analyzed in detail. However, the conditions
required in the previous models are not enough; to ensure full convergence, we have to warrant
not only that starved niches will not be extinct but also that accurate classifiers will take over
starved niches, removing the majority of over-general classifiers. Therefore, we have to analyze
the competition between accurate classifiers of starved niches and over-general classifiers. This
analysis is crucial because it permits extracting the upper bound on the admissible imbalance
ratio under which XCS will be able to extract the key knowledge that resides in the minority
class.

The purpose of this section is to model the takeover time of the best representatives of
starved niches and determine the conditions under which starved niches will be extinguished.
We first calculate the takeover time of accurate classifiers, which depends on (i) the initial stock
of accurate classifiers in the niche and (2) the type of selection used by the GA. In LCSs, two
selection procedures have mainly been considered: proportionate selection (Wilson, 1995) and
tournament selection (Butz et al., 2005c). In this section, we model the takeover time of the
best classifier of a niche for both selection schemes. Although we focus the analysis on the
effect of class imbalances, note that the derived models can be used as general models for the
two selection schemes. Then, we use the takeover time equations to calculate the extinction
conditions of a niche, i.e., the conditions under which all representatives of a given starved niche
will be removed from the population due to an overpressure toward generalization. As follows,
we present the assumptions made for the analysis, develop the models for each type of selection,
and experimentally validate the takeover time and extinction models.

92

5.8. TAKEOVER TIME OF ACCURATE CLASSIFIERS IN STARVED NICHES

5.8.1 Model Assumptions

Here, we provide the assumptions of the models. We derive takeover time models for problems
with an arbitrary number of niches m. The models consider that all the m niches appear with the
same frequency. In fact, in section 5.7, we showed that this could be easily achieved by setting
θGA according to ir. Then, we incorporate the effect of the imbalance ratio in the error of the
over-general classifier. That is, imagine that we have a two-class problem. For ir = 1, the error
εo of the most over-general classifier will be εo ≈ 500, since this classifier will correctly predict
half of the instances. As the imbalance ratio increases, εo decreases as shown in section 5.4.
Thence, the imbalance ratio is intrinsically included in the difference between the errors of the
over-general and the accurate classifiers. Thus, the takeover time models derived herein compute
whether high imbalance ratios may discourage XCS to promote representatives of starved niches
in favor of over-general classifiers.

To simplify the mathematical derivation of the models, we make the following assumptions.
We consider that XCS has evolved a maximally general and accurate classifier cl b, with error εb

and numerosity nb, for each niche of the system (this is ensured by the models provided in the last
sections). Moreover, we assume that there is a single over-general classifier no, with error εo and
numerosity no, which matches all the niches. As cl b is maximally accurate, εo > εb. The same
expression can be written in function of the classifiers accuracy (a inverse function of the error)
as κb > κo. Therefore, our aim is to model the competition between accurate representatives of
the different niches and the over-general classifier. For the analysis, we assume random deletion.
We also consider that the GA is applied at each learning iteration and that both crossover and
mutation are switched off. Therefore, the GA only selects two parents, copies and introduces
them into the population, removing two other classifiers. The subsequent sections model the
takeover time for proportionate and tournament selection under these assumptions.

5.8.2 Takeover Time for Proportionate Selection

In this section, we first derive the probability of selecting the best representative of a niche under
proportionate selection, and then, we use this information to develop equations that model the
evolution of the numerosity of this classifier in the niche. Under proportionate or roulette wheel
selection (RWS), the selection probability of a classifier i depends on the ratio of its fitness Fi

over the fitness of all classifiers in the action set. Without loss of generality, we assume that
the classifier’s fitness is a simple average of the classifier’s relative accuracy. Thus, focusing on
a single niche, we compute the fitness of classifiers cl b and clo as

Fb =
κbnb

κbnb + κono
=

1
1 + ρnr

and

Fo =
κono

κbnb + κono
=

ρnr

1 + ρnr
,

where nr = no/nb and ρ is the ratio between the accuracy of clo and the accuracy of cl b
(ρ = κo/κb). ρ can also be viewed as the fitness separation between clo and cl b. The probability
Ps of selecting the best classifier cl b in the niche is computed as

PsRWS =
Fb

Fb + Fo
=

1
1 + ρnr

.

93

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

Once selected, each classifier is copied and inserted into the population while one classifier is
randomly deleted from the niche with probability Pdel(cl j) = nj/N , where N is the population
size. With this information, as proceeds we model the evolution of the best classifier in a niche.

Evolution of the Best Classifier

The numerosity of the best classifier clb at time t+1, nb,t+1, given the numerosity of the classifier
at time t, nb,t, will

• increase in the next generation if the GA is applied to the niche, cl b is selected by the GA,
and another classifier is selected for deletion;

• decrease if (a) the GA is applied to the niche, cl b is not selected by the GA, but cl b is
selected for deletion or if (b) the GA is not applied to the niche and cl b is selected for
deletion;

• remain the same, in all the other cases.

More formally,

nb,t+1 =

nb,t + 1 1

m
1

1+ρnr,t

(
1 − nb,t

N

)
,

nb,t − 1 1
m

(
1 − 1

1+ρnr,t

)
nb,t

N + m−1
m

nb,t

N ,

nb,t otherwise.

where m is the number of niches in the problem. Grouping the above equations, we obtain

nb,t+1 = nb,t +
1
m

· 1
1 + ρnr,t

(
1 −

nb,t

N

)
− 1

m

(
1 − 1

1 + ρnr,t

)
nb,t

N
− m − 1

m

nb,t

N
, (5.30)

which can be expressed as

nb,t+1 = nb,t +
1
m

1
1 + ρnr,t

−
nb,t

N
. (5.31)

This expression can be rewritten in terms of the proportion Pt of classifiers cl b in the whole
population, i.e.,

Pt =
nb,t

N
. (5.32)

Considering that the numerosity of the best classifier in each niche is nb,t, we write that the
numerosity of the over-general classifier no,t is no,t = N −m ·nb,t, and thus, nr,t can be expressed
as

nr,t =
no,t

nb,t
=

1 − m · Pt

Pt
. (5.33)

Replacing equations 5.33 and 5.32 into equation 5.31, we obtain

Pt+1 = Pt +
1

Nm

Pt

Pt + ρ(1 − mPt)
− 1

N
Pt. (5.34)

94

5.8. TAKEOVER TIME OF ACCURATE CLASSIFIERS IN STARVED NICHES

Assuming Pt+1 − Pt ≈ dp/dt, we have

dp

dt
≈ Pt+1 − Pt =

1
Nm

Pt

Pt + ρ(1 − mPt)
− 1

N
Pt = (5.35)

=
Pt − mP 2

t − ρmPt(1 − mPt)
Nm [Pt + ρ(1 − mPt)]

. (5.36)

That is,

Pt(1 − mρ) + ρ

Pt [(1 − ρm) − mPt(1 − ρm)]
dp =

1
Nm

dt, (5.37)

which can be solved by integrating each side of the equation between the initial proportion P0 of
cl b and the final proportion PF of cl b up to which cl b has taken over the population. Note that,
assuming m balanced niches, cl b will take over, at most, a proportion 1/m of the population.∫ PF

P0

Pt(1 − mρ) + ρ

Pt [(1 − ρm) − mPt(1 − ρm)]
dp =

1
Nm

∫
dt =

t

Nm
. (5.38)

This integral can be solved as follows

t

Nm
=

∫ PF

P0

1
1 − mPt

dp +
ρ

1 − mρ

∫ PF

P0

1
Pt[1 − mPt]

= (5.39)

=
[
− 1

m
ln(1 − mPt) −

ρ

1 − mρ
ln

∣∣∣∣1 − mPt

Pt

∣∣∣∣]PF

P0

= (5.40)

= − 1
m

ln
(

1 − mP0

1 − mPF

)
+

ρ

1 − mρ
ln

∣∣∣∣PF (1 − mP0)
P0(1 − mPF)

∣∣∣∣ . (5.41)

Since Pt < 1/m, we can rewrite the expression as

t

Nm
= − 1

m
ln

(
1 − mP0

1 − mPF

)
+

ρ

1 − mρ
ln

(
PF (1 − mP0)
P0(1 − mPF)

)
, (5.42)

from which we derive the takeover time of cl b in roulette wheel selection

t∗RWS = Nm

[
1
m

ln
(

1 − mP0

1 − mPF

)
+

ρ

1 − mρ
ln

(
PF (1 − mP0)
P0(1 − mPF)

)]
. (5.43)

The takeover time formula depends on (1) the fitness separability ρ and (2) the number of
niches m. If ρ increases, the influence of the second logarithm also increases; therefore, as the
accuracies of cl b and clo get closer, the takeover time increases.

In this subsection we provided a closed-form solution of the takeover time for proportionate
selection. In the next subsection, we derive the conditions under which the best classifier will
not take over its niche.

Conditions for the Extinction of Starved Niches under Proportionate Selection

With the formulas derived above, we analyze under which circumstances the best classifier will
not be able to take over the population, and then, we relate it to the imbalance ratio. For

95

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

this purpose, we take equation 5.35 and analyze under which conditions the increment of the
numerosity of the best classifier will be negative; in this case, the best classifier will lose copies
in favor of over-general classifiers. We can write this expression as

Pt − mP 2
t − ρmPt(1 − mPt)

Nm [Pt + ρ(1 − mPt)]
< 0, (5.44)

that is,

Pt (1 − mρ)(1 − mPt)
Nm [Pt(1 − mρ) + ρ]

< 0. (5.45)

This condition holds when the numerator is positive and the denominator is negative and vicev-
ersa. Thus, we search for values of ρ and m that result in combinations of positive numerator
and negative denominator and viceversa. Assuming that Pt < 1

m , we have the following cases.
For ρ < 1

m , both numerator and denominator take positive values. Therefore, for ρ < 1
m , the

best classifier will always take over the population. For ρ = 1
m , the expression is 0, indicating

that numerosity of the best classifier would remain constant. For ρ > 1
m , the numerator is

always negative. Then, the whole expression will be negative if the denominator is positive, i.e.,

Nm [Pt(1 − mρ) + ρ] > 0, (5.46)

which can be written as

Pt <
ρ

mρ − 1
. (5.47)

Having that 0 < Pt < 1
m and 1

m < ρ ≤ 1, this expression is always satisfied for m ≥ 2. Thence,
this theoretically demonstrates that for m ≥ 2 the best representative will not be able to take
over the niche if

ρ >
1
m

, (5.48)

That indicates that the best classifier will not take over its niche if the ratio of the accuracy of
the over-general classifier to the accuracy of the best classifier is greater than 1/m, that is, the
fitness separability between both classifiers is small.

Note that the expression in equation 5.47 can be easily related to the imbalance ratio by
identifying that ρ = κo

κb
, where the accuracy of the over-general classifier can be computed from

its error, which is expressed in equation 5.9. That is, recognizing that the accuracy of the
representative of each niche is one (κb = 1), and that the accuracy of the over-general classifier
κo is

κo = α

(
εo

ε0

)−ν

, (5.49)

and considering the relation between the imbalance ratio and the error computed in equation
5.9, we obtain that

ρ = α

(
(1 + ir)2ε0
2 · ir · Rmax

)ν

. (5.50)

96

5.8. TAKEOVER TIME OF ACCURATE CLASSIFIERS IN STARVED NICHES

Replacing equation 5.50 into equation 5.48, we can write that the best classifier will not take
over its niche if

α

(
(1 + ir)2ε0
2 · ir · Rmax

)ν

>
1
m

. (5.51)

This expression can be derived as

ir2 +
(

2 − (mα)ν2Rmax

ε0

)
ir + 1 > 0. (5.52)

Recognizing that

1 <<
(mα)ν2Rmax

ε0
, (5.53)

and making further simplifications, we can get that, under proportionate selection, the best
classifier will not take over its niche if

ir >
(mα)ν2Rmax

ε0
. (5.54)

Note that the maximum accepted ir can be modified by decreasing ε0.

After developing the same models for tournament selection, in section 5.8.4, we experimen-
tally validate the takeover time under proportionate selection, and show that the best classifier
cannot take over the niche for ρ > 1/m.

5.8.3 Takeover Time for Tournament Selection

To develop takeover time models for tournament selection, we assume that the tournament size
s is fixed during all the learning process. That is, in each GA event, tournament selection
randomly chooses s classifiers in the action set and selects the one with the highest fitness. As
before, we assume that cl b is the best classifier in the niche and clo is the over-general classifier;
in terms of tournament selection, this translates into requiring that fb > fo, where fi is the
fitness of the micro-classifiers associated with cl i (i.e., fi = Fi/ni). Given this scenario, the
probability of selecting the best classifier is

PsTS =
[
1 −

(
1 − no

n

)s]
, (5.55)

where n is the numerosity of the niche, i.e., n = nb+no. Thus, the probability of selecting the best
classifier is one minus the probability that this classifier does not participate in the tournament.
With this information, the next subsections model the evolution of the best classifier, provide
some particular expressions of the takeover time for tournament selection, and extract the critical
bounds beyond which the best representative will not take over its niche.

Evolution of the Best Classifier

We first model the evolution of the numerosity of the best classifier clb at time t + 1, nb,t+1,
given the numerosity of the classifier at time t, nb,t, which will

97

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

• increase if the GA is applied to the niche, clb is selected to participate in the tournament,
and another classifier in the population is selected for deletion;

• decrease if (1) the GA is applied to the niche, clb is not selected to participate in the
tournament, but it is selected for deletion; or if (2) the GA is applied to another niche,
and clb is selected for deletion;

• remain the same otherwise.

More formally,

nb,t+1 =

nb,t + 1 1

m

[
1 −

(
1 − nb,t

n

)s] (
1 − nb,t

N

)
,

nb,t − 1 1
m

(
1 − nb,t

n

)s nb,t

N + m−1
m

nb,t

N ,

nb,t otherwise.

Grouping the above equations we can derive the expected numerosity of cl b,

nb,t+1 = nb,t +
1
m

[
1 −

(
1 −

nb,t

n

)s] (
1 −

nb,t

N

)
− 1

m

(
1 −

nb,t

n

)s nb,t

N
− m − 1

m

nb,t

N
, (5.56)

from which we obtain

nb,t+1 = nb,t +
1
m

[
1 −

(
1 −

nb,t

n

)s]
−

nb,t

N
. (5.57)

As done for proportionate selection, we rewrite the formula above in function of the proportion
Pt of classifiers clb in the whole population, i.e.,

Pt =
nb,t

N
. (5.58)

From which we can calculate no as

no = N − mnb = N − mNPt = N(1 − mPt), (5.59)

and n as

n = nb + no = NPt + N(1 − mPt). (5.60)

Substituting equations 5.59 and 5.60 into equation 5.57, we obtain

NPt+1 = NPt +
1
m

[
1 −

(
1 − Pt

1 + Pt(1 − m)

)s]
− Pt, (5.61)

Pt+1 = Pt +
1

mN

[
1 −

(
1 − Pt

1 + Pt(1 − m)

)s]
− 1

N
Pt. (5.62)

Assuming dp
dt ≈ Pt+1 − Pt, we derive

dp

dt
≈ Pt+1 − Pt =

1
mN

[
1 −

(
1 − Pt

1 + Pt(1 − m)

)s

− mPt

]
. (5.63)

98

5.8. TAKEOVER TIME OF ACCURATE CLASSIFIERS IN STARVED NICHES

That is,

1
mN

dt =
1

1 −
(
1 − Pt

1+Pt(1−m)

)s
− mPt

dp. (5.64)

If we integrate each side of the expression, we obtain

1
mN

dt =
t

mN
=

∫ PF

P0

1

1 −
(
1 − Pt

1+Pt(1−m)

)s
− mPt

dp (5.65)

The above integral cannot be solved in general for any value of s and m. Nonetheless, note
that this analysis still provides essential information since (1) it permits calculating particular
expressions of the takeover time and (2) enables the derivation of the conditions for the extinction
of starved niches. With the aim of showing some particular cases of the takeover time in
tournament selection, the next section provides (1) a closed-form solution of the integral for
problems with a single niche and any selection pressure s and (2) a closed-form solution for
problems with two niches (m = 2) and tournament size s = 2, since s = 2 is the lowest pressure
that can be applied.

Particular Expressions of the Takeover Time for Tournament Selection

In this section, we use equation 5.65 to derive some particular expressions of the takeover
time. Expressions for other tournament sizes and niche sizes can be computed by replacing the
corresponding values into equation 5.65.

Number of Niches m=1

Replacing m = 1 into equation 5.65 we obtain the following expression

t = N

∫ PF

P0

1
1 − (1 − Pt)s − Pt

dp = (5.66)

=
∫ PF

P0

1
1 − Pt

dp +
∫ PF

P0

(1 − Pt)s−2

1 − (1 − Pt)s−1
dp = (5.67)

= N

[
ln

(
1 − P0

1 − P

)
+

1
s − 1

ln
[

1 − (1 − P)s−1

1 − (1 − P0)s−1

]]
. (5.68)

Thence, the takeover time of cl b for tournament selection is

t∗TSm=1
= N

[
ln

(
1 − P0

1 − PF

)
+

1
s − 1

ln
[
1 − (1 − PF)s−1

1 − (1 − P0)s−1

]]
, (5.69)

which depends on the initial P0 and final PF proportion of classifiers, and it is always positive
regardless of the values of P0 and PF . Therefore, if the problem contains a single niche—a
situation that is nonrealistic in real-world problems—the best classifier always will take over the
niche (Orriols-Puig et al., 2007d).

Number of Niches m=2, Tournament Size s=2

99

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

Substituting m = 2 and s = 2 into equation 5.65, we obtain

t = 2N

∫ PF

P0

1

1 −
(
1 − Pt

1−Pt

)s
− 2Pt

dp = (5.70)

=
∫ PF

P0

(1 − Pt)2

(1 − Pt)2 − (1 − 2Pt)2 − 2Pt(1 − Pt)2
dp = (5.71)

=
∫ PF

P0

(1 − Pt)2

P 2
t (1 − 2Pt)

dp =
∫ PF

P0

1
P 2

t

dp +
∫ PF

P0
1

1 − 2Pt
dp = (5.72)

=
[
− 1

Pt
− 1

2
ln(1 − 2Pt)

]PF

P0

= 2N

[
1
P0

− 1
PF

+
1
2

ln
1 − 2P0

1 − 2PF

]
. (5.73)

Then, the takeover time for tournament selection for m = 2 and s = 2 is

tTSm=2,s=2 = 2N

[
1
P0

− 1
PF

+
1
2

ln
1 − 2P0

1 − 2PF

]
, (5.74)

which depends linearly on the initial and the final proportion of the best classifier in the pop-
ulation and logarithmically on the difference between them. However, it does not depend on
any scale between the fitness of cl b and clo. Moreover, as PF > Po, the takeover time is always
positive; this indicates that the best classifier always will be able to takeover its niche, regardless
of the imbalance ratio of the problem. Note that this analysis has been made for the lowest
possible selection pressure. Therefore, this conclusion can be extended to any tournament size
for problems with two niches.

Finally, we compare the conclusions provided by this analysis with those obtained with pro-
portionate selection. In 5.8.2, we theoretically demonstrated that, with proportionate selection,
the best classifier would not be able to take over its niche if ρ ≥ 0.5 for problems with two niches
(see equation 5.48). Thus, tournament selection appears to be more robust in highly imbalanced
data sets when the fitness separation between accurate and over-general classifiers is low.

This subsection provided some specific expressions of the takeover time for tournament selec-
tion. Note that, although the general closed-form solution could not be extracted, the analysis is
still crucial since it enables us to detect the critical bounds of the system behavior when learning
from imbalanced domains, which are derived in the next subsection.

Conditions for the Extinction of Starved Niches under Tournament Selection

To derive the conditions for niche extinction for tournament selection, we consider the differential
equation obtained during the derivation of the model (see equation 5.57) and require that the
increase in the numerosity of the best classifier be negative. That is,

1
m

[
1 −

(
1 −

nb,t

n

)s]
−

nb,t

N
< 0, (5.75)

which can be rewritten as

1 − m
nb,t

N
<

(
1 −

nb,t

n

)s
. (5.76)

100

5.8. TAKEOVER TIME OF ACCURATE CLASSIFIERS IN STARVED NICHES

This expression depends on the number of niches m, the number of accurate classifiers in the
niche nb,t, the niche size n, and the population size N . Note that the left-most term decreases
linearly with m, whilst the right-most term decreases exponentially with s. Therefore, the
condition will be satisfied, i.e., the best classifier will not be able to take over its niche, for low
values of s combined with moderate and large number of niches m.

Thence, different from proportionate selection, the imbalance ratio does not appear as a
decision variable in the extinction model for tournament selection. This is normal since we
assumed that the parameters of classifiers are accurately estimated; thus, the error of clo will
be always greater than the error of clb, and tournament selection will select clb when both
classifiers compete in the same tournament. Thereupon, the extinction condition is basically
guided by the selection pressure s—that is, the number of classifiers that will participate in the
tournaments—and the size of the niches, which models the effect of population-based deletion.

5.8.4 Experimental Validation of the Takeover Time Models

Here, we experimentally validate (1) the theoretical models of takeover time and (2) the condi-
tions for the extinction of starved niches for both proportionate and tournament selection. For
this purpose, we ran XCS on the parity problem setting the number of niches m of the system.
We initialized the population with P0 · N copies of maximally accurate classifiers (equally dis-
tributed in the m niches) and (1−m ·P0) ·N copies of an over-general classifier that appeared in
all the niches. The prediction error of the over-general classifier was deterministically calculated
as εovg = ε0

(ρ
α

)ν . In our experiments, we set α=0.1 and ν = 10. Note that varying ρ, we are
changing the fitness scaling between clo and clb. This could be equivalently done by maintaining
ρ and varying ν, as done by Kharbat et al. (2005).

Figure 5.9 shows the evolution of the proportion of the best classifier in one of the niches for
RWS and (a) m=1, (b) m=2, and (c) m=3 number of niches. The empirical data are averages
over 50 runs. According to the model, we computed the proportion of the best classifier in the
population. Therefore, the average of this proportion would tend to 1/m, as approximately the
same resources would be placed in each niche. In the figure, we plot the proportion of the best
classifier in the niche, which ranges from 0 to 1. Figure 5.9 shows a perfect match between
the theory and the empirical results. It also shows that, as predicted by the models derived in
section 5.8.3, the ratio of the accuracy of the over-general classifier to the accuracy of the best
classifier is a crucial aspect. For the problem with two niches, the best classifier could not take
over its niche if ρ ≥ 0.5 (see figure 5.9(b)), as predicted by the niche extinction model provided
in equation 5.47. This behavior was also present in the problem with three niches 5.9(c), where
neither ρ = 0.4 nor ρ = 0.5 let the best classifiers take over their niches.

Figure 5.10 shows the evolution of the proportion of the best classifier in the niche for TS
and (a) m=1, (b) m=2, and (c) m=3 number of niches. For the problem with one niche, we
depict the selection pressures of s={1,2,10}. Figure 5.10(a) shows a perfect match between the
theoretical model and the experiments. Tournament selection is not influenced by the ratio of
the accuracy of the best classifier to the accuracy of the over-general classifier. That is, we ran
experiments with different values of ρ, obtaining equivalent results to those plotted in the figure.
Moreover, it is also shown that increasing the tournament size results in faster convergence
times. For s>10, the takeover time barely decreases (these curves are not depicted in the figure
for clarity).

101

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

0.6

0.8

1

Learning Iteration

P
ro

po
rt

io
n

of
 th

e
B

es
t C

la
ss

ifi
er

 in
 th

e
N

ic
he

Takeover Time in RWS for m=1

experiment ρ=0.01
theory ρ=0.01
experiment ρ=0.10
theory ρ=0.10
experiment ρ=0.20
theory ρ=0.20
experiment ρ=0.30
theory ρ=0.30
experiment ρ=0.40
theory ρ=0.40
experiment ρ=0.50
theory ρ=0.50

(a) m=1

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1

Learning Iteration

P
ro

po
rt

io
n

of
 th

e
B

es
t C

la
ss

ifi
er

 in
 th

e
N

ic
he

Takeover Time in RWS for m=2

experiment ρ=0.01
theory ρ=0.01
experiment ρ=0.10
theory ρ=0.10
experiment ρ=0.20
theory ρ=0.20
experiment ρ=0.30
theory ρ=0.30
experiment ρ=0.40
theory ρ=0.40
experiment ρ=0.50
theory ρ=0.50

(b) m=2

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

Learning Iteration

P
ro

po
rt

io
n

of
 th

e
B

es
t C

la
ss

ifi
er

 in
 th

e
N

ic
he

Takeover Time in RWS for m=3

experiment ρ=0.01
theory ρ=0.01
experiment ρ=0.10
theory ρ=0.10
experiment ρ=0.20
theory ρ=0.20
experiment ρ=0.30
theory ρ=0.30
experiment ρ=0.40
theory ρ=0.40
experiment ρ=0.50
theory ρ=0.50

(c) m=3

Figure 5.9: Takeover time in proportionate selection for (a) m=1, (b) m=2, and (c) m=3 and
ρ={0.01,0.10,0.20,0.30,0.40,0.50}.

For the problems with two and three niches, we plot the evolution of the best classifier
under tournament selection for s=2 and s=3 (see figures 5.10(b) and 5.10(c)). The theoretical
model was calculated for each case by replacing m and s into equation 5.65 and solving the
integral. Again, the theory nicely approximates the experimental results. For m=2, the best
classifier can take over its niche, even for the lowest possible selection pressure. For m=3, the
best classifier can take over its niche only if s ≥ 3. This experimental evidence agrees with the
niche extinction model supplied in equation 5.76. That is, as the number of niches increases, the
selection pressure needs to be stronger to let the best classifier emerge, regardless of the initial
proportion of this classifier in the population.

The overall analysis also permits comparing the two selection approximations and relating
them to the class-imbalance problem. For low values of ρ, that is, when the fitness of the best
classifiers is much higher than the fitness of the over-general classifiers, proportionate selection
can yield the fastest takeover times. Therefore, proportionate selection appears as the most

102

5.8. TAKEOVER TIME OF ACCURATE CLASSIFIERS IN STARVED NICHES

0 5000 10000 15000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Learning Iteration

P
ro

po
rt

io
n

of
 th

e
B

es
t C

la
ss

ifi
er

 in
 th

e
N

ic
he

Takeover Time in TS for m=1

experiment s=2
theory s=2
experiment s=3
theory s=3
experiment s=10
theory s=10

(a) m=1

0 1 2 3 4

x 10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Learning Iteration

P
ro

po
rt

io
n

of
 th

e
B

es
t C

la
ss

ifi
er

 in
 th

e
N

ic
he

Takeover Time in TS for m=2

experiment s=2
theory s=2
experiment s=3
theory s=3

(b) m=2

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1

Learning Iteration

P
ro

po
rt

io
n

of
 th

e
B

es
t C

la
ss

ifi
er

 in
 th

e
N

ic
he

Takeover Time in TS for m=3

experiment s=2
theory s=2
experiment s=3
theory s=3

(c) m=3

Figure 5.10: Takeover time in tournament selection for (a) m=1, (b) m=2, and (c) m=3.

appealing alternative for domains in which there is a high separation among the fitness of
accurate and inaccurate rules. As pointed out by Kharbat et al. (2005), in balanced domains,
this can be easily done by tuning the fitness pressure ν. Nonetheless, in imbalanced domains, the
error of over-general classifiers decreases with the imbalance ratio (see equation 5.9). In these
cases, proportionate selection may promote the existence of over-general classifiers. Thence,
tournament selection appears to be the most robust selection scheme for imbalanced domains,
provided that s is sized properly. A combination of both schemes seems to be an attractive
alternative to deal with new real-world problems with unknown characteristics.

With the study of the takeover time and the conditions of extinction of starved niches, we
completed the analysis of the different facets proposed in section 5.3.4. Facetwise models have
provided key insights and points of view of the problem. The next section integrates all these
models, provides configuration guidelines based on the lessons learned from them, and shows
that, following these recommendations, XCS is able to solve highly imbalanced problems that
previously eluded solution.

103

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

5.9 Lessons Learned from the Models

In this section, we use qualitative arguments to integrate the different models and extract lessons
from the whole design decomposition and facetwise analysis. Then, we use the derived facetwise
analysis as a tool for designing a set of guidelines that should be satisfied to warrant that XCS
will be able to extract key knowledge from rare classes. We experimentally show that, if the
system is configured according to these recommendations, XCS is able to solve problems with
large imbalance ratios that previously eluded solution. More specifically, we show that XCS with
a proper configuration solves the imbalanced multiplexer problem with large imbalance ratios,
for which we showed that first generation XCS failed to discover the minority class in section
5.2.2.

5.9.1 Patchquilt Integration of the Facetwise Models

Along this chapter, we have studied the five subproblems, identified by the design decomposition,
that may impair XCS from learning from rare classes. Now, we integrate the different models in a
general framework and highlight the lessons derived from each particular model and, in general,
from their interaction. This integration permits us to (1) identify under which cases XCS will
not be able to learn from the minority class and (2) establish configuration recommendations to
ensure convergence if possible. To achieve this, we revisit the models from the most restrictive
one to the less restrictive one, setting the three steps that need to be guaranteed to ensure
convergence and pointing out several configuration guidelines.

1. Niche extinction models (see section 5.8) set the conditions on the maximum imbalance
ratio admitted by XCS to create key knowledge from the minority class for proportionate
and tournament selection (see equations 5.47 and 5.76). If the requirements are met,
takeover time models predict the convergence time inside each niche, that is, the number
of learning iterations that an accurate, maximally general representative will need to take
over its niche. Satisfying the requirements identified by the extinction time models is a
necessary but not sufficient condition. That is, these models indicate that, if the identified
restrictions are met, representative classifiers will take over their niche. Therefore, we have
to guarantee that, at some point, these representatives are fed into the population.

2. Classifier parameters have to be correctly estimated by one of the methods presented in
section 5.4. Otherwise, XCS will not be able to distinguish between over-general and
accurate classifiers. We experimentally showed that the Widrow-Hoff rule provided very
accurate estimates of the parameters if β was properly set. For this reason, we took this
approach in our experiments and proposed an heuristic that automatically sets the value
of β ensuring that the error estimate of over-general classifiers is close to the theoretical
value (see section 5.6.5).

3. If the above two conditions are satisfied, we can ensure convergence by either (1) sizing the
population according to the imbalance ratio or (2) setting θGA depending on the imbalance
ratio according to the models evolved in sections 5.5 and 5.6. It is worth noting that the
models work independently of whether covering is able to provide the initial population
with schemas of starved niches, as identified in section 5.4.

104

5.9. LESSONS LEARNED FROM THE MODELS

In the next section, we show that, if the recommendations derived from the models are followed,
XCS can solve extremely imbalanced data sets.

5.9.2 Solving Problems with Large Imbalance Ratios

In this section, we take again the imbalance multiplexer problem and show that the lessons
extracted from the facetwise analysis enable us to properly configure XCS, letting the system
learn from imbalance ratios that previously eluded solution. That is, in section 5.2.2 we showed
that XCS was not able to extract the key knowledge from rare classes when ir > 32. Now, we
run the same experiments and illustrate that, with the better understanding acquired along the
facetwise analysis, we can set XCS so that it can solve the multiplexer problem with extremely
large imbalance ratios; in particular, we solve the problem for ir = 1024.

Before proceeding with the analysis of the results, we first explain how the recommendations
have been followed to configure XCS. We took the default configuration as a starting point (see
section 5.6.5), but we used the typical deletion scheme of XCS, set N = 1000 and probability of
crossover χ = 0.8, and employed tournament selection with σ = 0.4 (that is, 40% of the classifiers
in the action set participate in the tournament). This also corresponds to the configuration
used in section 5.2.2. Besides, the configuration satisfied the conditions required by the different
models, that is:

1. As we used tournament selection, we need to satisfy the condition that

1 − m
nb,t

N
>

(
1 −

nb,t

n

)s
, (5.77)

to ensure that the best classifier will take over its niche (note that we change the inequality
with respect to equation 5.76 since, now, we require that the best classifier take over its
niche). From this equation, we know that N=1 000 and m=32, but nb,t and n are unknown.
We assume the worst case, that is, that we only have a best classifier per niche. Thence,
nb,t = 1 and n = 1000 − 32 = 968. Substituting these parameters into the equation, we
obtain that s ≥ 29; this condition is satisfied since 40% of the n classifiers in each niche are
selected to be in the tournament. This condition is also satisfied for larger values of nb,t.
Therefore, this indicates that, if discovered, representatives of starved niches will take over
their niches. It is worth noting that similar results can be achieved with proportionate
selection.

2. The classifier parameters are estimated according to the Widrow-Hoff rule, but setting β
appropriately so that the error of over-general classifiers does not decrease rapidly to zero.
For this purpose, we used the heuristic method mentioned in the previous section.

3. Finally, to guarantee that all the niches receive the same number of genetic opportunities,
and so, warrant that representatives of starved niches will be created regardless of the
imbalance ratio, we set θGA = n · m · ir as proposed in section 5.7.

Figure 5.11 plots the results obtained by XCS in the imbalanced 11-bit multiplexer problem
with imbalance ratios ranging from ir = 1 to ir = 1024. More specifically, figure 5.11(a)
illustrates the evolution of the proportion of the optimal population %[O] achieved by XCS. That

105

CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+006 1e+007 1e+008

ir = 1
ir = 2
ir = 4
ir = 8

ir = 16
ir = 32
ir = 64

ir = 128
ir = 256
ir = 512

ir = 1024

(a) %[O]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+006 1e+007 1e+008

ir = 1
ir = 2
ir = 4
ir = 8

ir = 16
ir = 32
ir = 64

ir = 128
ir = 256
ir = 512

ir = 1024

(b) TP rate · TN rate

Figure 5.11: Evolution of (a) the proportion of the optimal population and (b) the product
of TP rate and TN rate in the 11-bit multiplexer with imbalance ratios ranging from ir=1 to
ir=1024.

is, XCS was expected to evolve 32 optimal classifiers, each one representing a different niche.
In this way, we measured the capacity of XCS to generalize and obtain the best representative
of each niche at high imbalance ratios. Moreover, figure 5.11(b) depicts the evolution of the
product of TN rate and TP rate. Therefore, in addition to measuring whether XCS evolved the
optimal population, this figure visualizes whether the instances of the two classes were correctly
predicted by the system. Note that we tested extremely imbalanced problems with imbalance
ratios up to ir = 1024.

Figure 5.11(a) shows that XCS was able to obtain 100% of the optimal population at any
imbalance ratio with the same population size. This indicates that class imbalances did not
reduce the generalization capabilities of XCS. Similarly, figure 5.11(b) illustrates that the product
of TP rate and TN rate raised to 100% for all the tested imbalance ratios. Notice that before
the analysis, XCS could only solve the problem for ir ≤ 32. Hence, the lessons extracted from
the design decomposition served to increase our understanding of the system and solve much
more complex problems without introducing new mechanisms to the system.

The whole experimental and theoretical analysis performed herein highlights the importance
of, previously to designing new approaches to enhance a system whose behavior is only partially
understood, really comprehending the underlying problems of the learning architecture. In this
way, better approaches that focus on the actual problems of the system can be designed more
effectively. Here, we showed that the increased understanding provided by the facetwise analysis
enabled first generation XCS to solve problems that seemed to be initially intractable.

5.10 Summary and Conclusions

In this chapter, we analyzed the behavior of XCS in domains that contain rare classes. As XCS
learns a set of distributed solutions online, we investigated whether the system may lose, or may

106

5.10. SUMMARY AND CONCLUSIONS

never discover, some sub-solutions whose representative examples are infrequently sampled to
the system. XCS learning is driven by the interaction of several components, which introduces
complexity to the derivation of models that explain the behavior of the system in its whole.
For this reason, we followed the design decomposition approach to study the effect of class
imbalances on different components of XCS. That is, we decomposed the problem of learning
from imbalanced domains into five subproblems and derived simpler, tractable models that
focused on explaining the behavior of concrete parts of the system assuming that the other
elements were functioning in an ideal manner. This enabled us to highlight several aspects—
mainly related to classifier evaluation, and creation, maintenance and growth of representatives
of starved niches—that were critical to guarantee that XCS extract key knowledge from rare
classes. In addition, the patchquilt integration of all these models permitted us to draw the
domain of applicability of XCS in imbalanced domains. We derived critical bounds on the
system behavior, identifying the sweet spot where XCS could scalably and efficiently solve
problems with class imbalances. Moreover, the study resulted in several recommendations on
the system configuration to deal effectively with rare classes. Finally, we showed that all the
insights provided by this analysis served to solve new complex problems with high imbalance
ratios which previously eluded solution. As example, we empirically demonstrated that XCS
was able to solve the 11-bit multiplexer problem with large degree of class imbalance provided
that the system was properly configured according to the guidelines indicated by the models.

The importance of the lessons extracted from the whole analysis goes beyond the application
of XCS to imbalanced domains. The analysis sets the conditions required to ensure complete
solution sustenance—i.e., discovery, maintenance, and growth of all niches of the system—in
problems where some niches are activated with less frequency than other niches. This is a
common characteristic in real-world classification problems that contain continuous attributes,
in which, although not having large imbalance ratios, there may be small regions of instances of
one class for which the system needs to evolve starved niches. A deeper discussion about this
aspect is postponed to chapter 7, where LCSs are applied to real-world classification problems.

Finally, let us highlight that, as we applied a design decomposition principle, the provided
analysis is not restricted to XCS. In fact, we developed a framework in which several subproblems
were analyzed separately and simplified models were provided. In all the derived models, we
tried to keep the analysis as simple as possible and used intuitive arguments to patch the pieces
together. This supplied high flexibility and power to the theoretical framework, which can be
adapted with low cost to model other Michigan-style LCSs or other online learning architectures
that are based on a competition-collaboration scheme. For this purpose, models that are affected
by the architecture change may be revisited and plugged again into the theoretical framework.
Other models may still be valid; for example, takeover time models may still be accurate for
most of the Michigan-style LCSs. In the next chapter, we illustrate this, and carry over the
design decomposition framework developed for XCS to UCS.

107

Chapter 6

Carrying over the Facetwise Analysis
to UCS

In the previous chapter, we decomposed the problem of learning from imbalanced domains in
five elements that need to be satisfied by any LCSs to efficiently and scalably extract accurate
models from rare classes. Then, we centered on XCS and, with little algebra effort, we developed
facetwise models for each one of these elements. Although the models were particularly designed
for XCS, we claimed that the framework could be applied to other LCSs for two main reasons.
The first reason is due to the simplification and abstraction effort taken when deriving the models
and the use of qualitative arguments to patch the pieces together. That is, since the analysis was
kept as abstract as possible, considering the general learning architecture and avoiding going
into too specific details of XCS, some of the models can be applied to other Michigan-style LCSs.
The second reason comes implicitly with the design decomposition methodology; that is, since
each facet was analyzed considering that the others behave in an ideal manner, changes that only
affect one of the facets could be incorporated by rewriting the models of the corresponding facet
and plugging the new model into the general framework. This gives an important advantage
of facetwise analysis with respect to global models, in which, probably, a little change in the
system architecture may require to rewrite the totality of the model.

In this chapter, we take advantage of the flexibility of the framework provided in the previous
chapter and show that, with little changes on some of the facets, the behavior of UCS can be
easily modeled using the same ideas employed for XCS. We first recall the design decomposition
with the list of elements that should be followed by any LCSs to solve class-imbalanced problems.
Then, we review each subproblem for UCS. We show that some of the models developed in
the previous section, such as the takeover time models, can be directly applied to UCS with
no modifications. In other cases, such as the starved niches generation models, new theoretical
derivations need to be done and plugged into the general framework. Therefore, we demonstrate
the “plug and play” capabilities that design decomposition and facetwise analysis provide.

The remainder of this chapter is structured as follows. Section 6.1 reviews the design decom-
position presented in the previous section, which identified five main elements or subproblems,
and intuitively analyzes whether UCS can solve the five subproblems. Then, each of these five
subproblems gets one of the subsequent sections, regardless of whether the original models pro-
vided in the previous chapter are still valid for UCS. Therefore, section 6.2 studies whether

109

CHAPTER 6. CARRYING OVER THE FACETWISE ANALYSIS TO UCS

UCS can obtain reliable parameter estimates in imbalanced domains, section 6.3 and section 6.4
model the initialization and generation of classifiers of the minority class, section 6.5 studies the
effect of occurrence-based reproduction, and section 6.6 revisits the takeover time models. Note
that most of these sections are very concise since they use the models derived in the previous
chapters. All these models are integrated in section 6.7. Finally, section 6.8 summarizes and
concludes the chapter.

6.1 Design Decomposition for UCS

In the previous chapter, we decomposed the problem of learning from imbalanced domains in
LCSs in five elements that need to be guaranteed, i.e.,

1. Estimate the classifier parameters correctly.

2. Analyze whether representatives of starved niches can be provided in initialization.

3. Ensure the generation and growth of representatives of starved niches.

4. Adjust the GA application rate.

5. Ensure that representatives of starved niches will take over their niches.

Here, we follow the same decomposition to study the behavior of UCS in imbalanced domains.
As proceeds, we first intuitively discuss the differences between XCS and UCS in these types of
problems. Then, each of the subsequent sections analyzes of these elements in detail.

Estimate the classifier parameters correctly. Having accurate estimates of the classifier pa-
rameters was identified as one of the most important elements that need to be guaranteed
in imbalanced domains. That is, the system relies on these estimates to distinguish between
over-general and accurate classifiers; therefore, poor parameter estimates may thwart the com-
petition between over-general and accurate classifiers. XCS used a temporal widowed average
to update the classifier parameters. We showed that this may result in poor estimates if the
size of the window is not set properly. In UCS, the classifier’s accuracy—which is equivalent
to the classifier’s error in XCS—is computed as a the true average of the number of exam-
ples that have been correctly classified over the total number of examples that the classifier
has matched. Intuitively, this seems to indicate that the parameters of over-general classifiers
would not oscillate as abruptly as in XCS. A further study of the parameter update procedure
is conducted in section 6.3.

Analyze whether representatives of starved niches can be provided in initialization. Once the
proper evaluation of classifier parameters is ensured, we are concerned about whether UCS is
able to provide representative schemas of starved niches in the beginning of the run. For XCS,
we showed that the probability that the covering operator supplies the population with schemas
of starved niches decreases exponentially with the imbalance ratio. This is because, in XCS,
covering is applied to the match set, creating classifiers that can predict any class. On the other
hand, UCS applies covering in the correct set as the class of the input example is also provided
at each learning iteration. Thence, the covering operator in UCS only generates classifiers

110

6.2. ESTIMATION OF CLASSIFIER PARAMETERS

that predict the class of the sampled input instance. In section 6.4, we analyze whether the
new covering scheme in UCS is able to provide the initial population with schemas of the
under-sampled class.

Ensure the generation and growth of representatives of starved niches. After initializing
the population, the GA is responsible for obtaining high accurate classifiers that represent the
different niches. As in XCS, intuition seems to indicate that the occurrence-based reproduction
of UCS may favor both over-general classifiers and representatives of nourished niches, which
may go in detriment of representatives of starved niches. Section 6.4 develops this aspect in
detail.

Adjust the GA application rate. As in XCS, varying the application rate of the genetic algorithm
influences the genetic opportunities that the different niches receive. Section 6.5 studies the
impact of varying the frequency of application of the GA.

Ensure that representatives of starved niches will take over their niches. Finally, we analyze
whether the best classifiers will be able to take over their niches. For this purpose, section
6.6 validates the applicability of the takeover time models to UCS and relates these models to
the maximum imbalance ratio up to which the representatives of starved niches will be able to
take over their niche.

As proceeds, each of the five elements is analyzed in detail and the derived models are
validated with the imbalanced parity problem. Section 6.7 unifies all the models, emphasizing
the lessons extracted from all them. Finally, as done for XCS, we show that following the
recommendations provided by the models, UCS is able to solve the 11-bit multiplexer problem
with large imbalance ratios.

6.2 Estimation of Classifier Parameters

The first element of the design decomposition that needs to be satisfied is that the parameters of
classifiers be correctly estimated. In XCS, we detected that the original parameter update pro-
cedure may provide poor estimates of the parameters of over-general classifiers in problems with
large imbalance ratios. However, note the difference between the parameter update procedure
in both systems. XCS computes the quality of a rule by means of a fitness based on the error of
the prediction of the rule. This error is updated online by a credit apportionment algorithm that
performs a windowed average of the last received rewards. Conversely, as UCS is specialized for
supervised learning tasks, the fitness of a classifier is based on its classification accuracy, which
is computed as the true average of the number of examples correctly classified with respect to
the total number of examples matched by the classifier. Then, the fitness is computed from the
relative accuracy of each classifier1. Therefore, the larger the number of examples matched by
the rule, the more accurate the estimation of the classifier’s accuracy, and, consequently, the
fitness estimate.

To illustrate the differences between the parameter update procedures of XCS and UCS,
we ran the same experimentation proposed in section 5.5 but with UCS. Figure 6.1 shows a

1In all the experiments conducted along the subsequent chapters, we use UCS with fitness sharing.

111

CHAPTER 6. CARRYING OVER THE FACETWISE ANALYSIS TO UCS

0.4 0.45 0.5 0.55 0.6
0

5000

10000

15000

20000

25000

30000

Prediction Error

(a) ir = 1

0.94 0.945 0.95 0.955 0.96
0

5000

10000

15000

20000

25000

30000

Prediction Error

(b) ir = 10

0.993 0.994 0.995 0.996 0.997
0

2000

4000

6000

8000

10000

12000

Prediction Error

(c) ir = 100

Figure 6.1: Histogram of the error of the most over-general classifier in UCS for ir = {1, 10, 100}.

histogram of the accuracy estimate of the most over-general classifier along a complete run. The
vertical line depicts the theoretical value of the accuracy. As expected, the empirical accuracy
estimate of the most over-general classifier matches perfectly with the theoretical one most of
the time. Note the difference of these results with respect to those provided by XCS. In XCS, the
parameters of over-general classifiers oscillated as they received infrequently negative rewards.
In UCS, the parameters of over-general classifiers are stabilized as the classifier receives more
updates.

In summary, in this section we discussed and empirically showed that the parameters update
procedure of UCS enables the system to obtain reliable estimates. Thence, the remainder of the
analysis is conducted assuming accurate parameter estimates.

6.3 Supply of Schemas of Starved Niches in Population Initial-
ization

In this section, we analyze the first element that leads to the creation of representatives of
the different niches: population initialization. In the previous chapter, we identified that the
covering mechanism of XCS impaired the system from initializing the population with correct
schemas of starved niches. This was mainly due to the exploration regime of XCS, which, given
an unlabeled input example, analyzed the consequences of each possible class. Therefore, we
assumed a covering failure in XCS, and derived the models for the remaining elements considering
this covering failure.

Differently from XCS, the supervised learning architecture of UCS only applies covering on
the correct set. That is, covering only creates classifiers that predict the class of the sampled
example. Therefore, covering will be triggered on the first instances of the each one of the classes,
including the rare class, regardless of the imbalance ratio of the learning data set. Consequently,
we can calculate the probability that a minority class instance is covered by, at least, one classifier

112

6.4. GENERATION OF CLASSIFIERS IN STARVED NICHES

in the population as

P (cover) = 1 −

[
1 −

(
2 − σ[P]

2

)`
]N

ir

, (6.1)

where ` is the input length, N is the population size, and σ[P] is the specificity of the population.
Note that the only difference with respect to the corresponding equation in XCS (see equation
5.11) is that, in UCS, the power of the term in brackets of the right-most expression is N/ir
instead of N . This modification is because the number of minority class classifiers provided by
covering is directly proportional to the number of instances of the minority class that have been
sampled to the system.

Provided that the probability of activating covering is 1 − P (cover), and recognizing that
(1 − r/n)n ≈ e−r, we can derive that the probability of activating covering, having sampled a
minority class instance, is

P (activate cov. on. min.) = 1 − P (cover) ≈ e−
N
ir
·e−

`σ[P]
2 , (6.2)

which decreases exponentially with the ratio of the population size to the imbalance ratio N/ir
and, in a higher degree, with the condition length and the initial specificity. Notice that N/ir
decreases linearly with the sampling frequency of the minority class. Therefore, the capabilities
of covering to provide accurate schemas of the minority class do not depend directly on the
imbalance ratio, but on the initial population specificity.

The analysis performed in this section showed that, differently from XCS, the success of
the covering operator in supplying classifiers representing correct schemas of the minority class
does not depend on the imbalance ratio. Although these positive results, in the next section
we derive the models for creation of new representative classifiers of the minority class under
the assumption that the population has not any representative of starved niches, as done for
XCS. As we are assuming the most pessimistic situation, we expect that the models predict an
upper bound on the time and the population size required by UCS to solve the problem. Note
that, although this would not result in a precise model of the population size, it will bound the
maximum population size required to solve problems with large imbalance ratios, which still
provides critical information about UCS behavior in imbalanced domains.

6.4 Generation of Classifiers in Starved Niches

In this section, we study the conditions that must be satisfied to enable the GA to create rep-
resentatives of starved niches. Therefore, as done for XCS, we derive models that predict the
time until creation and extinction of these representatives. With these models, we write popu-
lation size bounds to warrant the existence and growth of representatives of starved niches. As
proceeds, we first review the assumptions of the model, which are equivalent to those considered
for XCS, and then revisit the models for each element.

113

CHAPTER 6. CARRYING OVER THE FACETWISE ANALYSIS TO UCS

6.4.1 Assumptions for the Model

The models are developed under the same assumptions considered for XCS, i.e., (i) covering has
not provided any representative of starved niches, (ii) mutation is the only operator that guides
the genetic search (i.e., we do not consider crossover), (iii) the GA is applied at the end of each
learning iteration (i.e., θGA = 0), and (iv) the system uses random deletion. Note that the first
assumption may not be necessarily true in UCS; in fact, the previous section demonstrated that
the covering operator could provide the same number of schemas of the minority class regardless
of the imbalance ratio. Nonetheless, we consider this assumption and derive an upper bound of
the convergence and population size models. After this, we experimentally study the effect of
breaking the three last assumptions.

6.4.2 Creation and Deletion of Representatives of Starved Niches

With the assumptions provided above, we are now in position to derive both the time until
creation and the time until deletion of representatives of starved niches. For this purpose, we
first calculate the probability to obtain the first accurate representative clmin of the starved
niche i, which is represented by a schema with length km. This probability will be used to
compute the creation time.

As proposed in section 5.6.2, we calculate the probabilities of creating clmin when sampling
(i) instances of the minority class and (ii) instances of the majority class. Recognizing that the
probability of sampling a minority class instance is 1/(1 + ir) and the probability of sampling a
majority class instance is ir/(1 + ir), we can write that

P (clmin) =
1

1 + ir
P (clmin|min. inst) +

ir

1 + ir
P (clmin|maj. inst). (6.3)

Let us first derive P (clmin|min. inst). When an instance of the minority class is sampled, a
niche containing classifiers that predict the minority class will be activated. As we assumed that
there are no representatives of starved niches in the population, the correct set will only consist
of over-general classifiers. Thence, to create a representative of a starved niche, all the km bits
of the schema that represents the niche must be correctly set to the values of the niche schema;
here, we consider the worst case, and assume that all the km bits need to be mutated. Thence,
the probability of getting the correct schema is (µ

2)km . Besides, the class of the classifier cannot
be changed. Therefore,

P (clmin|min. inst) =
(µ

2

)km

· (1 − µ). (6.4)

We follow the same procedure to derive the probability of creating clmin when sampling
an instance of the majority class, i.e., P (clmin|maj. inst). When a majority class instance is
sampled, a nourished niche containing both representatives and over-general classifiers will be
activated. Again, we consider the worst case and assume that we need to change all the km bits
of the schema, i.e., (µ

2)km . Furthermore, in this case, the class has to be mutated to the minority
class, which will happen with probability µ/n − 1, where n is the number of classes. Thence,

P (clmin|maj. inst) =
(µ

2

)km

· µ

n − 1
. (6.5)

114

6.4. GENERATION OF CLASSIFIERS IN STARVED NICHES

Substituting equations 6.4 and 6.5 into equation 6.3, we obtain that

P (clmin) =
1

1 + ir

(µ

2

)km
[
(1 − µ) +

µ · ir
n − 1

]
. (6.6)

From this formula, we can derive the time required to discover the first representatives of starved
niches tclmin

as

t(clmin) = (n − 1)
(

2
µ

)km
[

1 + ir

(1 − µ)(n − 1) + µ · ir

]
, (6.7)

which depends on the imbalance ratio ir, the probability of mutation µ, and the length of the
schema km. For highly imbalanced domains, we can consider that (1 − µ)(n − 1) << µ · ir.
Thence, t(clmin) increases linearly with 1+ir

µ·ir , which becomes nearly constant for large values of
ir.

After computing the creation time, we now approximate the deletion time of these represen-
tatives. As done for XCS, we consider random deletion. Hence, as two classifiers are deleted at
each GA application, we obtain that the time until deletion is

t(delete cl) =
N

2
, (6.8)

where N is the population size. In the next section, we use both equations 6.7 and 6.8 to derive
population size bounds that guarantee the discovery, maintenance, and growth of representatives
of starved niches under the assumption that covering has not provided any of them.

6.4.3 Bounding the Population Size

We now follow the same steps proposed in section 5.6.4 to derive two population size bounds
that ensure (i) that XCS will be able to maintain accurate representatives of starved niches and
(ii) that these representatives will receive, at least, a genetic opportunity.

The first bound can be derived by requiring that the deletion time of starved niches repre-
sentatives be larger than their creation time, i.e.,

t(delete clmin) > t(clmin). (6.9)

Using formulas 6.7 and 6.8, the expression can be rewritten as

N > 2(n − 1)
(

2
µ

)km
[

1 + ir

(1 − µ)(n − 1) + µ · ir

]
. (6.10)

Again, note that, for large values of ir, the population size increase is guided by the term 1+ir
µ·ir ,

which remains nearly constant. Consequently, at a certain imbalance ratio, the population size
needed to discover representatives of the minority class becomes constant.

We now derive the second bound by requiring that the deletion time of representatives of
starved niches be greater than the time until these representatives receive a genetic event, that
is,

t(delete nichemin) > t(GA nichemin). (6.11)

115

CHAPTER 6. CARRYING OVER THE FACETWISE ANALYSIS TO UCS

As we assumed that θGA = 0, a starved niche receives a genetic event every time that it is
activated. Since the probability of sampling a minority class instance is 1/(1+ir), the time to
apply a GA on a starved niche is

t(GA nichemin) = (1 + ir). (6.12)

Replacing equations 6.8 and 6.12 into equation 6.11, we obtain that

N > 2(1 + ir), (6.13)

which indicates that the population size has to increase linearly with the imbalance ratio to
ensure that representatives of starved niches will receive, at least, a genetic opportunity.

In this section, we derived models that explain the creation and growth of representatives
in starved niches. As the models were developed under the assumption of a failure of the
covering operator to provide schemas of starved niches—which it is not necessarily the case, as
argued in section 6.3—, the models represent an upper bound of the population size required
by UCS to solve imbalanced problems. Therefore, the models explain that the population size
has to increase, at most, linearly with the imbalance ratio to ensure the discovery and growth of
accurate classifiers in starved niches. In the next section, we empirically validate the population
size bounds with different configurations of the imbalanced parity problem.

6.4.4 Experimental Validation of the Models

To validate the population size models, we first use a configuration of UCS that satisfies the
assumption of the models. Then, we empirically analyze the effect of breaking these assumptions.

Experiments Satisfying the Assumptions

Our first concern is to empirically contrast whether the population size bound derived in equa-
tion 6.13 predicts an upper-bound of the population size as the imbalance ratio increases. For
this purpose, we performed the same experiments as for XCS (see section 5.6.5). We ran UCS on
the imbalanced parity problem with k = {1, 2, 3, 4}, ` = 10, and ir = {1, 2, 4, 8, 16, 32, 64, 128},
and we used the bisection procedure to obtain the minimum population size required to solve
the problem (see section 5.6.5 for more details about the procedure). The results are aver-
ages over 50 runs with different random seeds. UCS was configured so that the initial as-
sumptions were satisfied. Thence, crossover was deactivated (χ = 0), random deletion was
used, and the GA was applied every time a niche was activated (θGA=0). The other param-
eters were set as acc0 = 0.999, ν = 10, µ = 0.04, θdel = 20, δ = 0.1, θsub = ir, P# = 0.6,
β = 0.2. We used both proportionate and tournament selection for the GA. We ran UCS during
{10 000 · ir, 20 000 · ir, 40 000 · ir, 80 000 · ir} iterations for the parity problem with k = {1, 2, 3, 4}
respectively; thus, given a problem, we ensured that the system received the same number of
genetic opportunities for all imbalance ratios. Finally, to prevent having young over-general
classifiers with poorly estimated parameters in the final population, we introduced 5 000 · ir
iterations with the GA switched off at the end of the learning process. In the remainder of this
analysis, this configuration is referred to as the default configuration.

116

6.4. GENERATION OF CLASSIFIERS IN STARVED NICHES

10
0

10
1

10
2

0

2000

4000

6000

8000

10000

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e
Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(a) Default with tour. selection

10
0

10
1

10
2

0

2000

4000

6000

8000

10000

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e

Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(b) Default with prop. selection

Figure 6.2: Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and the default configuration with (a) tournament selection and (b) roulette
wheel selection The dots shows the empirical results and lines plot linear increases with ir
(according to the theory).

Figure 6.2 shows the minimum population size required to solve the parity problem with
different building block sizes (k = {1, 2, 3, 4}) and imbalance ratios from ir = 1 to ir = 128 for
(a) tournament and (b) proportionate selection. For each plot, the points depict the empirical
values and the lines show the theoretical bound, that is, they draw a linear increase with the
imbalance ratio. Two main conclusions can be extracted from these results. Firstly, note that
the theory estimates an upper bound of the population size required by UCS to solve the
problem, especially as the imbalance ratio increases. This behavior was already announced in
the beginning of this section. The theory was developed with the assumption that the covering
operator was not able to provide accurate schemas of starved niches. Nonetheless, section 6.3
showed that the initial supply of schemas of starved niches was independent of the imbalance
ratio. For this reason, the theory is approximating an upper bound of the required population
size. Secondly, UCS with proportionate selection requires smaller population sizes to solve the
parity problems than UCS with tournament selection, especially as the imbalance ratio increases.
The Wilcoxon signed-ranks test confirmed that this difference was significant at α = 0.05. This
may be due to the fact that proportionate selection can produce a stronger pressure toward fit
classifier than tournament selection in this particular problem. Nevertheless, we leave further
discussion about the selection schemes to section 6.6.

In summary, the experimental analysis pointed out that the theory is an accurate upper
bound of the population size of UCS for imbalanced domains when the system is configured
so that the underlying assumptions of the model are met. In the next section, we investigate
whether this population size bound is still valid when the different assumptions are not satisfied.

117

CHAPTER 6. CARRYING OVER THE FACETWISE ANALYSIS TO UCS

10
0

10
1

10
2

0

2000

4000

6000

8000

10000

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e

Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(a) Crossover

10
0

10
1

10
2

0

500

1000

1500

2000

2500

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e

Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(b) Fitness deletion

Figure 6.3: Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and different UCS’s configurations that do not satisfy the initial model as-
sumptions: (a) using 2-point crossover and (b) using the correct set size deletion scheme. The
dots shows the empirical results and lines plot linear increases with ir (according to the theory).

Impact of Breaking the Assumptions

In this section, we experimentally analyze the impact of breaking two of the initial assumptions.
That is, we introduce crossover and the typical deletion scheme of UCS. The impact of breaking
the third assumption, i.e., varying the frequency of application of the GA, is further studied
in the next section. Figure 6.3 provides the results of running UCS on the same configuration
of the parity problem used in the previous subsection, but using (a) two-point crossover, with
χ = 0.8 and (b) the typical UCS’s deletion scheme, setting θdel = 20 and δ = 0.1. In both cases
we used tournament selection.

Several conclusions can be drawn from the comparison of these results with those obtained in
the previous section. Firstly, notice that, in both cases, the theory still predicts an upper bound
of the minimum population size required to solve the problem, although the initial assumptions
are not satisfied. The population size required by UCS when using crossover (see figure 6.3(a))
is equivalent to the population size needed by UCS with the default configuration (see figure
6.2(a)) according to a Wilcoxon signed-ranks test at α = 0.05. This indicates not only that the
models are still valid when using crossover, but also that the population sizes demanded solving
the different configurations of the problem are statistically equivalent to the ones required by
UCS without crossover. On the other hand, the population sizes needed for UCS with the usual
deletion scheme are statistically smaller than those required by UCS with random deletion, since
the deletion scheme protects classifiers that belong to starved niches.

The overall study provided along this section showed that the theory approximates the
experiments accurately, even though two of the initial assumptions of the model are not satisfied.
In the next section, we investigate the effect of breaking the last assumption; that is, we analyze
the effect of varying the frequency of application of the GA.

118

6.5. OCCURRENCE-BASED REPRODUCTION

10
0

10
1

10
2

0

1000

2000

3000

4000

5000

6000

7000

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e
Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(a) Default Conf.

10
0

10
1

10
2

0

500

1000

1500

2000

2500

Imbalance Ratio

P
op

ul
at

io
n

S
iz

e

Scaling−up of the Population Size with the Imbalance Ratio

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(b) Fitness deletion

Figure 6.4: Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and different UCS’s configurations with θGA = n · m · ir. The points indicate
the empirical values of the minimum population size required by UCS. The lines depict the
theoretical increase calculated with the previous models, which assumed θGA = 0.

6.5 Occurrence-based Reproduction

The models developed so far have assumed that any niche received a genetic event every time
that it was activated, i.e., θGA = 0. Due to this occurrence-based reproduction, nourished niches
receive a larger number of genetic events than starved niches. Besides, the reproductive opportu-
nities of over-general classifiers with respect to the reproductive opportunities of representatives
of starved niches increase linearly with the imbalance ratio. To counterbalance this effect in
XCS, section 5.7 showed that if θGA was set according to the imbalance ratio, i.e.,

θGA ≈ n · m · (1 + ir), (6.14)

both starved and nourished niches would receive, approximately, the same number of genetic
opportunities. The models developed for XCS are still applicable to UCS, since they are based on
the occurrence-based reproduction, which is shared in both systems. That is, the key difference
between the exploration methodology of both systems is that XCS explores the consequences
of all possible actions, while UCS only explores the class of the input instance. Nevertheless,
in both cases, niches are only activated when an instance that is matched by the niche schema
is sampled. Therefore, in both LCSs, niches that represent instances of the minority class are
activated with a lower frequency that niches that represent instances of the majority class.
Due to this similarity, we use the models developed for XCS to explain the occurrence-based
reproduction in UCS.

To validate that the conclusions extracted from XCS models are still valid for UCS, we ran
the same experiments with the parity problem proposed in section 5.7. That is, we ran UCS
on the parity problem with ` = 10, k = {1, 2, 3, 4}, and ir = {1, 2, 4, 8, 16, 32, 64, 128}. Figure
6.4(a) shows the minimum population with which UCS with the default configuration could

119

CHAPTER 6. CARRYING OVER THE FACETWISE ANALYSIS TO UCS

solve the parity problem. In this picture, the empirical values are plotted with points. To
analyze the differences introduced by adjusting θGA according to the theory, the lines depict the
population size increase predicted by the theoretical model calculated for the same configurations
but with θGA = 0 (see figure 6.2(a)). As happened with XCS, the empirical results obtained
with UCS show that the population size remained nearly constant for all the imbalance ratios.
There was only a slightly small increase for ir > 32. Figure 6.4(b) provides the same results
for UCS with the typical deletion scheme instead of random deletion. The typical deletion
scheme protects young classifiers and produces more pressure toward deletion of over-general,
inaccurate classifiers. The experimental results show that, with the enhanced deletion scheme,
the population size remained constant as the imbalance ratio increased, even for the largest
imbalance ratios.

6.6 Takeover Time of Accurate Classifiers in Starved Niches

With the theory and experiments provided so far, we have shown that UCS is able to create
representatives of starved niches, and that starved niches receive, at least, a genetic event before
removing their representatives. Then, the last element that has to be analyzed according to
our design decomposition is whether the best representatives of the different niches will be able
to take over their niche when they are in competition with over-general classifiers. Therefore,
we model the competition between accurate classifiers and over-general classifiers, especially
focusing on the problems caused by rare classes. That is, in imbalance domains, the accuracy
of over-general classifiers predicting the majority class may be high since the minority class
is under-sampled. This, combined with the occurrence-based reproduction, may promote the
existence of over-general classifiers in the population in detriment of accurate representatives
of starved niches. In this context, the purpose of this section is two-fold: (i) develop models
that predict the takeover time of the best representative of a niche for UCS and (ii) derive the
conditions under which the best representative of a starved niche will not be able to take over
its niche.

Instead of developing new theory, in this section we consider the same the takeover time
models that were derived for XCS in section 5.8. That is, in the takeover time models developed
for XCS, we considered a system that evolved a distributed set of niches where each niche
contained a representative that was maximally accurate, which we addressed as cl b; besides,
there was an over-general classifier that matched all niches, which was referred to as clo. The
quality of these classifiers was denoted by a the accuracy parameter k associated with each
classifier, i.e., κb and κo. Notice that UCS exactly follows the same schema. Therefore, the
takeover time models can be directly applied to UCS. The only difference between XCS and UCS
is that the accuracy of each classifier is computed differently. For this reason, the conditions
under which the best classifier will not be able to take over its niche may vary in both systems.
The next section computes these conditions.

120

6.6. TAKEOVER TIME OF ACCURATE CLASSIFIERS IN STARVED NICHES

6.6.1 Conditions for Starved Niches Extinction under Proportionate Selec-
tion

To compute the conditions of niche extinction under proportionate selection, we depart from
equation 5.47, that is,

Pt <
ρ

mρ − 1
, (6.15)

to derive under which conditions the best classifier will not take over its niche. m is the number
of niches and ρ is the ratio of the accuracy of the over-general classifier to the accuracy of the
best representative of the niche, i.e., ρ = κo

κb
. As demonstrated in section 5.47, this inequality

only holds for m > 2 and

1/m < ρ ≤ 1. (6.16)

In UCS, κ is computed from the raw accuracy acc of the classifier. In imbalanced domains,
the most over-general classifier that predicts the majority class will receive ir examples of the
majority class for each example of the minority class. Therefore, the raw accuracy of the most
over-general classifier is

acco =
ir

1 + ir
, (6.17)

where acco < acc0; that is, the accuracy of the over-general classifier is less than the threshold
beyond which UCS considers that a classifier is accurate. The accuracy of the best representative
is accb = 1. From this, we can compute κb and κo using equation 4.2 of the fitness-sharing scheme
as

κo = α

(
acc0

acco

)ν

, (6.18)

and

κb = 1. (6.19)

Replacing equations 6.17, 6.18 and 6.19 into equation 6.16 we obtain that, for proportionate
selection, the best classifier will not be able to take over its niche if

1
m

< α

(
acc0 · (ir + 1)

ir

)ν

< 1 (6.20)

where ir
1+ir < acc0; besides, provided that 0 < α < 1 (usually 0.1) and that ν ≥ 1, the right-most

inequality is typically satisfied. The left-most inequality can be expressed as

1 + ir

ir
>

1
acc0

(
1

mα

) 1
ν

. (6.21)

Recognizing that the left-most term is the inverse of the raw accuracy of the over-general classifier
clo, we can derive that the best classifier will not be able to take over its niche if

acco < acc0(αm)
1
ν . (6.22)

121

CHAPTER 6. CARRYING OVER THE FACETWISE ANALYSIS TO UCS

Note that the right-most expression depends on the threshold acc0, but especially in α and the
number of niches m. As the number of niches depends on the problem, the user can tune the
imbalance acceptance of UCS by adjusting the α parameter. That is, lower values of α produce
a decrease in the right-most expression. Given the accuracy of the most over-general classifier,
which depends directly on ir, we can tune α so that the equation is not satisfied, and thus, the
best classifier takes over its niche.

6.6.2 Conditions for Starved Niches Extinction under Tournament Selection

We now perform the same analysis for tournament selection. Tournament selection randomly
chooses a set of classifiers from the population and selects the one with highest fitness. As
the fitness of the best classifier is greater than the fitness of the over-general classifier, if the
best classifier participates in a tournament, it will be selected. For proportionate selection, the
condition for the extinction of starved niches depended on ρ; for this reason, the condition varied
from the one computed for XCS. For tournament selection, the condition for the extinction of
starved niches only depends on the selection pressure s, the number of niches m, the size of
the niche n, the size of the population N , and the number of the representatives in the niche
nb. For this reason, the same condition derived for XCS is still valid for UCS. Thus, the best
representative will not be able to take over its niche if

1 − m
nb,t

N
<

(
1 −

nb,t

n

)s
. (6.23)

where s is the tournament size, N is the population size, m is the number of niches, n is the
number of classifiers in the niche, and nb,t is the numerosity of the best classifier.

In this section, we argued why the takeover time models derived for XCS are still valid for
UCS, and have used the takeover time equations to develop the conditions for the extinction
of starved niches. In the following section, we put all the pieces together and provide recom-
mendations for UCS configuration in imbalanced domains. Finally, we show that, following the
guidelines, UCS, as XCS, is able to solve the 11-bit multiplexer problem with large imbalance
ratios.

6.7 Reassembling the Theoretical Framework: UCS in Imbal-
anced Domains

With the different models and qualitative arguments provided along this chapter, this section
follows the same steps as done for XCS to unify all the different models, analyze the interaction
among them, and give guidelines on how the system should be configured to guarantee the
discovery of the minority class. Then, we show that applying the lessons learned from the
theoretical study enables UCS to solve problems with large imbalance ratios.

6.7.1 Patchquilt Integration: from XCS to UCS

In this section, we consider the theoretical framework derived for XCS and study how the new
models of UCS can be plugged into the framework. We review the models in the same order

122

6.7. REASSEMBLING THE THEORETICAL FRAMEWORK: UCS IN IMBALANCED DOMAINS

as proposed in section 5.9, that is, from the most restrictive one to the less restrictive one, and
compare the differences with respect to the models derived from XCS.

1. The takeover time models set the maximum imbalance ratio beyond which UCS will not
be able to discover the minority class. The takeover time models derived for XCS are
still valid, and the specific conditions under which representatives of starved niches will
be deleted from the population for proportionate and tournament selection have been
calculated in equations 6.22 and 6.23 respectively. Satisfying the requirements identified
by these models is a necessary but not sufficient condition.

2. The parameter update procedure in UCS is fairly robust, providing accurate approxima-
tions of the real values of over-general parameters. Thence, differently from XCS, in UCS
it is not necessary to tune the parameter update procedure according to the imbalance
ratio.

3. Once the takeover time requirements are met, we have to ensure that accurate representa-
tives of starved niches will be feeded into the population. For this purpose, we can either
(i) increase the population size linearly with ir–at maximum—or (ii) set θGA according to
ir. Note that the main difference with respect to XCS is that, in UCS, the population size
model provides an upper bound instead of predicting the actual increase.

UCS appears to be slightly more robust to class imbalances than XCS since the parameter
update procedure is not as sensitive as the XCS’s one and, as experimentally shown, the pop-
ulation size increases slightly slower than XCS’s one. In the next section, we show that, if the
recommendations derived from the models are followed, UCS can solve extremely imbalanced
data sets.

6.7.2 Solving Highly Imbalanced Domains with UCS

Having revised the information provided by the different methods and established the framework
of UCS’s learning from class imbalances, we use this information to tune UCS so that it can solve
highly imbalanced domains. For this purpose, we ran UCS on the imbalance 11-bit multiplexer
problem with ir = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024} (see appendix A.4.1 for a description
of the problem). We used the default configuration provided in this section with proportionate
selection and the following exceptions: (i) crossover was activated with χ = 0.8, (ii) the typical
deletion scheme of UCS was employed and (iii) θGA was set to n · m · ir. We set a population
size of N=1,000, and we used tournament selection. Note that, with this configuration, the
requirements of the three items enumerated in the previous section are satisfied:

1. As we used tournament selection, we need to satisfy the condition of equation 6.23. In
the previous chapter, we already showed that the proposed configuration satisfied this
condition (notice that the condition imposed by tournament selection is equal in both
XCS and UCS).

2. Parameters are correctly estimated by the update procedure, especially as the experience
of the classifier increases.

123

CHAPTER 6. CARRYING OVER THE FACETWISE ANALYSIS TO UCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+006 1e+007 1e+008

ir = 1
ir = 2
ir = 4
ir = 8

ir = 16
ir = 32
ir = 64

ir = 128
ir = 256
ir = 512

ir = 1024

(a) %[B]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+006 1e+007 1e+008

ir = 1
ir = 2
ir = 4
ir = 8

ir = 16
ir = 32
ir = 64

ir = 128
ir = 256
ir = 512

ir = 1024

(b) TP rate · TN rate

Figure 6.5: Evolution of (a) the proportion of the optimal population and (b) the geometric
mean of TP rate and TN rate in the 11-bit multiplexer with ir={1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024}.

3. As we set θGA = n · m · ir, we ensure that starved and nourished niches will have, ap-
proximately, the same number of genetic opportunities. Since we take this approach, we
maintain the same population size for all the runs.

Figure 6.5 plots (a) the evolution of the proportion of the optimal population size (%[O])
achieved by XCS and (b) the evolution of the geometric mean of TN rate and TP rate in the
11-bit imbalanced multiplexer problems from ir = 1 to ir = 1024. Note that, for ir = 1024, the
system only received an instance of the minority class every each 1024 instances of the majority
class. The results show that, even under these large imbalance ratios, UCS is able to extract
accurate knowledge from the under-sampled class. Figure 6.5(a) shows that UCS is able to
obtain 100% of the optimal population for all the runs. Besides, figure 6.5(b) indicates that the
system achieves 100% performance measured as the geometric mean of TP rate and TN rate.
Notice that, for ir = 1024, the performance reaches 100% after activating the condensation runs,
which explains that the performance curve increases abruptly from 94% to 100% in the last few
iterations. This is because the frequent activation of nourished niches and over-general classifiers
of the majority class leads to the creation of some over-general classifiers of the majority class
with poorly estimated parameters. As these over-general classifiers match a negative example
very infrequently, the system needs several learning iterations to adjust their parameters, realize
that they are not accuracy, and remove them from the system. When condensation is activated,
as crossover and mutation are deactivated, these classifiers are correctly evaluated and removed
from the population. In any case, these results evidence that UCS is able to classify correctly
all the input instances, regardless of whether they belong to the minority class or not.

124

6.8. SUMMARY AND CONCLUSIONS

6.8 Summary and Conclusions

In this section, we carried over the facetwise analysis of XCS to UCS. Following the design
decomposition provided for LCSs in general, we examined the behavior of UCS in imbalanced
domains. Similar conclusions than those extracted for XCS were reached for UCS. That is, the
models showed that, to ensure the growth and takeover of representatives of starved niches, either
(1) the population size needs to increase linearly with the imbalance ratio or (2) the frequency
of application of the GA has to decrease linearly with the imbalance ratio. Besides, two key
differences with respect to XCS were found. Firstly, the parameter update procedure of UCS
was shown to provide accurate estimates of classifier parameters without requiring any especial
configuration. Secondly, theory indicated that the covering operator is able to supply the initial
population with schemas of the minority class regardless of the imbalance ratio. Consequently,
the population size bounds derived subsequently predict an upper bound, instead of an exact
bound, of the scalability of the population size with the imbalance ratio.

Finally, let us point out two important conclusions. The first conclusion is related to the
analysis methodology, that is, the design decomposition and facetwise analysis principle. Note
that, at the beginning of the previous chapter, we decomposed the complex problem of learning
from imbalanced domains in five critical elements that need to be satisfied to efficiently deal with
rare classes. Then, for each one of the elements, we developed low cost models that explained the
corresponding facet, assuming that the others behave in an ideal manner. This approach has two
key advantages with respect to creating complex models that try to capture all the interactions
in the components of the whole system. The first advantage is that the algebra effort is reduced
with respect to that required in global models since each element is analyzed separately, and
the interactions with other elements are not considered. At first glance, one may think that this
approach also results in models that can explain less than global models which include complex
interactions among different elements. Nonetheless, as shown along the two previous chapters,
this may not be the case. That is, facetwise models permit focusing on the actual problems of
each element, some of which could be hidden in more complex models. Then, the patchquilt
integration enables to draw a domain of competence of the systems, indicating the sweet spot
in which the system actually scales. The second advantage is that design decomposition enables
us to easily transport models from one system to another. In the present chapter, we used parts
of the theory developed for XCS, merged this theory together with new models particularly
developed for UCS, and put the pieces together, obtaining a framework that explains how UCS
behaves in imbalanced domains.

The second conclusion is about the excellence of UCS—and XCS as well—in imbalanced
domains. The experiments provided in this section culminated the whole study of the behavior of
both LCSs in domains that contain rare, under-sampled classes. In summary, we showed that, as
XCS, UCS is a competitive machine learning technique able to deal with large imbalance ratios.
We showed this competitiveness in a set of artificial problems which were defined with binary
attributes. In the next section, we move to real-world problems which contain continuous values.
We will discuss how the theory adapts to these cases and will test both LCSs on a collection of
real-world imbalanced classification problems.

125

Chapter 7

XCS and UCS for Mining
Imbalanced Real-World Problems

In the previous two chapters, we have carefully analyzed the behavior of XCS and UCS in
domains that contain class imbalances. We decomposed the problem of learning from imbalanced
domains in several elements or subproblems and derived facetwise models for each element. This
resulted in a better understanding of how the two LCSs work and in the definition of several
guidelines or recommendations that need to be satisfied to warrant that the two LCSs are able
to learn from rare classes. All these models and recommendations depended on the imbalance
ratio ir. Throughout all the theory development, we assumed that the imbalance ratio of the
training data set was equivalent to the ratio of the frequency of activation of nourished to the
one of starved niches. The artificial problems used to contrast the models met this assumption.
Nevertheless, the number of niches and their frequency of activation is not known in real-world
problems. Therefore, there is a gap between the theory and its application to effectively solve
real-world problems.

The purpose of this chapter is three fold. Firstly, we aim at connecting the dots between the-
ory and application in imbalanced real-world domains. We study in more detail the structure
of real-world problems and provide some heuristic procedures, which are based on the infor-
mation gathered during the online evolution of the two LCSs, to estimate the imbalance ratio
between niches; this estimate is used to self-adapt the parameters of the two LCSs according to
the recommendations derived from the theory. We show the effectiveness of these procedures
in the imbalanced 11-bit multiplexer problem. The second objective is to confirm that both
LCSs are really valuable machine learning techniques for supervised learning, and especially, for
extracting classification models from imbalanced domains. For this purpose, we compare the
performance of XCS and UCS with the one achieved by three of the most influential machine
learning techniques (Wu et al., 2007). The third objective is to incorporate re-sampling meth-
ods into the comparison, since these types of techniques have been identified—and widely used
in the machine learning community—as one of the best alternatives to improve the accuracy
of different learning methods in imbalanced domains. For this reason, we include some of the
most-used re-sampling techniques into the comparison and empirically analyze how the different
learners are influenced by these re-sampling techniques.

The remainder of this chapter is structured as follows. Section 7.1 points out new character-

127

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

istics that can be found in real-world problems and how the theory can be adapted to these new
characteristics. With the new identified challenges, section 7.2 proposes a heuristic method to
self-adapt the configuration parameters of XCS and UCS that are sensible to class imbalances
and shows that, with this heuristic procedure, both XCS and UCS can solve the imbalanced
11-bit multiplexer problem although they are not properly configured in the beginning of the
run. Section 7.3 compares XCS and UCS with three highly-competent learners, showing the
competitiveness of the two LCSs. The study of learning from imbalanced domains is comple-
mented with the introduction of re-sampling techniques. That is, section 7.4 presents some of
the most-used re-sampling techniques and illustrates how they work in a case study. These tech-
niques are introduced in the comparison of the five learners in section 7.5. Section 7.6 discusses
the overall results and points out some future work lines. Finally, section 7.7 summarizes and
concludes this chapter.

7.1 LCSs in Imbalanced Real-World Problems: What Makes
the Difference?

In this section, we study how the theory—which has been validated with artificial problems with
known characteristics— can be applied to imbalanced real-world problems whose characteristics
are unknown and can barely be estimated. As proceeds, we deal with two aspects that need
to be solved to adapt the theory to real-world problems. Firstly, as a reminder of the concepts
presented in chapter 3, we briefly reintroduce a rule representation for XCS and UCS that is able
to deal with data that contain continuous attributes; then, we revise the concept of niche under
this new representation. Lastly, we discuss which information is lacking in real-world problems
to apply the theory.

7.1.1 XCS and UCS Enhancements to Deal with Continuous Data

Thus far, all the artificial problems used in the previous chapters were defined with binary
strings. To solve these problems, we used the original rule representation defined by Wilson
(1995), in which each variable of a rule takes a value of the ternary alphabet {0,1,#} (see
chapter 3). Nonetheless, real-world problems have new types of attributes such as continuous
attributes and ordered nominal attributes. To cope with these new types of data, the system
was provided with an interval-based representation in which each variable of a rule is coded
with an interval which determines the range of values that the corresponding input attribute
can take (Wilson, 2001; Stone and Bull, 2003). Therefore, a rule is a conjunction of feasible
intervals, and a new example e matches the a rule if each attribute ei is included in the interval
of the corresponding variable of the rule. For more information about this rule representation
the reader is referred to chapter 3.

The introduction of this new representation makes the definition of problem niche and rep-
resentative of a niche a little fuzzy. According to the definitions given in chapter 5, a niche is a
subproblem where a maximally general sub-solution applies. This niche is defined by a schema,
and a representative of a niche is any classifier whose condition specifies all the relevant bits of
the schema.

These ideas still apply—not rigorously, but intuitively—to real-world problems. In the

128

7.1. LCSS IN IMBALANCED REAL-WORLD PROBLEMS: WHAT MAKES THE DIFFERENCE?

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The niche boundaries can vary
along the gaps of the feature space

The niche boundaries
can vary along the gaps

of the feature space

Possible "schema"
for the niche that

covers the blue dots

Possible "schema"
for the niche that

covers the blue dots

(a) Niches

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Representatives
of the blue niche

Representatives
of the red niche

Over-general
classifier

(b) Rules

Figure 7.1: Example of a domain with two niches (a) and examples of possible representatives
of the two niches and over-general classifiers (b) in a two-dimensional problem with continuous
attributes

interval-based representation, a niche can be defined as a hyper rectangle in the feature space
in which a maximally general and accurate solution applies. This hyper rectangle expresses the
schema of the niche. Consequently, a representative of this niche is any classifier whose condition
draws a hyper rectangle included in the hyper rectangle of the niche. Moreover, an over-general
classifier is a classifier that defines a hyper rectangle that covers examples of different classes.

To further explain the consequences of this redefinition, figure 7.1(a) shows a very simple
two-class domain where there are two niches, and figure 7.1(b) illustrates some examples of rep-
resentative classifiers of each niche and over-general classifiers. This simple example shows two
important aspects that must be highlighted since they make the difference with the definitions
of niche and representatives given in the previous chapters. Firstly, notice that there may be
several hyper rectangles that represent the niche. That is, by slightly varying one of the sides
of any of the hyper rectangles in figure 7.1(a), with the condition that all the instances of the
corresponding class are covered and that no instance of another class is matched, we obtain
another hyper rectangle that can represent the niche as well. Therefore, the definition of niche
schema is not deterministic. Secondly, there may be different accurate representatives of the
niches whose condition is partially overlapped. This aspect is not exclusive of continuous-valued
problems; in binary problems, we could find some overlapped representatives. Nonetheless, in
continuous-valued problems, as the interval-based representation can define any possible hyper
rectangle, the number of potential overlapping representatives increases abruptly. In general, it
can exist an infinite number of representatives, equally general1, that are highly overlapped. For
example, in figure 7.1(b) there are two representatives of the red niche that are equally general
and highly overlapped.

Although these differences, the ideas derived from the facetwise analysis are still valid in
this new scenario. That is, the same mechanisms of the evolutionary learners apply: the pop-
ulation is initialized by the covering operator, and the evolutionary pressures drive the search
toward obtaining representatives of different niches. These best representatives should be able

1In the interval-based representation, the generality can be computed as the volume of the hyper rectangle
defined by the condition.

129

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

0 0.75 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Two niches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1

(b) Ten niches

Figure 7.2: Example of two domains with the same imbalance ratio in the training data set but
different niche imbalance ratio.

to take over their niches and remove competing over-general, less accurate classifiers. The main
difference with the binary case is that, due to the fuzziness inherent in the definition of niche
schema, there may be several highly overlapped representatives of the niches which will share
the niche resources instead of having a single representative per niche. Therefore, an effort needs
to be made to connect this new situation to the theory. The implications of this difference are
analyzed in more detail in the next subsection.

7.1.2 What Do we Need to Apply the Theory?

Having redefined the concepts of niche and representative in imbalanced domains, now we are in
position to examine which information, handy in the artificial problems used in the two previous
chapters, is not available in real-world data sets. That is, the different models developed in the
previous chapters were translated into a set of recommendations that suggested to configure
different parameters of XCS and UCS depending on the imbalance ratio ir. We assumed that
the class-imbalance ratio of the training data set reflected the ratio of the frequency of activation
of nourished niches to the frequency of activation of starved niches, which we refer to as the
niche imbalance ratio in the rest of this chapter. This condition was satisfied in the tested
artificial problems, since the number of starved niches was equal to the number of nourished
niches, all nourished niches had the same activation frequency, and all starved niches had the
same activation frequency which, in turn, was smaller than that of nourished niches.

Nonetheless, this is not the case in real-world domains since, the formation of niches depends
not only on the class-imbalance ratio but also on the distribution of the training examples in
the feature space. To illustrate this, figure 7.2 shows two domains with the same imbalance
ratio. Notice that, in these examples, the niche imbalance ratio is not directly determined by
the class-imbalance ratio of the training data set. That is, the domain in figure 7.2(a) contains
one niche of the minority class, and the domain in figure 7.2(b) consists of five niches of the

130

7.1. LCSS IN IMBALANCED REAL-WORLD PROBLEMS: WHAT MAKES THE DIFFERENCE?

minority class—two of them overlapped—with a lower number of instances per niche. Therefore,
the domain in figure 7.2(b) is more difficult to learn than the domain in figure 7.2(a), since both
LCSs have to discover a larger number of smaller niches. Besides, notice that, in figure 7.2(b),
there exist niches with different frequencies of activation2, and that, in this case, the most
starved niche corresponds to a niche of the majority class—that is, the bottom right most niche.

Two important conclusions can be extracted from this elemental example. Firstly, that the
imbalance ratio of the training data set may provide a misleading information about the real
niche imbalance; therefore, we need to develop new procedures to obtain more accurate estimates
of the niche imbalance ratio. Secondly, that the niche imbalance problem may be present in the
majority of real-world domains, and that this is related to (1) the knowledge representation and
(2) the geometrical distribution of the training examples in the feature space.

To further illustrate this last point, let us suppose that XCS or UCS are used to extract
an interval-based rule set from the domain represented in figure 7.3, which is a completely
balanced data set with oblique boundaries. The same figure shows some of the possible niches
and representatives of the blue class. The two LCSs may be expected to have no problems to
learn this domain since the training data set is completely balanced. Nevertheless, note that the
interval-based representation needs to evolve some representatives whose conditions define small
hyper rectangles to approximate the class boundary accurately; these representatives belong to
starved niches. On the other hand, the interval-based representation also enables the existence of
representatives with larger conditions—which belong to nourished niches—that match examples
that are far away from the class boundary. Notice that, in this particular example, this problem
is due to the combination of geometrical complexity and expressiveness—or shape—of the rule
representation, but not to the class-imbalance ratio. If we had conditions that defined triangles
in the solution space, this domain could be predicted with only two rules.

In fact, a similar problem has been addressed by the machine learning community, in the
context of offline learning, under the label of the problem with small disjuncts (Holte et al.,
1989). That is, a disjunct is the analogous definition of niche in an offline system, and the
problem of small disjuncts refers to the problem of extracting accurate models of infrequent or
starved niches. As discussed in chapter 5, approaches designed to deal with this problem in
offline learning can be barely carried over to online learning since, in the latter one, instances
are made available in data streams, and so, no information about the class distribution is known
a priori. For sake of notation, in the remainder of this chapter, we will indistinctively use the
two terms to refer to the described problem.

In summary, the problem of learning from imbalanced domains has been broadened due to
the presence of continuous attributes; note that, now, the effects of class imbalances can be
present in any real-world problem. Thence, we reformulate the problem as follows. As in the
binary case, we are concerned about the competition among starved niches, nourished niches,
and over-general classifiers. Notwithstanding, the imbalance ratio gives now little information
about the distribution of niches around the feature space. In this context, the general purpose
would be to estimate the number of niches of the system and the frequency of all these niches
to get an accurate estimate of the niche imbalance ratio and tune the configuration of the two
LCSs based on this estimate. In fact, if we could be able to perform this complex task, we would

2The frequency of activation is directly related to the number of instances that are included in the hyper
rectangle defined by the niche.

131

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1

Figure 7.3: Example of a domain with oblique boundaries. Several interval-based rules are
required to define the class boundary precisely.

have solved the learning problem itself, removing the necessity of applying a machine learning
technique. Here, we relax the goal of obtaining the information of all niches and define that
the niche imbalance ratio equals to the ratio between the frequency of the most nourished niche
and the frequency of the most starved niche that lay together in the solution space. Thus, we
only need to estimate the frequency of two niches of our problem to obtain an estimate that
represents the upper bound of the niche imbalance ratio. Even though this simplification is
done, the problem of estimating the niche frequency is not trivial. In the following section, we
propose a mechanism to estimate the niche imbalance ratio.

7.2 Self-Adaptation to Particular Unknown Domains

This section presents a heuristic approach to determine the frequency of application of starved
and nourished niches and self-configure XCS and UCS based on this information. This approach
enables us to properly estimate the niche imbalance ratio and so to self-configure both LCSs
according to this information. Before applying XCS and UCS to real-world problems, we show
that this self-configuration procedure enables both XCS and UCS to solve the imbalanced 11-bit
multiplexer problem with large imbalance ratios without being previously configured according
to the imbalance ratio.

7.2.1 Online Adaptation Algorithms

To estimate the niche imbalance ratio irn and self-adapt the LCSs based on this estimate, we
propose to use the information that intrinsically resides in over-general classifiers. Over-general
classifiers cover several niches that are close in the feature space. By computing the number
of examples covered per class of an over-general classifier, we can estimate the imbalance ratio
between these niches. Note that this strategy permits not only detecting the presence of starved
niches, but also calculating an estimate of the imbalance ratio between these starved niches and

132

7.2. SELF-ADAPTATION TO PARTICULAR UNKNOWN DOMAINS

Algorithm 7.2.1: Pseudo code for the online adaptation algorithm in XCS.
Algorithm: OnlineAdaptationXCS (cl is classifier)1

Data: cl is a classifier after updating its parameters.
Result: Modify β and θGA if necessary.
if cl is overgeneral then2

irn := expmaj(cl)
expmin(cl)3

if (irn < 2Rmax
ε0

∧ expcl > θir ∧ numcl > num[P]) then4

Adapt β and Adapt θGA based on irn5

end6

end7

Algorithm 7.2.2: Pseudo code for the on-line adaptation of β.
Algorithm: Adapt β (irn is double)1

Data: irn is the niche imbalance ratio
ζ is a discount factor (0 < ζ < 1)
Result: New value of β.
εth = 2 · Rmax

ir
(1+ir)22

Obtain εirβ
with the current value of β3

while εirβ
< pth do4

β = β · ζ5

Obtain εirβ
with the current value of β6

end7

their neighbors.

We first present the algorithm for online self-adaptation of XCS and later translate this
algorithm to the particular case of UCS. Algorithm 7.2.1 provides the pseudo code of the main
procedure, and algorithm 7.2.2 supplies the code for the subroutine that specifically tunes the
β parameter for the Widrow-Hoff rule. The algorithm works as follows. Algorithm 7.2.1 is
applied to each classifier after updating its parameters. It first checks whether the classifier is
over-general or not. For this purpose, we extended the parameters of a classifier to compute the
experience per class. Then, a classifier is over-general if it is experienced in more than one class.
Next, the imbalance ratio between the niches in which this classifier participates is estimated as
follows. We select the class with maximum experience expmaj(cl) and the class with minimum
experience expmin(cl) (we require that expmin(cl) > 0), and return the ratio of these two values
as an estimate of the niche imbalance ratio. Then, we use this information to self-adapt the
configuration of XCS only if (i) the niche imbalance ratio is less than the maximum imbalance
ratio identified in equation 5.9, (ii) the classifier is experienced enough (exp(cl) > θir, where
θir is a configuration parameter), and (iii) the classifier is strong in the population, i.e., if its
numerosity is greater than the average numerosity of the classifiers in the population.

If we are using the Widrow-Hoff rule, we first adapt β. Algorithm 7.2.2 provides the im-
plementation details of this procedure. The goal of the algorithm is to adjust the value of β

133

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

Algorithm 7.2.3: Pseudo code for the online adaptation algorithm in UCS.
Algorithm: OnlineAdaptationUCS (cl is classifier)1

Data: cl is a classifier after updating its parameters.
Result: Modify θGA if necessary.
if cl is overgeneral then2

irn := expmaj(cl)
expmin(cl)3

if (irn < acc0 ∧ exp > θir ∧ numcl > num[P]) then4

Adapt β and Adapt θGA based on irn5

end6

end7

so that the estimate error of a classifier approaches its theoretical value, which is computed in
equation 5.5. Thus, the procedure first computes this theoretical value, εth. Then, it calculates
the real value of the error for the given β. To do this, the algorithm assumes the worst case: that
an instance of the minority class is sampled, and then, ircl instances of the majority class are
received. If the real value of the error is lower than the theoretical one, β is decreased according
to a discount factor ζ. This process is repeated until a β for which the theoretical and the real
value of the error are approximately the same is found. Finally, the algorithm adapts θGA by
setting θGA = ir.

In algorithm 7.2.3, this procedure is extended to UCS. The algorithm works similarly to the
one designed for XCS with two main differences. The first difference is that, in UCS, the update
parameter procedure does not need to be adapted. The second difference is that the condition
to update θGA depends on whether irn > acc0. The remaining part of the algorithm is the same.
In the next section, we show that these self-adaptation mechanisms enable XCS and UCS to
self-configure according to the estimated niche imbalance ratio and solve the imbalanced 11-bit
multiplexer with large imbalance ratios.

7.2.2 Experiments

In this section, we empirically analyze whether the two heuristic procedures can provide accurate
estimates for XCS and UCS. For this purpose, we ran XCS and UCS on the imbalanced 11-
bit multiplexer problem with ir = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}, that is, the same
experiments with the imbalanced multiplexer problem performed in chapters 5 and 6. We used
the same configuration proposed in these two chapters for XCS and UCS, but with the following
exceptions. We set θGA = 0 for both systems and fixed β = 0.2 for XCS. That is, we did not
configured the systems according to the imbalance ratio and the recommendations derived from
the theory. Therefore, we expected the heuristic procedures to discover the niche imbalance ratio
of each problem and to use it to self-adapt both systems. All the results provided as follows are
averages over 25 runs with different random seeds.

Figure 7.4 plots the results obtained by XCS and UCS in the imbalanced 11-bit multiplexer
problem with imbalance ratios ranging from ir = 1 to ir = 1024. More specifically, figures 7.4(a)
and 7.4(c) plot the proportion of the optimal population achieved by XCS and UCS, and figures
7.4(b) and 7.4(d) depict the evolution of the performance, measured as the product of TN rate

134

7.2. SELF-ADAPTATION TO PARTICULAR UNKNOWN DOMAINS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+006 1e+007 1e+008

ir = 1
ir = 2
ir = 4
ir = 8

ir = 16
ir = 32
ir = 64

ir = 128
ir = 256
ir = 512

ir = 1024

(a) XCS %[B]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+006 1e+007 1e+008

ir = 1
ir = 2
ir = 4
ir = 8

ir = 16
ir = 32
ir = 64

ir = 128
ir = 256
ir = 512

ir = 1024

(b) XCS TP rate · TN rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+006 1e+007 1e+008

ir = 1
ir = 2
ir = 4
ir = 8

ir = 16
ir = 32
ir = 64

ir = 128
ir = 256
ir = 512

ir = 1024

(c) UCS %[B]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+006 1e+007 1e+008

ir = 1
ir = 2
ir = 4
ir = 8

ir = 16
ir = 32
ir = 64

ir = 128
ir = 256
ir = 512

ir = 1024

(d) UCS TP rate · TN rate

Figure 7.4: Evolution of (a,c) the proportion of the optimal population and (b,d) the geometric
mean of TP rate and TN rate of XCS and UCS, respectively, in the 11-bit multiplexer with
ir={1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}.

and TP rate, of XCS and UCS respectively. These results can be compared with those obtained
by XCS and UCS when they were properly configured according to the imbalance ratio and the
recommendations derived from the theory (see figures 5.11 and 6.5 respectively).

The results show that both XCS and UCS could achieve 100% optimal population and 100%
performance for all the imbalance ratios. Therefore, this confirmed that the heuristic procedure
was able to tune the configuration of both LCSs correctly. Furthermore, these results also
permitted establishing a comparison of the performance of XCS and UCS. UCS achieved 100%
of the optimal population slightly quicker than XCS, especially in the larger imbalance ratios.
Note that, although XCS’s curves were stepper at the beginning of the run, the system suffered
more than UCS to discover the last optimal classifiers in the population. These behavior was
also observed in the performance curves for high imbalance ratios. Nonetheless, it is worth
noticing that both approaches could completely learn all the optimal population and classify all

135

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

the input instances correctly with similar training time. This indicates that the application of
these systems in real-world imbalanced domains with unknown characteristics holds promise. In
the next section, we deal with real-world problems and analyze the capabilities of both online
learning architectures.

7.3 LCSs in Imbalanced Real-World Domains

After analyzing the two LCSs on artificial problems, we now apply both systems to a collection
of real-world imbalanced problems and examine their behavior. The understanding of LCSs
behavior—and the behavior of any learner in general—on real-world problems is really com-
plicated since these problems may have different sources of complexity which can hardly be
identified; the interaction of all these complexities may limit the maximum performance that a
given learner can achieve (Ho and Basu, 2002). Notice the difference between real-world prob-
lems and the artificial problems that have been used through all the previous study, where we
could control the different sources of complexity.

Thence, we need to take another approach to evaluate the competence of XCS and UCS in
real-world problems. That is, information about the optimal population is no longer available,
and providing the training or test accuracy of the two learners may be not enough to conclude
whether the two systems are competitive for mining real-world domains. To measure the compe-
tence of both LCSs on imbalanced real-world domains, we compare the performance of XCS and
UCS with three of the most influential machine learning systems (Wu et al., 2007). Therefore,
the aim of this section is to analyze whether XCS and UCS are competitive with these highly
recognized learning methods. It is worth noticing that XCS and UCS perform online learning—
i.e., they process data streams—, whereas the three order methods learn offline. Thus, XCS
and UCS provide an added value with respect the three other techniques. As proceeds, we first
present the methodology, and then, we compare XCS and UCS with the other learners.

7.3.1 Comparison Methodology

Before proceeding with the analysis of the experimental results, we first describe the test prob-
lems used in the comparison, and the details about the metrics used to evaluate the learners
and the statistical tests employed to aid the process of conclusion extraction.

We used a collection of 25 real-world problems with different characteristics and imbalance
ratios, which were constructed as follows. We selected the following twelve problems: balance-
scale, bupa, glass, heart disease, pima indian diabetes, tao, thyroid disease, waveform, Wisconsin
breast-cancer database, Wisconsin diagnostic breast cancer, wine recognition data, and Wiscon-
sin prognostic breast cancer. All the real-world problems were obtained from the UCI reposi-
tory (Asuncion and Newman, 2007), except for tao, which was selected from a local repository
(Bernadó-Mansilla et al., 2002). To force higher imbalance ratios and increase the test bed, we
discriminated each class against all the other classes in each data set, considering each discrim-
ination as a new problem. Thus, n two-class problems were created from a problem with n
classes (n > 2), resulting in a test bed that consisted of 25 two-class real-world problems. Table
7.1 gathers the most relevant features of the problems. Note that the imbalance ratio between
niches irn can be much higher than the imbalance ratio of the learning data set reported in the

136

7.3. LCSS IN IMBALANCED REAL-WORLD DOMAINS

Table 7.1: Description of the data sets properties. The columns describe the data set identifier
(Id.), the original name of the data set (Data set), the number of problem instances (#Ins.), the
number of attributes (#At.), the proportion of minority class instances (%Min.), the proportion
of majority class instances (%Maj.), and the imbalance ratio (ir).

Id. Data set #Ins. #At. %Min. %Maj. ir
bald1 balance-scale disc. 1 625 4 7.84% 92.16% 11.76
bald2 balance-scale disc. 2 625 4 46.08% 53.92% 1.17
bald3 balance-scale disc. 3 625 4 46.08% 53.92% 1.17
bpa bupa 345 6 42.03% 57.97% 1.38

glsd1 glass disc. 1 214 9 4.21% 95.79% 22.75
glsd2 glass disc. 2 214 9 6.07% 93.93% 15.47
glsd3 glass disc. 3 214 9 7.94% 92.06% 11.59
glsd4 glass disc. 4 214 9 13.55% 86.45% 6.38
glsd5 glass disc. 5 214 9 32.71% 67.29% 2.06
glsd6 glass disc. 6 214 9 35.51% 64.49% 1.82
h-s heart-disease 270 13 44.44% 55.56% 1.25
pim pima-inidan 768 8 34.90% 65.10% 1.87
tao tao-grid 1888 2 50.00% 50.00% 1.00

thyd1 thyroid disc. 1 215 5 13.95% 86.05% 6.17
thyd2 thyroid disc. 2 215 5 16.28% 83.72% 5.14
thyd3 thyroid disc. 3 215 5 30.23% 69.77% 2.31
wavd1 waveform disc. 1 5000 40 33.06% 66.94% 2.02
wavd2 waveform disc. 2 5000 40 33.84% 66.16% 1.96
wavd3 waveform disc. 3 5000 40 33.10% 66.90% 2.02
wbcd Wis. breast cancer 699 9 34.48% 65.52% 1.90
wdbc Wis. diag. breast cancer 569 30 37.26% 62.74% 1.68

wined1 wine disc. 1 178 13 26.97% 73.03% 2.71
wined2 wine disc. 2 178 13 33.15% 66.85% 2.02
wined3 wine disc. 3 178 13 39.89% 60.11% 1.51
wpbc wine disc. 4 198 33 23.74% 76.26% 3.21

table.

The performance was measured with the product of TP rate and TN rate. Ten-fold cross val-
idation (Dietterich, 1998) was used to estimate the product of TP rate and TN rate. The results
obtained with the different techniques were statistically compared with the following procedure.
We first used the multiple-comparison Friedman’s test (Friedman, 1937, 1940) to test the null
hypothesis that all the learning methods performed the same on average. If the null hypothesis
was rejected, the Nemenyi test (Nemenyi, 1963) was employed to identify groups of learners with
statistically equivalent results. Moreover, as we were interested in analyzing the differences in
particular problems, the performance of each pair of learning algorithms on each problem was
compared using the Wilcoxon signed-ranks test (Wilcoxon, 1945). We acknowledge in advance
that pairwise comparisons increment the risk of rejecting null hypotheses that are actually true.

137

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

In our experiments, we assume this risk with the aim of providing further information about the
excellence of each learning algorithm in particular problems. For more information about the
used tests, the reader is referred to appendix B.

Both LCSs were compared with three of the most competent learners: C4.5 (Quinlan, 1995),
SMO (Platt, 1998), and IBk (Aha et al., 1991). C4.5 is a decision tree derived from the ID3
algorithm (Quinlan, 1979). SMO is a support vector machine (Vapnik, 1995) that implements
the Sequential Minimal Optimization algorithm. IBk is a nearest neighbor algorithm. All
these machine learning methods were run using WEKA (Witten and Frank, 2005), and the
recommended default configuration was used. We selected the model for SMO as follows. We
ran SMO with polynomial kernels of order 1, 5, and 10, and with Gaussian kernels. Then, we
ranked the results obtained with the four configurations and chose the model that maximized the
average rank: SMO with lineal kernels. In this way, we avoided using particular configurations
for each problem. We followed the same process with IBk, which was ran for k = {1, 3, 5, 7};
here, we provide the results with k=5. XCS and UCS were configured as previously specified,
except for N=6400, and the two parameters that refer to the interval-based representation, i.e.,
r0=0.6, and m0=0.1. Finally, we did not introduce asymmetric cost functions in any system,
although the majority of them permitted it. In this way, we aimed at analyzing the intrinsic
capabilities of each method to deal with class imbalances.

7.3.2 Results

After defining the experimental methodology, we now analyze the results obtained with the
different learning methods. Table 7.2 summarizes the performance of the different learners on
the 25 data sets. The last three rows provide the average accuracy, the average rank, and the
position of each learner in the ranking. The ranks were calculated as follows. For each data set,
we ranked the learning algorithms according to their performance; the learner with the highest
accuracy held the first position, whilst the learner with the lowest accuracy held the last position
of the ranking. If a group of learners had the same performance, we assigned the average rank
of the group to each one of the learners in the group.

The results provided in this table allowed for two types of analyses. Firstly, the results
indicated which problems were more complex, in general, for all the learning systems. All
learners presented poor performance in the problems bald1, bpa, glsd1, glsd3, pim, and wpbc.
Examining the measure of performance, we observed that all the learners had a low TP rate,
which indicated that the minority class was not well defined in these problems. Most of these data
sets were highly imbalanced; so, the imbalance ratio turned up to be an important factor that
hindered the performance of the tested learners. Nonetheless, the problems bpa and pim were
almost balanced, so there might be other complexity factors affecting the learning performance
such as small disjuncts.

Moreover, the experimental results also allowed for a statistical comparison of the perfor-
mance of the different learners. Firstly, let us note that XCS and UCS were the two best
ranked techniques. That means that the two LCSs were among the best performers in most
of the problems. To analyze whether this improvement was statistically significant, we used
multiple-comparison tests to check the null hypothesis that all the learners performed the same
on average. The Friedman multiple-comparison test did not permit rejecting the null hypoth-
esis with p = 0.2519. Consequently, post-hoc tests could not be applied since no significant

138

7.3. LCSS IN IMBALANCED REAL-WORLD DOMAINS

Table 7.2: Comparison of C4.5, SMO, IBk, XCS, and UCS on the 25 real-world problems.
Each cells depicts the average value of the product of TP rate and TN rate and the standard
deviation. Avg gives the performance average of each method over the 25 data sets. The two last
rows show the average rank of each learning algorithm (Rank) and its position in the ranking
(Pos).

C4.5 SMO IB5 XCS UCS
bald1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
bald2 69.30 ± 6.83 84.03 ± 7.30 81.16 ± 5.54 71.14 ± 5.02 69.75 ± 8.19
bald3 71.20 ± 6.04 85.81 ± 8.40 82.11 ± 8.67 69.98 ± 7.23 73.61 ± 6.66
bpa 33.08 ± 14.09 0.00 ± 0.00 32.40 ± 9.44 47.58 ± 10.92 47.59 ± 11.22
glsd1 79.50 ± 42.16 0.00 ± 0.00 69.32 ± 48.30 20.00 ± 42.16 59.00 ± 50.87
glsd2 34.50 ± 47.43 15.00 ± 33.75 24.13 ± 35.36 59.00 ± 45.02 74.00 ± 41.89
glsd3 28.97 ± 42.16 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 19.49 ± 25.17
glsd4 73.55 ± 32.63 80.03 ± 24.33 77.07 ± 24.98 80.03 ± 24.33 83.54 ± 19.53
glsd5 66.52 ± 16.77 9.50 ± 9.42 62.26 ± 21.14 68.67 ± 18.71 65.63 ± 21.46
glsd6 52.54 ± 15.13 0.00 ± 0.00 61.74 ± 18.23 60.53 ± 11.21 57.06 ± 14.20
h-s 63.33 ± 13.29 68.83 ± 8.87 64.40 ± 14.65 59.89 ± 15.59 55.00 ± 13.61
pim 43.87 ± 13.27 48.31 ± 5.60 46.91 ± 4.84 45.85 ± 6.37 47.82 ± 6.60
tao 90.98 ± 2.14 70.59 ± 6.45 94.25 ± 2.10 82.89 ± 5.42 78.81 ± 7.18
thyd1 87.61 ± 16.10 76.67 ± 22.50 76.67 ± 22.50 78.36 ± 22.01 92.25 ± 13.66
thyd2 93.24 ± 12.45 54.17 ± 24.92 77.90 ± 21.40 82.50 ± 24.98 93.06 ± 12.09
thyd3 87.65 ± 10.34 33.81 ± 21.35 81.12 ± 16.16 89.84 ± 11.75 88.08 ± 14.89
wavd1 67.79 ± 4.06 78.68 ± 4.27 72.28 ± 3.97 80.44 ± 2.97 76.33 ± 2.10
wavd2 62.54 ± 3.89 72.30 ± 2.71 67.49 ± 1.75 73.48 ± 2.88 71.49 ± 3.83
wavd3 68.60 ± 2.38 79.57 ± 2.04 74.14 ± 2.86 81.01 ± 3.99 76.60 ± 4.14
wbcd 89.12 ± 3.42 92.70 ± 5.32 92.72 ± 5.36 92.31 ± 5.50 94.06 ± 4.23
wdbc 88.79 ± 5.09 94.28 ± 3.28 93.47 ± 3.64 90.27 ± 4.61 89.68 ± 5.61
wined1 85.15 ± 16.63 98.46 ± 3.24 94.98 ± 8.29 99.23 ± 2.43 99.23 ± 2.43
wined2 91.81 ± 8.05 97.50 ± 5.62 97.50 ± 4.03 99.17 ± 2.64 91.88 ± 10.02
wined3 87.62 ± 11.70 97.14 ± 6.02 87.94 ± 12.53 93.38 ± 7.15 85.33 ± 9.55
wpbc 33.55 ± 12.87 9.37 ± 16.98 28.98 ± 16.49 20.33 ± 16.38 17.17 ± 21.63
Avg 66.03 53.87 65.64 65.83 68.26
Rank 3.46 3.14 3.08 2.52 2.80
Pos 5 4 3 1 2

differences among the learners were found (Demšar, 2006). This conclusion is not surprising
since compared XCS and UCS with three of the most competent machine learning techniques.
Nonetheless, note that these results highlight the robustness of XCS and UCS. That is, XCS and
UCS were not only as competitive as three of the most competent machine learning techniques
in the used test bed, but they also were the best ranked methods of the comparison.

To extend the statistical analysis to each particular problem, we applied statistical pair-
wise comparisons according to a Wilcoxon signed-ranks test at 0.95 confidence level. Table 7.3
shows the results. The • and ◦ symbols denote a significant degradation/improvement of the
given learning algorithm with respect to another in a particular data set. The overall degrada-
tion/improvement comparison (see the row labeled Score) permitted ranking the quality of the
five learners. Under this criterion, XCS appeared as the most robust method with a ratio of

139

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

Table 7.3: Comparison of C4.5, SMO, IBk, XCS, and UCS on the 25 real-world problems. For a
given problem, the • and ◦ symbols indicate that the learning algorithm of the column performed
significantly worse/better than another algorithm at 0.95 confidence level (pairwise Wilcoxon
signed-ranks test). Score counts the number of times that a method performed worse-better,
and Scoreir>5 does the same but only for the highest imbalanced problems (ir > 5).

C4.5 SMO IBk XCS UCS
bald1
bald2 •• ◦ ◦ ◦ ◦ ◦ ◦ •• ••
bald3 •• ◦ ◦ ◦ ◦ ◦ ◦ •• ••
bpa • • ◦ • • •• • • ◦ ◦ ◦ ◦ ◦ ◦ ◦
glsd1 ◦◦ • • • ◦ • ◦
glsd2 •• • ◦ ◦◦
glsd3
glsd4
glsd5 ◦ • • •• ◦ ◦ ◦
glsd6 ◦ • • •• ◦ ◦ ◦
h-s ◦ ◦ ••
pim
tao • ◦ ◦◦ • • •• ◦ ◦ ◦◦ • • ◦◦ • • •◦
thyd1
thyd2 ◦ • • •• ◦ ◦ ◦
thyd3 ◦ • • •• ◦ ◦ ◦
wavd1 • • •• ◦◦ • • •◦ ◦ ◦ ◦ • ◦ ◦
wavd2 • • •• ◦◦ • • •◦ ◦◦ ◦◦
wavd3 • • •• ◦◦ • • ◦ ◦ ◦ ◦ •◦
wbcd • • • ◦ ◦ ◦
wdbc • ◦◦ ◦ • •
wined1 • • • ◦ ◦ ◦
wined2
wined3 ◦ ◦ ••
wpbc
Score 26-10 29-18 11-22 8-20 14-18
Scoreir>5 0-3 9-0 1-2 1-2 0-4

degradation/improvement of 8/20, followed closely by IBk and UCS. Both LCSs presented the
poorest results with respect to the other learners in the bald2, bald3, and tao problems, which
have a low imbalance ratio. In (Bernadó-Mansilla and Ho, 2005), the hyper rectangle codifica-
tion used by XCS and UCS was shown to be inappropriate when the boundary between classes
in the learning data set was curved. This is the case of the tao problem (Bernadó-Mansilla et al.,
2002). We hypothesize that bald2 and bald3 are also characterized by curved boundaries, which
would explain the degradation in performance of both LCSs. This hypothesis is also supported
by the results obtained with IBk, which improved XCS and UCS in the three aforementioned
problems. IBk is not affected by curved boundaries since it decides the output as the majority
class of the k nearest neighbors.

The two last methods in the ranking were C4.5 and SMO. The surprisingly poor rank of
C4.5 was mainly caused by the results obtained in the problems wavd1, wavd2, and wavd3,

140

7.4. RE-SAMPLING TECHNIQUES

in which C4.5 was outperformed by all the other learners. These results were not correlated
with the imbalance ratio, so there may be other types of complexity that made C4.5 perform
poorly in these problems. Finally, SMO was the last ranked method. It showed a tendency to
over-generalize toward the majority class in problems with moderate and high class imbalances
such as glsd1, glsd3, and glsd6, in which the TP rate was zero. The same behavior was shown
in problems with low imbalance ratios such as the bpa problem, which we identified as a difficult
problem may be due to the tendency of the learners to create small disjuncts to create accurate
models of these problems. However, we can also find significant improvements with respect to
other learners in the problems: bald2, bald3 and wdbc. Thus, these results indicate that SMO
performs competitively in a restricted set of problems, but it is affected by some complexities
among which we may find the imbalance ratio.

Finally, let us compare the learners in terms of imbalance robustness. To do this, we consider
the data sets with the highest imbalance ratio: glsd1, glsd2, bald1, glsd3, glsd4, thyd1, and thyd2,
which have imbalance ratios ranging from ir=5 to ir=23. In these problems, UCS appeared
to be the best learner, with a degradation/improvement ratio of 0/4, followed closely by C4.5.
These results agree with several papers which indicate that C4.5 can deal with high amounts
of class imbalance (Japkowicz and Stephen, 2002; Batista et al., 2004). IBk and XCS were the
two next methods in the ranking. IBk might suffer from small disjuncts, since minority class
regions are surrounded by many instances of the majority class, concentrating a high amount
of the test error around the small disjuncts. XCS also turned up to be more sensitive to class
imbalances than UCS and C4.5. Lastly, SMO performed poorly in the most imbalanced data
sets. As mentioned above, we tried other orders of polynomial kernels, as well as a Gaussian
kernel, but no significant improvement was found.

In this section, we have shown the competitiveness of both XCS and UCS with respect to
three of the most influential machine learning techniques in imbalanced data sets. Throughout
all the comparison, we have considered the intrinsic capabilities of the learners to deal with rare
classes without introducing further mechanisms to promote the discovery of the knowledge that
resides in the minority class. In the following sections, we consider these types of mechanisms. As
the comparison contains learning algorithms with different characteristics, we use re-sampling
techniques since they are independent of the final learner. As proceeds, we first explain the
re-sampling methods considered in the analysis, and further study whether they improve the
accuracy of the models of the minority class when they are combined with the five learning
methods used in this section.

7.4 Re-sampling Techniques

Re-sampling techniques have become one of the most used approaches to boost the capabilities
of machine learning techniques to discover the knowledge that resides in rare classes. These
types of methods are pre-processing methods that re-balance the proportion of examples of
the minority class in the training data set by either over-sampling the minority class or under-
sampling the majority class. During the last few years, several approaches have been developed
in this field. Herein, we adopt three of the most famous algorithms: random over-sampling
(Ling and Li, 1998), under-sampling based on Tomek links (Batista et al., 2004), and synthetic
minority over-sampling technique (SMOTE) (Chawla et al., 2002). We selected these three

141

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

Algorithm 7.4.1: Pseudo code for the Tomek Links algorithm.
Algorithm: TomekLinks (d is Dataset)1

Data: d is the training data set
Result: Collection of Tomek links represented as pairs of examples
var2

setTomek is PairsExamples3

exMin, exMaj, ex is TrainingExample4

dst is double5

end6

forall example of the majority class exMaj in d do7

forall example of the minority class exMin in d do8

dst = dist(exMin, exMaj)9

if ¬ ∃ex ∈ d|dist(ex, exMin) < dst ∨ dist(ex, exMaj) < dist then10

cjtTomek := addLink (cjtTomek,<exMin,exMaj>)11

end12

end13

end14

algorithms since they have been empirically shown to the some of the most competitive re-
sampling techniques (Chawla et al., 2002; Batista et al., 2004). Moreover, we introduce a
modified version of SMOTE that incorporates a data cleaning process, which we address as
cluster SMOTE (cSMOTE) (Orriols-Puig and Bernadó-Mansilla, 2008b). As proceeds, each
one of these approaches is explained in detail, and their behavior is illustrated in a case study;
in the next section, the performance of each one of the re-sampling techniques, in combination
with the five learners, is empirically examined.

7.4.1 Random Over-sampling

The first re-sampling technique considered in the comparison is random over-sampling. This is
a very simple approach that proposes to over-sample the rare classes in the training data set
so as to match the size of the majority class. Although the simplicity of this approach, several
authors have demonstrated that it improves the performance of highly-known learners in pattern
recognition tasks. Japkowicz and Stephen (2000) showed that random over-sampling, combined
with a multi-layer perceptron classifier (Rumelhart et al., 1986), was a very effective method to
deal with class imbalances. Later, Japkowicz and Stephen (2002) extended this conclusion to
the C5.0 decision tree. Moreover, Batista et al. (2004) experimentally showed that random over-
sampling resulted in one of the best improvements in comparison with eleven more sophisticated
re-sampling techniques. Due to these excellent results, we included random over-sampling in
our experiments.

142

7.4. RE-SAMPLING TECHNIQUES

7.4.2 Under-sampling based on Tomek Links

Under-sampling with Tomek links (Batista et al., 2004) is an under-sampling technique that
uses the concept of Tomek link (Tomek, 1976) to remove examples of the majority class from
the training data set. As follows, we first present the concept of Tomek link and then explain
how the re-sampling technique works.

The goal of the Tomek links procedure is to find pairs of examples with different class, but
that are geometrically close in the feature space. Algorithm 7.4.1 provides the pseudo code
of the algorithm that finds all the Tomek links. That is, a tomek link is a pair of examples
< Ei, Ej > that belong to different classes and for which there does not exist any other example
Ek so that dist(Ei, Ek) < dist(Ei, Ej) or dist(Ej , Ek) < dist(Ei, Ej), where dist is a function
that computes the distance between two examples.

Therefore, the examples that do not form any Tomek link are not in the decision boundary,
and thus, the information that they provide is not as interesting as the information that resides
in the examples that form Tomek links. Batista et al. (2004) used this idea and proposed
an under-sampling technique that removed examples of the majority class that did not belong
to any Tomek link. This technique showed to provide competitive results, especially when
combined with other over-sampling methodologies. For this reason, we incorporate this re-
sampling algorithm in our analysis.

7.4.3 SMOTE

The synthetic minority over-sampling technique (SMOTE), originally designed by Chawla et al.
(2002), is one of the most influential re-sampling techniques. SMOTE is an over-sampling
technique that creates new minority class instances by means of performing different operations
on the minority class instances of the training data set. Therefore, the application of this
technique results in a new data set where the presence of the minority class is increased by
the creation of new “synthetic” examples of the minority class. As follows, the details of the
algorithm are given.

Algorithm 7.4.1 provides the pseudo code for the SMOTE algorithm, which works as follows.
For each example of the minority class ei, the procedure searches for the k nearest neighbors
of ei that also belong to the minority class. Then, it creates N examples of the minority class
along the line segments joining any of the k minority class nearest neighbors (the value of N
depends on the desired degree of over-sampling). To achieve this, for each new example of the
minority class that has to be generated, the algorithm randomly selects one of the k nearest
neighbors er and creates a new instance in which each attribute is a randomly generated on the
segment that joins ei and er.

Chawla et al. (2002) empirically demonstrated the competitiveness of SMOTE with respect
to other re-sampling techniques. Subsequent to this publication, several authors proposed new
approaches, based on SMOTE, to generate synthetic data. For example, Chawla et al. (2003)
combined SMOTE with a boosting technique to improve the detection of rare classes. Later,
Han et al. (2005) designed a new approach which mainly used the SMOTE algorithm, but
trying to re-sample only those instances that lay closely to the decision boundary. All these
new approaches supposed little modifications of the initial idea of creating synthetic data of the

143

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

Algorithm 7.4.2: Pseudo code for the SMOTE algorithm.
Algorithm: SMOTE (d is Dataset, N is integer, k is integer) return (dOut is1

Dataset)
Data: N is the proportion of over-sampling

k is the number of neighbors considered to create new instances
Result: dOut is the new re-sampled data set
var2

numNewNeigh, numMin, i is integer3

currEx, newEx, selectedNeigh is Example4

att is Attribute5

dOut, neighbors is Dataset6

end7

numMin := number of instances of the minority class in dOut8

i := 09

dout := d10

while i < numMin do11

currEx := get the ith example of the minority class12

neighbors := get the k nearest neighbors of the minority class closer to currEx13

numNewNeigh := N14

while numNewNeigh > 0 do15

selectedNeigh := randomly get a neighbor from neighbors16

/* create a new example of the minority class */
forall attribute att do17

newEx [att] := curEx [att] + (currEx [att] - selectedNeigh[att])· rand(0,1)18

end19

numNewNeigh := numNewNeigh - 120

dout := addExample(dout, newEx)21

end22

i := i + 123

end24

return dout25

minority class. In the next section, we propose another modification of the SMOTE algorithm
that combines these ideas with a data cleaning phase.

7.4.4 cSMOTE

We now introduce cluster SMOTE (cSMOTE), a re-sampling technique based on SMOTE.
cSMOTE introduces two main modifications to the SMOTE algorithm, which consist in:

• including a phase to clean instances that are considered noise; and

• disabling the creation of new minority class instances beyond the boundaries of a virtual
cluster calculated for each minority class instance.

144

7.4. RE-SAMPLING TECHNIQUES

Algorithm 7.4.3: Pseudo code for the cSMOTE algorithm.
Algorithm: cSMOTE (d is Dataset, k is integer) return (dOut is Dataset)1

Data: k is the number of neighbors considered to create new instances
Result: dOut is the new re-sampled data set.
var2

numFavor, numAgainst is integer3

currEx, newEx, selectedNeigh is Example4

att is Attribute5

dOut,neighbors is Dataset6

end7

dOut = empty data set8

forall example currEx en d do9

neighbors := et the k nearest neighbors closer to currEx10

numFavor := number of neighbors of the same class as currEx11

numAgainst := number of neighbors of differnet class than currEx12

if numFavor = 0 then13

Do not insert currEx into dOut14

else15

if currEx belongs to the majority class then16

dOut := addExample(dOut, currEx)17

else18

dOut := addExample(dOut, currEx)19

while numAgainst > 0 do20

selectedNeigh := select a neighbor from the same class as currEx21

/* create a new example of the minority class */
forall attribute att do22

newEx [att] := curEx [att] + (currEx [att] - selectedNeigh[att])· rand(0,1)23

end24

dOut := addExample(dOut, newEx)25

numAgainst := numAgainst - 126

end27

end28

end29

end30

return dOut31

As follows, we explain each one of these two modifications in detail.

Algorithm 7.4.3 provides the pseudo code for cSMOTE. The algorithm is guided by a main
loop over all the examples of the data set, independent of whether they belong to the minority
class or to the majority class. For each example ei, the algorithm selects the k nearest neighbors
regardless of their class; besides, it counts the number of these k neighbors that belong to the
same class as ei (numFavor) and the number of them that belong to another class (numAgainst).
Depending on these variables and the selected example ei, the next steps are taken:

145

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

1. If, given ei, there does not exist any other example among its k nearest neighbors that
belongs to the same class, ei is considered as a noisy instance and it is not included in the
final data set.

2. If ei belongs to the majority class and, at least, there exists another example of the majority
class among its k nearest neighbors, ei is copied to the final data set.

3. If ei belongs to the minority class, we create as many new examples as the number of
nearest neighbors of the majority class that ei has (i.e., new numAgainst instances of
the minority class are created). The underlying idea of this re-sampling strategy is the
fact that, in general, the number of nearest neighbors of another class would be higher
as the minority class instance approaches the class boundary. Thence, this technique
aims at introducing more examples of the minority class around the class boundary, but
not increasing the number of them in regions of the feature space that are far from this
boundary.

The generation of new examples of the minority class is also modified with respect to that
in SMOTE. cSMOTE does not allow the creation of examples of the minority class beyond the
virtual cluster to which the original example belongs. This virtual cluster is defined as follows.
The center of the cluster is determined by the example Ei. Then, the cluster is defined by a sphere
with radius equal to the distance to the example Ej , where Ej is the farthest neighbor of Ei for
which it does not exist any other instance Ek of another class such as dist(Ei, Ek) < dist(Ei, Ej).
Thus, as the new instances are created in the segment defined between two instances of the
minority class that belong to this cluster, they would never go beyond the virtual cluster. The
behavior of cSMOTE and of the other three re-sampling techniques as well is exemplified in the
following subsection.

7.4.5 What Do Re-sampling Techniques Do? A Case Study

Before proceeding with the comparison of the four re-sampling techniques—combined with each
one of the five learning methods—on the collection of real-world problems, we first illustrate
how these techniques work on a two-dimensional artificial problem. Thence, the purpose of this
section is not to extract general conclusions about the re-sampling techniques behavior, but to
intuitively explain how they work. As follows, we first introduce the artificial domain used in
the case study and illustrate how the four re-sampling techniques modify this domain; then, we
depict the knowledge created by the five different learners on this problem.

Artificial Problem Used in the Case Study

To illustrate the behavior of the different re-sampling techniques, we designed the two-dimensional
artificial problem shown in figure 7.5(a). The problem consists of four concepts of the minority
class (red dots) that have a circular shape and are distributed around the feature space. More-
over, the two concepts of the minority class placed in the top of the feature space contain a
sub-concept of the majority class inside them, drawing the shape of a “doughnut”. Therefore,
this data set shows that some of the small disjuncts belong to the majority class, highlighting

146

7.4. RE-SAMPLING TECHNIQUES

(a) Original (b) Ovs (c) Und-TL

(d) SMOTE (e) cSMOTE

Figure 7.5: Original domain (a) and domains after applying random over-sampling (b), under-
stampling with Tomek links (c), SMOTE (d), cSMOTE (e).

that there is not always a direct mapping between the imbalance ratio of the training data set
and the imbalance ratio among the sub-solutions or clusters in the solution space.

Figures 7.5(b), 7.5(c), 7.5(d), and 7.5(e) show the modified data set after applying random
over-sampling, under-sampling with Tomek links, SMOTE3, and cSMOTE4 respectively. Ran-
dom over-sampling replicates some of the training instances until the data set contains the same
number of instances of both classes; for this reason, the resulting domain is apparently equal to
the original domain. Under-sampling based on Tomek links removes instances of the majority
class that are not close to the class boundary. Note that the final data set contains a consider-
able lower number of examples. This may be beneficial in terms of run time of the final learner,
especially when the original data set consists of a large number of instances; nonetheless, in do-
mains with few instances, it may result in a problem of sparsity. SMOTE creates new instances
of the minority class by interpolation. A potential problem of this technique is that, depending
on the size of the small disjunct and the chosen k, SMOTE can generate noisy instances if one

3SMOTE was configured with k=N=5
4cSMOTE was configured with N=10

147

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

of the nearest neighbors selected to create a new example belongs to another disjunct. cSMOTE
returns a domain that is similar to the one generated by SMOTE. The main difference is that
the minority class instances generated by cSMOTE are closer to the class boundary. In the next
section, we show the models evolved by the different learners on the original and the re-sampled
data sets.

Models Built by the Learners

Figure 7.6 illustrates the domain learned by the five learners on the original and the re-sampled
data sets. These results are complemented by table 7.4, which provides the TP rate and TN
rate, measured on the training data set, of each learner and domain. The same configurations
of the five learners used in the previous sections were employed for these experiments. The
domains are depicted by exhaustively testing all the feature space. That is, we generated a test
problem with ten million instances distributed uniformly around the feature space, and we used
each learner to predict the class of each instance; then, we depicted a point—with a different
color depending on the predicted class—in the solution subspace.

Several observations can be drawn from these results. We first analyze the behavior of the
different learners on the original data set. In this case, note that all the learners, except for
SMO, could discover totally or partially all the sub-concepts of the minority class. IBk (see
figure 7.6(k)) is the learner that resulted in the model that is probably closer to the model that
a human expert would define from the set of points depicted in Figure 7.5(a). On the other
hand, C4.5, XCS, and UCS discovered concepts whose shape resembled rectangles. This is due
to the knowledge representation employed by each learner. That is, C4.5, XCS, and UCS (see
figures 7.6(a), 7.6(p), and 7.6(u)) used a knowledge representation based on hyper rectangles to
discriminate between classes; for this reason, they had more difficulties to approximate curved
boundaries. Despite this, note that these learners, and especially UCS, provided an accurate
approximation of the class boundary for the given problem. On the other hand, SMO (see figure
7.6(f)) used a linear kernel which failed to discriminate between classes. Note that SMO pre-
dicted that any instance in the input space belonged to the minority class. We tried polynomial
kernels with higher degree, but significantly better results were not found for this particular
artificial problem. The first row of table 7.4 complements these visual results by reporting the
TP rate and the TN rate, measured on the training instances, achieved by the five learners. The
table shows that UCS predicted all the training instances correctly; IBk, C4.5, and XCS also
yielded accurate results.

Let us now examine the results obtained with the re-sampling techniques. The figures show
that, in general, all the learners, except for SMO, benefited from re-sampling the training data
set. XCS especially benefited from random over-sampling and SMOTE and, to a lower extend,
from cSMOTE. However, note that random over-sampling and under-sampling based on Tomek
links result in some uncovered regions in the feature space (white regions in the figures). UCS
seems to give the best results with cSMOTE. It is worth noting that UCS evolves a maximally
accurate model with the original data set.

In general, SMOTE and random over-sampling were the most effective re-sampling tech-
niques. But this general behavior needs to be analyzed carefully. For example, when C4.5 was
trained with the domains under-sampled with Tomek links, and re-sampled with SMOTE, or
cSMOTE, it was not able to identify the first majority class sub-concept. This behavior can

148

7.4. RE-SAMPLING TECHNIQUES

C4.5

(a) Original (b) UnsTL (c) UnsTL (d) SMOTE (e) cSMOTE

SMO

(f) Original (g) Ovs (h) UnsTL (i) SMOTE (j) cSMOTE

IBk

(k) Original (l) Ovs (m) UnsTL (n) SMOTE (o) cSMOTE

XCS

(p) Original (q) Ovs (r) UnsTL (s) SMOTE (t) cSMOTE

UCS

(u) Original (v) Ovs (w) UnsTL (x) SMOTE (y) cSMOTE

Figure 7.6: Models created by C4.5, SMO, IBk, XCS and l’UCS with the original and the
re-sampled data sets.

149

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

Table 7.4: TP rate (TPR) i TN rate (TNR) obtained by C4.5, SMO, IBk, XCS and UCS with
the original domain and the re-sampled data sets.

Original
C4.5 SMO IBk XCS UCS

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

Original 98.40 97.31 0.00 100.00 95.20 98.85 85.60 96.15 100.00 100.00
Ovs 100.00 97.31 100.00 29.04 100.00 94.04 100.00 96.73 100.00 99.62
UnsTL 99.20 79.49 100.00 28.21 99.20 91.45 99.20 90.58 100.00 88.08
SMOTE 98.40 97.50 100.00 30.00 99.40 97.50 98.40 97.50 100.00 100.00
cSMOTE 96.22 97.27 100.00 29.43 97.84 98.54 95.20 98.27 92.80 99.62

be observed in other problems, where the application of a re-sampling technique induced the
learner to misclassify regions that belonged to the majority class. In the case of SMO, there may
be some intrinsic complexities of the domain that created especial difficulties to the system.

The results provided here visually illustrated the behavior of the different re-sampling tech-
niques, giving a more detailed insight on how they work. Nonetheless, conclusions cannot be
extracted from this simple case study. In the next section, we extend the analysis and compare
the four re-sampling techniques in combination with the five learning algorithms on the large
collection of imbalanced real-world problems used in the previous section.

7.5 Results on Re-sampled Domains

In this section, we analyze whether the application of the four re-sampling techniques presented
above improves the performance of the five learning methods. As proceeds, we first introduce
the experimental methodology, especially focusing on the steps taken to generate the re-sampled
data sets. Then, we summarize the results obtained for each learning method and extract general
conclusions about the excellence of each re-sampling technique. The full results are provided in
appendix C.

7.5.1 Experimental Methodology

To compare the effect of the re-sampling techniques on each learning method, we employed the
following methodology. We applied each re-sampling technique to each one of the training folds
of the 25 data sets presented in section 7.3.1. This resulted in 100 new data sets, each one with
10 re-sampled training folds. The test folds were not modified so that the learners were tested
with exactly the same information used in the original experiments (see section 7.3.2).

The five learning methodologies were configured as specified in section 7.3.1. No particular
configuration was set for each re-sampling data set since we aimed at analyzing the impact of
these re-sampling techniques to the system. The performance of each learner was measured
with the product of TP rate and TN rate, since this metric is not biased toward the imbalance
ratio of the learning data set. Also, the statistical procedure followed in section 7.3.1 was
employed to compare the results. That is, the multiple-comparison non-parametric Friedman

150

7.5. RESULTS ON RE-SAMPLED DOMAINS

test (Friedman, 1937, 1940) was applied to contrast the null hypothesis that all the re-sampling
techniques yielded the same results, on average, for a specific learner. If the multiple-comparison
test rejected the null hypothesis, the post-hoc Nemenyi test (Nemenyi, 1963) was employed to
detect significant differences among techniques.

With the purpose of compactness, the two next subsections present a summary of the re-
sults from which we extract general conclusions about the competitiveness of each re-sampling
technique. We first provide the statistical analysis of the comparison of the four re-sampling
techniques for each learner. The complete tables of results are supplied in appendix C. There-
after, we summarize all the results in a table that gathers the average rank of each re-sampling
technique for each of the five learning systems and highlight the main ideas and key conclusions
from this summary.

7.5.2 Statistical Analysis of the Results

As proceeds, we statistically analyze the results of the comparisons of the four re-sampling
techniques for each learner.

C4.5. The multiple-comparison Friedman test rejected the null hypothesis that the results ob-
tained with the different re-sampling techniques were equivalent, on average, with p = 0.0018.
Thus, we applied the post-hoc Nemenyi test, at α = 0.10, to detect groups of re-sampling
techniques which yielded equivalent results. Figure 7.7(a) connects the groups of learners that
performed equivalently according to the Nemenyi test at α = 0.10. Note that the test detected
two groups. The first group comprised SMOTE, random over-sampling, and the original data
set. The best ranked method was SMOTE.

The second group consisted of all the techniques except for SMOTE. Notice that the poorest
results were obtained with the under-sampled data sets. This denoted that under-sampling the
majority class might lead to sparsity problems in the particular data sets of the comparison
since, on average, they contain a low number of instances. In general, the statistical analysis
confirms the suitability of SMOTE and random over-sampling in combination with C4.5.

SMO. The multiple-comparison Friedman test rejected the hypothesis that all the re-sampling
techniques resulted in the same performance, on average, with p = 2.98 · 10−6. Therefore, we
applied the post-hoc Nemenyi test, whose results are provided in figure 7.7(b).

Several conclusions can be drawn from these results. Firstly, SMO and C4.5 benefited from
different re-sampling techniques. In SMO, the best re-sampling technique was random over-
sampling, which was also one of the best methods in C4.5. Nonetheless, notice that the second
best ranked re-sampling method was under-sampling based on Tomek links, which, combined
with C4.5, resulted in the poorest results. This highlights the idea that different learners
benefit from different re-sampling methods.

Secondly, the statistical study detected that random over-sampling significantly outperformed
the results obtained with the re-sampled data sets and the original data set. The Nemenyi test
did not detect any further significant difference among the remaining re-sampling techniques
and the original data set. Nevertheless, it is worth noting that the poorest average rank was
obtained with the original data sets, which indicates that all re-sampling techniques are, on
average, beneficial to SMO.

151

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

1.5 2 2.5 3 3.5 4

↓
Original

3

↓
Ovs

2.6

↓
UnsTL

3.68

↓
SMOTE

2.14

↓

cSMOTE

3.58

CD = 1.09

(a) C4.5

1 1.5 2 2.5 3 3.5 4 4.5

↓
Original

3.74

↓
Ovs

1.6

↓
UnsTL

2.92

↓

SMOTE

3.08

↓

cSMOTE

3.66

CD = 1.09

(b) SMO

2.4 2.6 2.8 3 3.2 3.4 3.6

↓
Original

2.98

↓
Ovs

2.56

↓
UnsTL

3.52

↓
SMOTE

2.44

↓
cSMOTE

3.5

CD = 1.09

(c) IBk

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

↓
Original

3.6

↓
Ovs

2.86

↓

UnsTL

2.94

↓
SMOTE

2.42

↓
cSMOTE

3.18

(d) XCS

2 2.5 3 3.5 4

↓

Original

3.44

↓

Ovs

2.78

↓
UnsTL

2.86

↓
SMOTE

2.24

↓
cSMOTE

3.68

CD = 1.09

(e) UCS

Figure 7.7: Comparison of the performance obtained by (a) C4.5, (b) SMO, (c) IBk, (d) XCS, and
(e) UCS with the different re-sampling techniques. Groups of classifiers that are not significantly
different at α = 0.10 are connected.

152

7.5. RESULTS ON RE-SAMPLED DOMAINS

IBk. The multiple-comparison Friedman test rejected the hypothesis that IBk obtained equiv-
alent results with the original and re-sampled data sets with p = 0.03. However, the Nemenyi
test, at α = 0.10, could not find significant differences among the re-sampling methods. As
follows, we provide some observations based on the average rank of each re-sampling algorithm,
which is supplied in figure 7.7(c).

SMOTE was the best ranked method of the comparison, closely followed by random over-
sampling. In the next positions of the ranking, we find the original data set, cSMOTE, and
under-sampling based on Tomek links. Thence, under-sampling based on Tomek links provided,
again, the poorest results. This was probably due to a problem of sparsity in the under-
sampled data sets. Note that the position in the ranking of each re-sampling technique equals
the corresponding position obtained by C4.5, although in C4.5 some of the differences were
statistically significant.

XCS. The multiple-comparison Friedman test did not permit rejecting the hypothesis that the
results obtained with the original data sets and the re-sampled data sets were equivalent, on
average, at α = 0.05 (the p-value returned by the test was p = 0.1037). Thence, as follows,
we provide some remarks based on the average rank of each technique, which are illustrated
in figure 7.7(d).

As observed for C4.5 and IBk, the two best ranked re-sampling techniques were SMOTE
and random over-sampling. The third best method in the comparison was under-sampling
with Tomek links. Thus, differently from IBk and C4.5—where under-sampling with Tomek
links provided the worst performance—, the experimental results point out that XCS was not
affected, on average, by decreasing the number of training examples, given that the points
that lay close to the boundary were included in the final data set. Notice that the results
achieved with the original data set were never significantly superior than those obtained with
the under-sampled domain. A similar observation was drawn for SMO. This highlights that
the competence of under-sampling with Tomek links was really dependant on the final learning
system employed to learn the data model.

cSMOTE and the original data set come in the last positions of the ranking. Finally, note
that the worst results were achieved with the original data sets. Therefore, as in SMO, all
the re-sampling techniques appeared to improve the results obtained by XCS with the original
data sets.

UCS. The multiple-comparison Friedman test rejected the null hypothesis that all the models
extracted with the different re-sampled data sets and the original data set were equivalent, on
average, with p = 0.01. Figure 7.7(e) groups the learners that performed equivalently according
to the Nemenyi test at α = 0.10.

The statistical analysis identified the same three best ranked methods as in XCS: SMOTE,
random over-sampling, and under-sampling based in Tomek links. Therefore, the same con-
clusions provided in XCS can be extended to UCS. The poorest results were obtained with the
original data sets and cSMOTE.

After analyzing each particular learner, the next section summarizes the results, gathering
some key conclusions about the excellence of the different re-sampling techniques.

153

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

Table 7.5: Intra-method ranking for original and re-sampled data sets for C4.5, SMO, IBk,
XCS, and UCS. Rows 1st to 5th indicate the number of times that each re-sampling technique
was ranked in the correspondent position. The last column shows the average rank and its
standard deviation.

Resamp. Method 1st 2nd 3rd 4th 5th Avg. ± Std.

C
4.

5

original 6 3 4 9 3 3.00 ± 1.39
oversampling 7 4 8 4 2 2.60 ± 1.26
undersampling TL 0 5 6 6 8 3.68 ± 1.12
smote 9.5 7.5 4 3 1 2.14 ± 1.17
csmote 2.5 5.5 2 5 10 3.58 ± 1.44

S
M

O

original 4 3 1.5 3.5 13 3.74 ± 1.56
oversampling 12 11 2 0 0 1.60 ± 0.63
undersampling TL 3 6.5 8 4.5 3 2.92 ± 1.18
smote 3 4.5 8.5 5.5 3.5 3.08 ± 1.20
csmote 2 1 4 14.5 3.5 3.66 ± 1.03

IB
k

original 6 5 2.5 6.5 5 2.98 ± 1.49
oversampling 3.5 8.5 9.5 2.5 1 2.56 ± 0.98
undersampling TL 4 2 6 3 10 3.52 ± 1.47
smote 10.5 3.5 2.5 6.5 2 2.44 ± 1.44
csmote 1 5 5.5 7.5 6 3.50 ± 1.17

X
C

S

original 3 4 2.5 6 9.5 3.60 ± 1.43
oversampling 7 6 3 1.5 7.5 2.86 ± 1.61
undersampling TL 1 6 11.5 6.5 0 2.94 ± 0.81
smote 11 4 1.5 5.5 3 2.42 ± 1.51
csmote 3 4 7.5 6.5 4 3.18 ± 1.23

U
C

S

original 2 4 6 7 6 3.44 ± 1.24
oversampling 5.5 5.5 6 5 3 2.78 ± 1.32
undersampling TL 5 4 8 5.5 2.5 2.86 ± 1.25
smote 7 11 3 2 2 2.24 ± 1.18
csmote 5.5 0.5 1 7.5 10.5 3.68 ± 1.55

7.5.3 Summary

Having compared the performance obtained with each learner with the original and re-sampled
data sets, the aim of this section is to summarize all the experimental analysis. For this purpose,
table 7.5 supplies, for each learner, the number of occurrences of each re-sampling technique in
each position of the ranking. For each classifier, the re-sampling method that is placed first in
the ranking is marked in bold. The last column provides the average rank and the standard
deviation for each re-sampling method, which are used to highlight the main observations and
conclusions of the present comparison.

The results show that, in general, data set re-sampling yielded better learning performance
than the one reached with the original data set. On average, the best results were achieved
with SMOTE and random over-sampling. The empirical observations agree with some studies
concluding that over-sampling is more effective than under-sampling in C4.5 (Japkowicz and

154

7.6. DISCUSSION

Stephen, 2002; Batista et al., 2004) and SMO (Japkowicz and Stephen, 2002). The results
obtained herein allow us to extend this conclusion to IBk, XCS, and UCS. We hypothesize that
under-sampling may cause a problem of sparsity as it removes instances that may be needed
for learning. In fact, a deeper inspection of the detailed results (see appendix C) shows that
under-sampling was better ranked in the problems pim, wavd1, wavd2, and wavd3, which have
the highest number of instances per dimension5, and poorly ranked in the problems with the
lowest number of instances per dimension: wdbc, wined1, wined2, wined3, and wpbc.

The standard deviation of the rank somehow denotes the dependency of each re-sampling
method on the characteristics of the training domain. For C4.5, SMOTE was the best ranked
re-sampling method; besides, the rank deviation was small. In most of the cases, SMOTE was
the first or the second method in the ranking. These results indicate that SMOTE should be
used in combination with C4.5 to deal with class imbalances. For SMO, random over-sampling
was the best ranked method and, at the same time, it showed a very low standard deviation.
Consequently, SMO should be combined with random over-sampling in imbalanced domains.
For IBk, SMOTE was the best ranked re-sampling technique followed very closely by random
over-sampling. However, SMOTE had a much higher standard deviation, which indicates that
its behavior highly depends on the domain. Therefore, this promotes the use of over-sampling in
combination with IBk if we search for better robustness. For XCS, the best ranked re-sampling
method, i.e., SMOTE, had one of the highest standard deviations. Thus, the behavior of this
combination depended on the characteristics of the data. In this case, the practitioner may
prefer to combine XCS with under-sampling based on Tomek Links, since its average rank was
close to the SMOTE one and it had a very low standard deviation. For UCS, the best and the
most robust re-sampling method was SMOTE.

Although the average results promote the application of re-sampling techniques to imbal-
anced domains, let us highlight that, in some cases, the best results were achieved with the
original data set. That is, a detailed inspection of the results for each particular data set (see
the full tables in appendix C) reveals that the performance of some learners on particular prob-
lems worsened when the data sets were re-sampled. This happened in problems such as h-s,
tao, wined1, wined2, and wined3. In all these cases, some learners obtained a significantly lower
performance than the one obtained with the original data set, which indicated that re-sampling
was introducing some undesired characteristics to the training domain such as noise or new
small disjuncts or niches. Having this in mind, the next section opens a discussion about several
important aspects that have been made manifest throughout the comparative study, the answer
of which will lead us to future work lines.

7.6 Discussion

The comparison performed in this chapter provided many valuable insights and enabled us to
identify which learning systems were better than others and which combinations of learning algo-
rithms with re-sampling techniques yielded the most accurate models on average. Nonetheless,
we already pointed out a set of particular cases where the application of re-sampling techniques
not only did not result in any improvement, but also provided significantly less accurate mod-

5The ratio between the number of instances and the number of attributes of a problem has been proposed
elsewhere (Bernadó-Mansilla and Ho, 2005) as a measure of sparsity.

155

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

els. In general, after analyzing in detail all the results of the present comparison, the machine
learning practitioner, who needs to solve a new problem, may still be wondering which learning
algorithm and re-sampling technique he or she should use. In fact, these thoughts could be
articulated in a more general way by posting the following two questions:

• Why do some re-sampling techniques work well for some learners and data sets but fail
with others?

• Why could not we find a re-sampling technique that works the best for all learners?

These two questions are of especial interest in the current days, since the maturity of machine
learning has resulted in the design of several algorithms to solve the same types of problems.
Studies that mathematically analyze the properties of learning algorithms are not rare in the
literature. However, they still cannot predict which learning algorithm will be the best performer
for a new real-world problem, as long as the intrinsic characteristics of this problem are not
known.

A particular contribution that provides a nice observation about these two questions can be
found in the no-free-lunch (NFL) theorem (Wolpert, 1992, 1996). Loosely speaking, the NFL
theorem mathematically demonstrates that, if we consider all the possible domains in our data
set space, we can find as many data sets for which a learning algorithm ‘A’ outperforms another
algorithm ‘B’ as viceversa. This theorem should be taken with a grain of salt, since we are not
interested in all the possible domains, but in those domains that can be found in real-world
problems. For example, we are not interested in domains with randomly generated instances,
but in domains in which their instances define real-world concepts. Nevertheless, the NFL
theorem gives mathematical formulation to a conclusion already observed in our experiments:
that we cannot find a learning algorithm that performs the best for all possible domains, but
for a particular range of them. Therefore, this conclusion demands the characterization of the
real-world domains to relate them to the properties of each learning system, and so, to detect
for which type of problems a learning algorithm is better suited than the others.

Some recent efforts have been taken to design measures to characterize classification prob-
lems. Michie et al. (1994) early highlighted the importance of domain characterization to analyze
the performance of machine learning methods. The authors provided a set of measures—which
consisted of statistical indicators and measures coming from the information theory—to char-
acterize classification domains. These metrics were designed especially focusing on the analysis
of decision trees. Later, Sohn (1999) used a more restricted set of metrics in a meta-model
that compared the classification performance of several learning systems in terms of the data
characterization. Although the results were promising, the authors already pointed out the need
for further developing new metrics to capture more characteristics of the learning domains.

After these first promising works, Ho and Basu (2002) carefully examined the possible sources
of data complexity and defined a set of measures that aimed at extracting some geometrical
characteristics of the class distributions in the training data set. It was empirically shown that
there was a considerable correlation between some of these measures and the error of some
classifiers. For example, Bernadó-Mansilla and Ho (2005) and Bernadó-Mansilla et al. (2006)
showed that the error of XCS was correlated with some metrics that estimated the length and
linearity of the class boundary. The experimental results provided in these works evidenced that
the characterization of the training data sets holds promise, being able to explain the behavior

156

7.6. DISCUSSION

of learning algorithms on particular data, and so, starting to bridge the gap between artificial
data sets with known characteristics—for which we have developed different models in chapters
5 and 6— and real-world data sets with unknown characteristics. Nonetheless, some drawbacks
were also detected, such as the incapacity of the collection of designed metrics to explain all the
sources of complexity of a classification problem.

As further work, this thesis proposes to continue with the study and design of new complexity
metrics and apply them to

1. examine for which types of data a learning algorithm outperforms the others,

2. analyze the impact, from a geometrical point of view, of applying the re-sampling tech-
niques to the different data sets, and

3. study the feasibility of applying each re-sampling technique with each particular learning
system.

The aim of each one of these aspects is explained in what follows.

First, we will employ the complexity metrics to analyze which geometrical characteristics
affect the different learners, identifying the sweet spot in which each learner is the best performer.
Thence, we aim at answering questions such as “Which learner for which real-world problem?”.
To achieve this, an API that includes all the complexity metrics proposed by Ho and Basu
(2002), extends their definition enabling their application to data sets with continuous and
nominal attributes and multiple classes, and provides new measures was implemented and made
available as open source code (Orriols-Puig et al., 2008b). In addition, the correlation of different
complexity metrics with the test error of XCS was analyzed (Bernadó-Mansilla et al., 2006). In
further work, we aim at extending the analysis to other learners.

Second, the impact that each re-sampling technique has on the original data set—which
has been visually illustrated for a particular case study in section 7.4.5—will be analyzed from
the point of view of the change of the geometrical structure that the re-sampling techniques
cause. That is, re-sampling techniques change the distribution of the training data set since new
instances are added or some of the existing instances are removed from the original data set.
Thus, in further work, it will be interesting to study how these re-sampling methods change the
original distributions.

This change in the initial distribution may be either beneficial or detrimental for the learner
employed in each particular case depending on the change of the initial distribution. For example,
suppose that we over-sample a linearly-separable data set and that the resulting data is no longer
linearly separable. In this case, the results obtained by a linear classifier in the re-sampled data
set will be probably worse than those achieved with the original data. This is because there
would be a misalignment between the re-sampling technique—and the changes that it produces
to the original data—and the learning heuristic. Therefore, the aim of the third future work
line is to identify which re-sampling technique is best suited for a particular learning algorithm
given a real-world problem with a certain apparent complexity, providing answer—or, at least,
some guidelines—to the question of “Which machine learning technique combined with which
re-sampling technique for which problem?”.

157

CHAPTER 7. XCS AND UCS FOR MINING IMBALANCED REAL-WORLD PROBLEMS

7.7 Summary and Conclusions

In this chapter, we moved to real-world imbalanced classification problems and showed that
both LCSs can successfully deal with the challenges posed by learning accurate models from
rare classes in continuous domains with unknown characteristics. We designed a self-adaptation
mechanism that uses a heuristic procedure to detect the maximum imbalance ratio between
niches that lay closely in the solution space and adjust the parameters of both LCSs according
to the theory presented in the last chapter. The excellence of the two LCSs was made evident
through a comparison with three of the most influential machine learning techniques. XCS and
UCS were the two best ranked methods in the comparison, providing statistically better results
than the other methods in a considerably large number of data sets. Later, we introduced four
re-sampling techniques in the comparison and analyzed the improvements that they supplied in
combination with each one of the five learning techniques, extracting several observations for
each particular case.

Two main conclusions, as well as several future line works, can be extracted from the overall
analysis of this chapter. The first conclusion is that the two LCSs are two of the best options to
extract classification models from imbalanced data sets, since they presented the best rank on
average. Moreover, although it has not been further discussed here, LCSs have two important
assets that differentiate them from the other three learning methods: (1) their online learning
architecture and (2) their rule-based representation. The online learning architecture enables
LCSs to learn from streams of data, which are very common in current scientific and industrial
applications (Aggarwal, 2007; Gama and Gaber, 2007). The rule-based representation permits
extracting models that can be read by human experts to some extend. This is similar to C4.5,
which creates decision trees. Nonetheless, note the difference with respect to SMO and IBk.
The models built by SMO consist of a set of support vector machines defined by weights, which
can be barely interpreted. On the other hand, IBk does not create a general model.

The second conclusion is that, on average, re-sampling techniques improve the discovery
of rare classes. In particular, SMOTE and random over-sampling appeared as the two best
re-sampling techniques. Therefore, according to the empirical evidence provided in the present
comparison, the machine learning user may bet for a combination of LCSs and SMOTE or
over-sampling to deal with new challenging imbalanced problems. Nevertheless, we have also
discussed that the intrinsic complexities of each particular problem may need different treat-
ments. This leads us to consider the study of domain characterization as further work.

158

Chapter 8

Fuzzy-UCS: Evolving Fuzzy Rule
Sets for Supervised Learning

In the last three chapters, we studied the capabilities of XCS and UCS to learn from imbalanced
domains, addressing the first challenge proposed in this thesis. Along the study, as we were
concerned about modeling rare classes, we evaluated the quality of the learners with metrics
related to the accuracy per class. Nevertheless, in addition to model’s accuracy, human experts
may require the creation of legible models so that they can understand why a particular machine
learning technique returns an output for a given unlabeled example. In some domains, such in
medical diagnosis, human experts are sometimes more interested in the explanation that yields
a prediction than in the prediction itself (Robnik-Sikonja et al., 2003). Although both LCSs use
a rule-based representation, the interpretability of their models can be impaired by (1) the large
number of rules that they tend to create (Bernadó-Mansilla and Ho, 2005; Bacardit and Butz,
2004; Wilson, 2002a; Dixon et al., 2004; Fu et al., 2001) and (2) the use of reasoning mechanisms
that may be counter-intuitive to human experts. This is not a particular problem of LCSs, but
it is shared by other machine learning techniques. In order to solve it, several authors have
proposed the use of fuzzy logic (Zadeh, 1965, 1973) to create machines that can extract legible
models and that use reasoning mechanisms closer to human ones.

The purpose of this chapter is to incorporate fuzzy logic concepts into LCSs with the aim
of letting the systems evolve more legible classification models and use principled reasoning
mechanisms defined in the fuzzy set theory. With this objective in mind, we take a creative
process to mix the ideas that come from both fields and design Fuzzy-UCS (Orriols-Puig et al.,
2007a,b, 2008c,f), the first Michigan-style LCS that evolves a fuzzy representation online for
supervised learning tasks. The system is inspired by UCS, but it is completely redesigned to be
able to deal with the new fuzzy representation. The competitiveness of the system is shown by
comparing it with a large collection of fuzzy and non-fuzzy systems, which contains several of
the most influential learners (Wu et al., 2007). In addition, we illustrate the added value of the
online learning architecture of Fuzzy-UCS with respect to other learners by using Fuzzy-UCS
to mine large volumes of data online.

The remainder of this chapter is organized as follows. Section 8.1 further discusses on the
motivation of the present work. Section 8.2 introduces the basic concepts of fuzzy logics, presents
some approaches in which GAs and fuzzy logics have been combined to create machine learn-

159

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

ing systems, and reviews some particular LCSs that use a fuzzy representation, highlighting
the key differences with respect to Fuzzy-UCS. Section 8.3 gives a detailed description of the
proposed Fuzzy-UCS algorithm. Section 8.4 examines the sensitivity of Fuzzy-UCS to configu-
ration parameters. Then, section 8.5 studies the limitations that a linguistic representation may
impose and compares it to a more flexible fuzzy representation. Section 8.6 makes an extensive
comparison of the Fuzzy-UCS representation with a set of fuzzy and general-purpose machine
learning techniques, analyzing the differences between the learners in terms of test performance
and interpretability of the models. Section 8.7 exploits the online architecture of Fuzzy-UCS to
mine a large data set, the 1999 KDD Cup intrusion detection data set. Finally, section 8.8 gives
a summary of the work and future lines of research and presents a SWOT analysis to reflect the
strengths, the weaknesses, the opportunities, and the threats of the new system.

8.1 Why Using Fuzzy Logic in LCSs?

Pattern recognition (Theodoridis and Koutroumbas, 2006) is concerned with the design of al-
gorithms that are able to extract novel, useful, and hidden patterns from repositories of data.
In this context, a competent supervised learning technique is required to be able to (1) identify
patterns hidden between a set of descriptive attributes and a dependent variable, i.e., the out-
put or the class, (2) represent these patterns in some legible structure, and (3) generalize over
the input patterns to produce compact representations. During the last few decades, a lot of
research has been conducted to design approaches that totally or partially fulfill the aforemen-
tioned requirements (Mitchell, 1997, 2006). As proceeds, we discuss whether these three aspects
are satisfied by Michigan-style LCSs and propose the use of fuzzy logic as a powerful mechanism
to create highly legible models from domains with uncertainty and imprecision.

We have shown in the previous chapters that Michigan-style LCSs are one of the most com-
petitive alternatives to generalize over the input patterns and extract highly accurate models
from real-world data sets. Therefore, they fulfill the first and third requirement. Nonetheless,
the second requirement is not completely achieved. That is, although most of the current imple-
mentations of Michigan-style LCS use a rule-based representation—and rules can be individually
interpreted—, the readability of the whole rule set may be impaired since LCSs

1. tend to evolve models with a large number of overlapped semantic-free interval-based rules,
and

2. use reasoning mechanisms that can be little intuitive to human experts.

As follows we further discuss these two arguments in the context of interval-based rule repre-
sentation, since it is the most used representation to deal with continuous attributes in LCSs.

The first reason that may hamper the readability of the models evolved by Michigan-style
LCSs is that these systems tend to evolve a large number of overlapped semantic-free interval-
based rules to define complex class boundaries (Bernadó-Mansilla and Ho, 2005; Bacardit and
Butz, 2004; Wilson, 2002a; Dixon et al., 2004; Fu et al., 2001). That is, XCS and UCS systems
alike usually represent continuous attributes with semantic-free intervals. Here, we use the term
semantic free to refer to the fact that the lower and upper limits of each interval of each rule
are modified independent of the value of the same attribute in other rules or the value of other

160

8.1. WHY USING FUZZY LOGIC IN LCSS?

attributes. This has two negative effects on the readability of the final population. The first
negative effect is that Michigan-style LCSs tend to evolve populations that contain rules which
are highly overlapped. Particularly, the class boundary usually consists of a large number of
overlapping rules that predict different classes (Bernadó-Mansilla and Ho, 2005). This is not
only caused by the rule representation, but also by the online learning architecture; that is, as
rules are evaluated online, similar rules are maintained in the population. This large number of
rules may hamper the readability of the rule set. The second effect comes directly with the fact
that attributes are defined by intervals, so defining abrupt boundaries of the region where the
rule is applicable. That is, inside the covered region, the implication predicted by the rule is
completely true. This is counterintuitive from a human point of view, seeming more reasonable
to have rules in which the degree of matching decreases as the boundaries of the covered region
are approached.

The second aspect that may have a negative influence in providing legible explanations to
human experts is that the reasoning mechanisms used by LCSs to infer the class of test instances
usually mix information of all the matching rules to predict the output class. For example, in the
case of XCS, the reasoning mechanism is based on a weighted sum that involves the prediction,
the fitness, and, indirectly, the numerosity—since it is included in the fitness—of each matching
classifier. Therefore, this reasoning mechanism further impairs the interpretability of individual
rules because the contribution of each individual rule to the final prediction is not clear.

These two problems are not only related to LCSs, but to many machine learning techniques.
To improve models legibility, several authors have adhered to the use of fuzzy logic and fuzzy set
theory (Zadeh, 1965, 1973) to define fuzzy systems, that is, systems that use fuzzy logic to create
highly legible models that predict environments with uncertainty and imprecision. Basically, the
fuzzy set theory provides a legible knowledge representation and a robust reasoning mechanism
with a mathematical formulation. In the last few decades, fuzzy logic set theory has been applied
to different machine learning techniques such as rule-based systems and GBML (Cordón et al.,
2001a) or neural networks (Buckley and Hayashi, 1994, 1995).

The motivation of the work performed in this chapter is to design a new supervised machine
learning technique which combines the ideas of accuracy-based LCSs, GAs, and fuzzy logic
together. That is, the new approach will join the online evaluation capabilities of LCSs, the
search robustness of GAs, and the legible representation and reasoning mechanisms of fuzzy
systems. The new online system is addressed as Fuzzy-UCS. Therefore, Fuzzy-UCS aims at
providing similarly accurate, but more readable models than those created by XCS and UCS by
(i) using a more readable rule representation, since rule variables are represented by linguistic
terms, and (ii) evolving smaller rule sets. It is worth noting that Fuzzy-UCS is not the first
Michigan-style LCSs that uses a fuzzy representation, but it is the first learning fuzzy-classifier
system (LFCSs) that works under a supervised learning scheme and builds the knowledge online.

Before proceeding with a detailed description of the learning architecture of Fuzzy-UCS, the
next section provides a concise introduction to fuzzy logic, gives a general schema of how GAs
have been used in fuzzy systems, and reviews some of the early approaches of LCSs that evolve
a fuzzy representation, highlighting the differences with respect to the Fuzzy-UCS architecture.

161

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

8.2 Fuzzy Logics in GBML

Fuzzy Logic can be defined as an extension of the traditional logic systems, which has its origins
in the ancient Greek philosophy. Fuzzy logics provides a conceptual framework that permits
representing the knowledge in environments with uncertainty and imprecision, two characteris-
tics that are really present in nature. In fact, the natural language itself abounds with vague
and imprecise concepts. Therefore, fuzzy logic defines a set of procedures or modes of reasoning
that are approximate rather than exact. In brief, it extends the concepts of “true” and “false”
in bi-valued logic with a third value that indicates that something is “possible” and gives a
numeric value between true and false. Recently, the notion of fuzzy logic gained importance due
to the pioneer contributions of Zadeh (1965, 1973), who established the foundations of the fuzzy
set theory and, by extension, of fuzzy logic. The following subsections briefly explain the basic
mechanisms of fuzzy systems that will be required for the remainder of this chapter. Finally,
the different formulas in which GAs and fuzzy logic have been used together in machine learning
are briefly introduced, especially focusing on the existing proposals of LFCS.

8.2.1 Fuzzy Logic and Fuzzy Systems

Fuzzy Systems are fundamental methodologies to represent and process linguistic information.
Fuzzy systems use fuzzy logic to either represent the knowledge or model the interactions and
relationships among the system variables in environments where there is uncertainty and im-
precision. Because of this ability to deal with ill-defined data, fuzzy systems have been widely
applied to control, classification, and modeling problems (Klir and Yuan, 1995; Pedrycz, 1998)
where classical tools were unsuccessful. In what follows, we briefly introduce the basic concepts
of the fuzzy set theory and shortly review how they can be incorporated into rule-based systems.

In the fuzzy set theory, each fuzzy subset A of a “crisp”1 set X is characterized by giving
a degree of membership to each of its elements x ∈ X. Thence, given a certain observation x
and a fuzzy set A, a function addressed as fuzzy membership function is defined to return a
membership degree of x into A. For example, let us suppose that we define the fuzzy set that
represents the term old. Then, given a new proposition x (e.g., x =“John is 54”), the fuzzy
membership function would provide a degree of membership of x to the set A, which could be
absolutely true (if John is old), absolutely false (if John is not old), or some intermediate truth
degree (John is old with a degree of 0.75). Several propositions can be combined by connectives,
e.g., conjunction, disjunction, and negation. Thence, the fuzzy set theory gives a mathematical
interpretation to these connectives so that a new membership degree can be calculated from
several propositions joined by connectives.

In particular, the fuzzy set theory has been successfully applied to rule-based systems, re-
sulting in the so-called fuzzy rule-based systems (FRBSs). FRBSs consist of fuzzy rules, that is,
if-then constructions that have the following general form:

IF x1 is A1 and ... and xn is An THEN B, (8.1)

where the variables of the antecedent and the consequent contain linguistic labels, that is, the
labels are represented by fuzzy sets. These rules are usually called linguistic FRBS or Mamdani

1Crisp set is used to refer to a set that follows the bi-valued logic.

162

8.2. FUZZY LOGICS IN GBML

Genetic Algorithm driven
Learning Process

Knowledge base
(fuzzy rule set)

DESIGN PROCESS

FUZZY SYSTEM
Input Interface Output Interface

Scaling Fuzzification Scaling Defuzzification

FUZZY RULE-BASED SYSTEM

Database

Figure 8.1: Schematic of GFRBS architecture.

FRBSs (Mamdani, 1974) and represent two essential advantages with respect to classical rule-
based systems:

1. As variables use fuzzy sets, they naturally can handle uncertainty and vagueness.

2. Rule inference is driven by the reasoning methods defined in the fuzzy set theory, thus,
providing inference with a mathematical framework.

Thereupon, the two main tasks in the development of a FRBS are: (1) generate a rule set that
represents the problem domain accurately and (2) design an inference mechanism that permit
combining the information of all the matching rules. In the next subsection we discuss different
methodologies in which GAs are used to assist the building of FRBSs.

8.2.2 Genetic Algorithms in Fuzzy Systems

One of the main drawbacks associated with a FRBS is that the fuzzy rule set has to be defined
by human experts, which may be a complex task in some real-world domains. In the last few
decades, research has been conducted on designing methods to automatically extract fuzzy rules
from a set of data, creating a model that represents the learning domain accurately. Many

163

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

authors have regarded the rule extraction as an optimization problem where a set of rules,
whose attributes are defined by linguistic terms, need to be found. Then, several search and
optimization procedures can be applied to solve this problem.

One of the most prominent proposals is the use of GAs—and evolutionary algorithms in
general—to generate this fuzzy rule set. At this point of the thesis, there is not need to further
discuss the several reasons that promote the use of GAs, instead of other search mechanisms, to
tune different components of FRBS. We have extensively discussed, and empirically shown in
the previous sections, (1) the capability of GAs to deal with complex, large search spaces, (2)
the success of the use of genetic search in machine learning, and (3) the flexibility of GAs that
permit introducing a-priori knowledge. These three reasons are also applicable here, making
GAs one of the most appealing methods to be combined with fuzzy systems.

The combination of GA with FRBS has lead to a new branch of GBML that has been
addressed as genetic fuzzy rule-based systems (GFRBSs) (Cordón et al., 2001a). The basic idea
of GFRBS is that GAs are used for either (i) tuning a pre-existing set of fuzzy rules typically
with the aim of increasing the global accuracy of the system, as well as the readability of the
fuzzy rule set, or (ii) generating the fuzzy rule set from scratch. To further illustrate this process,
figure 8.1 provides a general schematic of a GFRBS, which is composed by a FRBS and a genetic
procedure that guides the design process. The FRBS is formed by the knowledge base, which
contains the fuzzy rule set, and an inference engine which, in turn, consists of:

1. An input interface, which transforms the input data into fuzzy sets by using a fuzzification
process.

2. An output interface, which translates the fuzzy rule action to a real action by using a
defuzzification method.

3. A database, which contains the definition of all the linguistic terms and the membership
functions defining the semantics of the linguistic labels.

GAs have assisted the design of the FRBS in several ways. Following the taxonomy provided
by Herrera (2008), GFRBS can be grouped in the following three classes.

• GFRBS in which the GA tunes some component of the rule set such as (i) the parameters
of the membership functions of the linguistic terms used in the rule set (Casillas et al.,
2005; Karr, 1991); (ii) the inference system itself (Alcalá-Fdez et al., 2007; Crockett et al.,
2006, 2007); and (iii) the defuzzification function (Kim et al., 2002).

• GFRBS in which the GA is applied to learn some components of the GFRBS. Four ap-
proaches can be followed in this case, i.e., algorithms that (i) learn the knowledge base from
a set of numerical data (Thrift, 1991); (ii) select the best rules extracted by another algo-
rithm (Ishibuchi et al., 1995, 1997); (iii) learn first the database and then derive the best
fuzzy rules for the selected database (Cordón et al., 2001b)—this process can be repeated
to get the best combination of both database and knowledge base; or (iv) simultaneously
learn both the database and the knowledge base (Homaifar and McCormick, 1995).

• GFRBS in which both the knowledge base and the inference engine parameters are tuned
(Marquez et al., 2007).

164

8.2. FUZZY LOGICS IN GBML

From these three branches of GFRBS, we are concerned about the GFRBS that learn the
rule set from scratch. More specifically, our aim is to design an online Michigan-style LCSs that
learns fuzzy classification models with improved legibility. In the following subsection, we review
few approaches that fall under this definition, emphasizing the key differences with respect to
Fuzzy-UCS.

8.2.3 Related Work on Learning Fuzzy-Classifier Systems

Since Valenzuela-Rendón (1991) presented the first proposal of LFCSs, several authors have
adhered to the idea of building machine learning techniques that evolve models online. Most
of these systems were applied to solve reinforcement learning and control tasks. As follows, we
present the most successful approaches to this topic and finally highlight the differences with
respect to the underlying ideas of Fuzzy-UCS.

Valenzuela-Rendón (1991) introduced the first Michigan-style LFCS, which consisted of a
fixed-size fuzzy-rule set and a fuzzy message list. The system was applied to solve function
approximation tasks. The quality of the fuzzy rules was given according to the accuracy in
which the output was estimated. Thus, the initial approach was not a pure reinforcement
learning architecture. Later, Nomura et al. (1998) enhanced the system with true reinforcement
learning.

Several strength-based Michigan-style LFCS have been proposed since this first description.
Parodi and Bonelli (1993) presented an LFCS that automatically learned fuzzy relations, fuzzy
membership functions, and fuzzy weights. The fitness (strength) of each rule was used for a
double purpose. First, it served to compute the selection and replacement probability of the
rule. Second, it permitted stronger rules to participate more soundly in the inference process.

Furuhashi et al. (1994) designed an LFCS that used multiple stimulus-response fuzzy rules
operating in tandem. The system was applied to a control task in which a simulated ship had to
reach a target without moving the obstacles found on its way. The same problem was addressed
by Nakaoka et al. (1994) by using a single rule list. This approach avoided coverage problems
in high dimensional spaces by using a dual fitness, one based on environmental payoff, and the
other based on the accumulation of the level of activation during simulation.

Velasco (1998) defined a new LFCS architecture specifically designed for fuzzy process con-
trol. The system introduced the so-called limbos, i.e., a special workspace where new rules were
generated and evaluated before being used in the real process plant. In this way, the system
avoided using poorly-evaluated rules in the control system.

Ishibuchi et al. (1999b) designed one of the first proposals of LFCS for pattern classification.
They used a fixed-size rule set where don’t care symbols were defined to permit generalization
in the fuzzy rules. A certainty factor, derived from a heuristic procedure prior to fitness evalu-
ation, together with the predicted class formed the consequent of the rule. The rule consequent
consisted of the class that the rule advocated and a certainty factor which was derived from a
heuristic procedure prior to fitness evaluation. An evolutionary algorithm, which operated only
on the rule antecedent, was responsible for creating promising new rules. Although the authors
referred to the approach as a Michigan-style LFCS, the rule evaluation process was performed
offline; that is, new rules were matched with all the examples of the training data set to compute
their fitness. Therefore, this system was not able to deal with data streams. Recently, Ishibuchi

165

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

et al. (2005) presented an hybridization of Pittsburgh-style and Michigan-style LFCSs. The sys-
tem is mainly a Pittsburgh-style LCSs in which some individuals of the population can receive a
local search procedure which is inspired by a Michigan-style LCSs. Again, the system evaluates
the individuals offline.

Finally, the classic “competition versus cooperation” problem in genetic fuzzy systems was
addressed by Bonarini (1996); Bonarini and Trianni (2001). Bonarini proposed a Michigan-
style LCS called ELF, which faced the dilemma between the desired cooperation among fuzzy
rules that match a given input state and the competition of these rules in the evolutionary
algorithm. In ELF, the rule set was divided into several sub-populations, each one with the
same antecedent. Then, the rules of different sub-populations cooperated to produce the con-
trol action, whilst the members of each subpopulation competed with each other. Moreover,
ELF controlled the instability of general rules that participated in different sub-populations by
providing each rule a reinforcement normalized on the difference between the maximum and
the minimum reinforcement obtained by the subpopulation to which the rule belongs. In this
way, ELF overcame some of the problems of strength-based LCSs. ELF was applied to several
reinforcement learning problems, such as the coordination of autonomous agents.

All the LFCS described through this section are strength-based systems. In reinforcement
learning, the first successful accuracy-based fuzzy rule-based system with generalization capa-
bility was proposed by (Casillas et al., 2007). To the best of our knowledge, no accuracy-based
LFCS specifically designed for classification has been proposed until now. Therefore, Fuzzy-UCS
is the first approach in this field. The system takes an accuracy-based approach to benefit from
the advantages that these types of systems have introduced to LCSs, which are summarized as
follows.

• Accuracy-based LCSs can distinguish over-general from accurate rules (Bull and Hurst,
2002).

• There are theoretical analyses that support the theory that, for binary representation,
LCSs such as XCS will evolve a rule set with maximally-general and highly accurate rules
if certain conditions are met (Butz et al., 2004b; Butz, 2006; Butz et al., 2007). Besides,
there are further models, as those provided in chapters 5 and 6 that explain different
facets of how these systems work. Although similar analyses in the continuous space are
scarce, the positive conclusions extracted for the binary representation promote the use of
Michigan-style LCSs.

The next subsection explains Fuzzy-UCS in detail.

8.3 Description of Fuzzy-UCS

The purpose of this section is to describe the design and implementation details of Fuzzy-UCS so
that it can be used as an implementation guide. Figure 8.2 schematically illustrates the process
organization of the system. The system works in two different modes: exploration or training
and exploitation or test. In the exploration mode, Fuzzy-UCS seeks to evolve a maximally
general rule set that minimizes the training error. In the exploitation mode, Fuzzy-UCS uses
the evolved knowledge to infer the class of unlabeled examples. As proceeds, we first present the

166

8.3. DESCRIPTION OF FUZZY-UCS

23

15

11

10

15

12

num

.91(*,M)

. . .

F.classcond.

11(ML,M)

.60(S,L)

.80(M,S)

.61(S,M)

10(M,M)

23

15

11

10

15

12

num

.91(*,M)

. . .

F.classcond.

11(ML,M)

.60(S,L)

.80(M,S)

.61(S,M)

10(M,M)

10.80(M,S)

.9

1

1

231(*,M)

151(ML,M)

120(M,M)

10.80(M,S)

.9

1

1

231(*,M)

151(ML,M)

120(M,M)
Correct Set [C]

Population

Match Set [M]Match Set [M]

Instance: (3.15, 1.8) Class: 1

matching

exploration
1511(ML,M)

.9 231(*,M)

1511(ML,M)

.9 231(*,M)

Parameter’s
Update

Apply
EA?

GA = selection +
crossover + mutation

exploitation
Reasoning = Infer class

Stream of
instances

MS

Attribute 1

MS L

Attribute 2

3.15 1.8

µ2M(1.8)>0

µ2S(1.8)>0

µ1M(3.15)>0
µ1L(3.15)>0

µA
K > 0

L

(ML, SM)

Figure 8.2: Schematic illustration of Fuzzy-UCS. The run cycle depends on whether the system
is under exploration (training) or exploitation (test).

fuzzy knowledge representation used by Fuzzy-UCS and then introduce the learning interaction,
the rule evaluation system, and the rule discovery component used in the training mode. Finally,
we also introduce the reasoning mechanisms designed to infer the class of new unlabeled examples
in test mode.

8.3.1 Knowledge Representation

We first introduce the fuzzy-rule-based representation of Fuzzy-UCS, explain how the matching
mechanism works, and present the most relevant parameters that are associated with each
classifier. Fuzzy-UCS evolves a population [P] of classifiers which jointly represent the solution
to a problem. Each classifier consists of a rule whose condition is in conjunctive normal form
and a set of parameters. The fuzzy rule follows the structure

IF x1 is Ãk
1 and · · · and xn is Ãk

n THEN ck WITH wk, (8.2)

where each input variable xi is represented by a disjunction of linguistic terms or labels Ãk
i =

{ Ai1 ∨ . . . ∨ Aini}. In our experiments, all input variables share the same semantics, which are
defined by means of triangular-shaped fuzzy membership functions. (see the examples of these
semantics with different number of linguistic terms in figure 8.3). Note that this representation

167

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

0 1
0

1

(a) 3 linguistic labels

0 1
0

1

(b) 5 linguistic labels

Figure 8.3: Representation of a fuzzy partition for a variable with (a) three and (b) five
triangular-shaped membership functions.

intrinsically permits generalization since each variable can take an arbitrary number of linguistic
terms. The consequent of the rule indicates the class ck which the rule itself predicts. wk is a
weight (0 ≤ wk ≤ 1) that denotes the soundness with which the rule predicts the class ck. These
types of rules with a weight in the consequent are known as fuzzy rules of type II (Cordón et al.,
2001a).

The matching degree µAk(e) of an example e with a classifier k is computed as follows.
For each variable xi, we compute the membership degree for each of its linguistic terms, and
aggregate them by means of a T-conorm (disjunction). We enable the system to deal with
missing values by considering that µAk(e) = 1 if the value ei for the input variable xi is not
known. Then, the matching degree of the rule is determined by the T-norm (conjunction)
of the matching degree of all the input variables. In our implementation, we used a bounded
sum (min{1, a + b}) as T-conorm and the product (a · b) as T-norm. Note that, if the fuzzy
partition guarantees that the addition of all membership degrees is greater than or equal to 1—
the membership functions used in our experiments satisfy this condition—, the selected T-norm
and T-conorm allow for a maximum generalization. Therefore, an input variable xi consisting
of two consecutive linguistic terms will result in a matching degree of µxi(e) = 1 if the matching
of ei with both linguistic terms is greater than zero; thus, this choice supports the absence of
the variable xi.

Each classifier has four main parameters: 1) the fitness F, which estimates the accuracy of the
rule; 2) the correct set size cs, which averages the sizes of the correct sets in which the classifier
has participated (see section 8.3.2); 3) the experience exp, which computes the contributions of
the rule to classify the input instances; and 4) the numerosity num, which counts the number
of copies of the rule in the population. Some of the parameters such as the fitness and the
experience have been “fuzzified” with respect the corresponding parameters in XCS and UCS.

To completely understand the new fuzzy rule representation, in the following subsections we
detail how the different components of Fuzzy-UCS interact to evaluate the existing classifiers
and create new promising rules.

168

8.3. DESCRIPTION OF FUZZY-UCS

8.3.2 Learning Interaction

Fuzzy-UCS inherits the process organization form UCS (see chapter 3), but it is adapted to
deal with fuzzy rules. For this purpose, three main differences with respect to UCS need to be
considered: the matching calculation, the rule structure, and the inference methodology.

1. Matching calculation. In UCS, the attributes are represented by intervals [li, ui], and thus,
a rule matches an input example if ∀ei : li ≤ ei ≤ ui. Therefore, the matching function
returns a binary output indicating whether the classifier matches the example e or not.
In Fuzzy-UCS, a rule k matches the input example with a matching degree µAk(e), where
0 ≤ µAk(e) ≤ 1. High values of µAk(e) indicate that the prediction of rule k is fairly
accurate.

2. Rule structure. In UCS, a rule predicts a single class with a certain fitness or quality.
Consequently, the population may contain two rules with the same antecedent advocating
different classes. To avoid this situation in Fuzzy-UCS, rules internally maintain a weight
for each class that indicates the soundness in which this class is predicted. These weights
are updated by the online learning architecture and are only used to determine the class
that the rule predicts; that is, the class advocated by the rule is the class with the maximum
weight. Therefore, the class predicted by the rule can change as the rule is evaluated online.

3. Inference methodology. In UCS, all the classifiers in [M] emit a fitness-weighted vote for
the class they advocate, and the most voted class is chosen as the predicted output. In
Fuzzy-UCS, different fuzzy-logic inference methods can be used to infer the class from the
final fuzzy rule set (Cordón et al., 1999). Section 8.3.5 presents the three types of inference
used by the system.

The learning organization of Fuzzy-UCS was redesigned considering these differences. As fol-
lows, the learning mechanism used during training is carefully reviewed, focusing on the main
differences with respect to UCS. The reader is referred to section 8.3.5 for the details on the
reasoning methods used to classify new instances in exploitation mode.

At each learning iteration, Fuzzy-UCS receives a new input example e and its class c, and
the system builds the match set [M], which contains all the classifiers in [P] that have a matching
degree µAk(e) greater than zero.2 Then, the system creates the correct set [C] with all the rules
in [M] that advocate the class of the input example. If none of the classifiers in [C] match e with
the maximum matching degree, the covering operator is triggered, which creates the classifier
that maximally matches the input example. That is, for each attribute of the condition, we
aggregate the linguistic term Aij that maximizes the matching with the input value ei. If ei is
not known, we randomly select a linguistic term and aggregate it to the attribute. Moreover,
we introduce generalization by permitting the addition of other linguistic terms with probability
P#. The initial values of the new classifiers are initialized according to the information provided
by the current examples. Specifically, the fitness, the numerosity, and the experience are set to

2We do not require that rules have a matching degree greater than a certain threshold to be in [M], as sometimes
done in regression (Casillas et al., 2007). In regression, the output is formed by means of aggregating rules with
different actions. Thus, a minimum matching degree with the input may be required to participate in this process.
However, in Fuzzy-UCS, the rules in [C] advocate the same class. In this way, Fuzzy-UCS avoids aggregating
rules of different classes in the learning process, and so, a matching threshold appears to be less necessary.

169

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

1. The fitness of a new rule is set to 1 to give it opportunities to take over. Nonetheless, two
important aspects should be noted. First, as the new classifiers participate in new match sets,
their fitness and other parameters are quickly updated to their average values, and so, the initial
value is not crucial. Second, as specified in the following sections, the system prevents young
classifiers from having a strong presence in the genetic selection, and protects them from an early
deletion. At the end of the covering process, the new classifier is inserted in the population,
deleting another one if there is not room for it.

Next, in exploration mode, the classifiers in [M] that advocate the class c form the correct
set [C]. As in UCS, the correct set works as a niche where the genetic algorithm is applied.
Besides, after each learning iteration, the parameters of all the classifiers in [M] are updated.
The following two subsections explicate these two procedures in detail.

8.3.3 Classifiers Update

At the end of each learning iteration, Fuzzy-UCS updates the parameters of the rules in [M].
As explained above, most of the parameters were redefined with respect to those of UCS to be
able to deal with fuzzy rules—i.e, the parameters were “fuzzified”. As proceeds, the equations
used to update the parameters are provided.

First, the experience of the rule is incremented according to the current matching degree:

expk
t+1 = expk

t + µAk(e). (8.3)

Thence, in Fuzzy-UCS, the experience parameter accounts for the contributions of the classifier
in matching instances; that is, classifiers that match with high degree several instances will
have high experience. Next, the fitness is updated. For this purpose, each classifier internally
maintains a vector of classes {c1, . . . , cm}, each of them with an associated weight {vk

1 , . . . , vk
m}.

Each weight vk
j indicates the soundness with which rule k predicts class j for an example that

fully matches this rule. These weights are incrementally updated during learning as explained
as follows. The class ck advocated by the rule is the class with the maximum weight vk

j . Thus,
given that the weights may change due to successive updates, the class that a rule predicts may
also vary.

To update the weights, we first compute the sum of correct matchings cmk for each class j:

cmk
jt+1

= cmk
jt

+ m(k, j), (8.4)

where

m(k, j) =

{
µAk(e) if j=c;
0 otherwise.

(8.5)

Then, cmk
j+1 is used to compute the weights vk

j+1:

∀j : vk
jt+1

=
cmk

jt+1

expk
t+1

. (8.6)

For example, if a rule k only matches examples of class j, the weight vk
j will be 1 and the

remaining weights 0. Rules that match instances of both classes will have weights ranging from
0 to 1. Note that the sum of all the weights is 1.

170

8.3. DESCRIPTION OF FUZZY-UCS

The fitness is then computed from the weights with the aim of favoring classifiers that match
examples of a single class. To carry this out, we use the following formula (Ishibuchi and
Yamamoto, 2005):

F k
t+1 = vk

maxt+1
−

∑
j|j 6=max

vk
jt+1

, (8.7)

where we subtract the values of the other weights from the weight with maximum value vk
max.

The fitness F k is the value used as the weight wk of the rule (see Equation 8.2). Note that
this formula can result in classifiers with zero or negative fitness (for example, if the number
of classes is greater than 2 and the class weights are equal). Lastly, the correct set size of all
the classifiers in [C] is calculated as the arithmetic average of the sizes of all the correct sets in
which the classifier has participated.

Finally, the rule k predicts the class c with the highest weight associated vk
c . Thus, the class

predicted is not fixed when the rule is created, and can change as the parameters of the rule
are updated (especially during the first parameters updates). Once the parameters of all the
classifiers in [M] have been updated, the GA can be applied to the current niche. In this case,
the GA follows the process explained in the next subsection.

8.3.4 Classifiers Discovery

Fuzzy-UCS uses a steady-state niched genetic algorithm (GA) (Goldberg, 1989a) to discover
new promising rules. The GA is applied to the classifiers that belong to [C]. Thus, the niching is
intrinsically provided since the GA is applied to rules that match the same input with a degree
greater than zero and advocate the same class.

The GA is triggered when the average time from its last application upon the classifiers in
[C] exceeds the threshold θGA. It selects two parents p1 and p2 from [C] using proportionate
selection (Goldberg, 1989a), where the probability of selecting a classifier k is

pk
sel =

(F k)ν · µAk(e)∑
i∈[C]|F i≥0(F i)ν · µAk(e)

, (8.8)

where ν > 0 is a constant that fixes the pressure toward maximally accurate rules (in our
experiments, we set ν=10). Therefore, the probability of a classifier being selected depends on
the product of its fitness and the matching degree with the input instance. Rules with negative
fitness are not considered for selection. The two parents are copied into offspring ch1 and ch2,
which undergo crossover and mutation with probabilities χ and µ respectively. The crossover
operator crosses the antecedents of the rules by two points. The mutation operator checks
whether each variable has to be mutated with probability µ. If so, three types of mutation can
be applied: expansion, contraction, or shift. Expansion chooses a linguistic term not represented
in the corresponding variable and adds it to this variable; thus, it can be applied only to variables
that do not have all the linguistic terms. Contraction selects a linguistic term represented in
the variable and removes it; so, it can be applied only to variables that have more than one
linguistic term. By doing so, we avoid generating rules that do not match any example. Shift
changes a linguistic term for its immediate inferior or superior.

171

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

The new offspring are introduced into the population. First, each classifier is checked for
subsumption (Wilson, 1998) with their parents. Subsumption is a mechanism that prevents the
creation of classifiers with specific conditions if there are more general and accurate classifiers
in the population that cover the same region of the feature space. So, subsumption pressures
toward maximally general and accurate classifiers. The process works as follows. If any parent’s
condition subsumes the condition of the offspring (i.e., the parent has, at least, the same linguistic
terms per variable than the child), and this parent is highly accurate (F k > F k

0) and sufficiently
experienced (expk > θsub), the offspring is not inserted into the population and the numerosity
of the parent is increased by one. Otherwise, we check [C] for the most general rule that can
subsume the offspring. If no subsumer can be found, the classifier is inserted into the population.

If the population is full, excess classifiers are deleted from [P] with probability proportional
to the correct set size estimate cs, following a method adapted from (Kovacs, 1999). Moreover,
if the classifier is sufficiently experienced (expk > θdel) and the power of its fitness (F k)ν is
significantly lower than the average fitness of the classifiers in [P] ((F k)ν < δF[P], where F[P] =
1
N

∑
i∈[P](F

i)ν), its deletion probability is further increased. That is, each classifier has a deletion
probability pk of:

pk =
dk∑

∀j∈[P] dj
, (8.9)

where

dk =

{
cs·num·F[P]

(F k)ν if expk > θdel and (F k)ν < δF[P];
cs · num otherwise.

(8.10)

Thus, the deletion algorithm balances the classifier’s allocation in the different correct sets by
pushing toward deletion of rules belonging to large correct sets. At the same time, it favors the
search toward highly fit classifiers, since the deletion probability of rules whose fitness is much
smaller than the average fitness is increased.

8.3.5 Fuzzy-UCS in Test Mode

The aim of Fuzzy-UCS is to evolve a minimum set of maximally accurate rules that cooperate
to cover all the input space. To achieve high classification accuracy, not only needs the system
to create a population of highly accurate classifiers during learning, but it also has to define
effective reasoning methods that use the information of the rule set to infer the class of new input
examples. As these reasoning methodologies may not use all the rules in the inference process,
rule set reduction techniques similar to those used in (Orriols-Puig and Bernadó-Mansilla, 2004)
can be applied to remove the rules that are not considered for the reasoning technique. Herein,
we discuss two different inference schemes. Furthermore, we present a reduction method for each
one of these inference methods that permits a reduction the number of rules in the final rule
set without decreasing training accuracy. Finally, we also introduce a third rule set reduction
mechanism which allows for higher reductions, but does not guarantee that the reduced rule set
results in the same training performance as the original one.

172

8.3. DESCRIPTION OF FUZZY-UCS

Class Inference

Once Fuzzy-UCS has evolved a population of highly general and accurate rules, this population is
used to infer the class of new examples. Given a new unlabeled instance e, several rules predicting
different classes can match (with different degrees) this instance. Thus, the knowledge contained
in the set of matching classifiers has to be combined to decide the most likely output. For this
purpose, several reasoning methodologies have been analyzed in the realm of fuzzy-rule based
systems (Cordón et al., 1999; Ishibuchi et al., 1999a). Here, we adapt two inference approaches
to Fuzzy-UCS. In both cases, only experimented rules (expk > θexploit) are considered in the
inference, where θexploit is a user-set parameter that indicates the minimum experience that a
rule must have to participate in the inference process.

Weighted average inference. In this approach, all the experienced rules vote to infer the output.
Each rule k emits a vote vk for class j it advocates, where

vk = F k · µAk(e). (8.11)

The votes for each class j are added:

∀j : votej =
N∑

k|ck=j

vk, (8.12)

and the most-voted class is returned as the output.

Action winner inference. This approach selects the rule k that maximizes µAk(e) · F k, and
chooses the class of the rule as output (Ishibuchi et al., 1999b). Thus, the knowledge of
overlapping rules is not considered in this inference scheme.

Rule Set Reduction

At the end of the learning process, the population is reduced to obtain a minimum set of rules.
We designed three types of reduction, which use one of the inference schemes presented above.

Reduction based on weighted average. Under the weighted average scheme, we reduce the
final population by removing all the rules that a) are not experienced enough (exp ≤ θexploit)
or b) have zero or negative fitness.

Reduction based on action winner. If action winner inference is used, only rules that maximize
the prediction vote for a training example are necessary. Thus, after training, this reduction
scheme infers the output for each training example. The rule that maximizes the vote vj for
each example is copied to the final population.

Reduction based on the fittest rules. This reduction tries to minimize the rule set size by
selecting the most numerous and accurate rules for the final population. The methodology
is a hybrid of the previous approaches. The reduction process is analogous to the reduction
based on action winner, but now, the rule k that maximizes F k · µAk(e) · numk for each input
example is copied to the final population. By including the numerosity in the vote, we favor
the most numerous and accurate rules. As this reduction may copy overlapping rules into the
final population, weighted average is used to infer the class of a new example.

173

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

Overall, Fuzzy-UCS is an LFCS that evolves a set of linguistic fuzzy rules online and uses
three different inference/reduction mechanisms to predict the class of test instances. Since Fuzzy-
UCS is a brand new system that mixes different ideas coming from the LCSs, the GAs, and the
fuzzy logic realms, the following sections take an empirical approach to analyze the behavior of
the system. First, we study the influence of the different configuration parameters that have
appeared along the description. Note that the majority of these parameters—or similar ones—
are also present in XCS and UCS. Therefore, we hypothesize that they have a similar impact in
the three systems; in any case, the next section empirically examines the effect of modifying the
configuration parameters. This study results in a default configuration for Fuzzy-UCS, which
is used in the remainder of this chapter. Subsequently, we analyze the differences between the
three inference/reduction schemes of Fuzzy-UCS.

8.4 Sensitivity of Fuzzy-UCS to Configuration Parameters

In common with many competitive Michigan-style LCSs, Fuzzy-UCS has several configuration
parameters, which enable to adjust the behavior of the system to evolve models of maximal
quality for particular problems. At first glance, choosing a correct configuration may seem a
crucial task only suitable to expert users. Nonetheless, several analyses identified the robust-
ness of Michigan-style LCSs to the majority of configuration parameters. Actually, most of the
applications of Michigan-style LCSs used the same default parameters to solve pattern recogni-
tion problems (Bernadó-Mansilla et al., 2002; Bernadó-Mansilla and Garrell, 2003; Butz, 2006;
Orriols-Puig and Bernadó-Mansilla, 2008b; Dixon et al., 2002, 2004; Fu et al., 2001; Wilson,
2000). We consider that this robustness is also present in Fuzzy-UCS. Thence, this section
empirically illustrates the behavior of Fuzzy-UCS with different configurations and relate this
analysis to theoretical and empirical studies of the sensitivity of LCSs—particularly XCS and
UCS—to configuration parameters. For the sake of compactness, here we also present the sum-
mary of the results and the statistical analysis that leads us to the most important conclusions.
The current analysis is further detailed in appendix C.

Theoretical and empirical analyses of the sensitivity of LCSs3 to configuration parameters
detected four crucial parameters: (1) population initialization (Butz et al., 2001), (2) fitness
pressure (Kharbat et al., 2005; Brown et al., 2007), (3) GA application rate (Butz et al., 2007),
and (4) deletion pressure (Butz et al., 2007). The influence of the other parameters is less
important, and most of LCSs works use a standard configuration for them.

Herein, we empirically study the sensitivity of Fuzzy-UCS to the configuration parameters.
For this purpose, we analyzed the accuracy and size of the models evolved by Fuzzy-UCS related
to the changes of four parameters or groups of parameters: (1) rules generalization in initial-
ization, i.e., P#; (2) fitness pressure, i.e., ν; (3) setting of the genetic algorithm, i.e., θGA, θdel,
and θsub; and (4) deletion pressure, i.e., δ. We compared different configuration settings to the
following default configuration (Cp), which sets the configuration parameters to standard values
in literature: N=6 400, F0 = 0.99, ν = 10, {θGA, θdel, θsub} = 50, θexploit = 10, χ = 0.8, µ = 0.6,
δ=0.1, and P# = 0.6, Note that this configuration will be used in the following experiments of
this chapter.

3These analyses refer to XCS and UCS, but could be easily extended to other Michigan-style LCSs.

174

8.4. SENSITIVITY OF FUZZY-UCS TO CONFIGURATION PARAMETERS

Table 8.1: Properties of the data sets. The columns describe: the identifier of the data set
(Id.), the name of the data set (dataset), the number of instances (#Ins), the total number
of features (#Fea), the number of continuous features (#Cnt), the number of nominal features
(#No), the number of classes (#C), the proportion of instances of the minority class (%Min), the
proportion of instances of the majority class (%Maj), the proportion of instances with missing
values (%MI), and the proportion of features with missing values (%MA).

Id. dataset #Ins #Fea #Cnt #No #C %Min %Maj %MI %MA
ann Annealing 898 38 6 32 5 0.9 76.2 0 0
aut Automobile 205 25 15 10 6 1.5 32.7 22.4 28
bal Balance 625 4 4 0 3 7.8 46.1 0 0
bpa Bupa 345 6 6 0 2 42 58 0 0
cmc Contrac. method choice 1473 9 2 7 3 22.6 42.7 0 0
col Horse colic 368 22 7 15 2 37 63 98.1 95.5
gls Glass 214 9 9 0 6 4.2 35.5 0 0
h-c Heart-c 303 13 6 7 2 45.5 54.5 2.3 15.4
h-s Heart-s 270 13 13 0 2 44.4 56.6 0 0
irs Iris 150 4 4 0 3 33.3 33.3 0 0
pim Pima 768 8 8 0 2 34.9 65.1 0 0
son Sonar 208 60 60 0 2 46.67 53.33 0 0
tao Tao 1888 2 2 0 2 50 50 0 0
thy Thyroid 215 5 5 0 3 14 60 0 0
veh Vehicle 846 18 18 0 4 23.5 25.8 0 0
wbcd Wisc. breast-cancer 699 9 9 0 2 34.5 65.5 2.3 11.1
wdbc Wisc. diag. breast-cancer 569 30 30 0 2 37.3 62.7 0 0
wne Wine 178 13 13 0 3 27 39.9 0 0
wpbc Wisc. prog. breast-cancer 198 33 33 0 2 23.7 76.3 2 3
zoo Zoo 101 17 1 16 7 4 40.6 0 0

Table 8.2: Configurations used to test the sensitivity of Fuzzy-UCS to configuration parameters.

Cp N=6400, F0 = 0.99, ν = 10, {θGA, θdel, θsub} = 50, θexploit

= 10, χ = 0.8, µ = 0.1, δ=0.1, and P# = 0.2

P
C1 P# = 0.2

C2 P# = 0.4

ν C3 ν = 1
C4 ν = 5

θ G
A
,θ

d
el
,θ

su
b

C5 θGA = θdel = θsub = 100 and numIter = 100 000
C6 θGA = θdel = θsub = 200 and numIter = 100 000
C7 θGA = θdel = θsub = 100 and numIter = 200 000
C8 θGA = θdel = θsub = 200 and numIter = 400 000

δ C9 δ = 1

175

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

Table 8.3: Comparison of the sensitivity of Fuzzy-UCS to configuration parameters. Each
cell shows the average rank of each configuration for a given inference scheme. The best ranked
method is in bold. The ª symbol indicates that the corresponding method significantly degrades
the results obtained with the best ranked method.

Performance Rule set size
wavg awin nfit wavg awin nfit

P
#

Cp 1.83 1.83 1.83 1.67 1.50 1.75
C1 2.42 ª 2.50 ª 2.25 ª 1.75 2.92 ª 3.00 ª
C2 1.75 1.67 1.92 2.58 ª 1.58 1.25

ν

Cp 1.25 1.42 1.42 1.08 2.33 ª 2.67 ª
C3 2.83 ª 2.75 ª 2.83 ª 3.00 ª 1.25 1.17
C4 1.92 1.83 1.75 1.92 ª 2.42 ª 2.17 ª

θ
G

A
,

θ
d

e
l

&
θ

s
u

b Cp 1.92 2.13 2.13 3.42 ª 3.17 3.17
C5 4.00 ª 3.42 3.58 ª 3.42 ª 3.50 2.92
C6 4.33 ª 4.63 ª 4.17 ª 1.75 2.83 2.58
C7 2.33 2.25 2.29 3.42 ª 3.33 3.17
C8 2.42 2.58 2.83 3.00 2.17 3.17

δ Cp 1.25 1.54 1.50 1.33 1.75 1.75
C9 1.75 1.46 1.50 1.67 1.25 1.25

We ran the experiments on a collection of real-world classification problems, whose charac-
teristics are described in table 8.1. Due to the large number of tested configurations, we used a
reduced collection of data sets to perform these experiments, that is: bal, bpa, gls, h-s, irs, pim,
tao, thy, veh, wbcd, wdbc, and wne.

Table 8.2 summarizes the different configurations and the changes that they introduced with
respect to the default configuration in each of the four experiments. Table 8.3 provides the
average rank of the model’s accuracy and size for each configuration and inference scheme. We
divided the configuration settings into four groups, and each group was compared to the default
configuration. The best ranked configurations for each comparison are marked in bold. The ª
symbol indicates that the corresponding configuration significantly degraded the results obtained
with the best configuration according to a Bonferroni-Dunn test at α = 0.1 (Dunn, 1961).

The results show that the generalization in the initial population is essential to the success of
Fuzzy-UCS, supporting the theoretical analyses in the literature (Butz et al., 2001). For all the
inference schemes, configurations Cp and C2 (i.e., P# = {0.6, 0.4}) were statistically equivalent,
on average, and significantly better than C1 (i.e., P# = 0.2) in terms of accuracy. In terms of
model size, the following significant differences were found: (i) for weighted average inference,
Cp and C1 evolved the smallest rule sets; (ii) for action winner and fittest rules inference, C1
created significantly larger rule sets than Cp and C2. The last point can be easily explained as
follows. As C1 used a low value of P#, the final populations contained more specific classifiers
than populations created with Cp and C2. Action winner and fittest rules schemes only kept the
classifiers that maximized the product of fitness and matching degree with a training instance

176

8.5. KNOWLEDGE REPRESENTATION AND DECISION BOUNDARIES

in the final populations. As classifiers were more specific, a larger number of them were placed
in the final population. On the other hand, with weighted average, the biggest population sizes
were obtained with C2. This could be due to the existence of slightly general classifiers that
were all maintained in the final population.

The second comparison shows the negative influence of having low fitness pressure. In terms
of accuracy, better results were obtained as the fitness pressure increased (i.e., ν took higher
values). Population sizes varied with the fitness pressure depending on the inference scheme.
For weighted average inference, Cp led to the significantly smaller rule sets. This is because
the fitness pressure drove toward a highly general and accurate set of rules. For the other two
inference schemes, configuration C1 resulted in the significantly smaller rule sets. That is, as
the fitness pressure was low, populations were full of over-general rules, which were kept in the
final populations in detriment of fitter and more specific classifiers.

The third comparison shows the influence of the parameters related to the genetic algo-
rithm, i.e., θGA, θdel, and θsub. Initial intuition indicates that, if all niches receive the same
number of genetic opportunities, the quality of the final models should remain the same.
To test this, configurations C7 and C8 set θGA = θdel = θsub = {100, 200} and increased
numIter = {200 000, 400 000} respectively. In this way, all niches received approximately
the same number of genetic events. On the other hand, configurations C5 and C6 fixed
θGA = θdel = θsub = {100, 200} but maintained the same number of iterations as Cp. So,
we expected that the quality of the models evolved by C5 and C6 was significantly lower than
the quality of the models created by the three other configurations. This hypothesis was clearly
supported by the experimental analysis, which showed that Cp, C7, and C8 resulted in the most
accurate models. Moreover, significant differences on the population sizes were only found for
the weighted average inference. The multiple-comparison test detected that the smaller mod-
els were created with configurations C6 and C8, the two configurations in which the period of
application of the GA was higher.

Finally, the fourth comparison highlights the robustness of Fuzzy-UCS to the deletion pres-
sure toward unfit classifiers, that is, the parameter δ. The pairwise analysis indicated that the
hypothesis that configurations Cp and C9 are equivalent could not be rejected, according to a
Wilcoxon signed-ranks test at α = 0.05.

The study conducted in this section empirically showed that there are two crucial parameters
to guarantee the success of Fuzzy-UCS: generalization in initialization P# and fitness pressure
ν. On the other hand, changing the setting of the other parameters had little effect on Fuzzy-
UCS behavior. We acknowledge that better results could be individually obtained if we tuned
Fuzzy-UCS for each particular problem. Nonetheless, as we are interested in robust systems
that perform well on average, we use the default configuration for all the experiments in the
following sections.

8.5 Knowledge Representation and Decision Boundaries

So far, we have described the Fuzzy-UCS classifier system with a descriptive or linguistic rep-
resentation of fuzzy rules, which is referred to as linguistic Fuzzy-UCS in the remainder of
this chapter, and have analyzed its robustness with respect to its configuration parameters.
Linguistic rules are highly interpretable since they share common semantics; however, as this

177

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

(a) Linguistic fuzzy rule set (b) Approximate fuzzy rule set

Figure 8.4: Graphical comparison between (a) linguistic and (b) approximate fuzzy rule sets.

representation implies the discretization of the feature space, a single rule may not have the
required granularity to define the class boundary of a given domain accurately. Thus, Fuzzy-
UCS would evolve a set of overlapping fuzzy-rules around the decision boundaries which match
examples of different classes, and the output would depend on how the reasoning mechanism
combines the knowledge of all these overlapping rules. Fuzzy-UCS includes three inference and
reduction schemes which lead to a trade-off between the amount of information used for the
inference process (i.e., the precision of the prediction) and the size of the rule set. Consequently,
not only the linguistic representation but also the chosen inference and reduction schemes may
impose a maximum limit on the accuracy rate that the system can reach.

To achieve better accuracy rates, several authors introduced the so-called approximate rule
representation (also known as non-grid-oriented fuzzy systems, prototype-based representation,
or fuzzy graphs) (Alcalá et al., 2001; Bardossy and Duckstein, 1995; Carse et al., 1996; Cordón
and Herrera, 1997). This representation allows the variables of fuzzy rules to define their own
fuzzy sets instead of representing linguistic variables. In this way, approximate fuzzy rules are
semantic free; that is to say, the fuzzy sets of any variable of each rule can be independently
tuned. However, this also results in a degradation of the interpretability of the final rule set, since
the fuzzy variables no longer share a common linguistic interpretation. Figure 8.4 illustrates the
two representations.

This section studies the interpretability-performance trade-off in Fuzzy-UCS and analyzes if
the flexibility provided by the approximate representation allows the system to achieve higher
levels of performance. For this purpose, we include the approximate representation in Fuzzy-
UCS and adapt several mechanisms to deal with approximate rules. This alternative algorithm
is described in the next section. This modification of Fuzzy-UCS is addressed as approximate
Fuzzy-UCS.

Thus, our analysis consists of two parts:

• We first illustrate how both representations approximate the decision boundaries of an

178

8.5. KNOWLEDGE REPRESENTATION AND DECISION BOUNDARIES

artificial problem with complex decision boundaries. The study demonstrates how the
approximate representation can fit the training examples more accurately.

• Then, we compare the differences in terms of interpretability and accuracy between 1)
the three inference schemes of linguistic Fuzzy-UCS and 2) linguistic Fuzzy-UCS versus
approximate Fuzzy-UCS.

As follows, in section 8.5.1, we first design an approximate representation for Fuzzy-UCS.
Then, sections 8.5.2 and 8.5.3 respectively develop each one of the two studies.

8.5.1 Approximate Fuzzy-UCS

In the approximate representation (Orriols-Puig et al., 2008h), the rule is similar to the descrip-
tive one, but the variables in the rule condition take fuzzy sets instead of linguistic terms. Thus,
the approximate fuzzy rule has the following form:

IF x1 is FSk
1 and · · · and xn is FSk

n THEN cj WITH F k, (8.13)

where each variable xi is represented by an independent fuzzy set FSi, and each fuzzy set is
defined by

FSi = (a, b, c), (8.14)

where a, b, and c are the x-axis value of the lower, middle and upper vertices of a triangular-
shaped membership function, i.e,

µFSi =

x − a

b − a
, a ≤ x < b

c − x

c − b
, b ≤ x ≤ c

0, otherwise.

(8.15)

The operators that directly manipulate the rules were adapted to deal with the approximate
representation. This includes matching, covering, crossover, mutation, and subsumption, which
are explained in the following sections. Moreover, the inference process was also revised.

Matching. The matching operator calculates the matching degree of each input variable with
its corresponding fuzzy set and aggregates all them by means of a T-norm (conjunction). As
before, we used the product as T-norm. Note that the main difference with respect to linguistic
Fuzzy-UCS is that, now, each variable is represented by a single semantic-free triangular shaped
membership function.

Covering. The covering operator creates an independent triangular-shape fuzzy set for each
input variable as follows.

a = rand

(
mini −

maxi − mini

2
, ei

)
; (8.16)

b = ei; (8.17)

c = rand

(
ei,maxi +

maxi − mini

2

)
; (8.18)

179

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

where mini and maxi are the minimum and maximum value that the attribute i can take
(both values are extracted from the training data set), ei is the attribute i of the example e for
which covering has been fired, and rand generates a random number between both arguments.
Thus, covering creates a triangle-shaped fuzzy set that maximally matches the input instance.

Crossover. The crossover operator generates a new offspring from two parents by crossing the
rule antecedent as follows. First, is crosses the middle vertex b of the fuzzy membership
function:

bchild1 = bparent1 · α + bparent2 · (1 − α); (8.19)
bchild2 = bparent1 · (1 − α) + bparent2 · α; (8.20)

where 0 ≤ α ≤ 1 is a configuration parameter. As we wanted to generate offspring whose
middle vertex b was close to the middle vertex of one of his parents, we set α = 0.005 in
our experiments. Next, for both children, the procedure to cross the most-left and most-right
vertices is the following. First, the two most-left and two most-right vertices are chosen

minleft = min(aparent1 , aparent2 , bchild); (8.21)
midleft = middle(aparent1 , aparent2 , bchild); (8.22)

midright = middle(cparent1 , cparent2 , bchild); (8.23)
maxright = max(cparent1 , cparent2 , bchild). (8.24)

And then, these two values are used for generating the most-left and most-right vertices:

achild = rand(minleft,midleft); (8.25)
cchild = rand(midright,maxright); (8.26)

where the functions min, middle, and max return respectively the minimum, middle, and
maximum values between their arguments.

Mutation. The mutation operator decides randomly if each vertex of a variable has to be mu-
tated. The central vertex is mutated as follows:

b = rand(b − (b − a) · m0, b + (c − b) · m0), (8.27)

where m0 (0 < m0 ≤ 1) defines the strength of the mutation. The left-most vertex is mutated
as

a =

{
rand

(
a − b−a

2 · m0, a
)

if F > F0 & no crossover
rand

(
a − b−a

2 · m0, a + b−a
2 · m0

)
otherwise.

(8.28)

And the right-most vertex

c =

{
rand

(
c − c−b

2 · m0, c
)

if F > F0 & no crossover
rand

(
c − c−b

2 · m0, c + c−b
2 · m0

)
otherwise.

(8.29)

That is to say, if the rule is accurate enough (F > F0) and has not been generated through
crossover, mutation forces to generalize it. Otherwise, it can be either generalized or specified.
In this way, we increase the pressure toward maximally general and accurate rule sets.

180

8.5. KNOWLEDGE REPRESENTATION AND DECISION BOUNDARIES

Subsumption. Subsumption was redefined as follows. We considered that a classifier k1, which
is experienced enough (expk1 > θsub) and accurate (F k1 > F0), could subsume another classifier
k2 if for each variable i

ai
k1

≤ ai
k2

; (8.30)

ci
k1

≥ ci
k2

; (8.31)

bi
k1

− (bi
k1

− aki
1
) · δ ≤ bi

k2
≤ bi

k1
+ (ci

k1
− bi

k1
) · δ; (8.32)

where δ is a discount parameter (in our experiments we set δ = 0.001). Thus, a rule’s condition
subsumes another if the supports of the subsumed rule are enclosed in the supports of the
subsumer rule, and the middle vertex of their triangular-shaped fuzzy sets are close in the
feature space.

Inference. Given a new test example, the most likely output is the class predicted by the rule
k that maximizes F k · µAk(e). We have considered this action winner scheme as inference
process because the prototype-based representation considered in the approximate approach
inherently advocates independence among the fuzzy rules.

8.5.2 Decision Boundaries: Study on an Artificial Domain

Before proceeding with a large comparison between the two types of representations and the
three types of inference algorithms in the linguistic representation, we first analyzed linguistic
Fuzzy-UCS and approximate Fuzzy-UCS on a case study. We also included UCS with interval-
based representation (Bernadó-Mansilla and Garrell, 2003; Orriols-Puig and Bernadó-Mansilla,
2006b; Orriols-Puig and Bernadó-Mansilla, 2008) in the analysis. We graphically studied how
the two fuzzy representations approximated the decision boundaries of an artificially designed
domain with respect to interval-based UCS. We chose a two-dimensional problem to facilitate the
visualization: the tao problem (Bernadó-Mansilla et al., 2002) (see figure 8.5(a)). This problem
presents curved-shaped boundaries, whose approximation poses a challenge to the linguistic
fuzzy representation. Moreover, we compared the training accuracies, as well as the size of the
evolved rule set. This analysis was restricted to the features of the tested problem, and only
estimated the training error; thus, our aim was not to extract general conclusions, but to provide
an intuitive visualization of the knowledge evolved by the different techniques. This analysis is
complemented in the next section, where the three learners are compared in a set of real-world
problems.

We configured UCS with the following parameter values: numIter=100 000, N=6 400,
acc0 = 0.99, ν=10, {θGA, θdel, θsub}=50, χ=0.8, µ=0.04, δ=0.1, r0=0.2. For Fuzzy-UCS, we used
the default configuration (see section 8.4), except for P# = 0.2. We modified this configuration
parameter only for the case study; in all the remaining experiments, the default configuration
is used. This change was because we aimed at initializing the population with quite specific
rules since the problem has only two dimensions and a high density of instances. Besides, for
the approximate representation we set r0 = 0.2. The three types of inference presented in
section 8.3.5 were used: weighted average (wavg), action winner (awin), and fittest rules (nfit).
Figure 8.5(b) depicts the boundaries evolved by interval-based UCS. Figures 8.6, 8.7, and 8.8
report the decision boundaries for linguistic Fuzzy-UCS with weighted average inference, action
winner inference, and fittest rules inference respectively. In each case, we experimented with

181

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

(a) Domain (b) Interval-based UCS

Figure 8.5: (a) Domain of the tao problem and (b) decision boundaries obtained by UCS.

(a) 5 labels (b) 10 labels

(c) 15 labels (d) 20 labels

Figure 8.6: Decision boundaries obtained by linguistic Fuzzy-UCS with weighted average infer-
ence and 5 (a), 10 (b), 15 (c) and 20 (d) linguistic terms per variable.

5, 10, 15, and 20 linguistic terms per variable; the grid in the plots indicates the partitions in
the feature space made by the cross-points of the triangular membership functions associated
with the different fuzzy sets. Figure 8.9 shows the decision boundaries obtained by approximate
Fuzzy-UCS. Table 8.4 summarizes the training accuracies and population sizes in each case. The
results are averages over ten runs with different seeds.

Several observations can be drawn from the evolved decision boundaries. Firstly, the results
show the generalization capabilities of all learners. The rules tend to expand as much as possible
while they are accurate, covering regions in the feature space where there are no examples. This

182

8.5. KNOWLEDGE REPRESENTATION AND DECISION BOUNDARIES

(a) 5 labels (b) 10 labels

(c) 15 labels (d) 20 labels

Figure 8.7: Decision boundaries obtained by linguistic Fuzzy-UCS with action winner inference
and (a) 5, (b) 10, (c) 15, (d) and 20 linguistic terms per variable.

generalization pressure is mostly due to subsumption, which replaces the offspring for most
general and accurate rules when possible. Thus, this operator gives highly general and accurate
rules more strength.

Interval-based UCS reached the maximum accuracy among all learners. It evolved a popula-
tion consisting of 1230 rules which accurately defined the decision boundaries (see figure 8.5(b)),
with 99.8% training accuracy. The accuracy obtained by linguistic Fuzzy-UCS depended on the
number of linguistic terms per variable (see the models built in figures 8.6, 8.7, and 8.8). With
5 linguistic labels per variable, linguistic Fuzzy-UCS could not discover the two inner concepts
of the tao problem regardless of the used inference method. The models only defined one linear
class boundary that did not fit the curved boundary of the domain accurately. As the number
of linguistic terms per variable increased, the boundaries were defined more accurately. With 20
linguistic terms per variable, the three types of inference achieved high training performances.

The models evolved by linguistic Fuzzy-UCS with the three types of inference differed in
the shape of the decision boundaries and the rule set size. Weighted average inference defined
smooth boundaries which resulted from the vote of several overlapping rules (see figure 8.6).
However, it maintained a large number of rules in the final population. Action winner inference
created more reduced rule sets, but the boundaries were more abrupt. Note that the decision
boundaries followed the partitions produced by the fuzzy membership functions, especially when
15 and 20 linguistic terms were used. This is because only the rules that maximized the product
of µAk(e) ·F were kept in the final population. Fittest rules inference evolved the most compact
rule sets. Furthermore, the boundaries were smoother than the ones obtained with action winner

183

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

(a) 5 labels (b) 10 labels

(c) 15 labels (d) 20 labels

Figure 8.8: Decision boundaries obtained by linguistic Fuzzy-UCS with fittest rules inference
and (a) 5, (b) 10, (c) 15, (d) and 20 linguistic terms per variable.

Figure 8.9: Decision boundaries obtained by approximate Fuzzy-UCS.

scheme. This type of inference maintained the most numerous and accurate rules in the final
population. As this process could insert overlapping rules into the final population, the weighted
average inference was used to infer the class, thus forwarding the interpolative reasoning. For
this reason the decision boundaries were not as abrupt as the ones evolved by the action winner
inference.

Finally, figure 8.9 shows that approximate Fuzzy-UCS built a model that accurately fitted the
training examples. Approximate Fuzzy-UCS used an inference method based on action winner,
similar to that used in linguistic Fuzzy-UCS. Regardless of this inference scheme, the decision
boundaries were smoother because each variable evolved an independent fuzzy set. However,
as a consequence of not sharing a unique semantic, the interpretability of the fuzzy-rules was

184

8.5. KNOWLEDGE REPRESENTATION AND DECISION BOUNDARIES

Table 8.4: Summary of Fuzzy UCS results with interval-based, approximate and linguistic repre-
sentation with 5, 10, 15, and 20 linguistic terms per variable in the tao problem. Columns show
the training accuracy and the number of rules for action winner and weighted average inference
schemes.

Training acc. Num. rules

Interval-based UCS 99.80 1230
App. Fuzzy-UCS 96.94 555

wavg awin nfit wavg awin nfit

Lin. Fuzzy-UCS 5L 82.95 83.24 88.31 112 17 15
Lin. Fuzzy-UCS 10L 91.85 91.19 91.85 441 78 30
Lin. Fuzzy-UCS 15L 96.68 94.74 96.68 618 144 52
Lin. Fuzzy-UCS 20L 97.15 95.57 97.15 763 200 65

degraded with respect to the linguistic representation. For example, one of the most numerous
rules evolved by approximate Fuzzy-UCS was:

IF x1 is (-3.3, -1.50, -1.13) and x2 is (5.50, 6.48, 11.85) THEN c1 WITH w = 0.998,
(8.33)

where each variable was represented by a triangular-shaped fuzzy set whose vertices could take
any possible value in the feature space. Moreover, note that the number of rules evolved by
approximate Fuzzy-UCS was larger than those created by any configuration of linguistic Fuzzy-
UCS, except for linguistic Fuzzy-UCS with weighted average inference with 15 and 20 linguistic
terms per variable. This large number of rules degraded even more the interpretability of the
semantic-free approach.

8.5.3 Comparison Between Linguistic and Approximate Representations

This section furthers the study on the three types of inference of linguistic Fuzzy-UCS and com-
pares them to the approximate representation. Specifically, we examine the trade-off between
precision and rule set size already pointed out in the previous section for the three types of in-
ference in linguistic Fuzzy-UCS. Besides, we include approximate Fuzzy-UCS in the comparison,
which is expected to fit the training data more accurately. Considering the approximate repre-
sentation, we aim to a) confirm the intuition that the approximate representation permits fitting
significantly better the training instances, b) analyze whether this improvement is also present
in the prediction of previously unseen instances, and c) evaluate the impact of the approximate
representation on the interpretability of the evolved rule set.

Methodology

We selected a collection of 20 real-world data sets whose characteristics are summarized in table
8.1. All the data sets were obtained from the UCI Repository (Asuncion and Newman, 2007),
except for tao, which was selected from a local repository (Bernadó-Mansilla et al., 2002).

185

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

To measure the precision of the method in fitting the training instances, we used the training
accuracy rate, i.e., the proportion of correctly classified examples of the training set. The
performance of the method was measured by the test accuracy rate, i.e., the proportion of
correct predictions on previously unseen instances. To obtain reliable estimates of these metrics,
we used a ten-fold cross validation procedure (Dietterich, 1998). We collected the evolved rule
set sizes to compare the interpretability of the three configurations of linguistic Fuzzy-UCS.
Since the types of rules created by the linguistic representation are different from those of the
approximate representation, we qualitatively compared the rule sets built by both approaches.

The results were statistically analyzed following the recommendations pointed out by Demšar
(2006). In all the analysis, we used non-parametric statistical tests to compare the results
obtained by the different learning algorithms. Parametric tests require that the input data (in
our case, the tables of results) satisfy strong conditions, and the tests to check these conditions
need large amounts of data (i.e., large number of data sets) to be effective (Sheskin, 2000).
For this reason, non-parametric tests are recommended (Demšar, 2006), since they relax the
requirements on the input data.

We applied multiple-comparison statistical procedures to test the null hypothesis that all the
learning algorithms performed equivalently on average. Specifically, we used the Friedman’s test
(Friedman, 1937, 1940), a non-parametric equivalent of the repeated-measures ANOVA (Fisher,
1959). If the Friedman’s test rejected the null hypothesis, we used the non-parametric Nemenyi
test (Nemenyi, 1963) to compare all learners to each other. The Nemenyi test is said to be
quite conservative, especially when a large number of learners is compared, so that it might
not detect some existent differences between the learners. Therefore, we complemented the
statistical analysis by comparing the performance of each pair of learners by means of the non-
parametric Wilcoxon signed-ranks test (Wilcoxon, 1945). The approximate p-values resulting
from the pairwise analysis, calculated as indicated in (Sheskin, 2000), were provided in the
analysis. For further information about the statistic tests, the user is referred to appendix B.

We used the default configuration for Fuzzy-UCS (see section 8.4), since it used equivalent
parameter values to those usually set for XCS and UCS. Moreover, we fixed the number of
linguistic labels to 5. We did not consider a larger number of linguistic terms since it could
hinder the interpretability desired in a linguistic representation. For approximate Fuzzy-UCS,
we fixed r0 = 1.

Results

Our first concern was to analyze the precision in fitting the training instances of linguistic
Fuzzy-UCS with the three types of inference and approximate Fuzzy-UCS. Thus, we computed
the training accuracy obtained with the four approaches, as reported in table 8.5. The two last
rows supply the average rank and the position of each algorithm in the ranking. The ranks were
calculated as follows. For each data set, we ranked the learning algorithms according to their
performance; the learner with highest accuracy held the first position, whilst the learner with
the lowest accuracy held the last position of the ranking. If a group of learners had the same
performance, we assigned the average rank of the group to each of the learners in the group.

The multiple-comparison test enabled us to reject the null hypothesis that all learners were
equally accurate at a significance level of 0.001. Thus, we ran the Nemenyi test at a significance

186

8.5. KNOWLEDGE REPRESENTATION AND DECISION BOUNDARIES

Table 8.5: Comparison of the training accuracy of linguistic Fuzzy-UCS with weighted aver-
age (wavg), action winner (awin), and most numerous and fittest rules inference (nfit), and
approximate Fuzzy-UCS on a set of twenty real-world problems.

Linguistic
Approximate

wavg awin nfit
ann 99.35 98.34 99.48 98.83
aut 99.30 92.67 98.87 97.82
bal 91.03 90.97 89.97 98.61
bpa 68.57 68.30 69.79 86.29
cmc 67.34 67.77 70.70 65.29
col 93.04 91.76 96.22 98.95
gls 71.04 65.84 71.46 94.46
h-c 89.75 91.11 92.02 98.77
h-s 94.75 92.46 96.70 98.92
irs 95.78 95.59 94.56 97.47
pim 77.05 77.74 79.16 89.91
son 100.00 99.89 99.50 99.91
tao 81.70 83.31 87.42 89.64
thy 89.03 89.92 92.62 95.70
veh 76.77 72.97 77.49 89.52
wbcd 96.38 95.97 96.51 99.69
wdbc 96.34 95.50 96.18 99.55
wne 98.48 97.28 98.12 100.00
wpbc 97.57 94.01 95.39 96.98
zoo 99.71 99.98 99.90 100.00
Rank 2.70 3.45 2.40 1.45
Pos 2 4 3 1

level of 0.10. Figure 8.10 ranks the four learners and connects those that performed equivalently
according to the Nemenyi procedure. The test indicates that approximate Fuzzy-UCS achieved
significantly better training performance than all the other algorithms. Moreover, linguistic
Fuzzy-UCS with action winner significantly degraded the training performance achieved with
Fuzzy-UCS with fittest rules inference. As the Nemenyi test is said to be quite conservative,
we also performed pairwise comparisons between the learners by means of the non-parametric
Wilcoxon signed-ranks test. Table 8.6 provides the approximate p-values. The ⊕ and ª symbols
indicate that the method in the row significantly improved/degraded the performance obtained
with the method in the column. The + and − symbols denote a non-significant improve-
ment/degradation. The pairwise analysis confirmed the conclusions extracted from the Nemenyi
test. No other significant differences were found by this statistical test.

As expected, the approximate representation fitted the training examples more accurately
since there was no semantic shared among all variables—that is, each variable could define its
own fuzzy sets. Next, we analyzed if this improvement was also present in the test performance,

187

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

1 1.5 2 2.5 3 3.5 4

↓
Lin

wavg

2.70

↓
Lin

awin

3.45

↓
Lin

nfit

2.40

↓
Approx

1.45

Rank

CD = 0.9352

Figure 8.10: Comparison of the training performance of all classifiers against each other with
the Nemenyi test. Groups of classifiers that are not significantly different (at α = 0.10) are
connected.

Table 8.6: Pairwise comparisons of the training accuracy achieved by linguistic Fuzzy-UCS with
the three types of inference and approximate Fuzzy-UCS.

wavg awin nfit approx
wavg .0793 .0929 .0017
awin − .0012 .0002
nfit + ⊕ .0017

approx ⊕ ⊕ ⊕

which is shown in table 8.7. The multiple-comparison test rejected the hypothesis that all learn-
ers performed the same on average at a significance level of 0.001. Figure 8.11 shows the rank
of each method and connects the groups of learners that performed equivalently according to
the Nemenyi test at a significance level of 0.10. The statistical procedure identified two groups
of techniques that performed equivalently. The first group included linguistic Fuzzy-UCS with
weighted average inference and approximate Fuzzy-UCS. The second group comprised approxi-
mate Fuzzy-UCS and linguistic Fuzzy-UCS with action winner and fittest rules inferences. The
same significant differences were found with the pairwise statistical analysis. Table 8.8 supplies
the approximate p-values calculated from the Wilcoxon signed-ranks test.

Although the flexibility of the approximate representation allowed Fuzzy-UCS to evolve mod-
els that fitted the training examples more accurately, no significant differences were observed
in the prediction of previously unseen instances. Moreover, approximate Fuzzy-UCS did not
perform as well as linguistic Fuzzy-UCS with weighted average inference, though the difference
was not statistically significant. Further analysis pointed out that approximate Fuzzy-UCS was
over-fitting the training data in some of the tested domains. To contrast this hypothesis, we
monitored the evolution of the training and test performance of the problems in which approx-

188

8.5. KNOWLEDGE REPRESENTATION AND DECISION BOUNDARIES

Table 8.7: Comparison of the test accuracy of linguistic Fuzzy-UCS with weighted average
(wavg), action winner (awin), and most numerous and fittest rules inference (nfit), and approx-
imate Fuzzy-UCS on a set of twenty real-world problems.

Linguistic
Approximate

wavg awin nfit
ann 98.85 97.39 98.61 95.44
aut 74.42 67.42 69.32 69.54
bal 88.65 84.40 83.40 82.73
bpa 59.82 59.42 58.93 64.19
cmc 51.72 49.67 49.42 44.79
col 85.01 82.46 78.50 87.96
gls 60.65 57.21 57.43 71.82
h-c 84.39 82.62 82.05 80.16
h-s 81.33 80.78 78.11 78.59
irs 95.67 95.47 93.73 95.80
pim 74.88 74.11 74.32 74.32
son 80.78 73.71 71.66 76.34
tao 81.71 83.02 87.53 89.39
thy 88.18 89.49 91.25 92.28
veh 67.68 65.35 65.34 65.80
wbcd 96.01 95.73 95.29 95.69
wdbc 95.20 94.61 94.51 93.87
wne 94.12 94.86 91.82 95.42
wpbc 76.06 76.05 71.69 59.78
zoo 96.50 94.78 95.90 83.53
Rank 1.60 2.75 3.20 2.45
Pos 1 3 4 2

imate Fuzzy-UCS degraded the results obtained by linguistic Fuzzy-UCS with any inference
type. Figure 8.12 plots the evolution of the training and test performance for the bal problem.
During the first 5 000 learning iterations, both training and test performance rapidly increased,
achieving about 90% and 84% accuracy rates respectively. After that, the training performance
continued to increase whilst the test performance slightly decreased. After 100 000 iterations, the
training performance reached 98%; nonetheless, the test performance decreased to 82%. Thus,
at a certain point in the learning process, the flexibility of the approximate representation led
Fuzzy-UCS to over-fit the training instances in order to create more accurate classifiers, which
was detrimental to the test performance.

Finally, table 8.9 shows the number of rules evolved in each configuration. Friedman’s test
rejected the hypothesis that the population sizes were equivalent on average at a significance
level of 0.001. The post-hoc Nemenyi test supported the hypothesis that the four learners
evolved populations with significantly different sizes. The pairwise comparisons yielded the
same conclusions (see in table 8.10 the approximate p-values according to a Wilcoxon signed-

189

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

1.5 2 2.5 3 3.5 4

↓
Lin

wavg

1.60

↓
Lin

awin

2.75

↓
Lin

nfit

3.20

↓
Approx

2.45

Rank

CD = 0.9352

Figure 8.11: Comparison of the test performance of all classifiers against each other with the
Nemenyi test. Groups of classifiers that are not significantly different (at α = 0.10) are con-
nected.

Table 8.8: Pairwise comparisons of the test accuracy achieved by linguistic Fuzzy-UCS with
the three types of inference and approximate Fuzzy-UCS.

wavg awin nfit approx
wavg .0032 .0051 .1913
awin ª .2627 .7369
nfit ª − .4781

approx − + +

ranks test). In fact, a simple quantitative analysis highlighted the differences in the population
sizes. Fuzzy-UCS with weighted average inference built populations that consisted of thousands
of rules. Consequently, although using a linguistic representation, this large number of rules
hampered the interpretability of the rule set. Approximate Fuzzy-UCS resulted in smaller
populations; however, these consisted of hundreds of rules. This, together with the loss of
interpretability due to the approximate representation, hindered the readability of the rule set.
The other two types of inference of Linguistic Fuzzy-UCS, especially the fittest rules inference,
resulted in populations with a moderate number of rules. Fuzzy-UCS with fittest rules inference
built populations that ranged from tens of to few hundreds of rules.

These results showed the performance-interpretability trade-off in linguistic Fuzzy-UCS al-
ready pointed out in the previous section. Weighted average inference significantly outperformed
the other two inference schemes since it combined the knowledge of all experienced rules in the
final population. As shown in the case study of the previous section, this allowed Fuzzy-UCS to
fit complex boundaries even though the fuzzy representation made a discretization of the feature
space. Linguistic Fuzzy-UCS could approximate these boundaries by means of evolving a set of
partially overlapping fuzzy rules. However, the interpretability of the rule set was degraded by

190

8.5. KNOWLEDGE REPRESENTATION AND DECISION BOUNDARIES

0 2 4 6 8 10
x 10

4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Learning Iterations

Approximate Fuzzy−UCS in the Bal Problem

Train accuracy
Test accuracy

Figure 8.12: Evolution of the training and test accuracies with approximate Fuzzy-UCS on the
bal problem.

1 1.5 2 2.5 3 3.5 4 4.5

↓
Lin

wavg

1.05

↓
Lin

awin

2.95

↓
Lin

nfit

4.00

↓
Approx

2.00

Rank

CD = 0.9352

Figure 8.13: Comparison of the number of rules evolved by all learners against each other with
the Nemenyi test. Groups of classifiers that are not significantly different (at α = 0.10) are
connected.

the large number of rules. The other two inference schemes considerably improved the readabil-
ity, since they produced large reductions of the rule set. Nonetheless, this went against the test
performance, which was significantly surpassed by the weighted average inference scheme.

The overall results presented in this section pointed out the viability of the linguistic repre-
sentation with respect to its approximate counterpart. While approximate Fuzzy-UCS created
models that fitted the training data very accurately, there was no statistical evidence of this
improvement in the test performance. Furthermore, we also identified that approximate Fuzzy-
UCS may over-fit the training instances in complex domains. Thus, the flexibility provided by
the approximate representation did not imply an improvement of the test accuracy, although it
degraded the readability of the fuzzy-rules. Besides, the rule sets created by approximate Fuzzy-

191

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

Table 8.9: Comparison of the population sizes of linguistic Fuzzy-UCS with weighted average
(wavg), action winner (awin), and most numerous and fittest rules inference (nfit), and approx-
imate Fuzzy-UCS on a set of twenty real-world problems.

Linguistic
Approximate

wavg awin nfit
ann 2769 75 36 409
aut 3872 114 74 158
bal 1212 114 75 441
bpa 1440 73 39 207
cmc 1881 430 271 402
col 4135 154 81 297
gls 2799 62 36 146
h-c 3574 113 46 257
h-s 3415 117 62 231
irs 480 18 7 103
pim 2841 192 62 538
son 3042 178 160 186
tao 111 19 14 464
thy 1283 37 11 134
veh 3732 332 147 532
wbcd 3130 138 28 360
wdbc 5412 276 101 490
wne 3686 95 26 160
wpbc 3772 156 115 175
zoo 773 16 10 55
Rank 1.05 2.95 4.00 2.00
Pos 1 3 4 2

Table 8.10: Pairwise comparisons of the sizes of the rule sets evolved by linguistic Fuzzy-UCS
with the three types of inference and approximate Fuzzy-UCS.

wavg awin nfit approx
wavg .0001 .0001 .0001
awin ª .0001 .0001
nfit ª ª .0001

approx ª ⊕ ⊕

UCS were significantly larger than the ones obtained by linguistic Fuzzy-UCS with action winner
and fittest rules inference. For all these reasons, we focus our analysis on linguistic Fuzzy-UCS
in the remainder of this chapter, and leave further analysis of approximate Fuzzy-UCS as future
research.

192

8.6. COMPARISON OF FUZZY-UCS TO SEVERAL MACHINE LEARNING TECHNIQUES

8.6 Comparison of Fuzzy-UCS to Several Machine Learning Tech-
niques

So far, we have clearly shown the competitiveness of linguistic Fuzzy-UCS with respect to its
approximate counterpart. In this section, we study whether the behavior of linguistic Fuzzy-
UCS is comparable to some of the most-used machine learning techniques. For this purpose, we
compared Fuzzy-UCS to two sets of learners: fuzzy rule-based learners and “non-fuzzy” (crisp)
learners. With the former comparison, we analyzed the behavior of Fuzzy-UCS with respect to
other techniques that use the same representation, which may limit the maximum performance
that can be achieved in certain domains. With the latter comparison, we study whether, even
with the limitations that may impose the fuzzy representation, Fuzzy-UCS is competitive with
a large number of the most-representative learners, regardless of the knowledge representation
they use. Below, we first present the experimental methodology, and then compare Fuzzy-UCS
to the other learners.

8.6.1 Experimental Methodology

The followed methodology is similar to the one presented in the previous section. We selected
the same collection of 20 real-world problems, whose characteristics are summarized in table 8.1.
The experiments were ran on a ten-fold cross validation, and the test accuracy rate was used to
measure the performance of the different learners.

The performance of Fuzzy-UCS was compared with a large variety of learning algorithms,
which we organized in two groups. The first group consisted of the following fuzzy rule-based
classification systems: Fuzzy GP, Fuzzy GAP, Fuzzy SAP, Fuzzy AdaBoost, Fuzzy LogitBoost,
and Fuzzy MaxLogitBoost. Fuzzy GP (Sánchez and Couso, 1998, 2000; Sánchez et al., 2001) is
a genetic programming algorithm that builds a fuzzy classifier for each class of the domain by
searching for a tree that represents an analytic expression that relates the input and the output
variables as accurately as possible. Fuzzy GAP (Sánchez and Couso, 1998, 2000) works similarly
to Fuzzy GP, but the optimization system is a hybrid between genetic algorithms and genetic
programming. Fuzzy SAP (Sánchez et al., 2001) combines genetic operators with simulated
annealing (Korst and Aarts, 1997) to create data models similar to those built by Fuzzy GP and
Fuzzy GAP. Fuzzy AdaBoost (del Jesus et al., 2004) is a modification of the boosting algorithm
AdaBoost (Freund and Schapire, 1996) to deal with fuzzy rules; Fuzzy AdaBoost generates a
compound classifier which decides the output as a linear combination of the outputs of weak
classifiers. Fuzzy LogitBoost (Otero and Sánchez, 2006) and Fuzzy MaxLogitBoost (Sánchez
and Otero, 2007) are boosting algorithms that iteratively invoke a genetic algorithm to extract
simple fuzzy rules that are combined to decide the output of new examples. The basic difference
between both algorithms is that Fuzzy MaxLogitBoost may reject a new rule provided by the
genetic algorithm if it does not improve the expected global performance. All these methods were
run using KEEL (Alcalá-Fdez et al., 2008). We followed the recommended parameter values
given in the KEEL platform to configure the methods (Alcalá-Fdez et al., 2008), which also
corresponded to the settings used in the bibliography of these methods. We only changed the
maximum population size of AdaBoost, LogitBoost, and MaxLogitBoost. We tried population
sizes of N={8, 25, 50, 100} for all the data sets, and selected the results of N=50 since they
generally allowed us to achieve higher performance ratios than N=8 and N=25, and did not

193

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

significantly differ from N=100. For all the methods, we used 5 linguistic terms per variable.
Fuzzy-UCS was configured as detailed in section 8.5.3.

The second group gathered a large number of learners with different knowledge representa-
tions: ZeroR, C4.5, IBk, Näıve Bayes, Part, SMO, GAssist, and UCS. Among them, C4.5, IBk,
Näıve Bayes, and SMO have been identified as the top ten data mining algorithms, including
supervised and unsupervised learning techniques (Wu et al., 2007). Therefore, the comparison
aims at measuring the quality of Fuzzy-UCS with several of the best learners. ZeroR is a simple
classifier system that always predicts the majority class in the training data set. We employed
this algorithm to provide a baseline result. C4.5 (Quinlan, 1995) is one of the most used de-
cision trees, which derives from ID3 and introduces methods to deal with continuous variables
and missing values. IBk (Aha et al., 1991) is a nearest neighbor algorithm; it decides the output
of a new example as the most numerous class of the k nearest neighbors. Näıve Bayes (John and
Langley, 1995) is a probabilistic classifier that estimates the parameters of a Bayesian model.
Part (Frank and Witten, 1998) is a learning architecture that combines the creation of rules from
partial decision trees and the separate-and-conquer rule learning technique to create a classifier
without using global optimization. SMO (Platt, 1998) is a support vector machine (Vapnik,
1995) that implements the Sequential Minimization Algorithm. GAssist (Bacardit, 2004) is a
recent Pittsburgh-style LCS. UCS (Bernadó-Mansilla and Garrell, 2003) is a Michigan-style LCS
derived from XCS (Wilson, 1995, 1998) and specialized for supervised learning tasks (see chapter
3 for an extensive description of the system). All the methods except for GAssist and UCS were
run using Weka (Witten and Frank, 2005). For GAssist, we used the open source code provided
in (Bacardit, 2007). For UCS, we used our own code. If not stated differently, all open source
methods were configured with the parameters values recommended by default. For UCS we set:
numIter=100 000, N=6400, acc0 = 0.99, ν=10, {θGA, θdel, θsub}=50, χ=0.8, µ=0.04, δ=0.1,
r0=0.6. Fuzzy-UCS was configured with standard values as indicated in the previous section.

We applied the following statistical analysis to the results. We used the non-parametric
Friedman’s test (Friedman, 1937, 1940) to check whether all the learning algorithms performed
the same on average. If significant differences were found, two procedures were applied to detect
differences among methods. We first aimed at comparing the performance obtained by each of
the inference types of Fuzzy-UCS to all other learners (instead of comparing all learners with the
others as done in section 8.5). To achieve this, we applied the non-parametric Bonferroni-Dunn
(Dunn, 1961) test. Moreover, the analysis is complemented by performing pairwise comparisons
among the learners by means of a Wilcoxon signed-ranks test (Wilcoxon, 1945). For further
details on the statistical tests, the reader is referred to appendix B.

8.6.2 Comparison to Fuzzy Rule-Based Classification Systems

In the following, we compare the test performance and the interpretability of Fuzzy-UCS with
the three types of inference to the aforementioned set of fuzzy rule-based learners.

Comparison of the performance. Table 8.11 details the test accuracies obtained with the
fuzzy classifiers Fuzzy AdaBoost, Fuzzy GAP, Fuzzy GP, Fuzzy LogitBoost, Fuzzy MaxLog-
itBoost, Fuzzy SAP and Fuzzy-UCS with three different types of inference: weighted average
(wavg), action winner (awin), and fittest rules (nfit). The average performance of AdaBoost and
MaxLogitBoost for the ann and aud problems is not provided since neither system was able to

194

8.6. COMPARISON OF FUZZY-UCS TO SEVERAL MACHINE LEARNING TECHNIQUES

Table 8.11: Comparison of the test accuracy of Fuzzy-UCS with weighted average (wavg), action
winner (awin), and fittest rules (nfit), to Fuzzy GP, Fuzzy GAP, Fuzzy SAP, Fuzzy AdaBoost,
Fuzzy LogitBoost, and Fuzzy MaxLogitBoost.

GP GAP SAP AdaBoost LogitBoost MaxLogitBoost
Fuzzy-UCS

wavg awin nfit
ann 77.86 77.20 78.02 - 76.20 - 98.85 97.39 98.61
aut 44.65 45.21 41.00 - 32.63 - 74.42 67.42 69.32
bal 69.73 64.33 65.80 85.54 88.30 75.58 88.65 84.40 83.40
bpa 56.62 57.91 62.30 65.34 64.46 56.53 59.82 59.42 58.93
cmc 47.00 46.57 46.27 49.55 51.10 45.21 51.72 49.67 49.42
col 79.15 73.51 81.89 63.06 63.06 63.06 85.01 82.46 78.50
gls 48.89 47.24 46.42 62.52 68.18 62.18 60.65 57.21 57.43
h-c 73.98 75.09 74.18 60.40 62.09 57.48 84.39 82.62 82.05
h-s 73.70 72.00 72.07 57.56 59.33 57.33 81.33 80.78 78.11
irs 94.47 90.80 91.53 95.47 95.33 92.00 95.67 95.47 93.73
pim 75.32 76.62 77.92 70.69 71.84 72.54 74.88 74.11 74.32
son 64.52 65.99 68.70 46.62 53.38 46.62 80.78 73.71 71.66
tao 80.36 81.75 81.15 91.46 91.73 84.52 81.71 83.02 87.53
thy 86.98 84.94 85.55 97.35 97.08 95.33 88.18 89.49 91.25
veh 46.16 44.59 42.96 30.82 37.25 38.05 67.68 65.35 65.34
wbcd 93.31 92.53 92.72 94.88 94.12 91.83 96.01 95.73 95.29
wdbc 90.93 90.49 91.52 37.26 62.74 37.26 95.20 94.61 94.51
wne 82.91 78.23 79.85 85.59 85.02 77.68 94.12 94.86 91.82
wpbc 74.77 74.47 74.37 23.65 76.35 23.65 76.06 76.05 71.69
zoo 71.18 66.65 66.08 41.89 41.89 41.89 96.50 94.78 95.90
Rank 5.55 6.25 5.80 5.80 4.95 7.48 2.10 3.18 3.90
Pos. 5 8 6.5 6.5 4 9 1 2 3

extract competent fuzzy rules from the two domains, leaving nearly all the feature space uncov-
ered. The authors confirmed that this behavior could be due to the large number of nominal
attributes that these two problems have. The last two rows of the table provide the average
rank and the absolute position in the ranking of each learner.

The experimental results show that the three configurations of Fuzzy-UCS were the best
ranked in the comparison. The next methods in the ranking were the boosting algorithm Fuzzy
LogitBoost, the genetic programming-based systems Fuzzy-GP and Fuzzy-SAP, and Fuzzy Ad-
aBoost. Finally, the last methods were Fuzzy GAP, and Fuzzy MaxLogitBoost.

We used the multiple-comparison Friedman’s test to analyze whether the differences in the
ranking were statistically significant. The statistical test rejected the hypothesis that all the
methods performed the same on average at a significance level of 0.001. To evaluate the differ-
ences among them, we applied different statistical tests. First, we compared Fuzzy-UCS with
each inference type with all the other learners. Figure 8.14 graphically represents the rank of

195

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

2 3 4 5 6 7 8

↓
GP

5.55

↓
GAP

6.25

↓

SAP

5.8

↓
AB

↓
LB

4.95

↓
MLB

7.47

↓
wavg

2.1

↓
awin

3.17

↓
nfit

3.9

Rank

CD = 2.16

(1)

(2)

(3)

Figure 8.14: Comparisons of one learner against the others with the Bonferroni-Dunn test at
a significance level of 0.1. All the learners are compared to three different control groups:
(1) Fuzzy-UCS with weighted average inference, (2) Fuzzy-UCS with action winner inference,
and (3) Fuzzy-UCS with fittest rules inference. The learners connected are those that perform
equivalently to the control learner.

each learner and groups the classifiers that perform equivalently to (1) Fuzzy-UCS with weighted
average inference, (2) Fuzzy-UCS with action winner inference, and (3) Fuzzy-UCS with fittest
rules inference according to a Bonferroni-Dunn test at a significance level of 0.1. The statistical
procedure supported the following hypotheses:

• Using Fuzzy-UCS with weighted average inference as the control learner, the statisti-
cal procedure supported the hypothesis that the performance of the control learner was
equivalent to the performance of Fuzzy-UCS with the other two inference types. Moreover,
Fuzzy-UCS with weighted average outperformed all the other learners.

• Using Fuzzy-UCS with action winner inference as the control learner, the test indicated
that this learner performed equivalently to Fuzzy-UCS with the other two types of inference
and Fuzzy LogitBoost.

• With respect to Fuzzy-UCS with fittest rules inference, the test did not reject the hypoth-
esis that all the fuzzy learners except for Fuzzy MaxLogitBoost and Fuzzy GAP performed
equivalently on average.

As the Bonferroni-Dunn test is said to be quite conservative (Sheskin, 2000), especially
when a large number of learners are included in the analysis as in our experimentation, we
complemented the statistical study by comparing each pair of learners. Table 8.12 shows the
approximate p-values for the pairwise comparison according to a Wilcoxon signed-ranks test.
The ⊕ and ª symbols indicate that the method in the row significantly improves/degrades
the performance obtained with the method in the column. Similarly, the + and − symbols
denote a non-significant improvement/degradation. The = symbol indicates that each method
outperforms and degrades the other in the same number of data sets. Furthermore, figure 8.15

196

8.6. COMPARISON OF FUZZY-UCS TO SEVERAL MACHINE LEARNING TECHNIQUES

Table 8.12: Pairwise comparison of the test accuracy of fuzzy learners Fuzzy GP, Fuzzy GAP,
Fuzzy SAP, Fuzzy AdaBoost (ABoost), Fuzzy LogitBoost (LBoost), Fuzzy MaxLogitBoost (ML-
Boost), and Fuzzy UCS with weighted average inference (wavg), action winner inference (awin),
and fittest rules inference (nfit) by means of a Wilcoxon signed-ranks test.

GP GAP SAP ABoost LBoost MLBoost
Fuzzy-UCS

wavg awin nfit
GP .0366 .2627 .0522 .4115 .0090 .0001 .0001 .0006

GAP ª .2180 .1005 .4781 .0187 .0002 .0002 .0002
SAP − + .0674 .4330 .0111 .0003 .0005 .0036

ABoost − − − .0038 .0231 .0045 .0079 .0137
LBoost = = = ⊕ .0003 .0100 .0276 .0438

MLBoost ª ª ª ª ª .0005 .0009 .0007
wavg ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ .0032 .0051
awin ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ª .2627
nfit ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ª −

graphically illustrates the significant differences between methods. That is, each method is
depicted in one vertex of the graph, and significant improvements (at α=0.05) of one learner
with respect to another are plotted with a directed edge labeled with the corresponding p-value.
To facilitate the visualization, Fuzzy AdaBoost and Fuzzy MaxLogitBoost were not included in
the graph, since all the other learners significantly improved both methods, except for Fuzzy-
GAP, which did not significantly outperform Fuzzy AdaBoost. At a significance level of 0.05, the
test indicated that Fuzzy-UCS with weighted average inference significantly outperformed all
the other learners, including the two other types of inference of Fuzzy-UCS. Moreover, Fuzzy-
UCS with action winner and fittest inference schemes significantly improved the other fuzzy
learners, i.e., Fuzzy GP, Fuzzy GAP, Fuzzy SAP, Fuzzy AdaBoost, Fuzzy LogitBoost, and
Fuzzy MaxLogitBoost.

Comparison of the interpretability. The study conducted in section 8.5.3 already illustrated
the interpretability-performance trade-off among the different inference schemes in Fuzzy-UCS.
As shown, the excellent results of Fuzzy-UCS with weighted average with respect to all the
other learners were hampered by the large number of fuzzy rules evolved by the method. The
other two types of inference appeared as a positive alternative since, although they slightly
degraded the accuracy rate with respect to the former approach, they resulted in a moderate
number of rules. Aligned with these conclusions, we confirmed the suitability of Fuzzy-UCS by
empirically demonstrating that the three schemes of Fuzzy-UCS resulted in significantly more
accurate models than those obtained with all the other fuzzy learners. In this section, we further
the study and qualitatively analyze if the rule set evolved by these two methods is competitive
in terms of readability.

As the type of rules evolved by the systems differ, we qualitatively evaluated the size of
the models by extracting some characteristics. Figure 8.16 shows examples of partial models
evolved by the fuzzy learners for the tao problem. The models built by Fuzzy GP, Fuzzy GAP,
and Fuzzy SAP consisted of a rule for each class of the domain. Each rule was directly extracted

197

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

Fuzzy GAP Fuzzy GP Fuzzy LogitBoost

Fuzzy-UCS awin Fuzzy-UCS wavg Fuzzy-UCS nfit

Fuzzy SAP

p=0.037

p=10−4p=2 · 10−4

p=3 · 10−4

p=0.010

p=0.003 p=0.005

p=10−4

p=2 · 10−4

p=5 · 10−4

p=0.028

p=0.001p=2 · 10−4

p=0.0036

p=0.0438

Figure 8.15: Illustration of the significant differences (at α = 0.05) of the test accuracy among the
fuzzy-methods and Fuzzy-UCS. An edge L1

pvalue→ L2 indicates that the learner L1 outperforms
the learner L2 with the corresponding pvalue. To facilitate the visualization, Fuzzy-AdaBoost
and Fuzzy MaxLogitBoost, the two most outperformed algorithms, were not included in the
graph.

from an expression codified in a tree. The rules were represented by an arbitrary number of
conjunctions (AND) and disjunctions (OR) of conditions over the variables of the domain. One
example of these types of rules for a two-dimensional problem is

IF (x1is Ã1
1 AND x2 is Ã1

2) OR (x1is Ã2
1 AND x2 is Ã2

2) THEN c1, (8.34)

where each variable xi was represented by a linguistic term Ãi = { Ai1∨ . . .∨Aini}. All variables
shared the same semantics which were defined by the combination of triangular-shaped and
trapezoidal-shaped fuzzy membership functions (see figure 8.16(a)).

On the other hand, the fuzzy rule-based boosting algorithms created a set of linguistic fuzzy
rules that took the following form:

IF x1 is Ã1 and · · · and xn is Ãn THEN c1 WITH wk
1 , · · · , cm WITH wk

m, (8.35)

where each variable xi was represented by a linguistic term Ãi = { Ai1 ∨ . . . ∨ Aini}. All
variables shared the same semantics, which was defined by means of triangular-shaped fuzzy
membership functions (see figure 8.16(b)). In the consequent part, the rule maintained a weight
for each class, which were used for the inference process. Therefore, these individuals rules are
less interpretable than the ones of Fuzzy-UCS, which use a single value—the fitness—to infer

198

8.6. COMPARISON OF FUZZY-UCS TO SEVERAL MACHINE LEARNING TECHNIQUES

if y is triangle(-6.0,-3.0,0.0) then red

if ((x is trapezoid(3.0, 6.0) or x is trapezoid(3.0, 6.0))

or (x is triangle(0, 3.0, 6.0) or x is trapezoid(3.0, 6.0)))

and

((x is triangle (-3, 0.0, 3.0) or x is trapezoid(3.0, 6.0)

or . . .)

...

then blue

(a) GP-based learners

if x is L and y is L then blue with -5.42 and red with 0.0

if x is M and y is XS then blue with 2.21 and red with 0.0

if x is M and y is XL then blue with -2.25 and red with 0.0

...

(b) Boosting learners

if x is XL then blue with w=1.00

if x is XS then red with w=1.00

if x is {XS or S} and y is {XS or S} then red with w=0.87

...

(c) Fuzzy-UCS

Figure 8.16: Examples of part of the models evolved by (a) the GP-based methods, i.e., Fuzzy
GP, Fuzzy GAP, and Fuzzy SAP; (b) the boosting learners, i.e., Fuzzy AdaBoost, Fuzzy Logit-
Boost, and Fuzzy MaxLogitBoost; and (c) Fuzzy-UCS for the two-dimensional tao problem. In
the fuzzy learners, we used the following five linguistic terms per variable: {XS, S, M, L, XL}.
All fuzzy learners use triangular-shaped membership functions. Moreover, GP-based learners
also use trapezoid-shaped membership functions.

the class of test instances. The three boosting algorithms supported the absence of a variable
by not assigning any linguistic term to the variable. The maximum size of the rule set was a
configuration parameter. In our experiments, the maximum population size was set to 50.

To compare these two types of representations to the rule sets evolved by Fuzzy-UCS, we
evaluated the size of the models as follows:

• We calculated the size of the models built by Fuzzy GP, Fuzzy GAP, and Fuzzy SAP by
counting the number of AND, OR, and IS of the model. This gave us an idea of the average
size of the rule. However, note that, due to the flexibility of these types of rules, it was not
possible to directly compare them with the rules evolved by the three boosting algorithms
and Fuzzy UCS. The rules constructed by Fuzzy GP, Fuzzy GAP, and Fuzzy SAP permit
the combination of different logic operators, whose associativity and priority is given by
the position of the operators in the tree. An equivalent conjunctive normal form for these
rules could be found by applying De Morgan’s laws. However, this transformation is not
in the scope of this chapter, and so, we only qualitatively evaluated the model sizes.

• The size of the rule sets created by the boosting algorithms and Fuzzy-UCS were computed

199

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

with the following formula:

size =
N∑

i=1

1
`

∑̀
j=1

maxLabels − numLabels(xi)
maxLabels − 1

, (8.36)

where N is the number of rules in the population, ` is the number of variables, and
maxLabels is the number of linguistic labels (in our experiments, maxLabels = 5). This
formula reckons the total number of variables in the model that have, at least, one linguistic
term assigned. It also benefits general variables that have more than one linguistic label.
To achieve a totally fair comparison, we also referred to the number of rules evolved by
Fuzzy-UCS (see table 8.9).

Table 8.13 shows the size of the models created by each fuzzy learner. Table 8.14 illustrates
the approximate p-values resulting from the pairwise comparison between the learners according
to a Wilcoxon signed-ranks test. For the three methods based on genetic programming, we
considered the average number of variables for each rule (i.e., column is divided by the number
of classes of the problems). The comparison shows that Fuzzy SAP, followed by Fuzzy GP, Fuzzy
GAP, and Fuzzy MaxLogitBoost, were the methods that created the smallest models according
to a Wilcoxon signed-ranks test at a significance level of 0.05. We have already discussed how the
representation of Fuzzy GP, Fuzzy GAP, and Fuzzy SAP was much more flexible and by far less
interpretable than the representation of the other learners (see the number of conjunctions and
disjunctions with different associativity and priority in the rules). Thus, although the number of
attributes per rule was smaller, the interpretability of the model was poor due to the flexibility
of the rule (see the partial example provided for the tao problem in figure 8.16(a)). Fuzzy-
UCS with weighted average and with action winner inference created the largest and the second
largest populations of the comparison respectively. On the other hand, Fuzzy-UCS with fittest
rules inference created rule sets that, on average, were not significantly larger than the rule
sets built by Fuzzy-GP, Fuzzy AdaBoost, and Fuzzy LogitBoost. Thus, disregarding the three
learners based on genetic programming, whose rule sets were poorly readable due to the rule
form, only Fuzzy MaxLogitBoost created more reduced populations. However, individual rules
of Fuzzy MaxLogitBoost are less interpretable than those of Fuzzy-UCS since they maintain a
weight per each class, and all these weights are used in the inference process.

The results provided in this section highlighted the high competitiveness of Fuzzy-UCS in
terms of performance and interpretability with respect to other fuzzy learners. In terms of
performance, Fuzzy-UCS with any of the three types of inference significantly outperformed all
the other fuzzy learners. In terms of interpretability, Fuzzy-UCS with fittest rules inference
evolved a number of rules comparable to those evolved by Fuzzy AdaBoost, Fuzzy LogitBoost,
Fuzzy GP, Fuzzy GAP, and Fuzzy SAP. In the next section, we broaden the analysis and compare
Fuzzy-UCS to a set of general purpose non-fuzzy learners.

8.6.3 Comparison with Non-Fuzzy Learners

Now, we compare Fuzzy-UCS to a set of general-purpose learners that use different knowledge
representations: ZeroR, C4.5, IBk, Part, Näıve Bayes, SMO with polynomial kernels of order 3,
SMO with Gaussian kernels, GAssist, and UCS. The systems were configured as recommended
in the open source implementation, with exception of the following aspects. We ran IBk with

200

8.6. COMPARISON OF FUZZY-UCS TO SEVERAL MACHINE LEARNING TECHNIQUES

Table 8.13: Size of the models evolved by Fuzzy GP, Fuzzy GAP Fuzzy SAP, Fuzzy AdaBoost
(ABoost), Fuzzy LogitBoost (LBoost), Fuzzy MaxLogitBoost (MLBoost), and Fuzzy UCS with
weighted average inference (wavg), action winner inference (awin), and fittest rules inference
(nfit).

GP GAP SAP
ABoost LBoost MLBoost

Fuzzy-UCS
and or is and or is and or is wavg awin nfit

ann 30.0 34.4 64.3 27.4 31.4 58.8 5.0 6.8 11.8 - 17.9 - 1038.6 27.2 12.7
aut 27.3 31.8 59.1 30.3 35.5 65.8 5.3 6.9 12.1 - 39.2 - 1555.7 45.1 28.7
bal 27.5 32.8 60.3 21.0 20.2 41.1 4.1 4.5 8.6 19.8 23.8 14.3 578.0 54.3 39.0
bpa 17.6 37.3 54.9 17.9 25.2 43.1 1.8 2.9 4.6 35.3 36.0 13.3 795.5 40.0 19.9
cmc 22.2 25.1 47.2 17.6 18.3 35.9 4.8 3.5 8.3 29.1 27.9 2.0 984.6 223.1 135.8
col 14.6 23.8 38.4 12.2 15.1 27.3 2.1 2.5 4.6 45.0 44.1 0.8 1469.3 50.8 26.0
gls 28.8 32.9 61.7 27.5 29.2 56.7 7.8 7.4 15.2 29.2 31.0 22.8 1293.7 27.8 14.5
h-c 13.6 20.0 33.6 11.4 13.5 24.9 1.7 2.6 4.3 39.6 38.9 1.0 1188.3 34.2 14.2
h-s 16.8 26.1 42.9 8.7 13.2 21.9 2.4 3.4 5.9 40.3 39.2 15.0 1173.0 37.2 18.8
irs 18.7 21.6 40.4 11.5 12.3 23.7 2.5 2.7 5.2 23.4 26.9 4.0 231.2 7.6 2.8
pim 18.3 19.9 38.2 13.7 14.6 28.3 2.0 1.7 3.7 36.9 34.0 13.3 1327.1 86.8 28.0
son 18.2 28.3 46.5 15.1 17.1 32.2 2.0 2.3 4.3 22.3 21.6 0.9 1208.1 70.7 63.4
tao 19.0 20.3 39.2 13.3 19.1 32.4 3.3 3.4 6.7 40.1 43.2 18.0 75.3 12.1 8.6
thy 18.2 20.0 38.1 12.4 13.0 25.4 2.8 2.4 5.1 25.7 29.4 8.8 624.4 16.3 5.0
veh 18.8 21.7 40.4 16.9 18.9 35.8 3.4 4.1 7.4 40.3 37.3 25.6 1641.7 143.8 63.7
wbcd 20.4 40.1 60.5 17.9 20.2 38.1 2.6 3.9 6.5 24.0 27.7 13.1 1033.9 38.9 8.4
wdbc 14.7 15.7 30.4 10.2 12.3 22.5 1.9 2.0 3.9 44.9 43.9 0.9 2108.7 105.4 38.4
wne 15.8 19.5 35.3 14.5 14.9 29.4 2.5 2.7 5.2 30.8 31.2 26.9 1437.7 33.1 9.0
wpbc 24.0 38.1 62.1 11.9 19.2 31.1 2.8 4.6 7.4 44.9 44.0 0.8 1536.6 62.3 45.3
zoo 34.0 34.9 68.9 37.8 38.2 76.0 8.2 9.7 17.9 42.0 36.2 0.9 263.4 5.0 3.3

Table 8.14: Pairwise comparisons of the sizes of the models of Fuzzy GP, Fuzzy GAP, Fuzzy SAP,
Fuzzy AdaBoost (ABoost), Fuzzy LogitBoost (LBoost), Fuzzy MaxLogitBoost (MLBoost), and
Fuzzy UCS with weighted average inference (wavg), action winner inference (awin), and fittest
rules inference (nfit) by means of a Wilcoxon signed-ranks test.

GP GAP SAP ABoost LBoost MLBoost
Fuzzy-UCS

wavg awin nfit
GP .0003 .0001 .0005 .0001 .0137 .0001 .0003 .2179
GAP ª .0001 .0002 .0001 .1671 .0001 .0002 .0228
SAP ª ª .0001 .0001 .0276 .0001 .0001 .0001
ABoost ⊕ ⊕ ⊕ .8666 .0001 .0001 .0793 .1790
LBoost ⊕ ⊕ ⊕ − .0001 .0001 .1005 .1084
MLBoost ª − ⊕ ª ª .0001 .0002 .0105
wavg ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ .0001 .0001
awin ⊕ ⊕ ⊕ + + ⊕ ª .0001
nfit = ⊕ ⊕ − − ⊕ ª ª

201

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

k = {1, 3, 5}. We ranked the performance obtained by the three configurations, and we only
provide the results with the settings that maximized the average rank, that is, k = 5 (IB5). The
analogous process was carried out for SMO with polynomial kernels. We experimented with
polynomial kernels of order {1, 3, 5, 10}, and supplied the results obtained with polynomial
kernels of order 3 since they maximized the average rank. We did not introduce the same
system with different configurations in the comparison to avoid biasing the statistical analysis
of the results.

Comparison of the performance. Table 8.15 shows the accuracy of the aforementioned
learners on the same collection of real-world problems. The two last rows of the table provide
the average rank and the position in the ranking of each learner. As proceeds, we discuss several
observations that can be drawn from these results.

Firstly, let us highlight the good performance presented by Fuzzy-UCS with weighted average
inference. This learner was the third best method in the ranking. Its average rank was really
close to UCS, by which Fuzzy-UCS was inspired. Thus, the fuzzy representation did seem not
to limit the capabilities of Fuzzy-UCS if all the evolved rules were used to infer the class of new
examples. Moreover, the average rank was also close to the best ranked method: SMO with
polynomial kernels. The other two inference schemes presented higher average ranks. Fuzzy-
UCS with action winner inference and fittest rules inference occupied the 7th and 9th position
in the ranking.

We statistically analyzed the results to identify significant differences among the learners.
The multiple-comparison Friedman’s test rejected the hypothesis that all the learners performed
the same on average at a significance level of 0.001. We applied the post-hoc Bonferroni-Dunn
test on the results. The test could only reject the hypothesis that the best ranked learners
performed equivalently to Fuzzy-UCS with fittest rules inference, SMO with Gaussian kernel,
and Zero-R. However, the test has a low discriminatory power for a large number of learners
(Demšar, 2006). Thus, we also compared the performance of each pair of learners by means of a
Wilcoxon signed-ranks test (see table 8.16). Figure 8.17 uses a graph to illustrate the significant
differences between the learners. The test confirmed that Fuzzy-UCS with weighted average
inference was one of the best learners in the comparison. It significantly outperformed Näıve
Bayes, SMO with Gaussian kernels, ZeroR, and Fuzzy-UCS with the other two types of inference.
Moreover, Fuzzy-UCS with weighted average inference did not significantly degrade the results
obtained with any other learner. Fuzzy-UCS with action winner inference was only significantly
outperformed by SMO with polynomial kernels, and Fuzzy-UCS with weighted average inference.
Besides, it significantly improved SMO with Gaussian kernel and ZeroR. Fuzzy-UCS with fittest
rules inference presented the poorest results among the three configurations of Fuzzy-UCS. It
significantly degraded the results obtained by SMO with polynomial kernels, UCS, IB5, Part,
and Fuzzy-UCS with weighted average inference. However, note that it performed equivalently
to well-known algorithms such as C4.5, Näıve Bayes, and GAssist.

Comparison of the interpretability. Herein, we qualitatively compare the interpretability
of the models created by the different learners. We do not consider IBk, SMO, and Näıve Bayes
since their knowledge representation can hardly be compared to the other learners. IBk is a
lazy classifier that does not use any knowledge representation; to predict the output of a new
input example, IBk searches for the k nearest neighbors and returns the majority class among
them. SMO represents the knowledge by

(
nc

2

)
support vector machines (where nc is the number

202

8.6. COMPARISON OF FUZZY-UCS TO SEVERAL MACHINE LEARNING TECHNIQUES

T
ab

le
8.

15
:

C
om

pa
ri

so
n

of
th

e
te

st
ac

cu
ra

cy
of

Fu
zz

y-
U

C
S

w
it

h
w

ei
gh

te
d

av
er

ag
e

(w
av

g)
,
ac

ti
on

w
in

ne
r

(A
w

in
),

an
d

fit
te

st
ru

le
s

in
fe

re
nc

e
(n

fit
)

to
Z
er

oR
(0

R
),

C
4.

5,
IB

5,
P
ar

t,
N

äı
ve

B
ay

es
(N

B
),

SM
O

w
it

h
po

ly
no

m
ia

l
ke

rn
el

s
of

or
de

r
3

(S
M

O
p
3
),

SM
O

w
it

h
G

au
ss

ia
n

ke
rn

el
s

(S
M

O
r
bf

),
an

d
G

A
ss

is
t.

0R
C

4.
5

IB
5

P
ar

t
N

B
S
M

O
p
3

S
M

O
r
bf

G
A

ss
is

t
U

C
S

F
u
zz

y
-U

C
S

w
av

g
aw

in
n
fi
t

an
n

76
.2

0
98

.9
0

97
.3

4
98

.5
7

86
.3

3
99

.3
4

91
.9

0
97

.8
8

99
.0

5
98

.8
5

97
.3

9
98

.6
1

au
t

32
.6

3
80

.9
4

64
.0

3
74

.4
1

58
.7

9
78

.0
9

45
.5

5
68

.6
3

77
.4

1
74

.4
2

67
.4

2
69

.3
2

ba
l

45
.4

6
77

.4
2

88
.1

8
82

.8
6

90
.5

7
91

.2
0

88
.3

0
79

.5
7

77
.3

2
88

.6
5

84
.4

0
83

.4
0

bp
a

57
.9

9
62

.3
1

58
.8

5
67

.5
6

55
.9

7
59

.9
7

57
.9

9
62

.2
4

67
.5

9
59

.8
2

59
.4

2
58

.9
3

cm
c

42
.7

0
52

.6
2

46
.5

1
50

.0
4

50
.6

5
48

.7
5

42
.7

0
53

.5
8

50
.2

7
51

.7
2

49
.6

7
49

.4
2

co
l

63
.0

6
85

.3
2

81
.4

9
84

.5
1

78
.2

3
75

.5
9

82
.4

1
94

.3
0

96
.2

6
85

.0
1

82
.4

6
78

.5
0

gl
s

35
.6

5
66

.1
5

64
.6

8
66

.6
2

48
.9

5
66

.1
5

35
.6

5
65

.0
6

70
.0

4
60

.6
5

57
.2

1
57

.4
3

h-
c

54
.4

5
78

.4
5

83
.1

6
74

.2
0

82
.8

0
78

.5
9

82
.4

8
80

.0
9

79
.7

2
84

.3
9

82
.6

2
82

.0
5

h-
s

55
.5

6
79

.2
6

80
.7

4
80

.0
0

83
.3

3
78

.8
9

82
.5

9
77

.6
7

74
.6

3
81

.3
3

80
.7

8
78

.1
1

ir
s

33
.3

3
94

.0
0

96
.0

0
94

.0
0

96
.0

0
92

.6
7

93
.3

3
96

.2
0

95
.4

0
95

.6
7

95
.4

7
93

.7
3

pi
m

65
.1

1
74

.2
3

73
.3

2
74

.8
8

75
.8

0
76

.7
0

65
.1

1
73

.7
6

74
.6

1
74

.8
8

74
.1

1
74

.3
2

so
n

53
.3

8
71

.0
7

84
.0

5
74

.3
8

69
.7

1
85

.5
2

69
.2

6
75

.8
1

76
.4

9
80

.7
8

73
.7

1
71

.6
6

ta
o

49
.8

9
95

.9
2

97
.1

4
94

.3
3

80
.9

8
84

.2
2

83
.6

3
91

.5
9

87
.0

0
81

.7
1

83
.0

2
87

.5
3

th
y

69
.8

3
94

.9
1

94
.8

5
94

.3
3

97
.1

6
88

.9
1

69
.8

3
92

.5
2

95
.1

3
88

.1
8

89
.4

9
91

.2
5

ve
h

25
.4

2
71

.1
4

68
.9

1
73

.3
9

46
.2

8
83

.3
0

41
.7

1
67

.0
0

71
.4

0
67

.6
8

65
.3

5
65

.3
4

w
bc

d
65

.5
2

94
.9

9
97

.1
4

95
.7

1
96

.1
5

96
.4

2
96

.1
3

95
.5

9
96

.2
8

96
.0

1
95

.7
3

95
.2

9
w
db

c
63

.1
1

94
.4

0
96

.7
8

94
.4

6
93

.1
3

97
.5

8
92

.8
8

94
.2

4
95

.9
6

95
.2

0
94

.6
1

94
.5

1
w
ne

39
.9

3
93

.8
9

96
.6

7
93

.3
0

97
.1

9
97

.7
5

39
.9

3
93

.1
9

96
.1

3
94

.1
2

94
.8

6
91

.8
2

w
pb

c
72

.9
7

71
.6

1
78

.8
5

70
.0

5
69

.4
5

81
.2

5
72

.9
7

72
.3

3
69

.4
0

76
.0

6
76

.0
5

71
.6

9
zo

o
41

.8
9

92
.8

1
90

.4
7

93
.8

1
94

.4
7

97
.8

3
76

.0
3

93
.9

7
96

.7
8

96
.5

0
94

.7
8

95
.9

0
R

an
k

11
.5

0
5.

95
5.

28
5.

95
6.

63
4.

28
8.

95
6.

25
4.

65
4.

68
6.

50
7.

40
P
os

12
5.

5
4

5.
5

9
1

11
7

2
3

8
10

203

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

T
able

8.16:
P
airw

ise
com

parison
of

the
test

accuracy
of

Fuzzy-U
C

S
w

ith
w

eighted
average

(w
avg),

action
w

inner
(A

w
in),

and
fittest

rules
inference

(nfit)
to

Z
eroR

(0R
),

C
4.5,

IB
5,

P
art,

N
äıve

B
ayes

(N
B

),
SM

O
w

ith
polynom

ial
kernels

of
order

3
(SM

O
p
3),

SM
O

w
ith

G
aussian

kernels
(SM

O
r
bf),

and
G

A
ssist

by
m

eans
of

a
W

ilcoxon
signed-ranks

test.

0R
C

4.5
IB

5
P
art

N
B

S
M

O
p
3

S
M

O
r
bf

G
A

ssist
U

C
S

F
u
zzy

-U
C

S
w

av
g

aw
in

n
fi
t

0R
.0001

.0001
.0001

.0001
.0001

.0010
.0001

.0001
.0001

.0001
.0001

C
4.5

⊕
.7089

.9039
.2627

.4209
.0072

.9405
.2043

.7938
.3905

.0793
IB

5
⊕

=
.7938

.0534
.4115

.0004
.4553

.8519
.8228

.1084
.0304

P
art

⊕
+

−
.2471

.2959
.0057

.4330
.2180

.4209
.3135

.0251
N

B
⊕

−
−

−
.0674

.0333
.1084

.1354
.0333

.1790
.3703

S
M

O
p
3

⊕
+

+
+

+
.0032

.2959
.6542

.1672
.0400

.0366
S
M

O
r
bf

⊕
ª

ª
ª

ª
ª

.0032
.0064

.0004
.0025

.0152
G

A
ssist

⊕
−

−
−

+
−

⊕
.2180

.5016
.3135

.0859
U

C
S

⊕
+

=
+

+
−

⊕
+

.4330
.0674

.0366
w

av
g

⊕
+

=
+

⊕
−

⊕
+

−
.0032

.0051
aw

in
⊕

=
−

−
+

ª
⊕

−
−

ª
.2627

n
fi
t

⊕
−

ª
ª

+
ª

⊕
−

ª
ª

−

204

8.6. COMPARISON OF FUZZY-UCS TO SEVERAL MACHINE LEARNING TECHNIQUES

IB5

C4.5

Part

NaiveBayes Fuzzy-UCS awin Fuzzy-UCS nfit

SMOp3Fuzzy-UCS wavg

UCS

GAssist p=0.0251

p=0.04

p=0.0366

p=0.0366

p=0.033

p=0.0032

p=0.0051

Figure 8.17: Illustration of the significant differences (at α = 0.05) of the test accuracy among
non-fuzzy methods and Fuzzy-UCS. An edge L1

pvalue→ L2 indicates that the learner L1 outper-
forms the learner L2 with the corresponding pvalue. To facilitate the visualization, ZeroR and
SMO with Gaussian kernels, the two most outperformed algorithms, were not included in the
graph.

of classes), each one consisting of a set of real-valued weights. Therefore, the models created
by these two learners are very difficult to interpret. On the other hand, Näıve Bayes builds
interpretable models formed by a set of parameters which estimate the independent probability
functions and the so-called class-prior of a Bayesian model. Nurnberger et al. (1999) identified a
close connection between Näıve Bayes and neuro-fuzzy classifier systems, providing a framework
that maps a Näıve Bayes classifier into a neuro-fuzzy classifier with the aim of improving its
capabilities. The discussion on the difference in the interpretability of Näıve Bayes and their
similarity to neuro-fuzzy classifier systems or fuzzy rule-based systems is out of the scope of this
chapter. The reader is referred to (Nurnberger et al., 1999) for further details.

Thus, in the remainder of this analysis, we focus on the comparison of the rule-based and
tree-based learners, i.e., C4.5, Part, GAssist, UCS, and Fuzzy-UCS. Figure 8.6.3 plots examples
of the models evolved by these learners for the two-dimensional tao problem; besides, an example
of the weights created by SMO is also depicted. C4.5 evolves trees in which the nodes represent
a decision over one variable (see figure 8.18(b)). We evaluated the model size by counting
the number of leaves of the tree. Part and GAssist create a set of rules which are defined by
conjunction of conditions over their variables, and are interpreted as an ordered activation list
(see figures 8.18(c) and 8.18(d)). Moreover, GAssist uses a default rule. UCS evolves a rule set
similar to Fuzzy-UCS, but replacing linguistic rules by interval-based rules (see figure 8.18(e)).

205

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

 - 1.000 * <0.229 0.875 > * X]
 - 0.298 * <0.708 0.437 > * X]

...

(a) SMO

x <= -2.75
| x <= -3.25: red (308.0)
| x > -3.25
| | y <= 1.75: red (55.0)
| | y > 1.75
| | | x <= -3: red (11.0/1.0)
| | | x > -3
| | | | y <= 4.25: blue (6.0)
| | | | y > 4.25: red (4.0)

...

(b) C4.5

if x ≤ -3.25 then red (308)

else if x > 2.75 then blue (347/1)

else if y ≤ 0 and x ≥ -1 then red (192/1)

...

(c) Part

if x > 2.72 and (y is [0.92,4.61] or y > 5.07) then blue

else if (x is [-0.54, 0.54] or x > 2.72) and y is [-4.28, -2.57] then blue

...

otherwise red

(d) GAssist

if x is [-6.00, -0.81] and y is [-6.00, 0.40] then red with acc= 1.00

if x is [2.84, 6.00] and y is [-5.26, 4.91] then blue with acc =1.00

if x is [-6.00, -0.87] and y is [-6.00, 0.74] then red with acc =1.00

...

(e) UCS

if x is XL then blue with w=1.00

if x is XS then red with w=1.00

if x is {XS or S} and y is {XS or S} then red with w=0.87

...

(f) Fuzzy-UCS

Figure 8.18: Examples of part of the models evolved by (a) SMO, (b) C4.5, (c) Part, (d) GAssist,
(e) UCS, and (f) Fuzzy-UCS for the two-dimensional tao problem.

Each rule can be regarded as an expert classifier in the region of the feature space that it covers.
We used the number of rules evolved as the metric of interpretability for Part, GAssist, UCS,
and Fuzzy-UCS, although we acknowledge that the measure is not directly comparable as we
later discuss. Note that we did not use equation 8.36 to compute the model size because some
of the learners are represented by an ordered activation list.

Table 8.17 shows the model sizes of the rule-based and tree-based systems. The number of
support vector machines and weights created by SMO and the number of parameters returned
by Näıve Bayes are not provided since they can be calculated from the problems characteristics.
Qualitatively, it is worth mentioning the following aspects:

• Fuzzy-UCS with weighted average, jointly with UCS, were the two methods in the ranking
with higher performance from those that use a rule-based representation. Thus, when
performance prevails over interpretability, Fuzzy-UCS is a good approach to face new
problems.

• Fuzzy-UCS with weighted average inference, as well as the other two inference schemes,
significantly created smaller populations than UCS according to a Wilcoxon signed-ranks

206

8.6. COMPARISON OF FUZZY-UCS TO SEVERAL MACHINE LEARNING TECHNIQUES

Table 8.17: Average sizes of the models build by C4.5, Part, GAssist, UCS and Fuzzy-UCS with
weighted average (wavg), action winner (awin), and fittest rules inference (nfit).

C4.5 Part GAssist UCS
Fuzzy-UCS

wavg awin nfit
ann 38 15 5 4494 2769 75 36
aut 44 21 7 4565 3872 114 74
bal 45 37 8 2177 1212 114 75
bpa 25 9 6 2961 1440 73 39
cmc 162 168 15 3634 1881 430 271
col 5 9 5 3486 4135 154 81
gls 24 15 5 3359 2799 62 36
h-c 29 21 6 2977 3574 113 46
h-s 17 18 5 3735 3415 117 62
irs 5 4 3 1039 480 18 7
pim 19 7 7 3605 2841 192 62
son 14 8 5 520 3042 178 160
tao 36 17 6 807 111 19 14
thy 8 4 4 1994 1283 37 11
veh 69 32 7 4941 3732 332 147
wbcd 12 10 3 2334 3130 138 28
wdbc 11 7 4 5206 5412 276 101
wne 5 5 3 3685 3686 95 26
wpbc 12 7 4 5299 3772 156 115
zoo 11 8 6 1291 773 16 10

test (at α = 0.05). Thus, Fuzzy-UCS achieved one of the main objectives of this work:
to create smaller models than those evolved by UCS. Notice that, in addition of evolving
smaller rule sets, the individual rules are also more interpretable since the variables are
defined by linguistic terms instead of intervals.

• Fuzzy-UCS was the only method in the comparison in which the same semantics (adapted
to the universe of discourse of each variable) is shared among all variables, and only 5
linguistic terms were specified. Consequently, Fuzzy-UCS rules were more readable.

The results also indicate that, even Fuzzy-UCS with action winner and fittest rules inferences
resulted in moderate-sized populations, the system is still not competitive, in terms of inter-
pretability, with Part, C4.5, and especially with GAssist. However, two important distinctions
need to be considered to justify these differences:

• Fuzzy-UCS and, in general, Michigan-style LCSs evolve rules that, by themselves, are
experts on the region of the feature space that they cover and collaborate to classify all
the input space. Thus, each rule can be regarded as an expert classifier; if the human
expert is only interested in a region of the feature space, only the rules involved in this

207

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

region need to be considered. On the other hand, the rules evolved by Part and GAssist
form an ordered activation list. That is, to classify a new example, rules are checked in
order and the first rule that matches determines the output. In the case of GAssist, a
default rule is used to classify all the examples not matched by any rule in the activation
list. This implies that all the previous rules need to be considered to understand why the
system is giving this prediction.

• Fuzzy-UCS evolves the rule set incrementally, whilst the other learners go through the data
several times to build a model of the data. Incremental learning gives a big advantage to
Fuzzy-UCS when learning from large data sets.

The analysis supplied in this section showed that Fuzzy-UCS is highly competitive with
respect to a large set of general-purpose machine learning techniques, which include several of
the most influential machine learning techniques (Wu et al., 2007). The proposed weighted
average version of Fuzzy-UCS was one of the best performers. Thus, a fuzzy rule-based system
could achieve accuracy rates as good as—or even better than—other machine learning techniques
with knowledge representations that can barely be read by human experts such as support vector
machines or instance based algorithms. Moreover, Fuzzy-UCS with the two other inference
schemes appeared also to be competitive. Fuzzy-UCS with action winner inference evolved
substantially reduced rule sets, although not as much as the ones evolved by GAssist and Part,
and it was only statistically surpassed by SMO with polynomial kernels, and our Fuzzy-UCS
with weighed average inference. In the next section, we explore the capabilities of the online
learning architecture of Fuzzy-UCS to learn from large volumes of data.

8.7 Fuzzy-UCS for Mining Large Data Sets

The two essential differences between Fuzzy-UCS and other rule-based machine learning tech-
niques are that Fuzzy-UCS a) does not perform any form of global optimization, and b) evolves
the rule-based knowledge online. Based on a rule set roughly initialized in the first learning
iterations by the covering operator, the system is responsible for incrementally evaluating the
parameters of the rules and refining the rule-based knowledge by creating more general and
more accurate rules. This process provides two main advantages with respect to other learners:

• Fuzzy-UCS learns from a stream of examples. This enables the system to learn from
changing environments. This differs from other machine learning methods, such as C4.5,
IBk, SMO, and Pittsburgh-style LCSs, which need to process all the training data set in
order to produce the final model.

• The learning can be stalled whenever required, and the evolved rule set can be used for
predicting the class of new input examples. The more learning iterations the system has
performed, the more general and accurate the rules should be. Consequently, the cost
of the algorithm increases linearly with the maximum population size N , the number of
variables per rule a, and the number of learning iterations nlearn

CostFuzzy−UCS = O (a · N · nlearn) , (8.37)

but it does not depend directly on the number of examples. In static data sets, it is
recommended that nlearn be, at least, the number of examples in the training data set.

208

8.7. FUZZY-UCS FOR MINING LARGE DATA SETS

Table 8.18: Properties of the 1999 KDD Cup intrusion detection data set. The columns describe:
the identifier of the data set (Id.), the number of instances (#Inst), the total number of features
(#Fea), the number of real features (#Re), the number of nominal features (#No), the number
of classes (#Cl), the proportion of instances with missing values (%MisInst), and the dispersion
of the data set (Disp) computed as #Fea/#Inst.

Id. #Inst #Fea #Re #No #Cl %MisInst %Disp
kdd’99 494,022 41 35 6 23 0 8.3 · 10−5

In this section, we exploit the benefits of online learning in Fuzzy-UCS and apply the system
to mine very large data sets. Specifically, we test the performance of Fuzzy-UCS on the 1999
KDD Cup intrusion detection data set (Hettich and Bay, 1999). In the following, we describe
the data set and present the experimental results.

8.7.1 Data Set Description

The 1999 KDD Cup intrusion detection data set gathers a large collection of examples of a
wide variety of network intrusions simulated in a military environment. We used the subset of
494 022 examples provided in (Hettich and Bay, 1999) that advocate 23 different classes. Each
example consists of 41 attributes, which usually characterize network traffic behavior. Table
8.18 summarizes the main traits of the data set.

8.7.2 Results

We ran Fuzzy-UCS on the KDD’99 domain with the default configuration as in the previous
section except for θGA = 200 and P# = 0.2. We increased the period of GA application
(θGA = 200) to permit the classifiers to receive more parameter updates before undergoing a
genetic event. We also diminished the probability of generalization in covering (P# = 0.2)
since the number of examples per dimension was very high. We ran the experiment for 2 000 000
learning iterations, so that Fuzzy-UCS only received each learning instance an average of 4 times.
As in all the experiments performed in this work, to obtain reliable estimates, we employed a
10-fold cross validation methodology (Dietterich, 1998).

Figure 8.19 plots the evolution of the test performance and the population size of Fuzzy-
UCS with action winner inference in the first 50 000 learning iterations. That is, we stopped
the learning every 2 500 iterations and tested the rule set with the test fold; each dot in the
plot corresponds to one of these measurements. Note that the system quickly evolved a highly
accurate population. After seeing the first 35 000 examples, that is, a 7% of the whole training
data set, the test performance was already about 99%. Increasing the number of learning
iterations did not significantly improve the average performance, but it did create more general
and equally accurate classifiers. This behavior can be observed in table 8.19, which depicts
the test accuracy and the rule set size obtained by Fuzzy-UCS with weighted average inference
(1st column), action winner inference (2nd column), and fittest rules inference (3rd column) at
different learning iterations. That is, every 500 000 learning iterations, we used the corresponding

209

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

0 25000 50000 75000 100000 125000 150000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Learning Iterations

Test Performance

Population size / 6400

Figure 8.19: Evolution of test accuracies and the population size of Fuzzy-UCS with action
winner inference in first 50 000 learning iterations of the 1999 KDD Cup data set.

Table 8.19: Test performance and number of rules evolved by Fuzzy-UCS with weighted average
(wavg), action winner (awin), and fittest rules (nfit) in the 1999 Kdd Cup intrusion detection
data set at different number of learning iterations.

#Iter
wavg awin nfit

perf. #rules perf. #rules perf. #rules
500 000 99.32 1944 99.13 541 99.27 417

1 000 000 99.36 2089 99.07 492 99.25 369
1 500 000 99.37 2178 99.02 460 99.24 350
2 000 000 99.36 2257 99.00 428 99.19 323

test set to calculate the accuracy with the three types of inference. While sampling the test
examples, all the learning mechanisms of Fuzzy-UCS were disabled, so that the rule set was not
modified.

The results show that the number of rules in the final population for the action winner
and fittest rules inference decreased as the number of learning iterations increased. Thus, the
system was pushing the population toward obtaining maximally general and accurate rules. This
behavior was not so clear with the weighted average inference since this inference scheme used
all the experienced rules in the final population that have positive fitness, regardless of their
generality.

Finally, let us highlight the differences of Fuzzy-UCS with respect to a Pittsburgh-style
LCS. In the last section, we configured GAssist with a population of 400 individuals. At the
initialization phase, these 400 individuals needed to be evaluated. Thus, the condition of all the
rules of each classifier was matched with each of the training instances. This means that, in the
population initialization, a Pittsburgh-style LCSs would go through all the data set 400 times,
seeing about 180 000 000 instances. The use of windowing mechanisms, as the ones implemented

210

8.8. SUMMARY, CONCLUSIONS, AND FURTHER WORK

in GAssist, would permit reducing the number of instances that each individual matches to be
evaluated by a constant value; nevertheless, note that, in any case, the number of evaluations
would increase linearly with the number of input examples. After this, the system would have
only the first approximation, and the evolutionary pressures would create new individuals that
needed to be evaluated. This makes these types of systems computationally expensive for large
data sets. On the other hand, note that Fuzzy-UCS only needed to see 35 000 examples to
extract a highly accurate model, and that further iterations were to create a more general rule
set. These results emphasize the advantages of online learning, which will be further exploited
in future work.

8.8 Summary, Conclusions, and Further Work

The comparative analysis performed throughout this paper has provided many valuable insights
on the behavior of Fuzzy-UCS in real-world data sets. As proceeds, we briefly summarize the
work. Later, we provide the main conclusions and future work that will be made in light
of the promising results supplied in this section. For this purpose, and with the aim of clearly
identifying where Fuzzy-UCS is placed in the machine learning community, we perform a SWOT
analysis, identifying the strengths, weaknesses, opportunities, and threats of Fuzzy-UCS.

8.8.1 Summary

In this chapter, we proposed a Michigan-style online learning fuzzy-classifier system for super-
vised learning which iteratively evolves a set of linguistic fuzzy rules which collaborate to cover
all the input space. Three schemes of inference and reduction algorithms were designed to infer
the output of unknown examples from reduced rule sets. These three mechanisms were designed
to offer different levels of rule set reduction and consequently lead to different accuracy rates.

We performed a detailed analysis of the performance and interpretability of the rule sets
evolved by Fuzzy-UCS. First, we carefully analyzed the three inference and reduction mecha-
nisms in Fuzzy-UCS with a linguistic representation, and studied if Fuzzy-UCS could generally
benefit from the flexibility provided by an approximate representation. This analysis showed
that the approximate representation resulted in models that fit the decision boundaries of the
problem more accurately. However, it was also detected that this may result in data over-fitting
in some real-world domains. In addition, the approximate representation implied a loss of inter-
pretability of the fuzzy rules. All these results supported the use of a linguistic representation.

We also compared Fuzzy-UCS to six fuzzy-rule-based learners and nine general-purpose
learners with different types of representations. The analysis showed that Fuzzy-UCS was highly
competitive with both groups of learners. In comparison with the fuzzy learners, Fuzzy-UCS
with the three types of inference presented the best performances in the study; furthermore,
it evolved rule sets with a moderate size. In comparison with the general-purpose machine
learning techniques, Fuzzy-UCS with weighted average inference was ranked among the best
learners. This showed the suitability of Fuzzy-UCS in spite of the limitations imposed by the
discretization of the feature space produced by the linguistic representation. The many benefits
of the online fuzzy-rule-based architecture, as well as some drawbacks detected in this study,
are detailed in the SWOT analysis of the next section.

211

CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

Table 8.20: SWOT analysis of Fuzzy-UCS.

Strengths Weaknesses

- It evolves highly accurate models; compara-
ble with the state-of-the-art in classification
- It uses a highly legible knowledge represen-
tation based on linguistic fuzzy rules
- It performs incremental, on-line learning
- It is capable of mining large data sets

- It generates moderate or large sized rule sets
(depending on the chosen configuration)
- Although it can deal with real, integer or
categorical features, only application for real
and integer data types is recommended

Opportunities Threats

- It may be applied in data streams; further
analysis of this problem will be carried out
- Because of the use of fuzzy logic, the algo-
rithm could be adapted to deal with vague
and uncertain data
- The proposed seminar system opens oppor-
tunities for further research on fuzzy knowl-
edge representation, the fuzzy inference en-
gine, and evolutionary operators

- A small number of interval-based rules can
be interpreted more easily than a large num-
ber of linguistic fuzzy rules
- Other learning approaches combined with
preprocessing can also deal with large data
sets

In the final step of the analysis, we exploited the incremental learning architecture of Fuzzy-
UCS to extract a model from a large data set: the 1999 KDD Cup intrusion detection data set.
It was found that Fuzzy-UCS could quickly evolve a highly accurate model, having seen only
the ten percent of the total number of examples in the domain. Incremental learning enabled
us to have a rough approximation of the model after a few thousand learning iterations, further
refining the rule set as the system received more examples.

8.8.2 SWOT Analysis

All the evidence provided through the experimentations is summarized in the SWOT analysis
presented in table 8.20, where strengths represent the main advantages of Fuzzy-UCS, weaknesses
show its drawbacks, opportunities outline some suggested further lines of investigation, and
threats include some optional approaches considered by other methods that could compete with
our proposal.

Fuzzy-UCS has four main strengths. First, the system presented high accuracy, which sup-
ports the use of Fuzzy-UCS in complex problems. Second, it uses linguistic fuzzy rules, which
are much more readable than interval-based rules since all the variables share the same semantics
and only a small number of linguistic terms per variable are defined (specifically, in our experi-

212

8.8. SUMMARY, CONCLUSIONS, AND FURTHER WORK

ments we only used five linguistic terms per variable). This is really important for domains with
high dimensionality where each variable presents different ranges. Third, Fuzzy-UCS is an online
process that performs incremental learning, and so, the system neither has knowledge about the
data set nor does any kind of global optimization. And fourth, since the run-time complexity
of Fuzzy-UCS does not depend on the number of instances in the data set, our system is very
useful for mining large amounts of data as we showed with the KDD’99 problem, which consists
of about half a million instances, 41 features, and 23 classes.

The main weakness of the system is that, despite the application of reduction schemes, Fuzzy-
UCS evolves slightly larger rule sets than those created by other machine learning techniques
such as GAssist. Consequently, the number of rules may hinder the interpretability of the
evolved knowledge. However, as discussed in previous sections, it is worth highlighting the key
differences between the types of rules build by GAssist and Fuzzy-UCS. That is, GAssist does
not share any semantics between variables, makes the rules available in an ordered decision
list—therefore, each rule depends on the previous rules in the list—, and uses a default rule.
Conversely, Fuzzy-UCS evolves independent classifiers that do not depend on the context, and
no pressure is applied to evolve default rules. A less important feature of our system is that,
although it can work with categorical input variables, fuzzy rules are especially useful for real
or integer-valued variables, since in the former case the rule would be equivalent to a classical
crisp (or non-fuzzy) one.

We also want to honestly mention some possible threats to Fuzzy-UCS. On the one hand,
an expert might find a small number of interval-based rules more legible than many linguistic
fuzzy rules (in fact, the degree of interpretability of a system is very difficult to assess when
different knowledge representations are compared). On the other hand, there are hybrid learning
approaches to deal with problems with large data sets, such as the inclusion of data set reduction
techniques, which would allow some of the systems compared in this chapter to address these
problems.

Finally, the proposed Fuzzy-UCS algorithm shows some interesting opportunities which will
be developed in future work. Firstly, because of its incremental learning capability, the system
can be applied to extract information from data streams, which is currently a topic of increasing
interest (Arasu et al., 2003; Aggarwal, 2007). Furthermore, the use of fuzzy logics allows the
system to be adapted for managing vague and uncertain data, very common in many real-world
problems (Sánchez and Couso, 2007; Sánchez et al., 2007). Finally, as future work, we can
consider the inclusion of some of the techniques proposed by other systems (such as inference
based on an activation list with default rule as in GAssist) and the design of new techniques to
achieve greater reductions of the fuzzy rule set without a significant loss of test performance, as
well as a more detailed research of other fuzzy knowledge representations.

213

Chapter 9

Summary, Conclusions, and Further
Work

This thesis has investigated learning classifier systems as competitive methods for machine
learning, addressing two important challenges not only for LCSs, but also for different machine
learning techniques: extracting key knowledge from rare classes and building models that are
comprehensible to human experts. To address the first challenge, we started a journey departing
from a decomposition of the key elements that we would require for any LCS to detect rare classes
and finishing with the improvement and application of LCSs to real-world domains with rare
classes. To approach the second challenge, we took an inventiveness approach to hybridize the
best practices of LCSs, GAs, and fuzzy systems; this resulted in the first Michigan-style learning
fuzzy-classifier system for classification tasks.

In this chapter, we first summarize the results and critical observations provided along the
consecution of each objective. Thereafter, in addition to the particular conclusions derived and
contributions provided under each case, we abstract the work and make an effort to highlight
the lessons learned on the way. Finally, we briefly discuss future work that will be made in light
of the insights and results provided by this thesis.

9.1 Summary and Conclusions

The present work started with the identification of Michigan-style LCSs as mature machine
learning techniques for which we had (1) competent implementations, (2) theory for design, and
(3) applications in important domains. In addition, we discussed three main characteristics that
make Michigan-style LCS an appealing alternative for machine learning. That is, Michigan-style
LCSs (1) evolve a distributed solution in parallel, searching at different pace in different regions
of the search space, (2) create a set of independent classifiers, and (3) learn the model online from
a stream of examples. Among them, we highlighted the added value provided by their online
learning architecture, which makes them suitable to deal with current scientific and industrial
applications in which data are usually generated online and models need to be learned on the
fly. With these potential advantages of Michigan-style LCSs in mind, we proposed to address
the following two critical challenges in machine learning with LCSs:

215

CHAPTER 9. SUMMARY, CONCLUSIONS, AND FURTHER WORK

1. Learning from domains that contain rare classes.

2. Building more understandable models and bringing reasoning mechanisms closer to human
ones.

These challenges were studied in the context of two particular LCSs: XCS and UCS. We selected
XCS since it is, by far, the most influential Michigan-style LCS. We also included UCS as this
thesis was especially concerned with classification problems, and UCS is a specialization of XCS
for supervised learning. The inclusion of the two LCSs set the first objective of this work. That
is, UCS was identified as a young system that had received no research since its initial design in
2003, and some open issues such as the suitability of the fitness computation scheme, which did
not share resources, remained unaddressed. In addition, the advantages of the new architecture
of UCS with respect to XCS in classification problems needed further investigation. For this
reason, we first proposed to update UCS and compare it with XCS on a set of boundedly
difficult classification problems. Then, taking XCS and the new version of UCS as starting
point, we focused on the challenges of modeling rare classes and building more comprehensible
classification models. More specifically, we articulated the following four objectives:

1. Revise and update UCS and compare it with XCS.

2. Analyze and improve LCSs for mining rarities.

3. Apply LCSs for extracting models from real-world classification problems with rarities.

4. Design and implement an LCS with fuzzy logic reasoning for supervised learning.

Below, we summarize the work done under each objective and provide the key conclusions
extracted from each point.

Revise and update UCS and compare it with XCS. The first objective of this thesis proposed
the design of a fitness-sharing scheme for UCS, since resource sharing schemes have been
shown to provide benefits to both GAs and LCSs. Therefore, we followed a creative analysis
to design a fitness-sharing scheme for UCS based on those of XCS and other Michigan-style
LCSs. With the introduction of the fitness-sharing scheme, the parameter update procedure
of UCS was slightly modified. To evaluate whether the new scheme was beneficial to UCS, we
compared the original UCS with UCS with fitness sharing on a collection of four boundedly
difficult problems. Later, XCS was included in the comparison with the aim of highlighting
the differences between both LCSs in classification tasks.

The empirical analysis provided several insights into the advantages of fitness sharing and
into the differences between XCS and UCS. On the one hand, fitness sharing, while not being
prejudicial in any problem, appeared to be crucial in domains where there was a tendency
to create over-general classifiers. In these problems, the new fitness-sharing scheme enabled
UCS to make a stronger pressure toward the removal of over-general classifiers when the first
accurate classifiers were discovered. On the other hand, the analysis also made evident that
the specialized architecture of UCS enabled the system to solve the tested problems with less
computational resources than those required by XCS. And finally, as UCS computes classifiers’
accuracy as the true proportion of correct predictions of the classifier instead of as the accuracy

216

9.1. SUMMARY AND CONCLUSIONS

of the payoff prediction, the system produced a more reliable fitness pressure toward the optimal
population than XCS. These results were expected as UCS is specialized for supervised learning
tasks, whereas XCS is a more general architecture that can be applied to reinforcement learning.
Thence, the experimental results confirmed that the architecture of UCS is better suited than
the XCS’s one for classification problems.

Analyze and improve LCSs for mining rarities. With XCS and the updated version of UCS,
we faced the problem of mining imbalanced domains with LCSs. Instead of developing new
approaches that may improve the system performance in particular domains—but provide little
understanding of the real problems that may affect LCSs—we took a more general approach.
We abstracted the problem and considered any Michigan-style LCS as a system that evolves
a distributed collection of sub-solutions—or niches, which, in turn, contain classifiers—that
are evaluated and created online. Thence, we considered the problem of having different
distributed sub-solutions—some of which are activated with a lower frequency—that compete
for the environmental resources. Then, we followed a design decomposition approach and
defined five elements, concerning the creation and evaluation procedures, that needed to be
guaranteed to efficiently and scalably solve class-imbalanced problems.

The elements of the design decomposition were analyzed for the particular cases of XCS and
UCS. Facetwise models were derived to explain the different elements, and critical conditions
for convergence were detected for both systems. More specifically, the study included the
following five points:

• The parameter update procedures were examined, providing key recommendations on
how they should be configured to ensure an accurate estimation of the parameters of
over-general classifiers.

• The capabilities of the covering operator to generate classifiers representing rare classes
were analyzed.

• Population size bounds were derived to guarantee that both XCS and UCS could sustain
niches that are infrequently activated.

• The effect of the period of activation of the GA on the preservation of infrequent solutions
was studied.

• Takeover time expressions for proportionate and tournament selection were deduced, and
critical conditions of niche extinction were developed in the same analysis.

In summary, for XCS, we theoretically demonstrated and empirically validated (1) that the
parameter update procedure needs to be set inversely proportional to the imbalance ratio to
ensure accurate estimates of classifier parameters1 and (2) that either the population size or the
period of application of the GA needs to increase linearly with the imbalance ratio to warrant
that an accurate model can be extracted from the under-sampled class. Also, conditions
where no convergence can be guaranteed were predicted by the niche extinction models. For
UCS, the same conclusions could be extracted, with two key differences. First, the parameter
update procedure of UCS was more robust than that of XCS and did not need any especial
configuration to deal with domains with large imbalance ratios. Second, the theory developed

1In particular, we showed that, with the Widrow-Hoff rule, β needs to decrease linearly with the imbalance
ratio to ensure reliable estimates of over-general classifier parameters

217

CHAPTER 9. SUMMARY, CONCLUSIONS, AND FURTHER WORK

for UCS predicted an upper bound on the system behavior. All these analyses resulted in key
insights, which were articulated as configuration recommendations, enabling both XCS and
UCS to solve highly imbalanced problems that previously eluded solution.

Overall, the main conclusion derived from this objective is that LCSs are competitive machine
learning techniques that can effectively solve problems with rare classes, scaling linearly with
the imbalance ratio. Therefore, this supports that LCSs are ready to tackle real-world problems
with rarities.

Apply LCSs for extracting models from real-world classification problems with rarities.
Facetwise analysis provided key insights about LCSs behavior on domains with class imbal-
ances, pointing toward several recommendations that need to be followed to learn accurate
models from rare classes efficiently. These models proposed to configure both XCS and UCS
according to the imbalance ratio of the training data set, which was assumed to map the
imbalance ratio among starved and nourished niches. Nonetheless, this information is not
available in real-world domains with unknown characteristics, which opens a gap between the
recommendations provided by the theory and its application.

Therefore, under the current objective, we first started to bridge the gap between theory
and application in real-world domains. For this purpose, we redefined the concepts of niche,
representative classifier, and over-general classifier for domains with continuous attributes.
This also led to the redefinition of the problem of mining rare classes. In the interval-based
representation, we detected that the niche formation depended on the combination of the
expressiveness of the knowledge representation and distribution of examples in the feature
space. In brief, we showed that starved niches—or small disjuncts, as termed in the machine
learning community—could appear in completely balanced data sets if the form defined by the
conditions of the classifiers—in our case, hyper rectangles—did not match the shape of the
class boundary. For example, the hyper rectangular representation required the creation of
starved niches to accurately approximate oblique class boundaries, regardless of the imbalance
ratio of the training data set. Thence, this observation evidenced the relevance and broadness
of the problem with starved niches, which can appear in any real-world problem.

Therefore, we identified the new problem of estimating the ratio of the frequency of activation
of nourished niches to the frequency of activation of starved niches to enable the application of
the recommendations extracted from the theoretical analysis. For this purpose, we designed a
heuristic procedure that automatically computes the niche imbalance ratio and self-adapts both
XCS and UCS. Empirical results showed that the self-adaptation mechanisms enabled XCS
and UCS to solve problems with rare classes without being informed of the actual imbalance
ratio.

With the new heuristic procedure, XCS and UCS were ready to face real-world problems, self-
adapting themselves according to the information gathered during the evolution. Then, the
objective was to analyze whether the two LCSs were competitive with respect to other machine
learning techniques in extracting classification models from domains with rare classes. For this
purpose, we compared the accuracy of XCS’s and UCS’s models with those created by three
of the most influential machine learning techniques: C4.5, SMO, and IBk. The empirical
results showed that both LCSs provided the most accurate models on average. In addition, we
extended the comparison by considering four of the most-competent re-sampling techniques:
random over-sampling, under-sampling based on Tomek links, SMOTE, and cSMOTE. In

218

9.1. SUMMARY AND CONCLUSIONS

general, random over-sampling and SMOTE enabled the learners to create more accurate
models of the minority class.

In addition to the observations pointed out in the experimental analysis, the whole comparison
came with a crucial conclusion: the performance of each learning system—and each re-sampling
technique if used—depended on each particular problem. That is, although general conclusions
could be extracted, such as that XCS was the classifier that obtained the most accurate models
in the majority of the problems, this does not guarantee that the best method on average will
be the best performer for a new real-world, unknown problem. Actually, along the analysis, in
several particular cases, the worst method of the comparison provided the most accurate models
or vice versa, or re-sampling techniques that resulted in poorer results than those obtained with
the original data sets were identified. Therefore, this conclusion demands further studying the
characteristics that make real-world problems difficult to learn for each specific learner. This
future line work is discussed in more detail in the following sections.

Design and implement an LCS with fuzzy logic reasoning for supervised learning. After
analyzing and improving LCSs with the aim of evolving more accurate models of rare classes,
the last objective of this work pointed toward increasing the interpretability of the models
evolved by LCSs and using reasoning mechanisms that are similar to the human ones. Providing
understandable models is a key aspect in supervised learning, especially in critical domains
where human experts may require an explanation of the prediction to contrast it with their
knowledge, thoughts, or beliefs. For example, in medical domains, human experts may require
an explanation of a given diagnosis to see if it confirms or refutes their initial diagnosis.

While in the previous objectives we took an analytic approach to studying existing systems,
we followed a creative analysis to achieve the last objective of the thesis. That is, we mixed
the ideas that come from LCSs—which provide an accurate online evaluation system—, GAs—
which represent a robust discovery component—and fuzzy logic—which supplies human-like
representations and reasoning mechanisms. The combination of the three ideas was not novel
itself, but the way in which the elements were combined was. The result was the first Michigan-
style fuzzy-classifier system that evolves a linguistic fuzzy rule set online for classification tasks.
It is worth noting that the system was not a result of a trial/error process, but was derived from
a careful analysis of the different ways in which fuzzy logic could be introduced in both the
representation and the reasoning mechanisms of UCS. The presented learning method resulted
from few iterations on the initial design.

The system was provided with two important characteristics that came from the crossbreed-
ing between LCSs and fuzzy logics, which prepare the system to deal with new challenging
problems. Inherited from Michigan-style LCSs, Fuzzy-UCS consists of an online learning ar-
chitecture; therefore, it can learn from data streams (Aggarwal, 2007; Gama and Gaber, 2007).
Thence, the system can deal with applications in which a continuous flow of labeled data is
generated, which is usual in many current industrial applications. On the other hand, due
to the integration of fuzzy logic into the system, the evolved linguistic fuzzy rules are more
legible, and the reasoning mechanisms are closer to human reasoning. Moreover, rule reduction
mechanisms were designed for each fuzzy inference. Therefore, the system is prepared to deal,
effectively and scalably, with problems with vague and uncertain data, which is very common
in many real-world problems (Sánchez and Couso, 2007; Sánchez et al., 2007).

Fuzzy-UCS was extensively analyzed. As Fuzzy-UCS was applied to real-world problems with

219

CHAPTER 9. SUMMARY, CONCLUSIONS, AND FURTHER WORK

unknown characteristics, we evaluated the quality of the evolved models by comparing them
with the models created by several of the most influential machine learning techniques for pat-
tern recognition. The experimental results showed that Fuzzy-UCS statistically outperformed
all the fuzzy learners included in the comparison; also, Fuzzy-UCS was one of the best methods
when compared to non-fuzzy learners. Besides, the models evolved by Fuzzy-UCS were, by
far, more interpretable than the correspondent models in UCS. Finally, the advantages of the
hybridization of LCSs and fuzzy logics was shown by using Fuzzy-UCS to solve a very large
problem, the 1999 KDD Cup intrusion detection data set.

In general, the contributions of this work emphasize that Michigan-style LCSs represent a
general-purpose, highly-competitive framework for the evolution and the discovery of indepen-
dent classifiers online. The results provided along this work showed that this framework resulted
in competent implementations, that is XCS and UCS, that can capture and accurately model
rare classes on the fly. Furthermore, we also illustrated that LCSs easily permit the crossbreed-
ing of ideas, enabling the integration of the best practices that come from several fields. All
this makes LCSs one of the most appealing alternatives for facing new challenging applications,
which usually require the discovery of knowledge from rarities, the integration of complex repre-
sentations, and the combination of new techniques. For this reason, LCSs probably have much
to say in the future of machine learning.

In addition to the conclusions extracted from the contributions of this work, the development
of the present thesis also resulted in valuable lessons for facing new engineering and machine
learning problems. The next section discusses these lessons in more detail.

9.2 Lessons from LCSs Design and Application

On our way toward the thesis objectives, two notably different strategies have been followed.
While we employed an analytical approach to study LCSs in domains with rare classes, we took
an inventiveness methodology and creative analysis to build a machine that mixed the ideas
coming from the LCSs, the GAs, and the fuzzy logic fields. Here, we raise the analysis one notch
and emphasize the general lessons learned from the application of the two approaches to solve
the problems that were defined in the beginning of this document. More specifically, we want
to emphasize the following two key lessons:

1. The importance of design decomposition.

2. The relevance of ideas crossbreeding for successfully dealing with complex applications.

These two lessons are further discussed in what follows.

The importance of design decomposition. When we started to approach the challenge of learn-
ing from imbalance domains with LCSs, we faced the problem of improving a complex existing
learning architecture in a complicated problem. At that point of the thesis, we initially thought
about the following three main methodologies to address the problem:

1. Follow intuition to design new modifications that may help discover rare classes.

220

9.2. LESSONS FROM LCSS DESIGN AND APPLICATION

2. Develop models of the whole system.

3. Decompose the problem in critical elements and analyze them separately.

The first two approaches provide two completely opposite ways of focusing the problem. Using
intuition to develop new approaches may lead to some modifications of a particular system
that may help get more accurate models of rare classes. Actually, this approach was initially
followed in (Orriols-Puig and Bernadó-Mansilla, 2005a,b, 2007). Although this resulted in
some improvements on LCSs behavior, these works could not explain the real problems that
LCSs may need to face when learning from domains with rare classes. On the other end of
the spectrum, we have the option of building global models of the system and then using these
models to study the impact of rare classes. The main difficulty of this approach is that the
models have to consider all the interactions among the system components. Thence, this may
require a high cost to derive complex mathematical equations, especially in LCSs, where several
components interact during learning. Moreover, the complexity of the equations themselves
may hamper some key insights.

In this thesis, we took the third approach and followed a design decomposition methodology.
That is, we sought an effective design decomposition for the problem of creating accurate
models of rare classes with LCSs. This lead us to a decomposition in five elements that
focused on the problems that LCSs may have in discovering starved niches, and the study of
each element permitted us to derive simple models that provided key insights into the system
behavior and served as a design tool to improve LCSs’ ability to solve highly imbalanced
domains. The benefits of this approach have been soundly evidenced along the present work.

Therefore, the lesson extracted here is that design decomposition is a powerful tool not only
for analyzing GAs and LCSs, but also for studying any complex system for which models of
the whole system are too complex or costly. That is, design decomposition proposes a novel
engineering methodology in which complex problems are analyzed by decomposing them into
simpler subproblems and, with little algebraic effort, facetwise or “little” models are derived
for each subproblem assuming that all the other facets behave in an ideal manner. The models
of different facets provide key insights on the system behavior and can be used as a tool
for designing new competent systems that satisfy the requirements identified by the models.
Furthermore, this approach enables us to save efforts in computing more complex models that,
sometimes, may hide some important insights in their complexity. This thesis has provided
a good example of how “little” models can help us increase our understanding of complex
systems, solving new challenging problems that previously eluded solution. Therefore, the
results of this work provide another example of the power of design decomposition, which we
hope help encourage other researchers to follow this approach—or even utilize some of the
derived models—to analyze complex systems and apply LCSs to new challenging problems.

The relevance of ideas crossbreeding for successfully dealing with complex applications. The
second important conclusion of the present work is the need of mixing ideas that come from
different learning paradigms to tackle, scalably and efficiently, increasingly complex real-world
problems and to build more robust, intelligent, and practical machine learning techniques.
That is, current real-world applications usually consist of a large number of examples with
complex structures and, sometimes, with vagueness and uncertainty. Most of the typical
learning methods are not ready to deal with these types of data or, simply, are not scalable
and so not applicable to large data sets. Therefore, this situation demands gathering the best

221

CHAPTER 9. SUMMARY, CONCLUSIONS, AND FURTHER WORK

practices of different machine learning fields and building scalable learners that take the best
characteristics of each area. Actually, fields such as soft computing were born with the aim of
crossbreeding the ideas that come from different machine learning areas.

Fuzzy-UCS is an example of fruitful crossbreeding of LCSs, GAs, and fuzzy logics which re-
sulted in a system that can evolve fuzzy rule sets online from a stream of data that may contain
vagueness or uncertainty. In addition to the benefits shown in the application of Fuzzy-UCS
across several problems, its design comes with the second key lesson of this thesis. That is, the
design of Fuzzy-UCS makes evident that LCSs are a “friendly” framework for ideas crossbreed-
ing, probably because they were initially designed as a general framework to create artificial
intelligence itself. If we regard the general model proposed by the several Michigan-style LCSs
studied in the present work, we can realize that LCSs propose a largely general learning model
that permits easily incorporating new knowledge representations, apportionment of credit algo-
rithms, or even new search procedures. Therefore, in the current machine learning era, where
the field is constantly faced with increasingly challenging problems and ideas crossbreeding
appear as the best way to tackle these problems, LCSs turn to be one of the most appealing
methods to build next generation machine learning techniques.

All the results, the conclusions, and the lessons learned in this work have also served to fix
new objectives that will be approached in further work. In the next section, we take a glance
ahead and define two major future research lines that derive from this thesis.

9.3 Further Work

Along the consecution of the objectives of this thesis, several open issues that demand further
research have been identified in the end of each chapter. Here, we discuss two important future
work lines that come directly or indirectly from the work of this thesis. These two new goals
that will guide our immediate future work are:

1. Design measures to characterize real-world classification problems and relate this charac-
terization to the theory.

2. Adapt LCSs to extract association rules online.

The former, the need for a better characterization of real-world classification problems, was al-
ready emphasized in the comparison of several machine learning techniques performed in chapter
7. The later, the adaptation of LCSs to extract association rules online, comes motivated by the
types of problems in industry that currently face machine learning techniques. The motivation
for each of these two lines is elaborated in more detail in what follows.

Design measures to characterize real-world classification problems and relate this character-
ization to the theory. The study of the class-imbalance problem in LCSs indirectly evidenced
the increased difficulty of dealing with real-world problems. That is, in the first stage of the
study, we took an analytical approach, derived facetwise models, and validated these models
with artificial problems in which we could control the different dimensions of problem diffi-
culty. The experiments emphasized that, given the particular complexities of the artificial

222

9.3. FURTHER WORK

problems, the theory could explain the behavior of LCSs on these problems. Nonetheless, the
same analysis could not be directly applied to real-world problems. That is, the fact that the
characteristics of real-world problems were unknown opened a gap between the theory and its
application.

Therefore, to evaluate LCSs performance, we compared them with a collection of top-notch
machine learning techniques and analyzed which learners resulted in the most accurate results
on average. This type of comparison permitted us to extract conclusions on the average
performance of the learners; however, it provided poor information about whether a given
learner would be the best performer in a new real-world problem. This was an inevitable effect
of having no information about the intrinsic complexities of the new problem. Therefore, in
general, we could barely predict whether a given learner can efficiently solve a new problem.
To do this, we need to (1) identify the sources of complexity that affect each particular learner
and (2) create some methodology to characterize real-world problems. While the first types of
analyses are common in machine learning (the facetwise analysis provided in this thesis is a
clear example), the characterization of real-world problems is still a young field.

Consequently, the first future work line aims at advancing in the characterization of real-world
problems. For supervised learning, Ho and Basu (2002) designed a collection of metrics that
provide some indicators about the geometrical characteristics of the class distributions in the
training data set. Some analyses that relate these metrics with the error of XCS have been
already conducted (Bernadó-Mansilla and Ho, 2005; Bernadó-Mansilla et al., 2006). In spite
of these first successful analyses, these complexity metrics were not enough to fully capture all
the sources of difficulty of classification problems. Thence, as further work, we will follow up
these works, taking the defined metrics as starting point, with the aim of defining more metrics
and using them to characterize real-world problems. This characterization would permit us to
approach the theory to the actual difficulties of real-world problems.

Moreover, it appears appealing to use these metrics to enrich the study of different learning
systems by comparing them on collections of data sets with a certain given complexity. That is,
the characterization of learning domains would permit identifying the problem characteristics
for which each learner is better suited than the others, thence, identifying the sweet spot
where each learning algorithm is the best in the comparison. Furthermore, the definition of
complexity metrics would enable us not only to assess the difficulty of existing data sets, but
also to create new data sets with certain complexities to evaluate learning methods. The first
steps toward this promising research area have been taken in (Macià et al., 2008a,b,c).

Adapt LCSs to extract association rules online. Under the fourth objective of this thesis, we
designed Fuzzy-UCS, preparing the system to deal with streams of labeled data with vagueness
and uncertainty. This resulted in a powerful tool that was shown to be able to mine large data
sets online, which were made available as data streams. We already argued that the online
learning architecture made Fuzzy-UCS an appealing alternative to extract classification models
from data streams, which is increasingly demanded in industrial applications.

In addition, there are many industrial applications which generate streams of unlabeled data
(Aggarwal, 2007; Gama and Gaber, 2007). This defines an unsupervised learning problem, in
which learning examples need to be processed on the fly to extract useful information. To solve
these types of problems, we propose to use the same ideas of XCS, UCS, and Fuzzy-UCS and
prepare LCSs to extract key information from these streams of data in form of association rules.

223

CHAPTER 9. SUMMARY, CONCLUSIONS, AND FURTHER WORK

For this purpose, concepts of association rule mining would be incorporated to a system similar
to Fuzzy-UCS, and the affected mechanisms of the system would be modified to deal with the
new representation. Note that this future work line also puts emphasis on the crossbreeding
of ideas to solve a new challenging problem in machine learning. That is, we propose to define
an unsupervised learning technique by combining the best practices in LCSs, GAs, fuzzy logic,
and association rule mining.

Recently, the first steps toward this direction have been taken. A Michigan-style LCS for
association rule mining, which incorporates many of the mechanisms discussed in this thesis,
was designed in (Orriols-Puig et al., 2008g). Later, another version of the same system, which
included the fuzzy representation of Fuzzy-UCS, was used to model the consumer behavior
in a web-based trust model (Orriols-Puig et al., 2008i,h). New applications as well as more
analyses of the system behavior will be conducted as further work.

After all the conclusions and future work lines provided through all the chapters of this
thesis and collected in the present and previous sections, little extra motivation can be given
to highlight the many future lines of this work. To conclude with the thesis, I would only
recall to the reader the innovation and creativity capabilities of evolution, which by means of
basic genetic information (building blocks) mixing, random changes, and selection-of-the-fittest
principle, has been able to provide accurate, adapted, and diverse solutions to life. Therefore,
the power of competent GAs, LCSs, and GBML systems encourages their application to solve
increasingly challenging problems that require a dose of innovation and creativity. Without
GAs, many real-world problems would not have been solved. Surely, GAs and GBML have a
lot to contribute in the following decades.

224

Appendix A

Description of the Artificial
Problems

This appendix describes the artificial problems used along the chapters of this thesis. For each
problem, we provide a concise description, specify and give a particular example of the best
action map [B] (Bernadó-Mansilla and Garrell, 2003) and the complete action map [O] (Wilson,
1995; Kovacs and Kerber, 2001) of the problem, and describe the dimensions along which the
problem difficulty can be moved.

A.1 Parity

The parity is a problem that has widely been used as a benchmark in LCS since it was originally
introduced by Kovacs (2001) to show the dependence of XCS’s performance on the optimal
population size. The problem is defined as follows. Given a binary string of length `, where
there are k relevant bits (0 < k ≤ `), the output is the number of one-valued bits in the k relevant
bits modulo two. The complexity of the problem can be moved along the building block length,
which is controlled with the parameter k. That is, larger values of k poses more complexity to
the learner, which needs to discover larger building blocks, and so, larger populations, without

Table A.1: Best action map (first and second columns) and complete action map (all columns)
of the parity problem with ` = k = 4.

0000:0 1000:1 0000:1 1000:0
0001:1 1001:0 0001:0 1001:1
0010:1 1010:0 0010:0 1010:1
0011:0 1011:1 0011:1 1011:0
0100:1 1100:0 0100:0 1100:1
0101:0 1101:1 0101:1 1101:0
0110:0 1110:1 0110:1 1110:0
0111:1 1111:0 0111:0 1111:1

225

APPENDIX A. DESCRIPTION OF THE ARTIFICIAL PROBLEMS

Table A.2: Best action map (first column) and complete action map (all columns) of the decoder
problem with ` = k = 4.

0000:0 ###:0 #1##:0 ##1#:0 ###1:0
0001:1 ###:1 #1##:1 ##1#:1 ###0:1
0010:2 ###:2 #1##:2 ##0#:2 ###1:2
0011:3 ###:3 #1##:3 ##0#:3 ###0:3
0100:4 ###:4 #0##:4 ##1#:4 ###1:4
0101:5 ###:5 #0##:5 ##1#:5 ###0:5
0110:6 ###:6 #0##:6 ##0#:6 ###1:6
0111:7 ###:7 #0##:7 ##0#:7 ###0:7
1000:8 ###:8 #1##:8 ##1#:8 ###1:8
...
1111:15 ###:15 #0##:15 ##0#:15 ###0:15

fitness guidance.

The best action map size consists of 2` rules, each one with all the k relevant bits specified
and predicting the correct class. The complete action map doubles the best action map, as it
also maintains specific rules predicting the wrong class; thence, the size of the complete action
map is |[O]| = 2`+1. Table A.1 shows the best action map and the correct action map for a
parity problem with ` = 4 and k = 4.

A.2 Decoder

The decoder problem is an artificial problem with binary inputs and multiple classes. Given
an input of length `, where there are k relevant bits (0 < k ≤ `), the output is determined by
the decimal value of k relevant bits. Therefore, the k relevant bits form a building block. The
number of classes increases exponentially with the condition length, that is, numclasses = 2`.
Thus, k controls three dimensions of complexity: the number of classes, the length of the building
blocks of the problem, and the size of the optimal population.

The best action map is formed by 2` classifiers, each one with the k relevant variables
specified and the class set to the decimal value of the k relevant bits. The complete action map
adds ` consistently incorrect rules per each consistently correct rule of the best action map;
thus, |[O]| = 2` · (` + 1). Table A.2 shows the best action map and the correct action map for a
decoder problem with ` = 4 and k = 4. Note that whilst the best action map contains classifiers
with all k bits specified, the correct action map contains consistently incorrect classifiers that
have all bits general but one.

A.3 Position

Position is an imbalanced multi-class problem defined as follows. Given a binary-input instance
of length `, the output is the position of the left-most one-valued bit. The best action map

226

A.4. MULTIPLEXER

Table A.3: Best action map (first column) and complete action map (all columns) of position
with `=6.

000000:0 1#####:0 #1####:0 ##1###:0 ###1##:0 ####1#:0 #####1:0
000001:1 1#####:1 #1####:1 ##1###:1 ###1##:1 ####1#:1 #####0:1
00001#:2 1#####:2 #1####:2 ##1###:2 ###1##:2 ####1#:2
0001##:3 1#####:3 #1####:3 ##1###:3 ###0##:3
001###:4 1#####:4 #1####:4 ##0###:4
01####:5 1#####:5 #0####:5
1#####:6 0#####:6

Table A.4: Best action map (first column) and complete action map (all columns) of the
multiplexer problem with ` = 6.

000###:0 000###:1
001###:1 001###:0
01#0##:0 01#0##:1
01#1##:1 01#1##:0
10##0#:0 10##0#:1
10##1#:1 10##1#:0
11###0:0 11###0:1
11###1:1 11###1:0

consists of ` + 1 rules with different levels of generalization. The complete action map needs
to maintain `2+3`

2 consistently incorrect rules; thence, the size of the complete action map is
|[O]| = ` + 1 + `2+3`

2 Table A.3 shows the best action map and the complete action map for
position with ` = 6. Notice that k controls four dimensions of complexity: the number of classes,
the length of the building block, the size of the optimal population, and the imbalance ratio
between the most general and the most specific optimal classifier.

A.4 Multiplexer

The multiplexer problem is one of the most used benchmarks in accuracy-based learning classifier
systems (Wilson, 1995). The multiplexer is defined for binary strings of size `, where the first
log2 ` bits are the address bits and the remaining bits are the position bits. Then, the output
is the value of the position bit referred by the decimal value of the address bits. Note that k
controls two dimensions of problem difficulty: the length of the building block and the size of
the optimal population.

The best action map consists of 2log2`+1 classifiers with all the address bits and the cor-
responding position bit specified and all the other bits set to ‘#’. The complete action adds
2log2`+1 classifiers with the same conditions as those in the best action map, but the opposite
class; therefore, |[O]| = 2log2`+2. Table A.4 shows an example of the best action map and the

227

APPENDIX A. DESCRIPTION OF THE ARTIFICIAL PROBLEMS

complete action map for the multiplexer problem with ` = 6.

A.4.1 Imbalanced Multiplexer

The imbalanced multiplexer was introduced in (Orriols-Puig and Bernadó-Mansilla, 2006a) to
analyze the effects of under-sampled classes in XCS. Departing from the original multiplexer
problem, the imbalanced multiplexer under-samples one of the classes—labeled as the minority
class—so that the ratio of the number of instances of class 0 to the number of instances of class
1 sampled to the system equals to the parameter ir, which is specified by the user. The best and
the complete action map are the same than those of the original multiplexer problem. Therefore,
the system has to generalize the same optimal population regardless of the fact that the instances
of one of the classes are under-sampled. Note that the imbalanced multiplexer enables moving
the complexity of the problem along three dimensions: the length of the building block, the size
of the optimal population, and the imbalance ratio.

A.4.2 Multiplexer with Alternating Noise

The multiplexer with alternating noise was firstly used in (Butz, 2006) to show that XCS with
tournament selection is able to handle data sets with inconsistent data. The problem modifies
the multiplexer by adding alternating noise. That is, when a new input instance corresponding
to the multiplexer problem is sampled, its action is flipped with probability Px. Again, the best
and the complete action map are the same than those of the original multiplexer problem. Note
that the multiplexer with alternating noise permits moving the complexity of the problem along
three dimensions: the length of the building block, the size of the optimal population, and the
proportion of noise in the class of the learning instances.

228

Appendix B

Statistical Tests

This appendix describes the statistical tests employed along this thesis. We first briefly moti-
vate the use of non-parametric statistical tests for multiple and pairwise comparisons. Then, we
describe the methodology used to statistically analyze the results in the experimental compar-
isons of this thesis. This methodology contemplates comparisons among multiple learners and
comparisons between pairs of learners. The procedures followed and the particular tests used in
each of the two types of comparisons are explained in detail.

B.1 Statistical Tests for Contrasting Hypotheses

The strong research on machine learning has resulted in the design of several learning algorithms
whose behavior is typically compared with existing learning systems on a collection of data sets.
For this purpose, the machine learning community has agreed in some common procedures to set
up the experiments. Currently, most of the published papers use validation procedures such as
k-fold cross validation (Dietterich, 1998) to obtain reliable estimates of the metric employed to
assess the quality of the learners. In turn, this quality can be measured with different metrics; for
example, in this thesis, we have used the test accuracy, the product of TP rate and TN rate, and
the size of the models as some of these indicators. This procedure yields large tables of results
in which, for each data set and method, we have n measures of performance (n ≥ 1) that have
been obtained by applying the method in each validation set and repeating this procedure for
multiple seeds in case that either the validation process or the learning algorithm is stochastic.

The purpose of this chapter is to provide detail on the statistical tests employed to analyze
these tables of results. The underlying idea is to apply statistical methods to contrast our initial
hypotheses. Some examples of these hypotheses could be

• “method A outperforms method B”, for pairwise comparisons, or

• “method A is the best of the comparison, surpassing the results obtained with methods
B, C, and D”, for multiple comparisons.

All the statistical methodology presented herein follows the recommendations by Demšar (2006),
who emphasizes the importance of using non-parametric statistical tests for the types of compar-
isons usually performed in machine learning. The reason for this is clearly stated by the author;

229

APPENDIX B. STATISTICAL TESTS

in general, parametric tests require that the input data—in our case, the tables of results, which
consist of the performance of the compared methods—satisfy strong conditions, and the tests to
check these conditions need large amounts of data—that is, a large number of data sets—to be
effective (for further details, please see (Demšar, 2006)). This is not usually the case in machine
learning. For this reason, all the statistical analyses conducted in this thesis have been based
on non-parametric tests.

In the following sections, we describe the methodology used to compare (1) pairs of learners
(section B.2), and (2) multiple learners (section B.3). All these tests are computed on tables
of results in which, for each data set and learner, a single performance measure is provided; in
case of multiple runs, the average performance is supplied. For each statistical test, we provide
a general description of which type of null hypotheses the statistical tests check and carefully
describe the process followed by the test, illustrating the procedure with an example.

B.2 Comparisons of Two Learning Systems

When two algorithms are compared, we aim at contrasting the null hypothesis of whether
“algorithm A significantly outperforms algorithm B on a collection of problems”. Following the
recommendations by Demšar (2006), in our statistical comparisons we avoided using the paired
t-test parametric test (Sheskin, 2000), probably the most used test for pairwise comparisons
in machine learning in the last decade. Although this common use, the main drawback of the
paired t-test is that it requires three conditions on the data: commensurability of the data,
normal distribution of the differences between the two random variables, and lack of outliers.
Since these three conditions are hard to satisfy in the typical machine learning comparisons,
our statistical analysis used the non-parametric counterpart of the paired t-test, that is, the
Wilcoxon signed-ranks test (Wilcoxon, 1945). The Wilcoxon signed-ranks test can be reliably
applied to the average of the performance measure computed for a machine learning technique
and imposes no additional restrictions to the data. As proceeds, this test is explained in more
detail.

B.2.1 The Wilcoxon Signed-Ranks Test

The Wilcoxon signed-ranks test ranks the differences in the performance of two classifiers for
each data set, ignoring the signs, and compares the ranks for the positive and the negative
differences. As proceeds, we explicate the procedure to compute the statistic for this test.
Besides, we exemplify the procedure by applying the statistical test on the results of table B.1,
in which the performance of two methods, let us say method M1 and method M2, are compared
on a collection of 20 data sets. For each method and data set, the table provides an average
value of performance.

The first step of the test is to compute the differences of the performance measures obtained
by each method in each data set. These differences are calculated in the fourth column of table
B.1. Then, the absolute values of these differences are ranked, considering that the smallest
difference holds the first position of the ranking, and the largest difference gets the last position
of the ranking. In case of ties, the average rank is assigned to all the elements that have the
same performance.

230

B.2. COMPARISONS OF TWO LEARNING SYSTEMS

Table B.1: Comparison of the performance of methods M1 and M2 (second and third column).
The fourth column provides the performance difference, and the fifth column supplies the rank
of the differences.

M1 M2 difference rank
ann 97.39 98.61 1.22 11
aut 67.42 69.32 1.90 14
bal 84.40 83.40 -1.00 9
bpa 59.42 58.93 -0.49 7
cmc 49.67 49.42 -0.25 5
col 82.46 78.50 -3.96 18
gls 57.21 57.43 0.22 4
h-c 82.62 82.05 -0.57 8
h-s 80.78 78.11 -2.67 16
irs 95.47 93.73 -1.74 12
pim 74.11 74.32 0.21 3
son 73.71 71.66 -2.05 15
tao 83.02 87.53 4.51 20
thy 89.49 91.25 1.76 13
veh 65.35 65.34 -0.01 1
wbcd 95.73 95.29 -0.44 6
wdbc 94.61 94.51 -0.10 2
wne 94.86 91.82 -3.04 17
wpbc 76.05 71.69 -4.36 19
zoo 94.78 95.90 1.12 10

Thereafter, the method computes R+ as the sum of ranks for the data sets on which M2
outperformed M1, and R− as the sum of ranks for the data sets on which M1 outperformed
M2. Ranks for which the difference is 0 are split evenly between R+ and R−. If there is an odd
number of them, one is ignored. In the example, we obtain R+ = 75 and R− = 135.

Then, we assign to T the smaller value between R+ and R−, that is, T = min(R+, R−).
With T , we can compute the z statistic as

z =
T − 1

4N(N + 1)√
1
24N(N + 1)(2N + 1)

, (B.1)

where z is distributed normally and N is the number of data sets of the comparison. With
α = 0.05, the null hypothesis can be rejected if z is smaller than -1.96. The exact p-value can
be extracted from the table of the normal distribution.

Let us apply this final step to our example. Replacing T = 75 and N = 20 into equation
B.1, we obtain that z = −1.11. As z < −1.96, we cannot reject the hypothesis that both
learners perform the same, on average, with α = 0.05. Besides, by consulting the table of the
normal distribution, we can compute the exact p-value by checking the probability whose value
approaches the z statistic the most; in this case, we obtained p = 0.26.

231

APPENDIX B. STATISTICAL TESTS

Table B.2: Comparison of the performance of methods M1, M2, and M3. For each method and
data set, the average rank is supplied in parentheses. The last column provides the rank of each
learning algorithm for each data set.

M1 M2 M3
ann 98.85 (1) 97.39 (3) 98.61 (2)
aut 74.42 (1) 67.42 (3) 69.32 (2)
bal 88.65 (1) 84.40 (2) 83.40 (3)
bpa 59.82 (1) 59.42 (2) 58.93 (3)
cmc 51.72 (1) 49.67 (2) 49.42 (3)
col 85.01 (1) 82.46 (2) 78.50 (3)
gls 60.65 (1) 57.21 (3) 57.43 (2)
h-c 84.39 (1) 82.62 (2) 82.05 (3)
h-s 81.33 (1) 80.78 (2) 78.11 (3)
irs 95.67 (1) 95.47 (2) 93.73 (3)
pim 74.88 (1) 74.11 (3) 74.32 (2)
son 80.78 (1) 73.71 (2) 71.66 (3)
tao 81.71 (3) 83.02 (2) 87.53 (1)
thy 88.18 (3) 89.49 (2) 91.25 (1)
veh 67.68 (1) 65.35 (2) 65.34 (3)
wbcd 96.01 (1) 95.73 (2) 95.29 (3)
wdbc 95.20 (1) 94.61 (2) 94.51 (3)
wne 94.12 (2) 94.86 (1) 91.82 (3)
wpbc 76.06 (1) 76.05 (2) 71.69 (3)
zoo 96.50 (1) 94.78 (3) 95.90 (2)
Avg 1.25 2.20 2.55

B.3 Comparisons of Multiple Classifiers

In a multiple classifier comparison, the machine learning practitioner may think of using pairwise
comparisons repeatedly, so that all possible pairs of algorithms are compared against each other.
Although this has been a common practice in machine learning, statisticians have warned that
this procedure causes a certain proportion of the null hypotheses to be rejected due to random
chance (Sheskin, 2000; Demšar, 2006). In fact, testing multiple hypotheses is a well-known
problem is statistics. Along this thesis, we have followed the methodology proposed by Demšar
(2006), which is based on non-parametric statistical tests. This methodology proposes to first
apply a multiple-comparison test to analyze whether all the algorithms performed the same on
average. If this is the case, no further actions can be taken. Otherwise, different post-hoc tests
can be applied depending on the null hypothesis to be tested.

As proceeds, we describe the three multiple-comparison tests used in this thesis. We first
describe the Friedman’s tests (Friedman, 1937, 1940), which contrasts the null hypothesis of
whether all the algorithms perform the same on average. Then, we explain the Nemenyi test
(Nemenyi, 1963), a post-hoc test that compares all learning algorithms with each other. Finally,

232

B.3. COMPARISONS OF MULTIPLE CLASSIFIERS

we describe the Bonferroni-Dunn procedure (Dunn, 1961), which compares all the learning
algorithms with another one that is selected as the control classifier. To exemplify the procedures,
we apply each test on the results of the comparison of three learners provided in table B.2.

B.3.1 Friedman’s Test

The Friedman’s test (Friedman, 1937, 1940) is a non-parametric multiple-comparison test that
is used to detect significant differences across multiple methods. That is, the procedure checks
the null hypothesis of “whether all algorithms perform the same on average”. The procedure
is similar to its parametric counter part, the ANOVA test (Fisher, 1959). The key difference
between them is that the Friedman’s test is based on the ranks of the algorithms and does
not require further assumptions of normality and sphericity of the data (Demšar, 2006). As
proceeds, the statistical procedure is detailed and applied to the example in table B.2.

The procedure starts ranking the algorithms for each data set (see the ranks in parentheses
in table B.2). In case of ties, the average rank is assigned to each learner. Then, the procedure
computes the average rank Ri of each algorithm i, which is provided in the last row of table
B.2. Next, the Friedman statistic is computed as

χ2
F =

12N

k(k + 1)

[∑
i

R2
i −

k(k + 1)2

4

]
(B.2)

where N is the number of data sets, and k is the number of learning algorithms in the comparison.
The Friedman statistic is distributed according to the χ2 distribution with k − 1 degrees of
freedom.

Let us now calculate the Friedman statistic for the example in table B.2. Replacing N = 20
and k = 3 in equation B.2 we obtain that

χ2
F =

12 · 20
3 · 4

[
(1.252 + 2.202 + 2.552) − 3 · 42

4

]
= 18.1 (B.3)

With three algorithms, the statistic behaves as the χ2 distribution with 2 degrees of freedom.
Hence, the critical value of χ2(2) for α = 0.05 is 10.60. As the computed Friedman statistic is
greater than 10.60, we can reject the null hypothesis that all the learners perform the same on
average. Besides, we can use the same table to provide the p-value by checking the probability
whose value is the closest to the obtained Friedman statistic; in this example, p=0.0001.

When the Friedman procedure rejects the null hypothesis, a post-hoc test is applied to detect
further differences. The next subsections explicate two of these procedures: the Nemenyi test
and the Bonferroni-Dunn test.

B.3.2 Post-hoc Nemenyi Test

The post-hoc Nemenyi test aims at comparing all classifiers with each other. The method
is based on the critical distance among learners, that is, the minimum distance between two
methods to consider that they are statistically different. The procedure is detailed as follows.

233

APPENDIX B. STATISTICAL TESTS

Table B.3: Critical values for the two-tailed Nemenyi test.

#classifiers 2 3 4 5 6 7 8 9 10
q0.05 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164
q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

1 1.5 2 2.5 3

↓
M1

1.25

↓
M2

2.2

↓
M3

2.55

CD = 0.649

Figure B.1: Comparison of the performance of all classifiers against each other with the Nemenyi
test. Groups of classifiers that are not significantly different (at α = 0.10) are connected.

The Nemenyi test considers that the performance of two classifiers is different if the distance
between their ranks is larger than the critical distance CD computed as

CD = qα

√
k(k + 1)

6N
(B.4)

where N and k are the number of learners and the number of data sets respectively, and qα is
the critical value based on the Studentized range statistic (Sheskin, 2000). Table B.3 provides
the critical values for the Nemenyi test for α = {0.05, 0.01} and from k = 2 to k = 10.

The critical distance for the example in table B.2 is calculated as follows. Recognizing that
k = 3, we can extract, from table B.3, that q0.10 = 2.052 at α = 0.10. Thence, the critical
distance is

CDα=0.10 = 2.052

√
3 · 4
6 · 20

= 0.649 (B.5)

Therefore, any pair of algorithms whose rank differs by more than 0.649 perform significantly
different. These results are illustrated in figure B.1 in which each learner is depicted according
to its rank, and all the algorithms that perform equivalently are connected with a line.

234

B.3. COMPARISONS OF MULTIPLE CLASSIFIERS

Table B.4: Critical values for the two-tailed Bonferroni-Dunn test.

#classifiers 2 3 4 5 6 7 8 9 10
q0.05 1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.724 2.773
q0.10 1.645 1.960 2.128 2.241 2.326 2.394 2.450 2.498 2.539

B.3.3 Post-hoc Bonferroni-Dunn Test

If we want to compare all learning systems with respect to a control learner, we can use the
Bonferroni-Dunn (Dunn, 1961) test instead of the Nemenyi test. As proceeds, this statistical
procedure is explained in detail.

The Bonferroni-Dunn test provides a general procedure to control the family-wise error in
multiple hypotheses tests by dividing α by the number of comparisons that have to be performed;
in our case, we perform k − 1 comparisons since each learner is compared with the control
algorithm. The statistical procedure can be computed in two different ways. Firstly, the statistic
for comparing the ith and the jth classifiers can be calculated as

z =
Ri − Rj√

k(k+1)
6N

(B.6)

where Ri and Rj are the ranks of the ith and the jth learners, k is the number of learning
systems in the comparison, and N is the number of data sets. Once computed, the z value
is used to find the corresponding probability from the table of normal distribution, which can
be compared with the desired α. As mentioned, the significance level needs to be adjusted as
α/(k − 1).

The second equivalent procedure to compute the Bonferroni-Dunn test is by using the concept
of critical distance, as done by the Nemenyi test. The critical distance is computed as indicated
in equation B.4, where the values of qα are calculated from the Studentized range statistic, but
with the difference that α/(k − 1) instead of α is considered to obtain these values. Table B.4
provides the critical values for the Bonferroni-Dunn test for α = {0.05, 0.01} and from k = 2 to
k = 10. The advantage of applying this second procedure to compute the Bonferroni-Dunn test
is that the results can be visually illustrated, as done for the Bonferroni-Dunn test.

Let us now compute the Bonferroni-Dunn test for the example in table B.2. The first step is
to identify the control learner with which the classifiers will be compared. Let us assume that we
want to compare the different classifiers with the best rank method, that is, M1. Then, having
that k = 3, table B.3 indicates that q0.10 = 1.960 at α = 0.10. Thence, the critical distance is

CD = 1.960

√
3 · 4
6 · 20

= 0.619 (B.7)

Then, we compare the differences of ranks between each classifier and the control learner. The
difference between the ranks of M1 and M2 is 0.95 which is greater than 0.619; therefore, M2
significantly degrades the results of M1. Similarly, the difference between the ranks of M1 and
M3 is 1.30, which in turn is greater than 0.619; thence, M1 also significantly outperforms M3

235

APPENDIX B. STATISTICAL TESTS

according to a Bonferroni-Dunn test at α = 0.10. The same graphical representation as the one
done for the Nemenyi test can be used here. Nonetheless, note that, in this case, M1 significantly
outperforms all the other methods, so no graphic representation is necessary.

B.4 Summary

This appendix has described the statistical tests used along the thesis. We first briefly dis-
cussed the robustness of non-parametric tests with respect to parametric tests and draw the
methodology used in this thesis to compare pairs of classifiers and multiple (more than two)
learning systems. Then, each of these two types of comparisons got a different section where the
particular statistical methods used in our analyses were described in detail, providing a detailed
example of use for each one.

236

Appendix C

Full Results of the Comparison of
the Re-sampling Techniques

Section 7.5 analyzed whether the application of re-sampling methods improved the accuracy
of the models extracted by XCS, UCS, C4.5, SMO, and IBk on imbalanced domains. For
compactness, the analysis only gathered the statistical analysis and extracted conclusions from
it. The purpose of this appendix is to provide the full results of the comparison, which involved
the following four re-sampling techniques: (1) random over-sampling, (2) under-sampling based
on Tomek links, (3) SMOTE, and (4) cSMOTE. As proceeds, we describe and provide the tables
of results.

Description of the Tables of Results
Tables C.1, C.2, C.3, C.4, and C.5 supply the average of the product of the TP rate and the

TN rate obtained in each data set by C4.5, SMO, IBk, XCS, and UCS respectively. Moreover,
to let a more detailed analysis of each problem, we also provide pair-wise comparisons for each
particular combination of learner and re-sampling technique per data set. The • and ◦ symbols
denote a significant degradation/improvement of the method in the corresponding data set with
respect to the same data set but with another re-sampling method (or without re-sampling).
We acknowledge in advance that pair-wise comparisons may be taken with a grain of salt;
nevertheless, they also help draw good insights about the performance of each learner. Finally,
the last four rows of the table summarize (i) the average performance, (ii) the average rank,
(iii) the position of each learner in the ranking, and (iv) the number of times that the results
obtained with the learner are surpassed/degraded by another learner.

237

APPENDIX C. FULL RESULTS OF THE COMPARISON OF THE RE-SAMPLING TECHNIQUES

Table C.1: Comparison of the performance, measured as the product of TP rate and TN rate,
achieved by C4.5 with the original and re-sampled data sets. For each method and data set, the
• and ◦ symbols indicate that the method is statistically inferior/superior than another of the
learners according to a Wilcoxon signed-ranks test at α = 0.05. Avg provides the performance
average of each method over the 25 data sets. Rows Rank and Pos show the average rank of each
learning algorithm and its position in the ranking respectively. The last row provides Inf/Sup,
where Inf is the number of times that the learner has been surpassed by another one, and Sup
is the number of times that the method has outperformed another one.

Original Ovs UnsTL SMOTE cSMOTE

bald1 0.00 ± 0.00 • 19.91 ± 37.27 ◦ ◦ ◦◦ 0.00 ± 0.00 • 0.00 ± 0.00 • 1.90 ± 6.32 •

bald2 69.30 ± 6.83 • 67.57 ± 6.85 •• 68.03 ± 6.40 • 72.73 ± 8.28 ◦ 75.35 ± 6.88 ◦ ◦ ◦

bald3 71.20 ± 6.04 •◦ 68.31 ± 5.55 • 65.78 ± 4.91 • • • 72.82 ± 4.21 ◦ 77.75 ± 6.87 ◦ ◦ ◦

bpa 33.08 ± 14.09 36.81 ± 11.78 31.67 ± 17.31 33.31 ± 7.49 29.56 ± 15.74
glsd1 79.50 ± 42.16 89.50 ± 31.62 89.81 ± 0.00 • 99.50 ± 0.00 ◦◦ 59.00 ± 51.64 •

glsd2 34.50 ± 47.43 • 82.50 ± 33.75 ◦ 58.50 ± 48.30 63.50 ± 47.43 68.00 ± 42.16
glsd3 28.97 ± 42.16 • 46.45 ± 47.14 45.96 ± 35.36 64.95 ± 42.16 ◦ 24.22 ± 35.36
glsd4 73.55 ± 32.63 80.70 ± 25.40 71.73 ± 19.95 • 84.93 ± 19.33 ◦ 74.29 ± 32.63
glsd5 66.52 ± 16.77 ◦ 70.29 ± 17.10 ◦ 52.12 ± 15.06 • • •• 64.77 ± 16.56 ◦ 66.68 ± 15.43 ◦

glsd6 52.54 ± 15.13 53.80 ± 9.75 49.78 ± 15.69 54.54 ± 24.12 46.34 ± 25.53
h-s 63.33 ± 13.29 58.06 ± 9.98 61.17 ± 15.84 59.44 ± 14.80 56.67 ± 13.72
pim 43.87 ± 13.27 • 54.68 ± 7.25 ◦◦ 50.50 ± 12.19 52.38 ± 8.98 46.76 ± 7.87 •

tao 90.98 ± 2.14 • 90.98 ± 2.14 • 91.10 ± 1.30 92.71 ± 1.53 ◦◦ 91.86 ± 3.96
thyd1 87.61 ± 16.10 84.63 ± 17.21 87.31 ± 14.05 82.09 ± 17.21 76.53 ± 17.21
thyd2 93.24 ± 12.45 ◦ 91.94 ± 12.45 85.32 ± 13.61 • 91.11 ± 13.61 88.06 ± 16.87
thyd3 87.65 ± 10.34 88.13 ± 8.08 86.06 ± 7.81 83.25 ± 11.99 84.79 ± 8.05
wavd1 67.79 ± 4.06 •◦ 67.99 ± 2.93 ◦ 70.25 ± 3.36 ◦◦ 70.75 ± 4.02 ◦ 64.04 ± 3.50 • • ••

wavd2 62.54 ± 3.89 65.05 ± 3.62 ◦ 64.02 ± 3.19 64.41 ± 2.91 ◦ 61.33 ± 3.56 ••

wavd3 68.60 ± 2.38 •◦ 69.35 ± 3.35 •◦ 70.54 ± 2.18 ◦◦ 71.45 ± 3.50 ◦◦ 65.66 ± 3.54 • • ••

wbcd 89.12 ± 3.42 89.63 ± 4.21 90.70 ± 3.29 91.94 ± 2.18 91.94 ± 5.17
wdbc 88.79 ± 5.09 86.51 ± 6.88 85.95 ± 5.01 87.67 ± 3.30 86.53 ± 5.04
wined1 85.15 ± 16.63 89.62 ± 16.63 79.92 ± 16.36 89.92 ± 16.36 89.69 ± 13.98
wined2 91.81 ± 8.05 89.38 ± 8.05 87.71 ± 8.05 • 91.74 ± 8.05 ◦ 88.47 ± 8.78
wined3 87.62 ± 11.70 84.46 ± 11.68 84.03 ± 9.64 84.61 ± 6.90 83.36 ± 11.76
wpbc 33.55 ± 12.87 33.30 ± 21.92 30.19 ± 13.29 38.36 ± 21.66 30.66 ± 28.36

Avg 66.03 70.38 66.33 70.52 65.18

Rank 3.00 2.60 3.68 2.14 3.58

Pos 3 2 5 1 4

Inf/Sup 9/5 5/11 13/4 1/14 13/7

238

Table C.2: Comparison of the performance, measured as the product of TP rate and TN rate,
achieved by SMO with the original and re-sampled data sets. For each method and data set,
the • and ◦ symbols indicate that the method is statistically inferior/superior than another of the
learners according to a Wilcoxon signed-ranks test at α = 0.05. Avg provides the performance
average of each method over the 25 data sets. Rows Rank and Pos show the average rank of each
learning algorithm and its position in the ranking respectively. The last row provides Inf/Sup,
where Inf is the number of times that the learner has been surpassed by another one, and Sup
is the number of times that the method has outperformed another one.

Original Ovs UnsTL SMOTE cSMOTE

bald1 0.00 ± 0.00 • 16.38 ± 13.78 ◦ ◦ ◦◦ 0.00 ± 0.00 • 0.00 ± 0.00 • 0.00 ± 0.00 •

bald2 84.03 ± 7.30 ◦◦ 84.28 ± 7.11 ◦◦ 85.09 ± 6.50 ◦◦ 76.94 ± 8.26 • • • 77.88 ± 9.00 • • •

bald3 85.81 ± 8.40 •◦ 85.43 ± 9.16 •◦ 85.24 ± 6.11 •◦ 78.06 ± 9.85 • • •• 90.13 ± 7.76 ◦ ◦ ◦◦

bpa 0.00 ± 0.00 • • • 36.33 ± 6.75 ◦ ◦ ◦◦ 11.99 ± 4.16 • • ◦◦ 0.00 ± 0.00 • • • 28.18 ± 11.16 • ◦ ◦◦

glsd1 0.00 ± 0.00 •• 87.83 ± 7.60 ◦ ◦ ◦ 71.71 ± 24.59 ◦ ◦ ◦ 10.00 ± 31.62 •• 0.00 ± 0.00 ••

glsd2 15.00 ± 33.75 • • • 82.50 ± 29.74 ◦◦ 67.00 ± 36.61 • ◦ ◦ 74.50 ± 39.61 ◦ ◦ ◦ 15.00 ± 33.75 • • •

glsd3 0.00 ± 0.00 •• 30.36 ± 11.39 ◦ ◦ ◦ 21.03 ± 16.84 ◦ ◦ ◦ 0.00 ± 0.00 •• 0.00 ± 0.00 ••

glsd4 80.03 ± 24.33 85.09 ± 17.44 ◦ 82.03 ± 16.81 •• 85.61 ± 17.83 ◦ 82.99 ± 19.30
glsd5 9.50 ± 9.42 • • •• 44.67 ± 16.83 ◦◦ 38.33 ± 13.33 •◦ 42.57 ± 14.42 ◦ 28.65 ± 22.27 ◦

glsd6 0.00 ± 0.00 • • •• 26.89 ± 13.24 ◦◦ 27.36 ± 11.27 ◦◦ 17.71 ± 8.40 • • ◦ 22.28 ± 14.58 ◦

h-s 68.83 ± 8.87 ◦ 66.89 ± 9.24 67.61 ± 7.32 65.83 ± 12.08 63.78 ± 8.70 •

pim 48.31 ± 5.60 • • • 55.75 ± 7.12 ◦ 56.25 ± 6.88 ◦◦ 49.79 ± 8.14 • 53.44 ± 8.05 ◦

tao 70.59 ± 6.45 ◦◦ 70.59 ± 6.45 ◦◦ 70.49 ± 6.15 ◦ 62.44 ± 5.91 • • •• 69.28 ± 6.92 • • ◦

thyd1 76.67 ± 22.50 • 90.00 ± 16.10 ◦◦ 80.00 ± 23.31 80.00 ± 23.31 76.67 ± 22.50 •

thyd2 54.17 ± 24.92 • • •• 98.33 ± 2.68 ◦◦ 93.61 ± 12.29 ◦ 96.39 ± 7.86 ◦◦ 80.83 ± 18.02 • • ◦

thyd3 33.81 ± 21.35 • • • 52.38 ± 19.76 ◦ ◦ ◦ 41.67 ± 21.68 •• 62.13 ± 18.65 ◦ ◦ ◦ 39.76 ± 24.49 • • ◦

wavd1 78.68 ± 4.27 •• 80.98 ± 3.00 ◦◦ 80.81 ± 2.90 ◦◦ 80.35 ± 2.37 78.84 ± 3.73 ••

wavd2 72.30 ± 2.71 •• 75.15 ± 2.18 ◦◦ 74.67 ± 1.69 ◦ 74.40 ± 2.56 73.75 ± 1.80 •

wavd3 79.57 ± 2.04 81.09 ± 1.35 ◦ 80.84 ± 1.49 80.55 ± 1.57 • 79.75 ± 2.58
wbcd 92.70 ± 5.32 • 93.70 ± 5.06 93.31 ± 5.64 • 95.30 ± 4.68 ◦◦ 93.12 ± 6.19
wdbc 94.28 ± 3.28 93.64 ± 4.66 93.60 ± 3.04 93.63 ± 4.82 92.80 ± 4.71
wined1 98.46 ± 3.24 98.46 ± 3.24 96.15 ± 4.05 98.46 ± 3.24 96.46 ± 6.61
wined2 97.50 ± 5.62 97.50 ± 4.03 95.00 ± 4.30 96.67 ± 4.30 96.67 ± 5.83
wined3 97.14 ± 6.02 95.71 ± 6.90 92.94 ± 8.14 95.23 ± 6.36 94.45 ± 7.93
wpbc 9.37 ± 16.98 • • •• 43.76 ± 16.91 ◦ 38.92 ± 19.79 ◦ 42.35 ± 18.95 ◦ 43.85 ± 21.27 ◦

Avg 53.87 70.95 65.83 62.36 59.14

Rank 3.74 1.60 2.92 3.08 3.66

Pos 5 1 2 3 4

Inf/Sup 6/40 1/40 11/24 23/14 23/14

239

APPENDIX C. FULL RESULTS OF THE COMPARISON OF THE RE-SAMPLING TECHNIQUES

Table C.3: Comparison of the performance, measured as the product of TP rate and TN rate,
achieved by IBk with the original and re-sampled data sets. For each method and data set, the
• and ◦ symbols indicate that the method is statistically inferior/superior than another of the
learners according to a Wilcoxon signed-ranks test at α = 0.05. Avg provides the performance
average of each method over the 25 datasets. Rows Rank and Pos show the average rank of each
learning algorithm and its position in the ranking respectively. The last row provides Inf/Sup,
where Inf is the number of times that the learner has been surpassed by another one, and Sup
is the number of times that the method has outperformed another one.

Original Ovs UnsTL SMOTE cSMOTE

bald1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 4.06 ± 9.56 0.00 ± 0.00
bald2 81.16 ± 5.54 ◦◦ 79.66 ± 5.09 ◦ 73.83 ± 3.26 • • • 78.60 ± 6.09 ◦ 75.25 ± 6.45 •

bald3 82.11 ± 8.67 ◦◦ 80.95 ± 7.66 ◦ 75.25 ± 6.21 •• 78.32 ± 8.46 • 79.61 ± 10.01
bpa 32.40 ± 9.44 36.10 ± 13.80 ◦ 32.68 ± 11.87 28.97 ± 8.57 • 32.35 ± 13.56
glsd1 69.32 ± 48.30 86.94 ± 31.62 65.07 ± 0.00 87.81 ± 31.62 68.28 ± 48.30
glsd2 24.13 ± 35.36 • • • 79.94 ± 33.75 ◦ 68.80 ± 42.16 ◦ 84.62 ± 31.62 ◦ 72.75 ± 42.49
glsd3 0.00 ± 0.00 •• 38.64 ± 43.78 ◦ 37.01 ± 35.36 ◦ 44.70 ± 33.33 28.03 ± 34.96
glsd4 77.07 ± 24.98 76.23 ± 24.91 76.84 ± 25.40 76.64 ± 24.91 77.92 ± 24.91
glsd5 62.26 ± 21.14 ◦ 62.37 ± 15.72 58.37 ± 14.75 • 62.57 ± 15.06 62.52 ± 17.88
glsd6 61.74 ± 18.23 61.70 ± 15.76 59.84 ± 24.83 63.19 ± 12.46 60.99 ± 17.86
h-s 64.40 ± 14.65 61.52 ± 10.24 59.11 ± 11.95 60.63 ± 7.91 61.50 ± 13.03
pim 46.91 ± 4.84 50.27 ± 11.30 ◦ 51.50 ± 9.82 ◦ 49.65 ± 6.03 ◦ 44.05 ± 11.48 • • •

tao 94.25 ± 2.10 ◦◦ 92.61 ± 2.00 92.61 ± 2.17 • 93.02 ± 2.29 91.92 ± 2.15 •

thyd1 76.67 ± 22.50 91.26 ± 14.05 76.09 ± 23.31 84.28 ± 23.31 81.51 ± 23.57
thyd2 77.90 ± 21.40 • • •• 98.33 ± 0.00 ◦ 95.88 ± 7.91 ◦ 98.33 ± 0.00 ◦ 93.98 ± 10.54 ◦

thyd3 81.12 ± 16.16 92.38 ± 6.55 87.31 ± 7.84 88.81 ± 8.03 87.84 ± 11.45
wavd1 72.28 ± 3.97 ◦◦ 71.62 ± 2.14 ◦◦ 72.34 ± 2.42 ◦◦ 66.67 ± 0.77 • • • 65.71 ± 2.93 • • •

wavd2 67.49 ± 1.75 ◦ ◦ ◦ 65.62 ± 1.79 • ◦ ◦ 66.69 ± 2.50 ◦◦ 57.51 ± 0.76 • • •• 61.08 ± 3.58 • • •◦

wavd3 74.14 ± 2.86 ◦◦ 73.71 ± 1.98 • ◦ ◦ 74.81 ± 2.70 ◦ ◦ ◦ 68.32 ± 0.95 • • •◦ 65.53 ± 2.96 • • ••

wbcd 92.72 ± 5.36 94.91 ± 2.13 93.53 ± 3.83 95.02 ± 1.32 92.34 ± 4.49
wdbc 93.47 ± 3.64 91.70 ± 3.51 93.59 ± 3.51 91.45 ± 2.70 91.21 ± 4.53
wined1 94.98 ± 8.29 96.15 ± 0.00 93.85 ± 0.00 97.69 ± 0.00 96.92 ± 0.00
wined2 97.50 ± 4.03 ◦ 95.76 ± 0.00 ◦ 92.35 ± 0.00 • • •• 95.76 ± 0.00 ◦ 96.59 ± 0.00 ◦

wined3 87.94 ± 12.53 91.43 ± 9.99 92.01 ± 7.53 95.71 ± 6.90 93.34 ± 7.38
wpbc 28.98 ± 16.49 29.36 ± 20.88 • 27.70 ± 22.66 •• 37.39 ± 19.73 ◦◦ 37.10 ± 21.96 ◦

Avg 65.64 71.97 68.68 71.59 68.73

Rank 2.98 2.56 3.52 2.44 3.50

Pos 3 2 5 1 4

Inf/Sup 9/15 3/14 13/11 12/8 15/4

240

Table C.4: Comparison of the performance, measured as the product of TP rate and TN rate,
achieved by XCS with the original and re-sampled data sets. For each method and data set, the
• and ◦ symbols indicate that the method is statistically inferior/superior than another of the
learners according to a Wilcoxon signed-ranks test at α = 0.05. Avg provides the performance
average of each method over the 25 data sets. Rows Rank and Pos show the average rank of each
learning algorithm and its position in the ranking respectively. The last row provides Inf/Sup,
where Inf is the number of times that the learner has been surpassed by another one, and Sup
is the number of times that the method has outperformed another one.

Original Ovs UnsTL SMOTE cSMOTE

bald1 0.00 ± 0.00 1.98 ± 6.27 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
bald2 71.14 ± 5.02 70.06 ± 7.81 71.58 ± 5.03 72.79 ± 9.49 73.10 ± 6.56
bald3 69.98 ± 7.23 • • • 73.95 ± 4.75 73.47 ± 6.03 ◦ 72.78 ± 6.71 •◦ 76.15 ± 6.58 ◦◦

bpa 47.58 ± 10.92 ◦◦ 45.05 ± 12.20 ◦ 38.61 ± 9.89 ◦ 22.40 ± 14.39 • • •• 40.69 ± 11.47 •◦

glsd1 20.00 ± 42.16 •• 69.50 ± 47.98 ◦ 73.00 ± 27.01 ◦ 58.50 ± 50.45 59.50 ± 51.23
glsd2 59.00 ± 45.02 59.50 ± 45.49 62.75 ± 35.72 73.50 ± 41.57 63.00 ± 45.90
glsd3 0.00 ± 0.00 • • • 47.99 ± 38.80 ◦◦ 42.11 ± 17.78 ◦◦ 42.22 ± 40.93 ◦◦ 9.74 ± 20.54 • • •

glsd4 80.03 ± 24.33 87.25 ± 18.72 84.68 ± 15.68 80.59 ± 25.66 79.66 ± 24.59
glsd5 68.67 ± 18.71 66.17 ± 15.41 • 68.28 ± 19.81 73.07 ± 17.37 ◦◦ 62.44 ± 16.52 •

glsd6 60.53 ± 11.21 63.48 ± 14.17 64.18 ± 12.62 64.50 ± 14.51 62.47 ± 12.64
h-s 59.89 ± 15.59 58.00 ± 11.45 • 58.61 ± 14.68 65.61 ± 15.12 ◦ 60.22 ± 15.51
pim 45.85 ± 6.37 •• 50.53 ± 4.89 •◦ 51.24 ± 7.64 • 55.41 ± 8.76 ◦ ◦ ◦ 48.36 ± 8.97
tao 82.89 ± 5.42 •◦ 83.60 ± 6.04 ◦ 83.39 ± 5.91 ◦ 58.01 ± 31.57 • • •• 84.45 ± 6.34 ◦◦

thyd1 78.36 ± 22.01 • 87.96 ± 15.98 81.29 ± 20.83 • 91.70 ± 13.68 ◦◦ 89.07 ± 16.44
thyd2 82.50 ± 24.98 95.56 ± 10.41 92.78 ± 11.43 91.94 ± 11.60 93.06 ± 12.09
thyd3 89.84 ± 11.75 87.25 ± 10.81 • 88.43 ± 11.84 93.11 ± 8.73 ◦ 87.51 ± 10.38
wavd1 80.44 ± 2.97 81.91 ± 3.24 ◦ 80.87 ± 3.58 80.24 ± 2.00 80.11 ± 2.97 •

wavd2 73.48 ± 2.88 76.03 ± 2.24 ◦◦ 75.60 ± 1.52 ◦ 71.96 ± 2.78 •• 73.84 ± 2.89 •

wavd3 81.01 ± 3.99 82.01 ± 2.05 ◦◦ 81.16 ± 2.49 80.23 ± 2.19 • 79.46 ± 2.59 •

wbcd 92.31 ± 5.50 92.72 ± 6.01 92.49 ± 5.63 94.42 ± 4.41 92.70 ± 6.13
wdbc 90.27 ± 4.61 88.16 ± 6.33 90.48 ± 4.13 92.17 ± 4.95 91.08 ± 6.24
wined1 99.23 ± 2.43 95.69 ± 6.60 96.15 ± 5.44 97.69 ± 3.72 96.62 ± 8.36
wined2 99.17 ± 2.64 95.76 ± 5.96 96.67 ± 4.30 98.33 ± 3.51 97.50 ± 5.62
wined3 93.38 ± 7.15 91.86 ± 9.81 92.29 ± 6.84 94.11 ± 8.13 92.12 ± 7.74
wpbc 20.33 ± 16.38 25.84 ± 19.03 25.32 ± 17.21 31.65 ± 18.85 21.35 ± 11.96

Avg 65.83 71.11 70.62 70.28 68.57

Rank 3.60 2.86 2.94 2.42 3.18

Pos 5 2 3 1 4

Inf/Sup 12/3 4/11 2/7 12/12 8/5

241

APPENDIX C. FULL RESULTS OF THE COMPARISON OF THE RE-SAMPLING TECHNIQUES

Table C.5: Comparison of the performance, measured as the product of TP rate and TN rate,
achieved by UCS with the original and re-sampled data sets. For each method and data set, the
• and ◦ symbols indicate that the method is statistically inferior/superior than another of the
learners according to a Wilcoxon signed-ranks test at α = 0.05. Avg provides the performance
average of each method over the 25 data sets. Rows Rank and Pos show the average rank of each
learning algorithm and its position in the ranking respectively. The last row provides Inf/Sup,
where Inf is the number of times that the learner has been surpassed by another one, and Sup
is the number of times that the method has outperformed another one.

Original Ovs UnsTL SMOTE cSMOTE

bald1 0.00 ± 0.00 3.23 ± 6.82 0.00 ± 0.00 3.55 ± 7.48 0.00 ± 0.00
bald2 69.75 ± 8.19 72.07 ± 6.79 72.35 ± 5.60 72.73 ± 8.03 73.22 ± 5.32
bald3 73.61 ± 6.66 • 72.18 ± 5.14 • 74.01 ± 7.05 • 73.15 ± 6.58 • 78.40 ± 6.64 ◦ ◦ ◦◦

bpa 47.59 ± 11.22 41.72 ± 10.60 48.29 ± 9.68 41.20 ± 7.60 40.74 ± 9.18
glsd1 59.00 ± 50.87 59.50 ± 51.23 72.19 ± 18.80 68.52 ± 47.33 58.52 ± 50.46
glsd2 74.00 ± 41.89 ◦ 63.50 ± 46.25 77.12 ± 27.40 ◦ 82.50 ± 32.68 ◦ 38.50 ± 49.78 • • •

glsd3 19.49 ± 25.17 33.50 ± 45.22 28.93 ± 22.94 45.24 ± 42.50 23.25 ± 24.64
glsd4 83.54 ± 19.53 87.25 ± 18.72 ◦ 74.41 ± 24.70 • 82.67 ± 19.50 77.25 ± 28.64
glsd5 65.63 ± 21.46 68.54 ± 16.54 64.50 ± 14.10 62.54 ± 23.57 70.44 ± 17.42
glsd6 57.06 ± 14.20 61.64 ± 18.57 69.26 ± 21.48 62.70 ± 12.96 59.05 ± 15.39
h-s 55.00 ± 13.61 54.17 ± 16.60 55.61 ± 14.45 57.00 ± 15.95 52.83 ± 17.96
pim 47.82 ± 6.60 49.38 ± 5.11 52.45 ± 6.93 ◦ 51.89 ± 8.05 ◦ 46.74 ± 6.71 ••

tao 78.81 ± 7.18 80.65 ± 6.64 78.21 ± 4.27 75.72 ± 7.23 78.53 ± 7.51
thyd1 92.25 ± 13.66 88.89 ± 15.71 88.92 ± 15.51 91.88 ± 14.46 88.89 ± 15.49
thyd2 93.06 ± 12.09 91.94 ± 11.60 84.81 ± 15.61 93.33 ± 9.99 94.44 ± 10.14
thyd3 88.08 ± 14.89 84.98 ± 10.52 86.79 ± 9.80 87.95 ± 8.94 85.03 ± 10.16
wavd1 76.33 ± 2.10 •• 78.18 ± 3.10 ◦◦ 78.99 ± 3.77 ◦◦ 78.66 ± 3.35 ◦ 75.56 ± 3.75 • • •

wavd2 71.49 ± 3.83 73.08 ± 2.93 ◦ 70.57 ± 2.67 • 74.46 ± 2.76 ◦◦ 69.66 ± 1.60 ••

wavd3 76.60 ± 4.14 •• 80.60 ± 2.21 ◦◦ 78.32 ± 2.78 ◦ 79.56 ± 1.84 ◦◦ 75.10 ± 2.75 • • •

wbcd 94.06 ± 4.23 93.10 ± 4.97 93.10 ± 4.35 94.25 ± 4.81 94.28 ± 4.36
wdbc 89.68 ± 5.61 90.54 ± 4.08 89.84 ± 4.43 90.38 ± 7.75 87.81 ± 6.17
wined1 99.23 ± 2.43 100.00 ± 0.00 ◦◦ 94.92 ± 6.49 • 96.92 ± 3.97 • 93.96 ± 9.30
wined2 91.88 ± 10.02 95.83 ± 7.08 ◦ 92.56 ± 7.98 • 94.92 ± 7.07 95.83 ± 7.08
wined3 85.33 ± 9.55 • • •• 94.11 ± 8.17 ◦ 93.86 ± 8.52 ◦ 94.71 ± 6.94 ◦ 91.90 ± 5.97 ◦

wpbc 17.17 ± 21.63 21.55 ± 14.96 25.55 ± 18.72 30.70 ± 15.04 21.34 ± 13.56

Avg 68.26 69.61 69.82 71.49 66.85

Rank 3.44 2.78 2,86 2.24 3.68

Pos 4 2 3 1 5

Inf/Sup 9/1 1/10 5/6 2/8 13/5

242

Appendix D

Empirical Analysis of the Sensitivity
of Fuzzy-UCS to Configuration
Parameters

As many competitive Michigan-style LCSs, Fuzzy-UCS has several configuration parameters,
which permit adjusting the behavior of the system to evolve models with maximum quality for
particular problems. At a first glance, choosing a correct configuration may seem a crucial task
only suitable to expert users. Nonetheless, several analyses identified the robustness of Michigan-
style LCSs to the majority of configuration parameters. Actually, most of the applications of
Michigan-style LCSs used the same default parameters to solve pattern recognition problems
(Bernadó-Mansilla et al., 2002; Bernadó-Mansilla and Garrell, 2003; Butz, 2006; Orriols-Puig and
Bernadó-Mansilla, 2008b; Dixon et al., 2002, 2004; Fu et al., 2001; Wilson, 2000). We consider
that this robustness is also present in Fuzzy-UCS. For this reason, we used the same default
configuration to solve the collection of real-world problems in all the experiments conducted in
chapter 8.

The aim of this appendix is to empirically show the robustness of Fuzzy-UCS to configuration
parameters. For this purpose, we systematically analyze the impact of the parameter settings
on the quality of the final solution on a set of real-world problems; besides, we relate the results
to theoretical and empirical studies of the sensitivity of LCSs—particularly XCS and UCS—to
configuration parameters. It is worth highlighting that the following study does not pretend to
establish guidelines to configure Fuzzy-UCS, but to intuitively show the effect of the different
parameters.

The remainder of this appendix is organized as follows. Section D.1 gathers and provides a
brief description all the parameters of Fuzzy-UCS. Section D.2 details the experimental method-
ology followed in the analysis. Section D.3 compares different configurations of Fuzzy-UCS to
the default configuration used in chapter 8 and studies the impact of changing the configuration
of the different parameters. Finally, section D.4 summarizes and concludes.

243

APPENDIX D. EMPIRICAL ANALYSIS OF THE SENSITIVITY OF FUZZY-UCS TO CONFIGURATION
PARAMETERS

D.1 Configuration Parameters of Fuzzy-UCS

The configuration parameters of Fuzzy-UCS are:

1. N : Maximum population size.

2. P#: Generalization probability in covering.

3. ν: Fitness pressure.

4. F0: Minimum fitness required for subsumption.

5. θGA: Threshold that controls the application period of the genetic algorithm on each niche.

6. θsub: Minimum experience required to be a candidate subsumer.

7. θexploit: Minimum experience required to participate in the class inference of a new exam-
ple.

8. θdel: Minimum experience required to use classifier’s fitness to calculate its deletion vote.

9. δ: Fraction of mean fitness below which the deletion probability of a classifier is further
decreased according to the ratio of its fitness to the average fitness of the population.

10. χ: Probability of crossover.

11. µ: Probability of mutation.

D.2 Experimental Methodology

For the sake of clarity, we analyzed the effect of different parameters or groups of related pa-
rameters separately. Specifically, we examined the sensitivity of Fuzzy-UCS to:

1. Rule initialization (parameter P#). That is, we studied how the generalization degree in
the initial population affected the quality of the models.

2. Fitness pressure (parameter ν). We analyzed to which extend the selection pressure toward
highly accurate classifiers affected the learning process.

3. Genetic algorithm. We empirically showed the effect of changing a set of parameters
related to the genetic algorithm: θGA, θdel, and θsub.

4. Deletion (parameter δ). We examined the effects of changing the pressure toward deletion
of classifiers with fitness below the average fitness.

We compared modifications on these configuration parameters with the default configuration
CP used in chapter 8, that is: N=6 400, F0 = 0.99, ν = 10, {θGA, θdel, θsub} = 50, θexploit = 10,
χ = 0.8, µ = 0.6, δ=0.1, and P# = 0.6, As done in chapter 8, we used the test accuracy and
the size of the final rule set to evaluate the quality of the models. The results were statistically

244

D.3. FUZZY-UCS’S SENSITIVITY TO CONFIGURATION PARAMETERS

analyzed as follows. First, we applied the multiple-comparison Friedman’s test (Friedman, 1937,
1940) to contrast the hypothesis that the results of all learners were equivalent on average. If
significant differences were found, the post-hoc Bonferroni-Dunn test (Dunn, 1961) was used
to compare a control method against the others. Moreover, pairwise comparisons were applied
according to the Wilcoxon signed-ranks test (Wilcoxon, 1945).

All results provided through this appendix are averages over ten runs with different random
seeds. Due to the large number of configurations run for this analysis, we restricted the data
set collection to twelve of the twenty real-world problems used in chapter 8: bal, bpa, gls, h-s,
irs, pim, tao, thy, veh, wbcd, wdbc, and wne.

D.3 Fuzzy-UCS’s Sensitivity to Configuration Parameters

This section analyzes in detail the effect of changing the parameters related to (1) rule initial-
ization, (2) fitness pressure, (3) genetic algorithm, and (4) deletion. Each one of these analyses
gets one of the subsequent subsections.

D.3.1 Sensitivity to Rule Initialization

Population initialization was identified as a crucial aspect for the success of LCSs and evolution-
ary algorithms in general (Goldberg, 2002). Butz et al. (2001) theoretically derived a covering
bound for XCS indicating that the initial population should be general enough to cover all the
training instances and permit the genetic algorithm to take place. The theoretical study resulted
in practical guidelines suggesting that the initial generalization level (i.e., the parameter P# in
Fuzzy-UCS) be set to a high value. The same study showed that the best results on a set of
artificial problems were obtained with P# ≈ 0.6. For this reason, as many LCS practitioners
have done during the last few years, we set P# = 0.6 in our experiments.

Herein, we empirically analyze the effect of decreasing the generalization in the initial pop-
ulation of Fuzzy-UCS. For this purpose, we ran Fuzzy-UCS with the default configuration CP ,
but changing P# = 0.2 (C1) and P# = 0.4 (C2). Tables D.1 and D.2 show the performance
and the rule set size achieved by Fuzzy-UCS with the three inference schemes and the three
configurations.

The multiple-comparison Friedman’s test did not permit rejecting the null hypothesis that
the three configurations performed equivalently on average for each inference technique of Fuzzy-
UCS at 95% confidence level. Nonetheless, note that configurations CP and C2, that is, the
configurations that use P# = {0.6, 0.4} respectively, were the two best ranked configurations
in all the inference schemes. A more detailed analysis on each particular problem permitted
detecting in which problems a higher specificity on the initial population yielded more accurate
models. For example, for the problems thy, and especially gls, Fuzzy-UCS obtained better results
when the initial population was more specific (that is, P# took a low value). On the other hand,
for other problems such as bal, h-s, pim, veh, wdbc, and wne, Fuzzy-UCS presented better results
with higher values of P#. Thus, we acknowledge that different settings of P# may be used
for different problems with particular characteristics and that further analysis has to be done
to detect correlations between problem complexity and the setting of P#. Nevertheless, these
results also evidence that it is safer to set P# to higher values as a general rule of thumb.

245

APPENDIX D. EMPIRICAL ANALYSIS OF THE SENSITIVITY OF FUZZY-UCS TO CONFIGURATION
PARAMETERS

Table D.1: Comparison of the test accuracy obtained with the three types of inference and the
three configurations which vary P#. Rank gives the average rank of each configuration for each
one of the three inference schemes. Pos shows the absolute position in the ranking. Frd reports
the p-value obtained with the multiple-comparison Friedman test performed for each inference
methodology.

wavg awin nfit

Cp C1 C2 Cp C1 C2 Cp C1 C2

bal 88.65 86.90 88.63 84.40 74.24 82.66 83.40 73.53 82.89
bpa 59.82 59.19 60.82 59.42 57.16 58.54 58.93 56.72 56.67
gls 60.65 68.77 66.10 57.21 60.53 56.60 57.43 62.76 61.81
h-s 81.33 79.26 79.89 80.78 74.81 80.63 78.11 67.07 76.32
irs 95.67 95.00 94.93 95.47 95.53 95.73 93.73 94.67 93.40
pim 74.88 73.93 74.70 74.11 73.77 74.01 74.32 71.15 72.41
tao 81.71 81.10 81.31 83.02 82.91 83.08 87.53 89.00 88.46
thy 88.18 93.93 91.28 89.49 90.66 90.09 91.25 92.75 92.23
veh 67.68 67.29 68.67 65.35 66.65 67.02 65.34 63.81 65.65
wbcd 96.01 95.35 96.11 95.73 94.61 95.78 95.29 93.97 95.58
wdbc 95.20 93.55 95.31 94.61 91.40 93.64 94.51 90.05 93.62
wne 94.12 95.34 95.04 94.86 93.51 96.06 91.82 89.74 93.40

Rank 1.83 2.42 1.75 1.83 2.50 1.67 1.83 2.25 1.92

Pos 2 3 1 2 3 1 1 3 2

Frd 0.2053 0.097 0.558

Table D.2: Comparison of the model sizes obtained with the three types of inference and the
three configurations which vary P#. Rank gives the average rank of each configuration for each
one of the three inference schemes. Pos shows the absolute position in the ranking. Frd reports
the p-value obtained with the multiple-comparison Friedman test performed for each inference
methodology.

wavg awin nfit

Cp C1 C2 Cp C1 C2 Cp C1 C2

bal 1212 827 1580 114 128 122 75 105 60
bpa 1440 1714 1623 73 103 64 39 63 30
gls 2799 2551 3484 62 81 60 36 58 27
h-s 3415 2456 4002 117 139 122 62 93 62
irs 480 1217 634 18 26 19 7 10 6
pim 2841 1976 3407 192 251 183 62 141 42
tao 111 153 117 19 19 19 14 15 12
thy 1283 1838 1487 37 49 36 11 14 9
veh 3732 1776 4717 332 428 431 147 221 136
wbcd 3130 2305 4299 138 161 145 28 70 31
wdbc 5412 2724 5243 276 406 271 101 211 102
wne 3686 3695 4529 95 137 103 26 58 27

Rank 1.67 1.75 2.58 1.50 2.92 1.58 1.75 3.00 1.25

Pos 1 2 3 1 3 2 2 3 1

Frd 0.0458 0.0010 0.00006

246

D.3. FUZZY-UCS’S SENSITIVITY TO CONFIGURATION PARAMETERS

The rule set sizes evolved with the different configurations were not statistically equivalent
according to the Friedman’s test at a significance level of 0.05. To detect the significant dif-
ferences among configurations, we applied the Nemenyi test with α = 0.1 (that is, the critical
difference is CD=0.83). The Nemenyi test identified the following three significant differences:
(i) with weighted average inference, C2 resulted in significantly larger rule sets than Cp; (ii)
with action winner inference, C1 created significantly larger rule sets than the other two configu-
rations; (iii) with most numerous and fittest rules inference, C1 built significantly larger models
than the other two configurations. The last two points can be easily explained as follows. As
C1 used a low value of P#, final populations contained more specific classifiers than populations
created with Cp and C2. These two inference schemes only kept the classifiers that maximally
matched an input instance in the final population. Thus, if classifiers were more specific, a larger
number of them were set to the final population. On the other hand, with weighted average
inference, the largest populations were obtained with C2. We hypothesize that this is because
C2 created slightly general and accurate classifiers that coexisted in the population and par-
tially covered the same training instances. Although the learning process pressured to obtain a
minimum set of these classifiers, the evolved populations of C2 were bigger than those obtained
with the other two inference schemes since these classifiers with partially overlapped conditions
were maintained in the final population as they covered some training instances with maximum
degree.

D.3.2 Sensitivity to Fitness Pressure

In Fuzzy-UCS, fitness pressure is determined by the parameter ν. This parameter biases the
selection pressure toward the fittest classifiers. A few analyses have been conducted on the
correct setting of this parameter in LCSs. Kharbat et al. (2005) showed that ν had a strong
effect if proportionate selection was used in XCS and recommended to use values around 10 for
this parameter. Similarly, Brown et al. (2007) empirically showed that ν = 10 was an optimal
setting for UCS in a set of artificial problems. Thus, in our experiments, we used ν = 10.

As proceeds, we analyze the impact of decreasing ν on the quality of the models. To achieve
this, tables D.3 and D.4 show the accuracies and sizes of the evolved models for ν = 1 (C3)
and ν = 5 (C4). The statistical analysis indicated that the accuracy of the models was not
equivalent on average according to the multiple-comparison Friedman’s test. Therefore, we
applied the Nemenyi test (at α = 0.10) to detect significant differences among learners (the
critical distance is CD = 0.83). The test identified that, for all inference schemes, Fuzzy-UCS
evolved more accurate models with Cp than with C3. Besides, the models created with Cp held
the first position of the ranking, and the models built with C4 held the second position of the
ranking for any inference level. Thus, these results evidenced that larger values of ν yielded
more accurate models. We applied a pairwise comparison between Cp and C4 according to a
Wilcoxon signed-ranks test, which detected, with p = 0.02, that the models evolved with Cp
were significantly more accurate than those created with C4.

Conclusions on the model sizes depend on the used inference scheme. For weighted average
inference, C3 created significantly larger models than the other configurations, and C4 evolved
significantly larger models than Cp according to a Bonferroni-Dunn test at α = 0.1. So, the
higher the fitness pressure was, the smaller the final models were. This evidenced that setting
high values of ν is crucial to remove over-general classifiers in favor of highly-fit classifiers.

247

APPENDIX D. EMPIRICAL ANALYSIS OF THE SENSITIVITY OF FUZZY-UCS TO CONFIGURATION
PARAMETERS

Table D.3: Comparison of the test accuracy obtained with the three types of inference and the
three configurations which vary the fitness pressure ν. Rank gives the average rank of each
configuration for each one of the three inference schemes. Pos shows the absolute position in
the ranking. Frd reports the p-value obtained with the multiple-comparison Friedman test
performed for each inference methodology.

wavg awin nfit

Cp C3 C4 Cp C3 C4 Cp C3 C4

bal 88.65 83.31 87.87 84.40 80.11 83.90 83.40 63.33 82.49
bpa 59.82 57.94 59.08 59.42 58.42 58.50 58.93 56.45 60.23
gls 60.65 55.55 58.23 57.21 52.60 56.92 57.43 48.45 56.06
h-s 81.33 83.52 82.03 80.78 81.89 81.53 78.11 78.59 78.53
irs 95.67 93.13 95.07 95.47 94.80 95.07 93.73 82.60 92.27
pim 74.88 71.30 74.61 74.11 72.07 73.38 74.32 71.81 73.80
tao 81.71 79.18 80.90 83.02 82.57 83.36 87.53 79.05 86.68
thy 88.18 78.67 85.88 89.49 87.42 89.02 91.25 86.18 89.11
veh 67.68 61.12 67.23 65.35 61.22 64.77 65.34 57.59 65.79
wbcd 96.01 95.33 95.50 95.73 94.90 95.42 95.29 92.39 94.40
wdbc 95.20 94.68 94.96 94.61 93.99 94.11 94.51 92.88 94.00
wne 94.12 93.27 94.49 94.86 94.98 95.20 91.82 85.29 93.92

Rank 1.25 2.83 1.92 1.42 2.75 1.83 1.42 2.83 1.75

Pos 1 3 2 1 3 2 1 3 2

Frd 0.00050 0.00380 0.00140

Table D.4: Comparison of the model sizes obtained with the three types of inference and the
three configurations which vary the fitness pressure ν. Rank gives the average rank of each
configuration for each one of the three inference schemes. Pos shows the absolute position in
the ranking. Frd reports the p-value obtained with the multiple-comparison Friedman test
performed for each inference methodology.

wavg awin nfit

Cp C3 C4 Cp C3 C4 Cp C3 C4

bal 1212 2371 1580 114 63 122 75 8 60
bpa 1440 2960 1623 73 47 64 39 12 30
gls 2799 4484 3484 62 52 60 36 17 27
h-s 3415 5469 4002 117 115 122 62 31 62
irs 480 1334 634 18 20 19 7 5 6
pim 2841 4166 3407 192 132 183 62 22 42
tao 111 149 117 19 16 19 14 5 12
thy 1283 2122 1487 37 32 36 11 7 9
veh 3732 5709 4717 332 242 431 147 84 136
wbcd 3130 4992 4299 138 137 145 28 26 31
wdbc 5412 5839 5243 276 255 271 101 92 102
wne 3686 5514 4529 95 97 103 26 29 27

Rank 1.08 3.00 1.92 2.33 1.25 2.42 2.67 1.17 2.17

Pos 1 3 2 2 1 3 3 1 2

Frd 0.00001 0.0052 0.0010

248

D.3. FUZZY-UCS’S SENSITIVITY TO CONFIGURATION PARAMETERS

For action winner inference, the statistical analysis only detected that the models evolved
with C3 were significantly smaller than the models created with the other two configurations.
This might be due to the presence of over-general classifiers with moderate fitness in the final
populations, which had not been removed due to the poor genetic pressure toward highly fit clas-
sifiers. These classifiers replaced more specific but fitter ones in the final population. The same
behavior could be observed for most numerous and fittest rules inference, where Fuzzy-UCS with
configuration C3 created significantly smaller models than with the other two configurations.

D.3.3 Sensitivity to the GA

In this section, we analyze the sensitivity of Fuzzy-UCS to the parameters concerning the genetic
algorithm application: θGA, θdel, and θsub. The parameter θGA is a threshold that controls the
application period of the GA on the different correct sets [C] of the system. That is, a correct
set will receive a genetic event if the average time since the last application of the GA on this
correct set exceeds θGA. If we want to maximize the genetic discovery, and so, the learning rate,
θGA should be set to zero. In this case, a correct set would receive a genetic event every time
it is activated. However, note that the parameters of new classifiers are incrementally updated
as these classifiers participate in successive correct sets. So, if we apply a genetic algorithm to
each correct set, selection would be biased since there would be poorly evaluated classifiers in
the niches. Moreover, this would also imply the generation of a large number of new classifiers
with poorly evaluated parameters. For this reason, θGA should be set to a higher value in real-
world problems. In the configuration used in the paper, we set θGA = 50, since this corresponds
to the standard value used for the equivalent parameter in XCS and UCS (Bernadó-Mansilla
et al., 2002; Bernadó-Mansilla and Garrell, 2003; Butz, 2006; Orriols-Puig and Bernadó-Mansilla,
2008b; Dixon et al., 2002, 2004; Fu et al., 2001; Wilson, 2000).

The values of the θdel and θsub parameters are usually determined by θGA. If we consider
that the classifiers in a niche need to receive an average of θGA parameter updates before going
through a genetic event, intuitively this should also apply for deletion and subsumption. For
this reason, in the configuration used in chapter 8, we set θdel = θsub = θGA.

To analyze the sensitivity of Fuzzy-UCS to this set of parameters, we performed the following
experiments. In configurations C5 and C6, we incremented θGA, θdel, and θsub to 100 and 200
respectively. As we decreased the application rate of the genetic algorithm, we expected to
obtain a lower accuracy in the final models. Moreover, to confirm the stability of the system,
we ran C7 and C8, two other configurations of Fuzzy-UCS. C7 equaled C5 except for the
number of iterations, numIter=200 000. C8 equaled C6 except for the number of iterations,
numIter=400 000. Therefore, we guaranteed that the number of genetic events received by the
niches with configurations C7 and C8 was equivalent to the number of genetic events received
with configuration Cp. Thus, we expected to obtain similar results.

Tables D.5 and D.6 show the accuracies and sizes of the models for the different config-
urations. The multiple-comparison Friedman’s test rejected the null hypothesis that all the
configurations performed the same on average for a particular inference scheme at 95% confi-
dence level. As configuration Cp is the best ranked in all cases, we used the Bonferroni-Dunn
test to detect which configurations performed worse than Cp at α = 0.10 (the critical differ-
ence is CD = 1.44). The statistical test detected that: (i) with weighted average and most
numerous and fittest rules, inferences Cp, C7, and C8 performed equivalently, whilst C5 and

249

APPENDIX D. EMPIRICAL ANALYSIS OF THE SENSITIVITY OF FUZZY-UCS TO CONFIGURATION
PARAMETERS

Table D.5: Comparison of the test accuracy obtained with the three types of inference and the
five configurations varying θGA, θdel, and θsub. Rank gives the average rank of each configuration
for each one of the three inference schemes. Pos shows the absolute position in the ranking.
Frd reports the p-value obtained with the multiple-comparison Friedman test performed for
each inference methodology.

wavg awin nfit

Rp C5 C6 C7 C8 Rp C5 C6 C7 C8 Rp C5 C6 C7 C8

bal 88.65 86.88 86.35 88.52 88.50 84.40 83.95 82.82 84.25 83.33 83.40 82.46 80.85 83.59 83.42
bpa 59.82 58.38 59.18 59.76 59.17 59.42 57.99 57.57 58.64 57.16 58.93 58.76 60.75 57.32 57.07
gls 60.65 56.78 55.75 61.79 64.17 57.21 56.57 55.59 57.30 56.63 57.43 54.77 53.50 57.91 58.96
h-s 81.33 81.04 81.81 80.75 79.79 80.78 80.89 80.78 80.40 80.71 78.11 78.52 79.30 77.57 77.08
irs 95.67 94.73 94.40 94.87 95.00 95.47 95.73 94.73 95.20 95.67 93.73 93.40 92.60 93.73 94.40
pim 74.88 74.00 72.17 74.75 74.74 74.11 73.17 71.81 73.83 74.00 74.32 73.71 72.78 73.25 72.62
tao 81.71 81.67 80.98 81.79 82.05 83.02 82.91 82.17 82.95 82.97 87.53 84.96 82.13 87.54 86.97
thy 88.18 86.89 85.41 88.18 89.65 89.49 89.45 87.93 89.81 90.00 91.25 89.34 88.28 90.20 91.74
veh 67.68 65.64 64.10 67.89 67.41 65.35 64.75 63.40 65.92 65.23 65.34 64.11 62.13 65.82 64.69
wbcd 96.01 95.65 95.14 95.82 95.74 95.73 95.43 94.96 95.76 95.92 95.29 94.73 94.26 95.29 95.14
wdbc 95.20 95.12 94.96 95.04 95.28 94.61 94.41 93.99 94.87 94.71 94.51 94.25 94.09 94.49 94.15
wne 94.12 93.50 94.73 95.12 94.91 94.86 94.08 94.46 95.24 94.93 91.82 90.33 90.88 92.09 92.86

Rnk 1.92 4.00 4.33 2.33 2.42 2.13 3.42 4.63 2.25 2.58 2.13 3.58 4.17 2.29 2.83

Pos 1 4 5 2 3 1 4 5 2 3 1 4 5 2 3

Frd 0.00014 0.00035 0.006

C6 presented significantly poorer results; and (ii) with action winner, Cp, C5, C7, and C8 had
the same accuracy on average, while C6 showed the poorest results. Further statistical analysis
by means of pairwise comparisons supported these conclusions and, moreover, detected that C5
degraded the results obtained with Cp, C7, and C8 with action winner inference (see table D.7).
Therefore, all this statistical study supported the initial hypothesis: as the number of genetic
events decreases, the evolved models are less accurate.

The statistical analysis on the model sizes only identified significant differences for weighted
average inference. In this case, the post-hoc Bonferroni-Dunn test detected that configuration
C6 evolved larger models than the other configurations. This is because, with configuration C6,
the correct sets received the lowest number of genetic events; therefore, the population had less
diversity.

D.3.4 Sensitivity to Deletion

The deletion mechanism designed for Fuzzy-UCS was inspired by the initial deletion procedure of
XCS (Kovacs, 1999). This schema increases the probability of deletion of experienced classifiers
whose fitness is less than δ times the average fitness of the population. So, varying δ results in
changing the pressure toward deletion of classifiers with low fitness. Nonetheless, recent studies
have shown that XCS is not sensitive to the settings of δ (Kovacs and Bull, 2007). To confirm
this statement, we ran XCS with δ = 1 (configuration C9).

Table D.8 and D.9 compare the models accuracies and sizes of Fuzzy-UCS with configurations
Cp and C9. We applied a pairwise comparison between the two configurations for each inference

250

D.3. FUZZY-UCS’S SENSITIVITY TO CONFIGURATION PARAMETERS

Table D.6: Comparison of the model sizes obtained with the three types of inference and the five
configurations varying θGA, θdel, and θsub. Rank gives the average rank of each configuration for
each one of the three inference schemes. Pos shows the absolute position in the ranking. Frd
reports the p-value obtained with the multiple-comparison Friedman test performed for each
inference methodology.

wavg awin nfit

Rp C5 C6 C7 C8 Rp C5 C6 C7 C8 Rp C5 C6 C7 C8

bal 1212 1233 1164 1096 1002 114 117 119 115 114 75 71 63 80 84
bpa 1440 1320 934 1519 1607 73 60 52 74 73 39 24 20 43 43
gls 2799 2684 2528 2835 2926 62 62 60 59 59 36 31 28 39 41
h-s 3415 3505 3273 3449 3396 117 133 137 113 107 62 68 67 59 58
irs 480 540 378 495 482 18 18 18 17 17 7 8 8 7 7
pim 2841 2539 2072 2707 2686 192 179 161 193 181 62 48 41 79 87
tao 111 143 117 107 101 19 18 17 19 19 14 13 10 14 14
thy 1283 1166 780 1266 1259 37 37 34 38 36 11 11 11 10 10
veh 3732 3859 3981 3581 3498 332 319 310 326 317 147 143 116 169 199
wbcd 3130 3184 2477 3097 3111 138 148 150 138 140 28 33 36 28 28
wdbc 5412 5343 5037 5415 5412 276 279 272 275 269 101 88 83 112 115
wne 3686 3568 3241 3746 3764 95 101 100 96 95 26 29 30 25 24

Rank 3.42 3.42 1.75 3.42 3.00 3.17 3.50 2.83 3.33 2.17 3.17 3.50 2.83 3.33 2.17

Pos 4 4 1 4 2 3 5 2 4 1 3 5 2 4 1

Frd 0.0368 0.1466 0.6289

Table D.7: Pairwise comparison of the test accuracy of Fuzzy-UCS obtained with the three
types of inference and the five configurations varying θGA, θdel, and θsub by means of a Wilcoxon
signed-ranks test.

wavg awin nfit

Cp C5 C6 C7 C8 Cp C5 C6 C7 C8 Cp C5 C6 C7 C8

Cp .002 .008 .695 .938 .012 .003 .875 .480 .006 .034 .424 .530
C5 ª .182 .010 .012 ª .004 .041 .347 ª .100 .084 .182
C6 ª − .012 .015 ª ª .003 .005 ª − .060 .100
C7 − ⊕ ⊕ .938 + ⊕ ⊕ .327 − + + 1.00
C8 − ⊕ ⊕ − − + ⊕ + − + + −

scheme according to a Wilcoxon signed-ranks test (the approximate p-value is provided in the
last row of the tables). The null hypothesis that the results obtained with both configurations
were equal on average could not be rejected. This supported the empirical conclusions extracted
by Kovacs and Bull (2007), which highlighted the robustness of XCS (and Fuzzy-UCS in our
case) to the parameter δ.

251

APPENDIX D. EMPIRICAL ANALYSIS OF THE SENSITIVITY OF FUZZY-UCS TO CONFIGURATION
PARAMETERS

Table D.8: Comparison of the test accuracy obtained with the three types of inference and the
two configurations which vary the deletion pressure δ. Rank gives the average rank of each
configuration for each one of the three inference schemes. Pos shows the absolute position in
the ranking. PW reports the p-value obtained with the pairwise Wilcoxon signed-ranks test
performed for each inference methodology.

wavg awin nfit

Cp C9 Cp C9 Cp C9

bal 88.65 88.68 84.40 84.30 83.40 82.91
bpa 59.82 59.61 59.42 58.37 58.93 58.32
gls 60.65 59.85 57.21 56.70 57.43 58.21
h-s 81.33 80.81 80.78 80.78 78.11 79.44
irs 95.67 95.13 95.47 95.60 93.73 94.40
pim 74.88 74.70 74.11 74.19 74.32 74.11
tao 81.71 81.64 83.02 83.11 87.53 87.79
thy 88.18 89.04 89.49 90.29 91.25 89.47
veh 67.68 66.50 65.35 65.84 65.34 65.59
wbcd 96.01 95.59 95.73 95.52 95.29 95.03
wdbc 95.20 95.09 94.61 94.43 94.51 94.19
wne 94.12 94.58 94.86 94.97 91.82 92.94

Rank 1.25 1.75 1.54 1.46 1.5 1.5

Pos 1 2 2 1 1.5 1.5

PW 0.1099 0.8311 0.7334

Table D.9: Comparison of the model sizes obtained with the three types of inference and the
three configurations which vary the deletion pressure δ. Rank gives the average rank of each
configuration for each one of the three inference schemes. Pos shows the absolute position in
the ranking. PW reports the p-value obtained with the pairwise Wilcoxon signed-ranks test
performed for each inference methodology.

wavg awin nfit

Cp C9 Cp C9 Cp C9

bal 1212 1310 114 109 75 67
bpa 1440 1437 73 74 39 40
gls 2799 2869 62 60 36 35
h-s 3415 3450 117 116 62 60
irs 480 492 18 17 7 7
pim 2841 2765 192 188 62 66
tao 111 107 19 19 14 14
thy 1283 1276 37 37 11 11
veh 3732 3741 332 321 147 139
wbcd 3130 3385 138 135 28 28
wdbc 5412 5439 276 277 101 99
wne 3686 3808 95 97 26 25

Rank 1.33 1.67 1.75 1.25 1.75 1.25

Pos 1 2 2 1 2 1

PW 0.064 0.0977 0.1719

252

D.4. SUMMARY AND CONCLUSIONS

D.4 Summary and Conclusions

The study performed in this chapter empirically showed that there are two key parameters to
guarantee the success of Fuzzy-UCS: generalization in initialization (P#) and fitness pressure
(ν). Specifically, the generality in the initial population has to be high enough to let the genetic
algorithm take place, as suggested by Butz et al. (2001). Moreover, the fitness pressure should
be high enough to ensure a strong and reliable pressure toward the fittest classifiers in the
population. On the other hand, changing the setting of the other parameters appears to have
little effect on the model’s quality.

We acknowledge that better results could be individually obtained if we tuned Fuzzy-UCS
for each particular problem. Nonetheless, we are interested in robust systems that perform well
on average. For this reason we did not consider to tune the system for each problem in the
experiments conducted in chapter 8.

253

Bibliography

C. Aggarwal, editor. Data streams: Models and algorithms. Springer, 2007.

J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro. Evolutionary learning of hierarchical decision
rules. IEEE Transactions on Systems, Man, and Cybernetics—Part B, 33(2):324–331, 2003.

J. S. Aguilar-Ruiz, R. Giráldez, and J. C. Riquelme. Natural encoding for evolutionary super-
vised learning. IEEE Transactions on Evolutionary Computation, 11(4):466–479, 2007.

D. Aha, D. Kibler, and M. Albert. Instance-based learning algorithms. Machine Learning, 6(1):
37–66, 1991.

R. Alcalá, J. Casillas, O. Cordón, and F. Herrera. Building fuzzy graphs: Features and taxonomy
of learning for non-grid-oriented fuzzy rule-based systems. Journal of Intelligent and Fuzzy
Systems, 11(3-4):99–119, 2001.

J. Alcalá-Fdez, F. Herrera, F. Márquez, and A. Peregŕın. Increasing fuzzy rules cooperation
based on evolutionary adaptive inference systems: Research articles. International Journal in
Intelligent Systems, 22(9):1035–1064, 2007. ISSN 0884-8173. doi: http://dx.doi.org/10.1002/
int.v22:9.

J. Alcalá-Fdez, L. Sánchez, S. Garćıa, M. J. del Jesus, S. Ventura, J. M. Garrell, J. Otero,
C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernández, and F. Herrera. KEEL: A soft-
ware tool to assess evolutionary algorithms for data mining problems. Soft Computing,
doi=10.1007/s00500-008-0323-y, 2008.

D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The traveling salesman problem: A
computational Study. Princeton University Press, Princeton, NJ, USA, 2006.

A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom.
STREAM: The stanford stream data manager demonstration description - short overview of
system status and plans. In SIGMOD’03: Proceedings of the ACM International Conference
on Management of Data, 2003.

A. Asuncion and D. J. Newman. UCI Machine Learning Repository:
[http://www.ics.uci.edu/∼mlearn/MLRepository.html]. University of California, 2007.

J. Bacardit. GAssist Source Code: http://www.asap.cs.nott.ac.uk/∼jqb/PSP/GAssist-
Java.tar.gz, 2007.

255

BIBLIOGRAPHY

J. Bacardit. Pittsburgh genetic-based machine learning in the data mining era: Representations,
generalization and run-time. PhD thesis, Ramon Llull University, Barcelona, Catalonia, Spain,
Barcelona, 2004.

J. Bacardit and M. V. Butz. Data mining in learning classifier systems: Comparing XCS with
GAssist. In Proceedings of the 7th International Workshop on Learning Classifier Systems.
Springer-Verlag, 2004.

T. Bäck. Selective pressure in evolutionary algorithms: A characterization of selection mech-
anisms. In Proceedings of the First IEEE Conference on Evolutionary Computation, pages
57–62, 1994.

T. Bäck. Generalized convergence models for tournament- and (mu, lambda)-selection. In
Proceedings of the 6th International Conference on Genetic Algorithms, pages 2–8. Morgan
Kaufmann Publishers Inc., 1995. ISBN 1-55860-370-0.

T. Bäck. Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary
programming, genetic algorithms. Oxford University Press, USA, 1996.

J. E. Baker. Adaptive selection methods for genetic algorithms. In Proceedings of the Interna-
tional Conference on Genetic Algorithms and Their Applications, pages 101–111, 1985.

A. Bardossy and L. Duckstein. Fuzzy rule-based modeling with applications to geophysical, bi-
ological, and engineering systems. CRC Press, Inc., Boca Raton, FL, USA, 1995. ISBN
0849378338.

G. Batista, R. C. Prati, and M. C. Monrad. A study of the behavior of several methods for
balancing machine learning training data. SIGKDD Explorations Newsletter, special issue on
learning from imbalanced datasets, 6(1):20–29, 2004.

E. Bernadó-Mansilla and J. M. Garrell. Accuracy-based learning classifier systems: Models,
analysis and applications to classification tasks. Evolutionary Computation, 11(3):209–238,
2003.

E. Bernadó-Mansilla and T. Ho. Domain of competence of XCS classifier system in complexity
measurement space. IEEE Transactions on Evolutionary Computation, 9(1):1–23, 2005.

E. Bernadó-Mansilla, X. Llorà, and J. Garrell. XCS and GALE: A comparative study of two
learning classifier systems on data mining. In Advances in Learning Classifier Systems, volume
2321 of LNAI, pages 115–132. Springer, 2002.

E. Bernadó-Mansilla, T. Ho, and A. Orriols-Puig. Data Complexity and Evolutionary Learning:
Classifier’s Behavior and Domain of Competence, pages 115–134. Springer, 2006.

H. G. Beyer. Toward a theory of evolution strategies: Self-adaptation. Evolutionary Computa-
tion, 3(3):311–347, 1996.

C. M. Bishop. Pattern recognition and machine learning. Springer, 2007. ISBN 0-387-31073-8.

T. Blickle and L. Thiele. A mathematical analysis of tournament selection. In Proceedings of
the Sixth International Conference on Genetic Algorithms, pages 9–16, 1995.

256

BIBLIOGRAPHY

T. Blickle and L. Thiele. A comparison of selection schemes used in evolutionary algorithms.
Evolutionary Computation, 4(4):361–394, 1996.

A. Bonarini. Evolutionary learning of fuzzy rules: Competition and cooperation. In W. Pedrycz,
editor, Fuzzy Modelling: Paradigms and Practice, pages 265–284. Norwell, MA: Kluwer Aca-
demic Press, 1996.

A. Bonarini and V. Trianni. Learning fuzzy classifier systems for multi-agent coordination.
Information Sciences: an International Journal, 136(1-4):215–239, 2001. ISSN 0020-0255.

P. Bonelli and A. Parodi. An efficient classifier system and its experimental comparison with two
representative learning methods on three medical domains. In 4th International Conference
on Genetic Algorithms, pages 288–295, 1991.

L. Booker. Intelligent behavior as an adaptation to the task environment. PhD thesis, University
of Michigan, 1982.

G. E. P. Box. Evolutionary operation: A method for increasing industrial productivity. Applied
Statistics, 6:81–101, 1957.

G. E. P. Box and N. P. Draper. Evolutionary operation. A method for increasing industrial
productivity. New York: Wiley, 1969.

H. J. Bremermann. Optimization through evolution and recombination. In Self-Organizing
Systems. Pergamon Press, Oxford, U.K., 1962.

R. A. Brooks. Elephants don’t play chess. Robotics and Autonomous Systems, 6:3–15, 1990.

G. Brown, T. Kovacs, and J. Marshall. UCSpv: Principled voting in UCS rule populations. In
GECCO’07: Proceedings of the 2007 Conference on Genetic and Evolutionary Computation,
pages 1774–1781, New York, NY, USA, 2007. ACM.

B. G. Buchanan. A (very) brief history of artificial intelligence. AI Magazine, 26(4):53–60, 2005.

J. J. Buckley and Y. Hayashi. Fuzzy neural networks: A survey. Fuzzy Sets and Systems, 66:
1–13, 1994.

J. J. Buckley and Y. Hayashi. Neural networks for fuzzy systems. Fuzzy Sets and Systems, 71:
265–276, 1995.

L. Bull. Applications of learning classifier systems. Springer Verlag, 2004.

L. Bull. Two simple learning classifier systems. In Foundations of Learning Classifier Systems,
volume 183/2005, pages 63–89. Springer Berlin, 2005.

L. Bull and J. Hurst. ZCS redux. Evolutionary Computation, 10(2):185–205, 2002.

L. Bull and T. O’Hara. Accuracy-based neuro and neuro-fuzzy classifier systems. In GECCO’02:
Proceedings of the 2002 Genetic and Evolutionary Computation Conference, pages 905–911,
San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc. ISBN 1-55860-878-8.

257

BIBLIOGRAPHY

L. Bull, E. Bernadó-Mansilla, and J. Holmes, editors. Learning classifier systems in data mining.
Studies in Computational Intelligence. Springer, 2008.

M. Butz, D. E. Goldberg, P. L. Lanzi, and K. Sastry. Problem solution sustenance in XCS:
Markov chain analysis of niche support distributions and the impact on computational com-
plexity. Genetic Programming and Evolvable Machines, 8(1):5–37, 2007.

M. V. Butz. Rule-based evolutionary online learning systems: A principled approach to LCS
analysis and design, volume 109 of Studies in Fuzziness and Soft Computing. Springer, 2006.

M. V. Butz and M. Pelikan. Analyzing the evolutionary pressures in XCS. In GECCO’01:
Proceedings of the 2001 Genetic and Evolutionary Computation Conference, pages 935–942.
San Francisco, CA: Morgan Kaufmann, 2001.

M. V. Butz and S. W. Wilson. An algorithmic description of XCS. In P. L. Lanzi, W. Stolzmann,
and S. W. Wilson, editors, Advances in Learning Classifier Systems: Proceedings of the Third
International Workshop, volume 1996 of Lecture Notes in Artificial Intelligence, pages 253–
272. Springer, 2001.

M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson. How XCS evolves accurate classifiers.
In GECCO’01: Proceedings of the 2001 Genetic and Evolutionary Computation Conference,
pages 927–934. San Francisco, CA: Morgan Kaufmann, 2001.

M. V. Butz, D. E. Goldberg, and T. Tharankunnel. Analysis and improvement of fitness explo-
ration in XCS: Bounding models, tournament selection, and bilateral accuracy. Evolutionary
Computation, 11(3):239–277, 2003.

M. V. Butz, D. E. Goldberg, and P. L. Lanzi. Bounding learning time in XCS. In GECCO’2004:
Proceedings of the 2004 Genetic and Evolutionary Computation Conference, LNCS, pages
739–750. Springer, 2004a.

M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson. Toward a theory of generalization and
learning in XCS. IEEE Transactions on Evolutionary Computation, 8(1):28–46, 2004b.

M. V. Butz, D. E. Goldberg, and P. L. Lanzi. Gradient descent methods in learning clas-
sifier systems: Improving XCS performance in multistep problems. IEEE Transactions on
Evolutionary Computation, 9(5):452–473, 2005a.

M. V. Butz, D. E. Goldberg, and P. L. Lanzi. Extracted global structure makes local building
block processing effective in XCS. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2005), pages 655–662. ACM Press, 2005b.

M. V. Butz, K. Sastry, and D. E. Goldberg. Strong, stable, and reliable fitness pressure in
XCS due to tournament selection. Genetic Programming and Evolvable Machines, 6(1):53–77,
2005c.

M. V. Butz, P. L. Lanzi, and S. W. Wilson. Hyper-ellipsoidal conditions in XCS: Rotation,
linear approximation, and solution structure. In GECCO ’06: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, pages 1457—1464, New York, NY, USA,
2006. ACM. ISBN 1-59593-186-4. doi: http://doi.acm.org/10.1145/1143997.1144237.

258

BIBLIOGRAPHY

M. V. Butz, P. L. Lanzi, and S. W. Wilson. Function approximation with XCS: Hyperellipsoidal
conditions, recursive least squares, and compaction. IEEE Transactions on Evolutionary
Computation, 12(3):355–376, 2008. doi: 10.1109/TEVC.2007.903551.

E. Cantú-Paz. Selection intensity in genetic algorithms with generation gaps. In GECCO’00:
Proceedings of the 2000 Genetic and Evolutionary Computation Conference, pages 911–918,
1999a.

E. Cantú-Paz. Migration policies and takeover times in parallel genetic algorithms. In
GECCO’99: Proceedings of the 1999 Genetic and Evolutionary Computation Conference,
pages 775–775, 1999b. also IlliGAL Report No. 99008.

B. Carse, T. Fogarty, and A. Munro. Evolving fuzzy rule based controllers using genetic algo-
rithms. Fuzzy Sets and Systems, 80(3):273–293, 1996. ISSN 0165-0114.

D. R. Carvalho and A. A. Freitas. A genetic-algorithm for discovering small-disjunct rules in
data mining. Applied Soft Computing, 2(2):75–88, 2002.

J. Casillas, O. Cordón, M. J. del Jesus, and F. Herrera. Genetic tuning of fuzzy rule deep
structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE
Transactions on Fuzzy Systems, 13(1):13–29, 2005. ISSN 1063-6706. doi: 10.1109/TFUZZ.
2004.839670.

J. Casillas, B. Carse, and L. Bull. Fuzzy-XCS: A Michigan genetic fuzzy system. IEEE Trans-
actions on Fuzzy Systems, 15(4):536–550, 2007.

P. K. Chan and S. J. Stolfo. Toward scalable learning with non-uniform class and cost distribu-
tions: A case study in credit card fraud detection. In Knowledge Discovery and Data Mining,
pages 164–168, 1998.

N. V. Chawla, K. Bowyer, L. O. Hall, and W. Kegelmeyer. SMOTE: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence Research, 16:321–357, 2002.

N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. SMOTEBoost: Improving prediction
of the minority class in boosting. In VIIth European Conference on Principles and Practice
of Knowledge Discovery in Databases(PKDD0́3), pages 107–119. Springer-Verlag, 2003.

N. V. Chawla, N. Japkowicz, and A. Kolcz, editors. Special issue on learning from imbalanced
datasets, volume 6. 2004.

O. Cordón and F. Herrera. A three-stage evolutionary process for learning descriptive and
approximate fuzzy-logic-controller knowledge bases from examples. International Journal of
Approximate Reasoning, 17(4):369–407, 1997.

O. Cordón, M. del Jesús, and F. Herrera. A proposal on reasoning methods in fuzzy rule-based
classification systems. International Journal of Approximate Reasoning, 20(1):21–45, 1999.

O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena. Genetic fuzzy systems: Evolutionary
tuning and learning of fuzzy knowledge bases, volume 19 of Advances in Fuzzy Systems—
Aplications and Theory. World Scientific, 2001a.

259

BIBLIOGRAPHY

O. Cordón, F. Herrera, and P. Villar. Generating the knowledge base of a fuzzy rule-based
system by the genetic learning of the data base. IEEE Transactions on Fuzzy Systems, 9(4):
667–674, August 2001b.

K. Crockett, Z. Bandar, and D. Mclean. On the optimization of t-norm parameters within fuzzy
decision trees. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2007), pages
103–108, 2007. doi: 10.1109/FUZZY.2007.4295348.

K. A. Crockett, Z. Bandar, J. Fowdar, and J. O’Shea. Genetic tuning of fuzzy inference within
fuzzy classifier systems. Expert Systems, 23:63–82, 2006. doi: doi:10.1111/j.1468-0394.2006.
00325.x.

H. H. Dam, H. A. Abbass, and C. Lokan. Be real! XCS with continuous-valued inputs. In
GECCO’05: In Proceedings of the 2005 Genetic and Evolutionary Computation Conference
workshop program, pages 85–87, Washington, D.C., USA, 2005. ACM Press.

C. Darwin. The origin of species. see online version at www.literature.org, 1859.

K. Deb. Genetic algorithms in multimodal function optimization. In Master Thesis and TCGA
Report No. 89002. Tuscaloosa, AL: Department of Engineering Mechanics, University of Al-
abama, 1989.

M. J. del Jesus, F. Hoffmann, L. J. Navascués, and L. Sánchez. Induction of fuzzy-rule-based
classifiers with evolutionary boosting algorithms. IEEE Transactions on Fuzzy Systems, 12
(3):296–308, 2004.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30, 2006.

A. V. den Bosch, T. Weijters, and J. V. den Herik. When small disjuncts abound, try lazy
learning: A case study. In Proceedings Seventh BENELEARN Conference, pages 109–118,
1997.

T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning
algorithms. Neural Computation, 10(7):1895–1924, 1998.

P. W. Dixon, D. W. Corne, and M. J. Oates. A preliminary investigation of modified XCS as a
generic data mining tool. In P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors, Advances
in Learning Classifier Systems, 4th International Workshop, volume 2321 of Lecture Notes in
Computer Science, pages 133–150. Springer, 2002.

P. W. Dixon, D. W. Corne, and M. J. Oates. A ruleset reduction algorithm for the XCSI
learning classifier system, volume 2661/2003 of Lecture Notes in Computer Science, pages
20–29. Springer, 2004. ISBN 978-3-540-20544-9.

J. Drugowitsch. Design and analysis of learning classifier systems: A probabilistic approach.
Springer, 2008.

J. Drugowitsch and A. M. Barry. A formal framework and extensions for function approximation
in learning classifier systems. Machine Learning, 70(1):45–88, 2008.

260

BIBLIOGRAPHY

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. Wiley-Interscience, 2nd edition,
2000.

O. Dunn. Multiple comparisons among means. Journal of the American Statistical Association,
56:52–64, 1961.

T. Fawcett. PRIE: A system for generating rulelists to maximize ROC performance. Data
Mining and Knowledge Discovery, 17(2):207–224, 2008. doi: 10.1007/s10618-008-0089-y.

E. A. Feigenbaum and J. Feldman, editors. Computers and Thought. AAAI press, 1995.

R. Fisher. Statistical methods and scientific inference. Hafner Publishing Co, New York, 2nd
edition, 1959.

D. B. Fogel. Autonomous automata. Industrial Research, 4:14–19, 1962.

D. B. Fogel. On the organization of intellect. PhD thesis, 1964.

D. B. Fogel, A. J. Owens, and M. J. Walsh. Artificial intelligence through simulated evolution.
Wiley, New York, USA, 1966.

E. Frank and I. H. Witten. Generating accurate rule sets without global optimization. In Pro-
ceedings of the 15th International Conference on Machine Learning, pages 144–151. Morgan
Kaufmann, San Francisco, CA, 1998.

W. Frawley, G. Piatetsky-Shapiro, and C. Matheus. Knowledge discovery in databases: An
overview. AI Magazine, pages 213–228, 1992.

A. Freitas. Data mining and knowledge discovery with evolutionary algorithms. Springer-Verlag,
2002.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In International
Conference on Machine Learning, pages 148–156, 1996.

R. M. Friedberg. A learning machine: part I. IBM Journal, 2:2–13, 1958.

R. M. Friedberg, B. Dunham, and J. H. North. A learning machine: part II. IBM Journal, 3:
282–287, 1959.

M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. Journal of the American Statistical Association, 32:675–701, 1937.

M. Friedman. A comparison of alternative tests of significance for the problem of m rankings.
Annals of Mathematical Statistics, 11:86–92, 1940.

C. Fu, S. W. Wilson, and L. Davis. Studies of the XCSI classifier system on a data mining
problem. In GECCO’01: Proceedings of the 2001 Genetic and Evolutionary Computation
Conference, pages 985–993, San Francisco, CA, USA, 2001. Morgan Kaufmann.

T. Furuhashi, K. Nakaoka, and Y. Uchikawa. Suppression of excess fuzziness using multiple
fuzzy classifier systems. In Proceedings of the 3th IEEE International Conference on Fuzzy
Systems, pages 411–414. Morgan Kaufmann, 1994.

261

BIBLIOGRAPHY

J. Gama and M. M. Gaber, editors. Learning from data streams. Springer, 2007.

S. Garćıa and F. Herrera. Evolutionary under-sampling for classification with imbalanced data
sets: Proposals and taxonomy. Evolutionary Computation, 2008.

A. Giordana and F. Neri. Search-intensive concept induction. Evolutionary Computation, 3(4):
375–419, 1995.

H. Goksu, P. Pigg, and V. Dixit. Music Composition Using Genetic Algorithms (GA) and
Multilayer Perceptrons (MLP). In Advances in Natural Computation, volume 3612 of Lectures
Notes in Computer Science, pages 1242–1250, 2005.

D. E. Goldberg. The design of innovation: Lessons from and for competent genetic algorithms.
Kluwer Academic Publishers, 1 edition, 2002.

D. E. Goldberg. Controlling dynamic systems with genetic algorithms and rule learning. In
Proceedings of the 4th Yale Workshop on Applications and Adaptive Systems Theory, pages
91–97, 1985a.

D. E. Goldberg. Dynamic system control using rule learning and genetic algorithms. In Pro-
ceedings of the 9th International Joint Conference on Artificial Intelligence, volume 1, pages
588–592, 1985b.

D. E. Goldberg. Computer-aided gas pipeline operation using genetic algorithms and rule learn-
ing. part I: Genetic algorithms in pipeline optimization. Engineering with Computers, pages
35–45, 1987a.

D. E. Goldberg. Computer-aided gas pipeline operation using genetic algorithms and rule learn-
ing. part II: Rule learning control of a pipeline under normal and abnormal conditions. En-
gineering with Computers, pages 47–58, 1987b.

D. E. Goldberg. Genetic algorithms in search, optimization & machine learning. Addison Wesley,
1 edition, 1989a.

D. E. Goldberg. Sizing populations for serial and parallel genetic algorithms. In Proceedings of
the Third International Conference on Genetic Algorithms, pages 70–79, 1989b.

D. E. Goldberg. Computer-aided gas pipeline operation using genetic algorithms and rule learn-
ing. PhD thesis, University of Michigan, Ann Arbor, MI, 1983.

D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic algo-
rithms. Foundations of Genetic Algorithms, pages 69–93, 2003.

D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function
optimization. In Proceedings of the Second International Conference on Genetic Algorithms,
pages 41–49, 1987.

D. E. Goldberg and M. Rudnick. Genetic algorithms and the variance of fitness. Complex
Systems, 5(3):265–278, 1991.

D. E. Goldberg, K. Deb, and B. Korb. Messy genetic algorithms: motivation, analysis, and first
results. Complex Systems, 3:493–530, 1989.

262

BIBLIOGRAPHY

D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise, and the sizing of populations.
Complex Systems, 6:333–362, 1992.

D. E. Goldberg, D. Thierens, and K. Deb. Toward a better understanding of mixing in genetic
algorithms. Journal of the Society of Instrument and Control Engineers, 32(1):10–16, 1993.

D. E. Goldberg, K. Sastry, and T. Latoza. On the supply of building blocks. In GECCO’01:
Proceedings of the 2001 Genetic and Evolutionary Computation Conference, pages 336–342.
Springer, 2001.

D. E. Goldberg, K. Sastry, and X. Llorà. Toward routine billion-variable optimization using
genetic algorithms: Short communication. Complexity, 12(3):27–29, 2007. ISSN 1076-2787.
doi: http://dx.doi.org/10.1002/cplx.v12:3.

A. González and R. Pérez. SLAVE: A genetic learning system based on an iterative approach.
IEEE Transactions on Fuzzy Systems, 7(2):176–191, 1999.

D. P. Greene. Automated knowledge acquisition: Overcoming the expert systems bottleneck. In
Proceedings of the Seventh International Conference on Information Systems, pages 107–117,
Pittsburgh, PA, 1987. Lawrence Erlbaum Assoc.

D. P. Greene. Inductive knowledge acquisition using genetic adaptive search. PhD thesis, Pitts-
burgh, PA, 1992.

D. P. Greene and S. E. Smith. Competition-based induction of decision models from examples.
Machine Learning, 13:229–257, 1993.

D. P. Greene and S. F. Smith. A genetic system for learning models of consumer choice. In Pro-
ceedings of the Second International Conference on Genetic Algorithms and their Applications,
pages 217–223, Boston, MA, 1987. Morgan Kaufmann.

J. J. Grefenstette and J. E. Baker. How genetic algorithms work: A critical look at implicit
parallelism. In Proceedings of the Third International Conference on Genetic Algorithms,
pages 20–27, 1989.

J. J. Grefenstette and J. Fitzpatrick. Genetic search with approximate function evaluations. In
International Conference on Genetic Algorithms and their Applications, pages 112–120, 1992.

J. W. Grzymala-Busse, L. K. Goodwin, and W. J. Grzymala-Busse. An approach to imbalanced
data sets based on changing rule strength. In Learning from Imbalanced Data Sets: Papers
from the AAAI Workshop, pages 69–74, 2000.

H. Han, W. Y. Wang, and B. H. Mao. Borderline-SMOTE: A new over-sampling method in
imbalanced data sets learning. In ICIC’05: Proceedings of the 2005 International Conference
on Intelligent Computing, pages 878–887. Springer-Verlag, 2005.

G. Harik. Linkage learning via probabilistic modeling in the ECGA. Technical report, Illinois
Genetic Algorithm Laboratory, University of Illinois at Urbana-Champaign (IlliGAL Report
No. 99010), 1999.

263

BIBLIOGRAPHY

G. Harik. Learning gene linkage to efficiently solve problems of bounded difficulty using genetic
algorithms. PhD thesis, University of Michigan, Ann Arbor, 1997. Also available as IlliGAL
Report 97005.

G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller. The gambler’s ruin problem, genetic
algorithms, and the sizing of populations. Evolutionary Computation, 7(3):231–253, 1999.
ISSN 1063-6560. doi: http://dx.doi.org/10.1162/evco.1999.7.3.231.

F. Herrera. Genetic fuzzy systems: Taxonomy and current research trends and prospects.
Evolutionary Intelligence, 1:27–46, 2008. doi: 10.1007/s12065-007-0001-5.

S. Hettich and S. D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA: University
of California, Department of Information and Computer Science, 1999.

T. K. Ho and M. Basu. Complexity measures of supervised classification problems. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(3):289–300, 2002. ISSN 0162-
8828.

J. H. Holland. Outline for a logical theory of adaptive systems. Journal of the Association for
Computing Machinery, 3:297–314, 1962.

J. H. Holland. Nonlinear environments permitting efficient adaptation. In Computer and Infor-
mation Sciences II. New York: Academic, 1967.

J. H. Holland. Processing and processors for schemata. In E. L. Jacks, editor, Associative
information processing, pages 127–146. New York: American Elsevier, 1971.

J. H. Holland. Adaptation in natural and artificial systems. The University of Michigan Press,
1975.

J. H. Holland. Adaptation. In R. Rosen and F. Snell, editors, Progress in Theoretical Biology,
volume 4, pages 263–293. New York: Academic Press, 1976.

J. H. Holland. Adaptation in natural and artificial systems. MIT Press, Cambridge, MA., 2nd
edition, 1992.

J. H. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms. In D. Water-
man and F. Hayes-Roth, editors, Pattern-directed inference systems, pages 313–329. Academic
Press, San Diego, USA, 1978.

J. Holmes. Differential negative reinforcement improves classifier system learning rate in two-
class problems with unequal base rates. In Genetic Programming 1998: Proceedings of the
Third Annual Conference, pages 635–642. Morgan Kaufmann, 1998.

R. C. Holte, L. E. Acker, and B. W. Porter. Concept learning and the problem of small disjuncts.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, pages
813–818, 1989.

A. Homaifar and E. McCormick. Simultaneous design of membership functions and rule sets
for fuzzy controllers using genetic algorithms. IEEE Transactions on Fuzzy Systems, 3(2):
129–139, 1995. ISSN 1063-6706. doi: 10.1109/91.388168.

264

BIBLIOGRAPHY

J. Horn. The nature of niching: Genetic algorithms and the evolution of optimal, cooperative
populations. PhD thesis, Illinois Genetic Algorithms Laboratory (IlliGAL), University of
Illinois at Urbana Champaign, Urbana Champaign 117, 1997.

H. Ishibuchi and T. Yamamoto. Rule weight specification in fuzzy rule-based classification
systems. IEEE Transactions on Fuzzy Systems, 13(4):428–435, 2005.

H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka. Selection fuzzy if-then rules for classifi-
cation problems using genetic algorithms. IEEE Transactions on Fuzzy Systems, 3(3):260–270,
1995.

H. Ishibuchi, T. Murata, and I. B. Türkşen. Single-objective and two-objective genetic algo-
rithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets and Sys-
tems, 89(2):135–150, 1997. ISSN 0165-0114. doi: http://dx.doi.org/10.1016/S0165-0114(96)
00098-X.

H. Ishibuchi, T. Nakashima, and T. Morisawa. Voting in fuzzy rule-based systems for pattern
classification problems. Fuzzy Sets and Systems, 103(2):223–238, 1999a.

H. Ishibuchi, T. Nakashima, and T. Murata. Performance evaluation of fuzzy classifier systems
for multidimensional pattern classification problems. IEEE Transactions on Systems, Man,
and Cybernetics—Part B: Cybernetics, 29(5):601–618, 1999b.

H. Ishibuchi, T. Yamamoto, and T. Murata. Hybridization of fuzzy GBML approaches for
pattern classification problems. IEEE Transactions on Systems, Man, and Cybernetics—Part
B: Cybernetics, 35(2):359–365, 2005.

B. Jahne, H. Haussecker, and P. Geissler, editors. Handbook of Computer Vision and Applica-
tions, volume 1-3. Academic Press, 1999.

C. Z. Janikow. A knowledge-intensive genetic algorithm for supervised learning. Machine Learn-
ing, 13(2-3):189–228, 1993. ISSN 0885-6125.

N. Japkowicz and S. Stephen. The class imbalance problem: Significance and strategies. In
International Conference on Artificial Intelligence (IC-AI’00), volume 1, pages 111–117, 2000.

N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study. Intelligent
Data Analisis, 6(5):429–450, November 2002.

N. Japkowicz and J. Taeho. Class imbalances versus small disjuncts. SIGKDD Explorations
Newsletter, special issue on learning from imbalanced datasets, 6(1):40–49, June 2004.

J. H. Jo and T. H. Ahn. Reviewing the use of genetic algorithms in a real-time computer game.
In Artificial Intelligence and Applications, 2002.

G. H. John and P. Langley. Estimating continuous distributions in bayesian classifiers. In 11th
Conference on Uncertainty in Artificial Intelligence, pages 338–345. Morgan Kaufmann, 1995.

K. A. D. Jong. Evolutionary computation: A unified approach. MIT Press, Cambridge MA,
2006.

265

BIBLIOGRAPHY

K. A. D. Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD thesis,
University of Michigan, 1975.

K. A. D. Jong and W. M. Spears. Learning concept classification rules using genetic algorithms.
In Proceedings of the International Joint Conference on Artificial Intelligence, pages 651–656.
Sidney, Australia, 1991.

K. A. D. Jong, W. M. Spears, and D. Gordon. Using genetic algorithms for concept learning.
Genetic Algorithms for Machine Learning, A Special Issue of Machine Learning, 13(2–3):
161–188, 1993.

C. M. Karat, J. Vergo, and D. Nahamoo. Conversational interface technologies. In The human-
computer interaction handbook: fundamentals, evolving technologies and emerging applica-
tions, pages 169–186. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA, 2003. ISBN
0-8058-3838-4.

C. Karr. Genetic algorithms for fuzzy controllers. AI Expert, 6(2):26–33, 1991. ISSN 0888-3785.

F. Kharbat, L. Bull, and M. Odeh. Revisiting genetic selection in the XCS learning classifier
system. In Congress on Evolutionary Computation, pages 2061–2068, Edinburgh, UK, 2-5
September 2005. IEEE.

D. Kim, Y. S. Choi, and S. Y. Lee. An accurate cog defuzzifier design using lamarckian co-
adaptation of learning and evolution. Fuzzy Sets and Systems, 130:207–225, 2002. doi: doi:
10.1016/S0165-0114(01)00167-1.

H. Kitano. Empirical studies of the speed of convergence of neural networks training using genetic
algorithms. In In Proceedings of the Eight National Conference in Artificial Intelligence, pages
789–796, 1990.

G. J. Klir and B. Yuan. Fuzzy sets and fuzzy logic–Theory and applications. Prentice-Hall, 1995.

J. Korst and E. Aarts. Simulated annealing and boltzmann machines. Wiley-Interscience, New
York, 1997.

T. Kovacs. Towards a theory of strong overgeneral classifiers. In W. Martin and W. M. Spears,
editors, Foundations of Genetic Algorithms, volume 6, pages 165–184. Morgan Kaufmann,
2001.

T. Kovacs. XCS classifier system reliably evolves accurate, complete, and minimal representa-
tions for boolean functions. In Roy, Chawdhry, and Pant, editors, Soft Computing in Engi-
neering Design and Manufacturing, pages 59–68, London, UK, 1997. Springer-Verlag.

T. Kovacs. Deletion schemes for classifier systems. In GECCO’99: Proceedings of the 1999
Genetic and Evolutionary Computation Conference, pages 329–336. Morgan Kaufmann, 1999.

T. Kovacs and L. Bull. Toward a better understanding of rule initialisation and deletion. In
GECCO ’07: Proceedings of the 2007 GECCO conference companion on Genetic and evolu-
tionary computation, pages 2777–2780, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
698-1.

266

BIBLIOGRAPHY

T. Kovacs and M. Kerber. What makes a problem hard for XCS? In P. L. Lanzi, W. Stolzmann,
and S. W. Wilson, editors, Advances in Learning Classifier Systems: Third International
Workshop, pages 80–99. Springer-Verlag, 2001.

T. Kovacs and M. Kerber. High classification accuracy does not imply effective genetic search. In
GECCO’04: 2004 Genetic and Evolutionary Computation Conference, pages 785–796, Seattle,
WA, USA. 26-30 June, 2004. Springer, LNCS 3103.

J. R. Koza. Hierarchical genetic algorithms operation on populations of computer programs. In
Proceedings of the 11th International Joint Conference on Artificial Intelligence, volume 1,
pages 768–774, 1989.

J. R. Koza. Genetic programming: On the programming of computers by means of natural
selection. MIT Press, Cambridge, Massachusetts, 1992.

J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza. Genetic pro-
gramming IV: Routine human-competitive machine intelligence. Kluwer Academic Publishers,
2003.

M. Kubat, R. Holte, and S. Matwin. Machine learning for the detection of oil spills in satellite
radar images. Machine Learning, 30(2-3):195–215, 1998.

P. L. Lanzi. Learning classifier systems from a reinforcement learning perspective. Soft Com-
puting — A Fusion of Foundations, Methodologies and Applications, 6(3):162–170, 2002.

P. L. Lanzi. Extending the representation of classifier conditions part I: From binary to messy
coding. In GECCO’99: Proceedings of the 1999 Genetic and Evolutionary Computation Con-
ference, pages 337–344, Orlando (FL), 1999a. Morgan Kaufmann.

P. L. Lanzi. Reinforcement Learning with Classifier Systems. PhD thesis, Politecnico di Milano,
1999b.

P. L. Lanzi and A. Perrucci. Extending the representation of classifier conditions part II: From
messy coding to S-expressions. In GECCO’99: Proceedings of the 1999 Genetic and Evolu-
tionary Computation Conference, volume 1, pages 345–352. Morgan Kaufmann, 1999.

P. L. Lanzi and S. W. Wilson. Using convex hulls to represent classifier conditions. In GECCO
’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages
1481–1488, New York, NY, USA, 2006. ACM. ISBN 1-59593-186-4. doi: http://doi.acm.org/
10.1145/1143997.1144240.

P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg. XCS with computed prediction in
continuous multistep environments. In The 2005 IEEE Congress on Evolutionary Computa-
tion, volume 3, pages 2032–2039, 2005. doi: 10.1109/CEC.2005.1554945.

P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms: A New Tool for Evolu-
tionary Computation. Springer, 2002.

C. F. Lima, M. Pelikan, K. Sastry, M. V. Butz, D. E. Goldberg, and F. Lobo. Substructural
neighborhoods for local search in the bayesian optimization algorithm. In PPSN IX: Parallel
Problem Solving from Nature, pages 232–241, 2006.

267

BIBLIOGRAPHY

C. Ling and C. Li. Data mining for direct marketing: Problems and solutions. In Proceedings
of the International Conference on Knowledge Discovery and Data Mining, 1998.

Z. Liu, A. Liu, C. Wang, and Z. Niu. Evolving neural network using real coded genetic algorithm
(GA) for multispectral image classification. Future Generation Computer Systems, 20(7):
1119–1129, 2004. ISSN 0167-739X.

X. Llorà and J. M. Garrell. Evolution of decision trees. In CCIA’01: Fourth Catalan Conference
on Artificial Intelligence, pages 115–122. ACIA Press, 2001.

X. Llorà and S. W. Wilson. Mixed decision trees: Minimizing knowledge representation bias
in LCS. In GECCO’04: Proceedings of the 2004 Genetic and Evolutionary Computation
Conference, pages 797–809. Springer-Verlag, LNCS 3103, 2004.

X. Llorà, R. Reddy, B. Matesic, and R. Bhargava. Towards better than human capability in
diagnosing prostate cancer using infrared spectroscopic imaging. In GECCO’07: Proceedings
of the 9th annual conference on Genetic and evolutionary computation, pages 2098–2105,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-697-4. doi: http://doi.acm.org/10.
1145/1276958.1277366.

N. Macià, E. Bernadó-Mansilla, and A. Orriols-Puig. Preliminary approach on synthetic datasets
generation for classification. In In 2008 International Conference on Pattern Recognition,
2008a. in press.

N. Macià, E. Bernadó-Mansilla, and A. Orriols-Puig. On the dimensions of data complexity
through synthetic data sets. In In Recent Advances in Artificial Intelligence Research and
Development. IOS Press, 2008b. in press.

N. Macià, A. Orriols-Puig, and E. Bernadó-Mansilla. Genetic-based synthetic data sets for the
analysis of classifiers’ behavior. In HIS’08: Proceedings of the 2008 Hybrid Intelligent Systems
Conference, 2008c. in press.

S. M. Mahfoud. Niching methods for genetic algorithms. PhD thesis, Illinois Genetic Algorithms
Laboratory (IlliGAL), University of Illinois at Urbana Champaign, Urbana Champaign 117,
1995.

E. H. Mamdani. Applications of fuzzy algorithm for control a simple dynamic plant. In Pro-
ceedings IEEE, pages 1585–1588, 1974.

F. A. Marquez, A. Peregrin, and F. Herrera. Cooperative evolutionary learning of linguistic fuzzy
rules and parametric aggregation connectors for mamdani fuzzy systems. IEEE Transactions
on Fuzzy Systems, 15(6):1162–1178, 2007. ISSN 1063-6706. doi: 10.1109/TFUZZ.2007.904121.

J. McCharthy. What is artificial intelligence. Technical report, Stanford University Report,
Stanford, CA, USA, 2007.

M. McInerney and A. P. Dhawan. Use of genetic algorithms with backpropagation in training
of feedforward neural networks. In In Proceedings of the IEEE International Conference on
Neural Networks (ICCN’93), pages 203–208, San Francisco, USA, 1993.

268

BIBLIOGRAPHY

D. Mellor. A first order logic classifier system. In GECCO’05: Proceedings of the 2005 Conference
on Genetic and Evolutionary Computation, pages 1819–1826, New York, NY, USA, 2005.
ACM. ISBN 1-59593-010-8. doi: http://doi.acm.org/10.1145/1068009.1068318.

R. S. Michalski. On the quasi-minimal solution of the covering problem. In FCIP’69: Proceedings
of the 5th International Symposium on Information Processing, volume A3, pages 125–128,
Bled, Yugoslavia, 1969.

R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The AQ15 inductive learning system:
An overview and experiments. Technical report, Intelligent Systems Group, ISG 86-20,
UIUCDCS-R-86-1260, Department of Computer Science, University of Illinois, Urbana, 1986.

D. Michie, D. J. Spiegelhalter, and C. C. Taylor, editors. Machine learning, neural and statistical
classification. Ellis Horwood, 1994.

I. Mierswa. Controlling overfitting with multi-objective support vector machines. In GECCO’07:
Proceedings of the 2007 Conference on Genetic and Evolutionary Computation, pages 1830–
1837, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-697-4. doi: http://doi.acm.org/
10.1145/1276958.1277323.

B. L. Miller and D. E. Goldberg. Genetic algorithms, tournament selection, and the effects of
noise. Complex Systems, 9:193–212, 1995.

B. L. Miller and D. E. Goldberg. Optimal sampling for genetic algorithms. Intelligent Engi-
neering Systems through Artificial Neural Networks, 6:291–297, 1996.

T. M. Mitchell. The discipline of machine learning. Technical report, Machine Learning De-
partment, School of Computer Science, Carnegie Melon University, Pittsburgh, PA, USA,
2006.

T. M. Mitchell. Machine learning. McGraw Hill, 1997.

S. Morales-Ortigosa, A. Orriols-Puig, and E. Bernadó-Mansilla. Can evolution strategies improve
learning guidance in XCS? Design and comparison with genetic algorithms based XCS. In
Advances in Artificial Intelligence, volume in press. IOS press, 2008a.

S. Morales-Ortigosa, A. Orriols-Puig, and E. Bernadó-Mansilla. New crossover operator for
evolutionary rule discovery in XCS. In Proceedings of the 2008 Hybrid and Intelligent Systems
Conference, volume in press. IEEE, 2008b.

H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic algorithm
I. Continuous parameter optimization. Evolutionary Computation, 1(1):25–49, 1993.

K. Nakaoka, T. Furuhashi, and Y. Uchikawa. A study on apportionment of credits of fuzzy
classifier system for knowledge adquisition in large scale systems. In Proceedings of the 3th
IEEE International Conference on Fuzzy Systems, pages 1797–1800. Morgan Kaufmann, 1994.

P. B. Nemenyi. Distribution-free multiple comparisons. PhD thesis, Princeton University, New
Jersey, USA, 1963.

269

BIBLIOGRAPHY

N. J. Nilson. Introduction to Machine Learning. Draft of Incomplete Notes. Electronic version,
draft edition, 2005.

Y. Nomura, K. Ikebukuro, K. Yokoyama, T. Takeuchi, Y. Arikawa, S. Ohno, I. Karube, and
M. Valenzuela-Rendón. Reinforcement learning in the fuzzy classifier system. Expert Systems
with Applications, 14:237–247, 1998.

A. Nurnberger, C. Borgelt, and A. Klose. Improving naive bayes classifiers using neuro-fuzzy
learning. In Proceedings of the 1999 Conference on Neural Information Processing, volume 1,
pages 154–159, Perth, WA, Australia, 1999.

A. Orriols-Puig and E. Bernadó-Mansilla. Analysis of reduction algorithms for XCS classifier
system. In Recent Advances in Artificial Intelligence Research and Development, number 113
in 1, pages 383–390. IOS Press, October 2004.

A. Orriols-Puig and E. Bernadó-Mansilla. The class imbalance problem in learning classifier
systems: A preliminary study. In GECCO’05: Proceedings of the 2005 Genetic and Evolu-
tionary Computation Conference Workshop Program, pages 74–78, Washington, D.C., USA,
25-29 June 2005a. ACM Press.

A. Orriols-Puig and E. Bernadó-Mansilla. The class imbalance problem in UCS classifier system:
Fitness adaptation. In Congress on Evolutionary Computation, volume 1, pages 604–611,
Edinburgh, UK, 2-5 September 2005b. IEEE.

A. Orriols-Puig and E. Bernadó-Mansilla. Bounding XCS parameters for unbalanced datasets.
In GECCO’06: Proceedings of the 2006 Genetic and Evolutionary Computation Conference,
pages 1561–1568. ACM Press, 2006a.

A. Orriols-Puig and E. Bernadó-Mansilla. The class imbalance problem in UCS classifier system:
A preliminary study. In Advances at the frontier of LCS, pages 164–183. Springer, 2007.

A. Orriols-Puig and E. Bernadó-Mansilla. A further look at UCS classifier system. In GECCO’06:
Proceedings of the 2006 Genetic and Evolutionary Computation Conference Workshop Pro-
gram, page to appear, Seattle, W.A., USA, 08–12 July 2006b. ACM Press.

A. Orriols-Puig and E. Bernadó-Mansilla. Revisiting UCS: Description, fitness sharing and
comparison with XCS. In Advances at the Frontier of LCSs. Springer, 2008.

A. Orriols-Puig and E. Bernadó-Mansilla. Mining imbalanced data with learning classifier sys-
tems. In Learning Classifier Systems in Data Mining, pages 123–145. Springer, 2008a.

A. Orriols-Puig and E. Bernadó-Mansilla. Evolutionary rule-based systems for imbalanced
datasets. Soft Computing Journal, doi=10.1007/s00500-008-0319-7, 2008b.

A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla. Fuzzy-UCS: Preliminary results. In
GECCO’07: Proceedings of the 2007 Genetic and Evolutionary Computation Conference
Workshop Program, volume 3, pages 2871–2874. ACM Press, 2007a.

A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla. Aprendizaje supervisado de reglas di-
fusas mediante un sistema clasificador evolutivo estilo Michigan. In Proceedings of the II
Congreso Espa nol de Informática (CEDI 2007). I Jornadas sobre Algoritmos Evolutivos y
Metaheuŕısticas(JAEM07), pages 171–178, 2007b.

270

BIBLIOGRAPHY

A. Orriols-Puig, D. E. Goldberg, K. Sastry, and E. Bernadó-Mansilla. Modeling XCS in class
imbalances: Population size and parameters’ settings. In GECCO’07: Proceedings of the 2007
Genetic and Evolutionary Computation Conference, volume 2, pages 1838–1845. ACM Press,
2007c.

A. Orriols-Puig, K. Sastry, P. Lanzi, D. Goldberg, and E. Bernadó-Mansilla. Modeling selection
pressure in XCS for proportionate and tournament selection. In GECCO’07: Proceedings
of the 2007 Genetic and Evolutionary Computation Conference, volume 2, pages 1846–1853.
ACM Press, 2007d.

A. Orriols-Puig, E. Bernadó-Mansilla, D. E. Goldberg, K. Sastry, and P. L. Lanzi. Facetwise
analysis of XCS for problems with class imbalances. IEEE Transactions on Evolutionary
Computation, submitted, 2008a.

A. Orriols-Puig, E. Bernadó-Mansilla, N. Macià, and T. K. Ho. CMAPI: A complexity metrics
API. Journal of Machine Learning Research (submitted), 2008b.

A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla. Evolving fuzzy rules with UCS. In
Advances at the Frontier of LCSs. Springer, 2008c.

A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla. Genetic-based machine learning systems
are competitive for pattern recognition. Evolutionary Intelligence, 2008d. doi: 10.1007/
s12065-008-0013-9.

A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla. A comparative study of several classi-
fiers in supervised learning. In Learning Classifier Systems in Data Mining, pages 205–230.
Springer, 2008e.

A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla. Fuzzy-UCS: a Michigan-style learning
fuzzy-classifier system for supervised learning. IEEE Transactions on Evolutionary Compu-
tation, 2008f. doi: 10.1109/TEVC.2008.925144.

A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla. First approach toward on-line evolution of
association rules with learning classifier systems. In GECCO’08: Proceedings of the 2008 Ge-
netic and Evolutionary Computation Conference Workshop Program, pages 2031–2038, New
York, NY, USA, 2008g. ACM. ISBN 978-1-60558-131-6. doi: http://doi.acm.org/10.1145/
1388969.1389017.

A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla. Approximate versus linguistic represen-
tation in fuzzy-ucs. In HAIS’08: Proceedings of the 2008 International Workshop on Hybrid
Artificial Intelligence Systems, LNAI, (in press), 2008h.

A. Orriols-Puig, J. Casillas, and F. Mart́ınez-López. Modelado causal en marketing mediante
aprendizaje no supervisado de reglas de asociación difusas. In ESTYLF’08: Proceedings of
the XIV Congreso Español sobre Tecnoloǵıas y Lógica Fuzzy, 2008i. Spanish version only.

J. Otero and L. Sánchez. Induction of descriptive fuzzy classifiers with the logitboost algorithm.
Soft Computing, 10(9):825–835, 2006. ISSN 1432-7643.

G. Pagallo and D. Haussler. Boolean feature discovery in empirical learning. Machine Learning,
5:71–99, 1990.

271

BIBLIOGRAPHY

A. Parodi and P. Bonelli. A new approach to fuzzy classifier systems. In Proceedings of the 5th
International Conference on Genetic Algorithms, pages 223–230. Morgan Kaufmann, 1993.

M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk. Reducing the misclassification
costs. In Proceedings of the Eleventh International Conference on Machine Learning, pages
217–225, 1994.

W. Pedrycz. Fuzzy sets technology in knowledge discovery. Fuzzy Sets and Systems, 98(3):
279290, 1998.

M. Pelikan. Hierarchical bayesian optimization algorithm: Toward a new generation of evolu-
tionary algorithms, volume 170 of Studies in Computational Intelligence. Springer, 2005.

M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The bayesian optimization algorithm. In
GECCO’09: Genetic and Evolutionary Computation Conference, pages 525–532, 1999.

M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. Linkage learning, estimation distribution, and
bayesian networks. Evolutionary Computation, 8(3):314–341, 2000a.

M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of optimization by building and using
probabilistic models. In Proceedings of the American Control Conference, pages 3289–3293,
2000b.

M. Pelikan, K. Sastry, and E. Cantú-Paz. Scalable optimization via probabilistic modeling,
volume 33 of Studies in Computational Intelligence. Springer, 2006. ISBN 978-3-540-34953-2.

J. Platt. Fast training of support vector machines using sequential minimal optimization. In
Advances in Kernel Methods - Support Vector Learning. MIT Press, 1998.

J. R. Quinlan. Discovering rules by induction from large collections of examples. In D. Michie,
editor, Expert Systems in the Micro Electronic Age, Edinburgh, UK, 1979. Edinburgh Univer-
sity Press.

J. R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann Publishers, San Mateo,
California, 1995.

I. Rechenberg. Cybernetic solution path of an experimental problem, volume 1122. 1965.

I. Rechenberg. Evolution strategie: Optimierung technischer systeme nach prinzipien der biolo-
gischen evolution. Frommann-Holzboog, 1973.

R. L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987.

M. Robnik-Sikonja, D. Cukjati, and I. Kononenko. Comprehensible evaluation of prognostic
factors and prediction of wound healing. Artificial Intelligence in Medicine, 29(1-2):25–38,
2003.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by
error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed
Processing, pages 318–364, Cambridge, MA, 1986. MIT Press.

272

BIBLIOGRAPHY

S. Russell and P. Norvig. Artificial intelligence: A modern approach. Series on Artificial Intel-
ligence. Prentice Hall, 2nd edition, 2002.

L. Sánchez and I. Couso. Fuzzy random variables-based modeling with GA-P algorithms. In
R. Yager and B. Bouchon-Menier, editors, Information, Uncertainty and Fusion, pages 245–
256. Kluwer, 2000.

L. Sánchez and I. Couso. Advocating the use of imprecisely observed data in genetic fuzzy
systems. IEEE Transactions on Fuzzy Systems, 15(4):551–562, 2007.

L. Sánchez and I. Couso. Learning with imprecise examples with GA-P algorithms. Soft Com-
puting, 5(1–4):305–319, 1998.

L. Sánchez and J. Otero. Boosting fuzzy rules in classification problems under single-winner
inference. International Journal of Intelligent Systems, 22(9):1021–1034, 2007. ISSN 0884-
8173. doi: http://dx.doi.org/10.1002/int.v22:9.

L. Sánchez, I. Couso, and J. A. Corrales. Combining GP operators with SA search to evolve
fuzzy rule based classifiers. Information Sciences, 136(1–4):175–191, 2001. ISSN 0020-0255.

L. Sánchez, I. Couso, and J. Casillas. Modeling vague data with genetic fuzzy systems under a
combination of crisp and imprecise criteria. In Proceedings of the 2007 IEEE Symposium on
Computational Intelligence in Multicriteria Decision Making, pages 346–353, 2007.

K. Sastry and D. E. Goldberg. Modeling tournament selection with replacement using apparent
added noise. Intelligent Engineering Systems Through Artificial Neural Networks, 11:129–134,
2001.

K. Sastry and D. E. Goldberg. Analysis of mixing in genetic algorithms: A survey. Technical
report, IlliGAL Report No. 2002012, Urbana, IL: University of Illinois at Urbana-Champaign,
2002.

K. Sastry and D. E. Goldberg. Probabilistic model building and competent genetic programming.
In R. L. Riolo and B. Worzel, editors, Genetic Programming Theory and Practice, pages 205–
220. Kluwer, 2003a.

K. Sastry and D. E. Goldberg. Scalability of selectorecombinative genetic algorithms for prob-
lems with tight linkage. In GECCO’03: Proceedings of the 2003 Genetic and Evolutionary
Computation Conference, pages 1332–1344, 2003b.

K. Sastry and D. E. Goldberg. Designing competent mutation operators via probabilistic model
building of neighborhoods. In GECCO’04: Proceedings of the 2004 Genetic and Evolutionary
Computation Conference, volume 2, pages 114–125, 2004.

K. Sastry and A. Orriols-Puig. Extended compact genetic algorithm in matlab. Technical report,
IlliGAL Report No. 2007009, Urbana-Champaign IL 61801, USA, 2007.

H. P. Schwefel. Numerical optimization of computer models. John Wiley & Sons, 1981.

D. Sheskin. Handbook of parametric and nonparametric statistical procedures. Chapman & Hall,
2000.

273

BIBLIOGRAPHY

R. E. Smith and M. Valenzuela-Rendón. A study of rule set development in learning classifier
system. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 340–346, San Mateo, California, 1989. Morgan Kaufmann. ISBN 1-55860-
006-3.

S. F. Smith. Flexible learning of problem solving heuristics through adaptive search. In In
Proceedings of the Eighth International Joint Conference on Artificial Intelligence, pages 421–
425, Los Altos, CA, 1983. Morgan Kaufmann.

S. F. Smith. Adaptive learning systems. In R. Forsyth, editor, Expert Systems: Principles and
Case Studies, pages 168–189. Chapman and Hall, London, U.K., 1984.

S. F. Smith. A learning system based on genetic adaptive algorithms. PhD thesis, University of
Pittsburgh, USA, 1980.

S. Y. Sohn. Meta analysis of classification algorithms for pattern recognition. IEEE Transactions
of Pattern Analyisis and Machine Learning, 21(11):1137–1144, 1999.

C. Stone and L. Bull. For real! XCS with continuous-valued inputs. Evolutionary Computation,
11(3):299–336, 2003.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. Cambridge, MA: MIT
Press, 1998.

K. Tamee, L. Bull, and O. Pinngern. A learning classifier system approach to clustering. In
ISDA’06: Proceedings of the Sixth International Conference on Intelligent Systems Design and
Applications, pages 621–626, Washington, DC, USA, 2006. IEEE Computer Society. ISBN
0-7695-2528-8. doi: http://dx.doi.org/10.1109/ISDA.2006.62.

K. Tamee, L. Bull, and O. Pinngern. Towards clustering with XCS. In GECCO’07: Proceedings
of the 9th annual conference on Genetic and evolutionary computation, pages 1854–1860,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-697-4. doi: http://doi.acm.org/10.
1145/1276958.1277326.

F. Teixidó-Navarro, A. Orriols-Puig, and E. Bernadó-Mansilla. Hierarchical evolution of lin-
ear regressors. In GECCO’08: Proceedings of the 10th annual conference on Genetic and
evolutionary computation, pages 1413–1420, New York, NY, USA, 2008. ACM. ISBN 978-1-
60558-130-9. doi: http://doi.acm.org/10.1145/1389095.1389367.

S. Theodoridis and K. Koutroumbas. Pattern Recognition. Elsevier, 3rd edition, 2006.

D. Thierens and D. E. Goldberg. Convergence models of genetic algorithm selection schemes.
In Parallel Problem Solving from Nature, volume 3, pages 116–121, 1994a.

D. Thierens and D. E. Goldberg. Elitist recombination: An integrated selection recombination
ga. In Proceedings of the First IEEE Conference on Evolutionary Computation, pages 508–512,
1994b.

D. Thierens, D. E. Goldberg, and A. G. Pereira. Domino convergence, drift, and the temporal-
salience structure of problems. In Proceedings of the IEEE International Conference on Evo-
lutionary Computation, page 535540, 1998.

274

BIBLIOGRAPHY

P. Thrift. Fuzzy logic synthesis with genetic algorithms. In R. K. Belew and L. B. Booker,
editors, Proceedings of the fourth International Conference on Genetic Algorithms, pages 509–
513. Morgan Kaufmann, 1991.

I. Tomek. Two modifications of CNN. IEEE Transactions on Systems, Man and Cybernetics,
6:769–772, 1976.

M. Valenzuela-Rendón. The fuzzy classifier system: A classifier system for continuously varying
variables. In 4th ICGA, pages 346–353. Morgan Kaufmann, 1991.

R. M. M. Vallim, D. E. Goldberg, X. Llorà, T. S. P. C. Duque, and A. C. P. L. F. Carvalho.
A new approach for multi-label classification based on default hierarchies and organizational
learning. In GECCO’08: Proceedings of the 2008 GECCO conference companion on Genetic
and evolutionary computation, pages 2017–2022, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-131-6. doi: http://doi.acm.org/10.1145/1388969.1389015.

V. Vapnik. The nature of statistical learning theory. Springer Verlag, New York, 1995.

J. Velasco. Genetic-based on-line learning for fuzzy process control. International Journal of
Intelligent Systems, 13:891–903, 1998.

G. Venturini. SIA: A supervised inductive algorithm with genetic search for learning attributes
based concepts. In P. B. Brazdil, editor, Machine Learning: ECML-93 - Proc. of the European
Conference on Machine Learning, pages 280–296. Springer-Verlag, Berlin, Heidelberg, 1993.

G. Venturini. Apprentissage adaptatif et apprentissage supervisé par algorithme génétique. PhD
thesis, Université de Paris-Sud, 1994.

C. Watkins. Learning from delayed rewards. PhD thesis, Cambridge University, 1989.

G. M. Weiss. Mining with rarity: a unifying framework. SIGKDD Explorations Newsletter,
special issue on learning from imbalanced datasets, 6(1):7–19, 2004.

G. M. Weiss and H. Hirsh. Learning to predict rare events in event sequences. In R. Agrawal,
P. Stolorz, and G. Piatetsky-Shapiro, editors, Fourth International Conference on Knowledge
Discovery and Data Mining (KDD’98), pages 359–363, New York, NY, 1998. AAAI Press,
Menlo Park, CA.

G. M. Weiss and F. Provost. Learning when training data are costly: the effect of class distri-
bution on tree induction. Journal of Artificial Intelligence Research, 19:315–354, 2003.

B. Widrow and M. E. Hoff. Adaptive switching circuits. Neurocomputing: foundations of
research, pages 123–134, 1988.

B. Widrow and M. A. Lehr. 30 years of adaptive neural networks: perceptron, Madaline, and
backpropagation. Proceedings of the IEEE, 78(9):1415–1442, 1990. doi: 10.1109/5.58323.

D. Wierstra, F. Gómez, and J. Schmidhuber. Modeling systems with internal state using evolino.
In GECCO’05: Proceedings of the 2005 conference on Genetic and evolutionary computation,
pages 1795–1802. ACM Press, 2005.

275

BIBLIOGRAPHY

J. R. Wilcox. Organizational learning within a learning classifier system. Master’s thesis,
University of Illinois at Urbana Champaign, 1995.

F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1:80–83, 1945.

S. W. Wilson. Get real! XCS with continuous-valued inputs. In Learning Classifier Systems.
From Foundations to Applications, LNAI, pages 209–219, Berlin, 2000. Springer-Verlag.

S. W. Wilson. Mining oblique data with XCS. In IWLCS’00: Revised Papers from the Third
International Workshop on Advances in Learning Classifier Systems, pages 158–176, London,
UK, 2001. Springer-Verlag. ISBN 3-540-42437-7.

S. W. Wilson. Compact rulesets from XCSI. In P. L. Lanzi, W. Stolzmann, and S. W. Wilson,
editors, Advances in Learning Classifier Systems, 4th International Workshop, volume 2321 of
Lecture Notes in Artificial Intelligence, pages 197–210. Springer, 2002a. ISBN 3-540-43793-2.

S. W. Wilson. Classifiers that approximate functions. Journal of Natural Computing, 1(2):
211–234, 2002b.

S. W. Wilson. Classifier conditions using gene expression programming. Technical report,
IlliGAL Report No. 2008001, Urbana-Champaign IL 61801, USA, 2008.

S. W. Wilson. Aubert processing and intelligent vision. Technical report, Polaroid Corporation,
Cambridge, MA, 1981.

S. W. Wilson. Adaptive “cortical” pattern recognition. In Proceedings of an International
Conference on Genetic Algorithms and Their Applications, pages 188–196, 1985a.

S. W. Wilson. Knowledge growth in an artificial animal. In Proceedings of the 1st Interna-
tional Conference on Genetic Algorithms, pages 16–23, Mahwah, NJ, USA, 1985b. Lawrence
Erlbaum Associates, Inc. ISBN 0-8058-0426-9.

S. W. Wilson. Classifier systems and the animat problem. Maching Learning, 2(3):199–228,
1987. ISSN 0885-6125. doi: http://dx.doi.org/10.1023/A:1022655214215.

S. W. Wilson. ZCS: a zeroth level classifier system. Evolutionary Computation, pages 1–18,
1994.

S. W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation, 3(2):149–175,
1995.

S. W. Wilson. Generalization in the XCS classifier system. In 3rd Annual Conf. on Genetic
Programming, pages 665–674. Morgan Kaufmann, 1998.

S. W. Wilson and D. E. Goldberg. A critical review of classifier systems. In Proceedings of the
Third International Conference on Genetic Algorithms, pages 244–255, 1989.

I. Witten and E. Frank. Data mining: practical machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2005. ISBN 0-12-088407-0.

D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

276

BIBLIOGRAPHY

D. H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computa-
tion, 8(7):1341–1390, 1996.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng,
B. Liu, P. S. Yu, Z. H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg. Top 10 al-
gorithms in data mining. Knowledge and Information Systems, 14(1):1–37, 2007. doi:
10.1007/s10115-007-0114-2.

I. Yalabik and T. Y.-V. Fatos. A pattern classification approach for boosting with genetic algo-
rithms. 22nd International International Symposium on Computer and Information Sciences,
2007. ISCIS 2007, pages 1–6, 2007. doi: 10.1109/ISCIS.2007.4456870.

L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

L. A. Zadeh. Outline of a new approach to the analysis of complex systems and decision
processes. IEEE Transactions on Systems, Man, and Cybernetics, 3:28–44, 1973.

277

R

Index

animat, 3, 27, 33
association rules, 223

best action map, 41, 44, 45, 50, 60
Bonferroni-Dunn test, 176, 194, 235
boundedly difficult problems, 4, 24, 50, 51,

67

C4.5, 138, 194
COGIN, 30
comparison UCSs with UCSns, 55
complete action map, 34, 39, 60, 72
CS-1, 2, 27

data complexity, 131, 156, 222
complexity metrics, 223
geometrical complexity, 131, 132

data mining, 13
data streaming, 209
decision list, 28

evolutionary computation, 15
biological principles of, 16
estimation of distribution algorithms, 18,

24
evolution strategies, 17
evolutionary programming, 18
genetic algorithms, 17
genetic programming, 18
taxonomy, 17

EYE-EYE, 3, 27

fitness dilemma, 64
fitness sharing, 52
Friedman’s test, 137, 186, 233
Fuzzy AdaBoost, 193
Fuzzy GAP, 193
Fuzzy GP, 193
Fuzzy LogitBoost, 193

Fuzzy MaxLogitBoost, 193
fuzzy partition, 168
fuzzy rule-based systems, 162
Fuzzy SAP, 193
Fuzzy-UCS, 166

action winner inference, 173
approximate representation, 179
classifier discovery, 171
classifier parameter update, 170
configuration sensitivity, 174
crossover, 171
data streaming, 209
fittest rules inference, 173
inference, 172
knowledge representation, 167
learning interaction, 169
linguistic fuzzy rule, 167
linguistic vs. approximate representation,

185
mutation, 171
rule granularity, 181
rule set reduction, 173
schematic, 167
selection, 171
study knowledge representation, 177
SWOT, 212
weighted average inference, 173

GABL, 29
GAssist, 29, 194
genetic algorithms, 17, 18

crossover, 20
cycle, 19
description, 19
design decomposition, 22, 73
in engineering, 24
intuition, 21
mutation, 20

279

INDEX

natural selection, 16
pseudo code, 21
replacement, 20
schema theorem, 21
selection, 20
steady-state niche-based, 38, 43
theory, 21
why use, 18

genetic fuzzy systems, 163
fuzzy logic, 162
fuzzy systems, 162

GIL, 29

HIDER, 30
HIRELin, 30

IBk, 138, 194
imbalance ratio, 71, 110, 130
influential learners, 127, 159
interval-based rule representation, 45, 128

LCS in imbalanced domains, 74
design decomposition, 75

learning classifier systems and genetic based-
machine learning

historical remarks, 2
Michigan-style, 2, 26
Pittsburgh-style, 3

learning classifier systems and genetic-based
machine learning, 25

genetic cooperative-competitive learning,
30

iterative rule learning, 29
organizational classifier system, 30
Pittsburgh-style, 28

learning fuzzy-classifier systems, 165
legible models, 6
LS-1, 3, 29

machine learning, 1, 11
clustering, 14
dimensionality reduction, 14
reinforcement learning, 13, 14
supervised learning, 13, 14
unsupervised learning, 13, 14
why apply, 12

Mamdani FRBSs, 162

membership degree, 162

Näıve Bayes, 194
NAX, 30
Nemenyi test, 137, 186, 233
newboole, 27
niche, 36, 37, 43, 70, 130, 171

in continuous attributes, 130
nourished niche, 71, 111
starved niche, 71, 109

Niche extinction
UCS

tournament selection, 122
XCS

proportionate selection, 95, 121
tournament selection, 100

niche imbalance ratio, 130

over-general classifier, 70

Part, 194
patchquilt integration, 104, 122

rare classes, 5
challenges in LCSs, 68
examples, 68
offline learners, 69
online learners, 69

re-sampling techniques, 141
case study, 146
comparison, 150
cSMOTE, 144
random over-sampling, 142
SMOTE, 143
under-sampling based on Tomek links,

143
real-world problems, 185

bridge the gap with the theory, 130
class-imbalance problem, 130

REGAL, 30
representative, 70, 130

in continuous attributes, 130

schema, 70
self-adaptation, 132

UCS, 134
XCS, 133

280

INDEX

separate-and-conquer, 29
SIA, 29
small disjunct, 131
SMO, 138, 194
statistical analysis, 229

T-conorm, 168
T-norm, 168
takeover time, 92, 120

proportionate selection, 93, 95
tournament selection, 97

the decoder problem, 54, 56, 61, 226
the multiplexer problem, 54, 57, 59, 62, 68,

71, 123, 135, 227
alternating noise, 228
imbalanced, 228

the parity problem, 54, 56, 61, 78, 87, 89, 91,
117–119, 225

lack of fitness guidance, 58
the position problem, 54, 56, 61, 226
thesis objectives, 7

UCS, 27, 41, 109, 127, 169, 194
classifier discovery, 43
classifier’s parameter update, 43
evolutionary pressures, 45

deletion, 45
fitness, 45
mutation, 45
set, 45
subsumption, 45

exploration regime, 60
facetwise analysis, 110
fitness sharing, 53, 55
inference, 44
learning interaction, 42
ternary rule representation, 41

UCS in imbalanced domains, 110
covering, 112
covering probability, 113
discovery minority class, 113
estimation of classifier parameters, 111
in real-world problems, 138
occurrence-based reproduction, 119
patchquilt integration, 122
population size bound, 115, 116

starved niches
time to creation, 115
time to deletion, 115

unordered bound rule representation, 47
covering, 47
crossover, 48
mutation, 48
subsumption, 48

Wilcoxon signed-ranks test, 55, 137, 186, 230

XCS, 3, 27, 33, 34, 67, 127
classifier discovery, 38
classifier’s parameter update, 36
evolutionary pressures, 39

deletion, 40
fitness, 40
mutation, 40
set, 40
subsumption, 40

facetwise analysis, 73
inference, 39
learning interaction, 35
ternary rule representation, 34
Widrow-hoff rule, 133

XCS in imbalanced domains, 70
covering, 81
covering probability, 82
discovery minority class, 82
estimation of classifier parameters, 77
gradient descent, 80
imbalance bound, 78
in real-world problems, 138
occurrence-based reproduction, 89
patchquilt integration, 104
poulation size bound, 85, 86
starved niches

time to creation, 84
time to deletion, 85

Widrow-hoff rule, 78, 79

ZCS, 3, 33
ZeroR, 194

281

R

	Title Page
	Certificate of Committee Aproval
	Resum
	Resumen
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Framework: From Holland's Definition to Current LCSs
	1.2 Two Critical Challenges in LCSs and Machine Learning
	1.3 Thesis Objectives
	1.4 Road Map

	2 Machine Learning with Learning Classifier Systems
	2.1 Machine Learning
	2.1.1 Supervised learning
	2.1.2 Unsupervised learning
	2.1.3 Reinforcement Learning

	2.2 Evolutionary Computation and Genetic Algorithms
	2.2.1 Biological Principles that Inspire Evolutionary Computation
	2.2.2 Evolutionary Computation: A Taxonomy
	2.2.3 Genetic Algorithms
	2.2.4 Basic Theory of GA
	2.2.5 Genetic Algorithms in Real-World Applications

	2.3 Genetic-based Machine Learning and Learning Classifier Systems
	2.3.1 Michigan-style LCSs
	2.3.2 Pittsburgh-style LCSs
	2.3.3 Iterative Rule Genetic-based Machine Learning
	2.3.4 Genetic Cooperative-Competitive Learning
	2.3.5 The Organizational Classifier System

	2.4 Summary

	3 Description of XCS and UCS
	3.1 The XCS Classifier System
	3.1.1 Knowledge Representation
	3.1.2 Learning Interaction
	3.1.3 Classifier Evaluation
	3.1.4 Classifier Discovery
	3.1.5 Class Inference in Test Mode
	3.1.6 Why Does XCS Work?

	3.2 The UCS Classifier System
	3.2.1 Knowledge Representation
	3.2.2 Learning Interaction
	3.2.3 Classifier Evaluation
	3.2.4 Classifier Discovery
	3.2.5 Class Inference in Test Mode
	3.2.6 Why does UCS work?

	3.3 Rule Representations for LCSs
	3.3.1 From the Ternary to the Interval-based Rule Representation in LCSs
	3.3.2 The Unordered Bound Representation

	3.4 Summary and Conclusions

	4 Revisiting UCS: Fitness Sharing and Comparison with XCS
	4.1 Fitness Sharing in GAs and LCSs
	4.2 A New Fitness Sharing Scheme for UCS
	4.3 Methodology
	4.4 Analyzing the Fitness Sharing Scheme in UCS
	4.5 Comparing UCSs with XCS
	4.6 Lessons Learned from the Analysis
	4.6.1 Fitness Sharing
	4.6.2 Explore Regime
	4.6.3 Accuracy Guidance
	4.6.4 Population Size

	4.7 Summary and Conclusions

	5 Facetwise Analysis of XCS for Domains with Class Imbalances
	5.1 The Challenges of Learning from Imbalanced Domains in Machine Learning
	5.2 The XCS Classifier System in Imbalanced Domains
	5.2.1 Hypotheses of XCS Difficulties in Learning from Imbalanced Domains
	5.2.2 Empirical Observations of XCS Behavior on Class Imbalances

	5.3 Facetwise Analysis of XCS in Imbalanced Domains
	5.3.1 Design Decomposition in GAs
	5.3.2 Carrying the Design Decomposition from GAs to XCS
	5.3.3 A Boundedly Difficult Problem for LCSs: The Imbalanced Parity Problem
	5.3.4 Decomposition of the Class Imbalance Problem in XCS

	5.4 Estimation of Classifier Parameters
	5.4.1 Imbalance Bound
	5.4.2 Does the Widrow-Hoff Rule Provide Accurate Estimates?
	5.4.3 Obtaining Better Estimates with the Widrow-Hoff Rule
	5.4.4 Obtaining Better Estimates with Gradient Descent Methods

	5.5 Supply of Schemas of Starved Niches in Population Initialization
	5.6 Generation of Classifiers in Starved Niches
	5.6.1 Assumptions for the Model
	5.6.2 Genetic Creation of Representatives of Starved Niches
	5.6.3 Deletion of Representatives of Starved Niches
	5.6.4 Bounding the Population Size
	5.6.5 Experimental Validation of the Models

	5.7 Occurrence-based Reproduction: The Role of GA
	5.7.1 Including GA in the Generation Models
	5.7.2 Experimental Validation

	5.8 Takeover Time of Accurate Classifiers in Starved Niches
	5.8.1 Model Assumptions
	5.8.2 Takeover Time for Proportionate Selection
	5.8.3 Takeover Time for Tournament Selection
	5.8.4 Experimental Validation of the Takeover Time Models

	5.9 Lessons Learned from the Models
	5.9.1 Patchquilt Integration of the Facetwise Models
	5.9.2 Solving Problems with Large Imbalance Ratios

	5.10 Summary and Conclusions

	6 Carrying over the Facetwise Analysis to UCS
	6.1 Design Decomposition for UCS
	6.2 Estimation of Classifier Parameters
	6.3 Supply of Schemas of Starved Niches in Population Initialization
	6.4 Generation of Classifiers in Starved Niches
	6.4.1 Assumptions for the Model
	6.4.2 Creation and Deletion of Representatives of Starved Niches
	6.4.3 Bounding the Population Size
	6.4.4 Experimental Validation of the Models

	6.5 Occurrence-based Reproduction
	6.6 Takeover Time of Accurate Classifiers in Starved Niches
	6.6.1 Conditions for Starved Niches Extinction under Proportionate Selection
	6.6.2 Conditions for Starved Niches Extinction under Tournament Selection

	6.7 Reassembling the Theoretical Framework: UCS in Imbalanced Domains
	6.7.1 Patchquilt Integration: from XCS to UCS
	6.7.2 Solving Highly Imbalanced Domains with UCS

	6.8 Summary and Conclusions

	7 XCS and UCS for Mining Imbalanced Real-World Problems
	7.1 LCSs in Imbalanced Real-World Problems: What Makes the Difference?
	7.1.1 XCS and UCS Enhancements to Deal with Continuous Data
	7.1.2 What Do we Need to Apply the Theory?

	7.2 Self-Adaptation to Particular Unknown Domains
	7.2.1 Online Adaptation Algorithms
	7.2.2 Experiments

	7.3 LCSs in Imbalanced Real-World Domains
	7.3.1 Comparison Methodology
	7.3.2 Results

	7.4 Re-sampling Techniques
	7.4.1 Random Over-sampling
	7.4.2 Under-sampling based on Tomek Links
	7.4.3 SMOTE
	7.4.4 cSMOTE
	7.4.5 What Do Re-sampling Techniques Do? A Case Study

	7.5 Results on Re-sampled Domains
	7.5.1 Experimental Methodology
	7.5.2 Statistical Analysis of the Results
	7.5.3 Summary

	7.6 Discussion
	7.7 Summary and Conclusions

	8 Fuzzy-UCS: Evolving Fuzzy Rule Sets for Supervised Learning
	8.1 Why Using Fuzzy Logic in LCSs?
	8.2 Fuzzy Logics in GBML
	8.2.1 Fuzzy Logic and Fuzzy Systems
	8.2.2 Genetic Algorithms in Fuzzy Systems
	8.2.3 Related Work on Learning Fuzzy-Classifier Systems

	8.3 Description of Fuzzy-UCS
	8.3.1 Knowledge Representation
	8.3.2 Learning Interaction
	8.3.3 Classifiers Update
	8.3.4 Classifiers Discovery
	8.3.5 Fuzzy-UCS in Test Mode

	8.4 Sensitivity of Fuzzy-UCS to Configuration Parameters
	8.5 Knowledge Representation and Decision Boundaries
	8.5.1 Approximate Fuzzy-UCS
	8.5.2 Decision Boundaries: Study on an Artificial Domain
	8.5.3 Comparison Between Linguistic and Approximate Representations

	8.6 Comparison of Fuzzy-UCS to Several Machine Learning Techniques
	8.6.1 Experimental Methodology
	8.6.2 Comparison to Fuzzy Rule-Based Classification Systems
	8.6.3 Comparison with Non-Fuzzy Learners

	8.7 Fuzzy-UCS for Mining Large Data Sets
	8.7.1 Data Set Description
	8.7.2 Results

	8.8 Summary, Conclusions, and Further Work
	8.8.1 Summary
	8.8.2 SWOT Analysis

	9 Summary, Conclusions, and Further Work
	9.1 Summary and Conclusions
	9.2 Lessons from LCSs Design and Application
	9.3 Further Work

	A Description of the Artificial Problems
	A.1 Parity
	A.2 Decoder
	A.3 Position
	A.4 Multiplexer
	A.4.1 Imbalanced Multiplexer
	A.4.2 Multiplexer with Alternating Noise

	B Statistical Tests
	B.1 Statistical Tests for Contrasting Hypotheses
	B.2 Comparisons of Two Learning Systems
	B.2.1 The Wilcoxon Signed-Ranks Test

	B.3 Comparisons of Multiple Classifiers
	B.3.1 Friedman's Test
	B.3.2 Post-hoc Nemenyi Test
	B.3.3 Post-hoc Bonferroni-Dunn Test

	B.4 Summary

	C Full Results of the Comparison of the Re-sampling Techniques
	D Empirical Analysis of the Sensitivity of Fuzzy-UCS to Configuration Parameters
	D.1 Configuration Parameters of Fuzzy-UCS
	D.2 Experimental Methodology
	D.3 Fuzzy-UCS's Sensitivity to Configuration Parameters
	D.3.1 Sensitivity to Rule Initialization
	D.3.2 Sensitivity to Fitness Pressure
	D.3.3 Sensitivity to the GA
	D.3.4 Sensitivity to Deletion

	D.4 Summary and Conclusions

	References
	Index

