
EvRBF: Evolving RBF Neural Networks for classification problems

Victor M. Rivas, Maribel G. Arenas
University of Jaen

Department of Computer Science
Campus Las Lagunillas S/N, 23071, Jaen

SPAIN
{vrivas,mgarenas} @ujaen.es

Juan J. Merelo, Alberto Prieto
University of Granada

Department of Architecture
and Computers Technology

ETSII de Granada
SPAIN

{jmerelo,aprieto}@atc.ugr.es

Abstract: This paper shows the latest results of the EvRBF algorithm applied to classification problems. EvRBF
is an evolutionary algorithm intended to automatically design Radial Basis Functions Neural Networks (RBFNN),
being its main advantage that establishes the whole set of parameters of the nets.

Key–Words:Radial basis function neural networks, evolutionary algorithms, evolutionary operators,EvRBF, clas-
sification, evolutionary algorithms representation.

1 Introduction
Radial Basis Function Neural Networks (RBFNN)
[9] are two-layer, fully-connected, feed-forward net-
works, in which hidden neuron activation functions
are Radial Basis Functions (RBF), usually Gaussian.

RBFNN output is given by eq. 1.

sj(~xk) = λ0j +
p′∑

i=1

λijφi(~x, ~ci, ~~ri) (1)

wherek = 1..p, j = 1..n′, sj ∈ R, ~xk ∈ Rn, andφi

is the RBF assigned to hidden neuroni; λ0j is a bias
term; λij represents the weight between hidden neu-
ron i and output neuronj; ~ci and~~ri are called, respec-
tively, thecenterandradii (or widths) of the RBF;n
andn′ are the input and output space dimensions, re-
spectively;p′ is the number of hidden neurons, andp
is the number of patterns to whichsj is going to be
applied.

RBFNN’s main advantage is that optimal biases
and weights (i.e,λ0j andλij) can be efficiently com-
puted for a certain set of desired output, once the num-
ber of hidden neurons, centers and radii have been set.

This paper shows the latest results obtained by
EvRBF, an evolutionary algborithm designed to dy-
namically build the optimal RBFNN that solves a clas-
sification problem. Unlike many other methods [7],
EvRBF is able to set all the parameters that config-
ure the net. It includes RBFNN-specific operators that
modify the RBFNN structure, and does not limit the
maximum number of neurons. Despite being an evo-
lutionary algorithm, is quite fast algorithm, includes

straightforward operators and easy fitness computa-
tion, and is guided by the nets generalization ability
in its searching task.

The rest of the paper is organized as follows: Sec-
tion 2 reviews methods in literature intended to gen-
erate RBFNN. Section 3 describes EvRBF algorithm,
paying a special attention to the operators. Section 4
shows the experiments carried out to test EvRBF in
classification problems, and compares to other meth-
ods. Finally, section 5 describes conclusions and fu-
ture research lines.

2 State of the art
Harpham et al. [7] reviewed some of the most well
known methods that apply evolutionary algorithms
to RBFNN design. They concluded that, in gen-
eral, methods tend to concentrate in only one aspect
when designing RBFNN. Nevertheless, there also ex-
ist methods intended to optimize the whole net, such
as [11] for Learning Vector Quantization (LVQ) nets
or [5] for multilayer perceptrons.

Chronologically, first papers [3, 16] used binary
codification and were constricted by the number of
hidden neurons, that had to be set a priori. While
Carse [3] works with a population of nets, Whitehead
[16] works with a population of neurons (thus, only
one RBFNN was build and evaluated) that compete
and cooperate to find the optimal net.

Subsequent papers [2] presented algorithms based
on real number representation. Newly, the imposition
of a limit to the number of neurons, optimization of
only the centers for RBF, and a badly defined penal-
ization term for the number of times an individual can

reproduce, are the main drawbacks of this algorithm.
Recent applications try to overcome the disadvan-

tages of the preceding methods. Rivera [13] made
many neurons compete, modifying them by means
of fuzzy evolution, i.e., using a fuzzy rules table that
specifies the operator that must be applied to a neuron
in order to improve its behavior.

Most recent methods still face single aspects
when configuring a net. Thus, Ros et al.’s method [14]
automatically initialize RBFNN, so that finds a good
set of initial neurons, but relies in some other method
to improve the net and to set its widths.

3 The EvRBF algorithm
EvRBF is an iterative procedure in which creation and
evaluation of new generations of individuals leads to
finding RBFNN with good generalization ability. It is
a steady state algorithm, that includes elitism, and in-
dividuals size can vary while population size remains
equal.

3.1 Genetic Operators
EvRBF provides operators to specifically deal with
RBFNN, including: recombination or crossover, cen-
ter and radii modification, and hidden layer size mod-
ification. Recombination allows to share information
between individuals. Modification of centers, radii
and number of neurons belong to the so-calledmu-
tation operators, and introduce a variability in the ge-
netic pool. Following subsections describe these op-
erators grouped on these three categories.

3.1.1 Recombination: XFIX and X MULTI

These operators interchange information between in-
dividuals, trying to find thebuilding blocksof the so-
lution. Thus, XFIX reemplaces a sequence of hidden
neurons of RBFNNR1 by a sequence of the same size
taken from RBFNNR2. On the oher hand, operator
X MULTI reemplaces with probabilitypx multi every
hidden neuron of RBFNNR1 by a randomly chosen
neuron coming from netR2.

3.1.2 Centers and radii modification:
C RANDOM and R RANDOM

These operators use randomness to increase diversity
generating new individuals so that local minima can
be avoided.

The C RANDOM operator modifies RBF centers.
The exact number of neurons affected by this operator
is determined by its internal application probability:
pc random (see subsection 3.3). CRANDOM allows

to explore the input space, since it swaps the current
value, ci, for a random value following an uniform
probability function. Every component of the new
central point,c′i, is taken from the range[mini,maxi]
that are the minimum and maximum values of the
i − esime input space dimension. Bothmini and
maxi can be calculated from available patterns.

On the other hand, RRANDOM modifies the
radii using the input space dimension width, and
applying an uniform probability function. As in
C RANDOM, the real number of neurons affected
by R RANDOM depends on its internal application
probability pr random (see 3.3 to know its current
value).

3.1.3 Hidden layer size modification: ADDER
and DELETER

EvRBF tries to determine the correct size of the hid-
den layer using the operator ADDER (that creates new
neurons), and operator DELETER (that removes neu-
rons).

ADDER adds a single neuron with random center
and radii, using an uniform probability function in the
range[mini,maxi]. Selection pressure will reward or
penalize nets containing the new neuron according to
its effect in the fitness function.

On the other hand, DELETER removes neurons
from the RBFNN to which is applied in a pure random
way. The number of neurons to be removed depends
on the value ofpdel many, that determines a neuron’s
probability of being removed (see subsection 3.3).

3.2 Rest of components
EvRBF incorporates usual mechanisms to select indi-
viduals for reproduction, to select operators to be ap-
plied, to extract information of the process; thus, the
skeleton of EvRBF, showed in 1, is commonly used in
evolutionary algorithms.

Training, validation and test setsare firstly used
to estimate the input space ranges, as well as the input
and output space dimensions. After this, training set
is used to compute the synaptic weights (see section
1). Validation set is used to compute a fitness for ev-
ery individual, once it has been trained. Training and
validation sets do not share samples. Test set is used
at the end of training to qualify every individual in the
last generation.

According to [6], input values have been rescaled
to [0, 1] range. This way, every input dimension has
the same weight when computing the distance be-
tween the RBF center and the point being evaluated.

1. Load training, validation and
test sets.

2. Create, train, evaluate and set
fitness of first generation.

3. While stop condition is not
reached, do the following:

(a) Select and copy individuals
from current population.

(b) Apply operators, train,
evaluate and assign a
fitness to that copies.

(c) Replace worst individuals by
the these copies

4. Train individuals in last
generation with training and
validation data sets.

5. Use test data set to obtain the
generalization ability of every
individual.

Figure 1: General skeleton of EvRBF.

Fitness functionmeasures the generalization ca-
pability of the individual as the percentage of samples
it correctly classifies. When comparing two individ-
uals, the one with the higher generalization ability is
considered better.

The populationsize used by EvRBF is constant.
Every individual is a complete RBFNN, and the data
structure used to represent it includes methods to be
created, copied, and destroyed, to access and modify
its components, and to compute an output value from
an input pattern. First population is created using a
given process (see subsection 3.3), subsequent gener-
ations are created by removing individuals from the
population and adding copies of existing individuals
to which operators have been applied.

Stop conditionsincluded by EvRBF check the
number of generations, error threshold, and individ-
uals convergence. They can be used in combination
or independently. In this work, the algorithm has been
stopped when a pre-specified number of generations
has been reached. This allows a better comparison
with methods found in literature.

Finally, selection, reproduction and substitution
are applied to populations. The selection operator
chooses individuals to be reproduced. EvRBF uses
fixed-length tournament method as selection operator,

giving a small opportunity to bad individual to repro-
duce. Reproduction consist on copying the selected
individual and, then, applying operators. Substitution
sorts individuals according to their fitness, removes
the worst of them, and adds the new individuals gen-
erated by reproduction.

3.3 Execution parameters
EvRBF needs to be given a set of parameters to work
properly. Currently, a series of systematic experi-
ments are being carried out to establish the best value
that should be assigned to every parameter, although
this study falls out of the scope of this paper. Thus, for
the set of experiments described in section 4, EvRBF
has been executed usign estandard values commonly
used in literature. Parameters considered are shown in
tables 1 and 2.

Parameter Value
Population size 100
Generations {10, 20, 50, 75, 100}
Max. neurons on
first population 10% of patterns in training set.
Center initialization Random patterns from training set
Radii initialization Weighted distance between neurons
Replaced population 30%

Tournament length 2

Table 1: Execution parameters for EvRBF. See also
table 2.

Table 1 shows that nets in the first generation can
have a random number of hidden neuron, going from
1 to10% of training set size. After this generation, no
limit to the number of neurons is imposed.

Furthermore, centers are initialized using ran-
domly selected patterns from the training; radii are
setting as1.75 times the minimum distance found be-
tween the centers of the net; finally, in every genera-
tion,30 individuals are replaced by30 new individuals
created by reproduction.

Operator Application rate Internal application prob.
X FIX 0.4 -
X MULTI 0.4 0.5
C RANDOM 0.05 0.5
R RANDOM 0.05 0.5
ADDER 0.05 -
DELETER 0.05 0.5

Table 2: Application rates and internal application
probabilities for operators.

Table 2 showsapplication rateandinternal appli-
cation probabilityfor every operator. The values are
set according to commonly used values in literature,

this is, 0.4 for crossover operator, and0.05 for mu-
tation operators. Internal application probabilities are
used to decide which neurons from the RBFNN will
be affected by the action of the operator (they corre-
spond topx multi, px average, pc random, pr random,
and pdeleter, cited along subsection 3.1). For this
work, these values have been set to0.5 so that half
the neurons of a net are affected in average.

4 Experiments and results
Evaluation of EvRBF on classification tasks has been
developed using three well known real databases: the
Iris plants, heart disease and cancer [1]. The increas-
ing number of inputs in every problem shows how di-
mensionality affects to EvRBF.

Every problem has been run independently for
different numbers of generations: 10, 25, 50, 75 and
100. For any of these values, the algorithm has been
run 10 times, starting with different initial popula-
tions, and using different training and validation sets.
Results related to EvRBF, shown in following subsec-
tions, are averaged values along the 10 runs per num-
ber of generations, taking into account only the best
individual created in every execution.

4.1 Iris plants
Iris database patterns are composed of 4 input numeric
values, and 1 output corresponding to the kind of plant
(3 different plants being considered). Every class is
represented by about 50 patterns. There are no null
values and patterns are correctly classified. The data
base has156 patterns divided in50% for test,37, 5%
for training and12, 5% for validation.

EvRBF is compared to Whitehead and Choate’s
method [16], and Burdsall and Giraud’s methods [2],
since both of them use evolutionary algorithm to cre-
ate RBFNN that solve this problem. Furthermore,
[2] provides results yielded by an hand-optimized
RBFNN (referred byRBF in table 3), by a nearest-
attracting prototype (NAP) classifier, and by a multi-
layer perceptron (MLP).

Table 3 shows that EvRBF classifies better (0.0%
error compared to Whitehead and Choate’s3%) us-
ing a small number of neurons (between 6 and 8).
Second best method is Whitehead and Choate’s one
(an evolutionary algorithm too); Burdsall and Gi-
raud’s method does not improve results obtained by
the hand-optimized RBFNN; and, finally, MLP and
NAP provide the worst results. No information about
minima and maxima obtained by EvRBF is going to
be shown along this work; nevertheless, nets that cor-
rectly classified the whole test set have been found for
this particular problem.

Algorithm Error % RBFNN Size
Whitehead-Choate [16] 3 15

Burdsall-Giraud [2] 4 6-9
RBF[2] 4 -
MLP[2] 4 -
NAP [2] 4 -
EvRBF 10 gen. 0.0± 1 7± 1
EvRBF 25 gen. 0.6± 1 7± 2
EvRBF 50 gen. 1.4± 1 8± 1
EvRBF 75 gen. 0.8± 1 6± 1
EvRBF 100 gen. 0.6± 1 7± 1

Table 3: Comparison of methods on Iris database clas-
sification

Algorithm Error % Net size
Prechelt[4] 1.15 -
Grönroos[4] 2.0 -

Quick-Propagation[4] 4.0±2 38
SA-Prop[4] 1.1±0.5 -
G-Prop[4] 1.0±0.5 14

EvRBF 10 gen. 1.7±0.3 30± 9
EvRBF 25 gen. 1.7±0.0 27± 10
EvRBF 50 gen. 1.7±0.5 36± 6
EvRBF 75 gen. 2.0±0.3 30± 13
EvRBF 100 gen. 3.7±1.2 26± 11

Table 4: Comparison of methods on Cancer-1a
database classification

4.2 Cancer-1a database

Cancer-1adatabase, initially proposed by Prechelt
[12], is related to breast cancer diagnosis. The prob-
lem consists of determining whether a given cancer is
malign or benign, according to the analysis of cells via
electronic microscopy. Every pattern is composed of
9 inputs and 1 output (0 -benign-, 1 -malign).65.5%
of patterns belong to benign tumors. The training set
contains 524 patterns, while the test set contains 124.
This is the problem initially considered by Grönroos
[10].

Results from EvRBF are compared to those
yielded by G-Prop [4] and others (Prechelt, Grönroos,
Quick-Propagation and SA-Prop) cited in the same
paper. G-Prop is an evolutionary algorithm similar
to EvRBF, but designed to evolve multilayer percep-
trons.

In table 4 can be seen the different percent-
ages of error yielded by the methods of Prechelt
and Grönroos, as well as the multilayer perceptrons
trained with Quick-Propagation, or evolved by SA-
Prop and G-Prop Except those related to EvRBF, re-
sults have been borrowed from [4].

In general, EvRBF’s behaves is as good as the rest
of methods being considered. Worst result yielded
by EvRBF (3.7%) is slightly better than Quick-

Propagation (4.0%), although the rest of its results are
similar or better than Grönroos (2.0%) and Prechelt
(1.15%). In fact, this problem shows EvRBF’s ability
to tune the neurons (as can be seen in results obtained
for 10, 25 and 50 generations) instead of adding many
new neurons. This ability is mainly due to the ge-
netic operators used in EvRBF, since fitness function
depends on classification ability without applying any
kind of penalization factor to the size of nets.

EvRBF yields the best results for 10, 25 and 50
generations. This result similar to all the previously
cited, but worse than Castillos’s SA-Prop (1.1%) and
G-Prop (1.0%). The latter is also the best according
to net sizes: it can solve the problem with only 14
neurons, instead of between 20 and 36 used by EvRBF
or 38, used by Quick-Propagation.

4.3 Heart Disease Database
The last problem concerns diagnosis of heart disease,
and has been taken from [1]. This database is com-
posed of 270 samples, each one with 13 input vari-
ables (7 of them taking numerical values, 3 binary val-
ues and 3 nominal values) and 1 output class (two pos-
sible values indicating presence or absence of heart
disease). Training set includes 165 samples, valida-
tion set has 55 samples and test set has only 50 sam-
ples. There are almost the same number of samples
belonging to any of the possible classes.

This database allows comparison of EvRBF with
Leonardis and Bischof’s method [8], intended to auto-
matically generate RBFNN. This pruning method can
modify centers, radii and weight by means of gradi-
ent descent, and uses MDL to remove neurons from
an initial over-specified net.

Table 5 shows results obtained by EvRBF for this
problem. Columns show the percentage of patterns
badly classified, and nets’ sizes. As can be seen, the
classification error and network size increase with the
number of generations, taking their maximum values
for 50 generations. Thus, for this problem, the algo-
rithm produces overfitted nets that iteratively improve
their results over the training and validation sets, while
reducing their generalization capabilities.

For this problem, EvRBF took about 5 times more
than for Iris database to reach the final generation.
This is due to the higher dimension of the input space,
what leads to a bigger number of neurons affected by
operators, as well as a larger cost on computing the
synaptic weights.

Table 5 compares results yielded by EvRBF,
Leonardis-Bischof’s method [8], and Gaussian Mask-
ing [15] (GM; it uses clustering and lineal program-
ming to build neural nets), whose results have been
taken from [8]. Results show that EvRBF is slightly

Algorithm Error % RBFNN size
Leonardis-Bishop[8] 14 16
Gaussian Masking[8] 12 24

EvRBF 10 gen. 18.6± 3.5 11± 2
EvRBF 25 gen. 18.8± 3.7 12± 2
EvRBF 50 gen. 24.0± 5.3 10± 4
EvRBF 75 gen. 21.2± 2.4 14± 2
EvRBF 100 gen. 22.1± 1.9 15± 2

Table 5: Comparison of methods on Heart Disease
database classification

worse by the rest of algorithms, although it uses
smaller nets. Furthermore, it shows that as the num-
ber of generation grows, the nets become overfitted
(see rows belonging to 50, 75 and 100 generations on
table 5), making the generalization ability of the nets
almost half of Leonardis and Bischof’s nets and GM’s
ones.

4.4 General remarks

Setting the individuals fitness using only their clas-
sification skills leads some times to RBFNN with
high generalization ability but an excessive number of
neurons. Thus, keeping EvRBF as general as possi-
ble can lead to overspecified nets in some problems,
but makes it suitable to be directly used in any kind
of classification problem. Furthermore, no decisions
have to be taken a priori concerning to the structure of
the net, or to the zone of search space where solutions
are supposed to be. EvRBF provides good solutions
that can also be used as entries to local search algo-
rithms in order to tune them.

5 Conclusion

This papers shows EvRBF, an algorithm that evolves
RBFNN, applied to the task of solving classification
problems.

EvRBF automatically determines both topology
and configuration of RBFNN. Thus, EvRBF finds the
size of the net (number of hidden neurons) and the
parameters that configure each neuron: center and
radii of its activation function. EvRBF does not start
from pre-established topologies, does not set number
of neurons a priori, does not fix an upper limit to the
number of neurons, and uses only information about
generalization capability and size of nets to evaluate
and evolve them.

EvRBF includes operators specifically designed
to deal with RBFNN. Operators can do cross-over, ad-
dition, removing and modification of hidden neurons,
as well as their components. The parameters needed

by the algorithm to apply the operators have been em-
pirically set to fixed values, and are used in every
problem. Thus, no explicit pre-processing is needed
to apply the algorithm to new problems.

In this paper, EvRBF algorithm has been applied
to different real examples. Results have been com-
pared to others in literature showing that can be used
to efficiently configure RBFNN, since it obtains nets
with high generalization ability and size smaller or
similar to other methods.

The weakest point of the algorithm may be con-
sidered the number of parameters that configure the
final nets. This number is very often greater than de-
sired (referred to the number of values composing the
training and test pattern sets). This is mainly due to
the number of radii that EvRBF has to evolve:2n per
neuron, wheren is the input dimension. Reducing
this number ton radii per neuron (i.e., using symmet-
ric RBF), or a single radius per neuron, or even a sin-
gle radius per net would drastically reduce the number
of parameters while probably maintaining a similar or
slightly worst capability of generalization. Although
this could be easily introduced into the algorithm, the
aim of this work was to fully configure the nets, and
deal with the widest range of RBF; thus, genetic oper-
ators are intended to look for the optimal set of values
for all the parameters.

Future lines of research will focus on a deeper
analysis of the parameters to run the algorithm
(by means of ANOVA method), the use of cross-
validation to set the fitness of every new individual,
as well as facing this problem as a multiobjective op-
timizaztion task. Finally, we are currently obtaining
the data necessary to apply this method to labor risk
prevention.

Acknowledgements: This work has been partially
supported by projects TIN2005- 08386-C05-03, and
RNM-475.

References:

[1] C.L. Blake and C.J. Merz.,UCI Repository of
machine learning databases, 1998.

[2] B. Burdsall and C. Giraud-Carrier.GA-RBF:
A Self- Optimising RBF Network. In ICAN-
NGA’97, p. 348-351. Springer-Verlag, 1997.

[3] B. Carse and T.C. Fogarty.Fast evolutionary
learning of minimal radial basis function neu-
ral networks using a genetic algorithm. In Evo-
lutionary Computing, pp. 1-22. Springer-Verlag,
1996.

[4] P.A. Castillo, J. González, J.J. Merelo, V. Rivas,
G. Romero and A. Prieto,G-Prop-II: Global Op-

timization of Multilayer Perceptrons using GAs,
In CEC’99, pp. 2022-2027, USA, 1999.

[5] P.A. Castillo et al.G-Prop: Global optimization
of multilayer perceptrons using GAs. Neurocom-
puting, 35:149-163, November 2000.

[6] W.S. Sarle. Neural Network FAQ. News-
group: comp.ai.neural-nets.Part 2, 1998.
ftp://ftp.sas.com/pub/neural/FAQ.html.

[7] C. Harpham et al.A review of genetic algo-
rithms applied to training radial basis function
networks, Neural Computing & Applications 13
(3) (2004) 193-201

[8] A. Leonardis, H. Bischof,And efficient MDL-
based construction of RBF networks, Neural
Networks 11 (1998) 963-973.

[9] D. Broomhead, D. Lowe,Multivariable Func-
tional Interpolation and Adaptative Networks,
Complex Systems 11 (1988) 321-355.

[10] M. Grönroos,Evolutionary Design of Neural
Networks, Master of Science Thesis in Computer
Science. Dep. of Mathematical Sciences. Uni-
versity of Turku.

[11] J. Merelo, A. Prieto,G-LVQ, a combination of
genetic algorithms and LVQ, in Artificial Neu-
ral Nets and Genetic Algorithms, pp. 92-95,
Springer-Verlag, 1995.

[12] L. Prechelt, PROBEN1 – A set of benchmarks
and benchmarking rules for neural network
training algorithms, Tech. Rep. 21/94, Fakultät
für Informatik, Universität Karlsruhe, D-76128
Karlsruhe, Germany (Sep. 1994).

[13] A. Rivera, J. Ortega, M. del Jesus, J. González,
Aproximacíon de funciones con evolución difusa
mediante cooperación y competicíon de RBFs,
in AEB’02, pp. 507-514, 2002.

[14] F. Ros, M. Pintore, A. Deman, J. R. Chrétien,
Automatical initialization of RBF neural net-
works, Chemometrics and intelligent laboratory
systems. doi: 10.1016/j.chemolab.2006.01.008.

[15] A. Roy, S. Govil, R. Miranda,An Algorithm
to Generate Radial Basis Function (RBF)-Like
Nets for Classification Problems, Neural Net-
works 8 (2) (1995) 179- 201.

[16] B. A. Whitehead, T. Choate,Cooperative-
Competitive Genetic Evolution of Radial Basis
Function Centers and Widths for Time Series
Prediction, IEEE Trans. on Neural Networks 7
(4) (1996) 869-880.

