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Abstract. Developing models and methods to manage data vagueness is a 
current effervescent research field. Some work has been done with supervised 
problems but unsupervised problems and uncertainty have still not been 
studied. In this work, an extension of the Fuzzy Mutual Information Feature 
Selection algorithm for unsupervised problems is outlined. This proposal is a 
two stage procedure. Firstly, it makes use of the fuzzy mutual information 
measure and Battiti’s feature selection algorithm and of a genetic algorithm to 
analyze the relationships between feature subspaces in a high dimensional 
space. The results of the first stage are used in the second with the aim to 
extract the most relevant relationships. It is concluded, given the results from 
the experiments carried out in this preliminary work, that it is possible to apply 
frequent pattern mining or similar methods in the second stage to reduce the 
dimensionality of the data set. 

Keywords: Unsupervised feature selection, genetic algorithms, data 
uncertainty, frequent pattern mining. 

1   Introduction 

Many real world applications include a high dimensional feature space. Moreover, it 
is well known that the data gathered from a real world process could contain 
uncertainty [13], that is, there could be missing data, the measures could be interval 
values, etc. Typically the uncertainty in the data has been nullified by means of crisp 
techniques, i.e. the different techniques to eliminate missing data. What we are really 
doing is losing information about the process, and this information could be relevant 
in decision processes or in association rule discovering, especially in unsupervised 
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problems, which represent an effervescent research topic due to its scarcity in the 
reported techniques [4]. 

On the other hand, high dimensional feature space represents a big challenge as a 
reduced data set is needed in order to reduce the over fitting of the models to be 
obtained. Also, high dimensional feature spaces increase the computational time 
needed in modeling such problems.  Several different techniques have been employed 
to reduce the dimension of the data sets; they are known as feature reduction 
techniques and are divided into two main types: the feature extraction and feature 
selection techniques [10, 4]. Feature extraction includes the techniques that involve 
transforming the feature space into a smaller one. The transformation comprises any 
linear or nonlinear combination of a feature subset. An example of this kind of 
techniques is feature extraction by means of Principal Component Analysis [15]. 

Feature selection includes any method that proposes a feature subset from the 
original data set without any kind of transformation. The reduced feature space is 
supposed to include most relevant features according to a certain measure.  

In this work, a feature selection technique able to deal with the data uncertainty is 
detailed. It is based on the Fuzzy Extension of the Mutual Information measure 
presented in [13], and it is designed for unsupervised problems. A two stages 
algorithm overcomes the problem of the dimensionality of the original data set. The 
new algorithm –called Fuzzy Unsupervised Mutual Information Feature Selection, 
from now on referred to as FUMIFS– has been found valid compared with previous 
approaches and some conclusions to improve the second stage have been extracted. 

This work is organized as follows. A brief review of the feature selection methods 
and data uncertainty is outlined in the following section. In Section 3 the FUMIFS 
method is detailed. Section 4 deals with the experiments run and commented results. 
Finally, conclusions and future work is presented. 

2.  Uncertainty and feature selection in unsupervised problems 

There are several feature selection techniques available in the literature. According to 
how the method must be used, feature selection methods are classified as filters or as 
wrappers [10, 17]. A feature selection method is referred to as a filter method if it is 
designed as a prepossess method before the modeling algorithm, i.e. [13].  When the 
feature selection is ran within the modeling algorithm then it is referred to as a 
wrapper method, i.e. the SSGA method [3]. The former methods are usually faster 
than the latter, with lower computation costs. In general, the performance of the 
wrapper methods is better than that of the filter methods, especially if the model 
obtained will be used to model the problem. Therefore, the wrappers are essentially 
designed for supervised problems. 

According to how the method searches the domain, there are three possibilities: the 
Complete Search methods, the Heuristic Search methods and the Random Search 
methods. Also, the search is known as Sequential Forward Search -from now on, 
SFS- or Sequential Backward Search -from now on, SBS-. A heuristic search is called 
SFS if initially the feature subset is empty, and in each step it is incremented in one 
feature, i.e. the  Battiti method [2]. On the other hand, it is an SBS if at the beginning 



the feature subset is equal to the feature domain, and in each step the feature subset is 
reduced in one feature, i.e. the Fisher algorithm [12]. 

Although there are quite a lot of feature selection contributions reported in the 
literature, they are mainly designed for supervised problems [3, 17]. Moreover, the 
uncertainty included in the data is avoided in all of them, only crisp data is 
considered.  Some unsupervised feature selection methods are also reported in the 
literature. In [5] the threshold that maximizes the mutual information is used in an 
SFS, choosing the features with higher mutual information values. Mitra et al 
proposed clustering feature subsets with the so-called maximum information 
compression index and choosing the most compact feature from each cluster [11]. 
Despite the speed and performance of the algorithm, the method is only designed for 
crisp data.  Li et al proposed a hybrid method including a filter stage –using the fuzzy 
feature evaluation index– and a wrapper stage –using feature clustering. Finally, an 
unsupervised feature ranking is detailed in [7], where a ranking of the features is 
calculated based on clustering feature subsets, which they refer to as multiple view. 
For generating the feature subsets they proposed the random subspace method [6]. 

Imprecision and vagueness in data have been included in feature selection for 
modeling problems. Fuzzy logic has been employed for such task in the Fuzzy 
extension of the Mutual Information measure, which has been used in [13] to extend 
Battiti’s algorithm for data uncertainty. Perhaps the rough set theory is the most 
widely used technique [9], all of them for supervised problems. A review of the rough 
set theory and the dimensionality reduction can be obtained in [16]. An SFS feature 
selection method for unsupervised problems using the neighborhood rough set is 
detailed in [8], where a neighborhood matrix is used to choose the features that 
maximize the neighborhood dependency in an SFS like algorithm. This feature 
selection method is specially defined to accomplish with heterogeneous data sets, that 
is, data sets that include both real valued and discrete valued features. 

Some drawbacks should be commented. The majority of the feature selection 
methods in the literature do not consider uncertainty in the data and are mainly 
prepared for supervised problems. To our knowledge, only the last mentioned work 
deals with unsupervised problems using rough set theory. In general, it has been 
found that the performance of the SFS methods gets worse with the dimension of the 
domain space. Particularly, as the FMIFS is an SFS method for supervised problems 
that uses fuzzy theory, it is also concerned with this drawback. Finally, an increase in 
the computational cost has to be considered to manage uncertainty in the data.  

3   The Fuzzy Unsupervised Mutual Information Feature Selection 
algorithm 

In previous work an extension of Battiti’s mutual information based feature selection 
method was proposed [13]. This extension, called Fuzzy Mutual Information Feature 
Selection –for short, FMIFS–, makes use of the fuzzy mutual information measure in 
order to deal with the uncertainty in the data. The robustness of the FMIFS 
performance against data uncertainty as missing data or interval-valued features 



within the dataset was shown. Unfortunately, the FMIFS also shows the above-
mentioned drawbacks [14]. 

The FUMIFS is proposed to overcome these disadvantages. In the FMIFS, the 
fuzzy mutual information measure is used to establish the information relationship 
between each variable and the class feature. In each step the feature with the highest 
value of residual mutual information of the feature class was included in the feature 
subset. This last step is dependant of a real value parameter called β, which represents 
the way the residual information of the feature class is calculated according to Eq. 1, 
where S is the set of features already chosen –that is, the best valued features subset– 
f is a feature in the domain that has not been chosen and C is the class feature.  
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It has been found that the value of β is critical and problem dependant [14]. 

Moreover, when the number of features increases the residual mutual information is 
more influenced by the noisy variables. In such cases, the feature subset would 
include random variables, which are not related with the features in S. Nevertheless, if 
the number of features is relatively low the FMIFS behaves properly and it is a 
relatively fast method. Finally, the FMIFS is designed for supervised problems as 
reflected in Eq. 1 with the class feature C. Hence, the FUMIFS should exploit the 
behavior of the FMIFS when faced with relatively low dimension feature sets and 
must try to eliminate the influence of the random variables in high dimension feature 
sets. Also, as its main goal, the FUMIFS should manage unsupervised problems. 

3.1 The unsupervised algorithm 

The FUMIFS is based on some different approaches found in the literature. Firstly, 
the random sub-space method [6], which was also employed in [7], is used to choose 
a feature subset of lower dimension where the FUMIFS is intended to behave 
properly.  The random sub-space method is applicable provided that there is no 
possibility of repeating the feature subset evaluation, which is to say that it should 
avoid evaluating a feature subset if it has already been evaluated.  Secondly, a genetic 
algorithm is responsible for generating new feature subsets and evaluating them 
considering the restriction of the random sub-space method. So the individual is 
ranked according to how different it is compared to all the previously examined 
random subspaces, which in fact is the genetic fitness function. If an individual is 
found repeated then it is eliminated and a new one will be proposed.  

Let N be the size of the random subspace. For each individual the FMIFS is run N 
times; in each run the feature from the random subspace used as objective feature is 
changed.  Therefore, the K most relevant features according to the FIMFS are found 
for each feature in the feature subset. The value K represents the dimension of the 
feature subset proposed by the FMIFS in each run. 

The individuals in the population are sorted according to their fitness. The genetic 
selection is carried out choosing individuals from the population with a probability 



that decreases with the position in the sorted population. The crossover follows a two 
points crossover schema: according to the crossover probability the vector of included 
features of both parents are swapped to generate the two offsprings provided no 
repeated feature is included. In this case, the offspring is completed with a random 
chosen feature. The mutation goes through the vector of features of the individual to 
be mutated, and randomly changes each feature with the mutation probability. The 
vectors of features are always sorted according to their position in the original dataset. 

When a population is completed then the certainty table is updated. The Certainty 
Table –for short, CT– accumulates the certainty that a feature depends on another. 
Each run of the FMIFS for an individual has an objective feature –for short, of– and 
proposes a K dimensional vector –for short, vf– of the most relevant features 
according to their mutual information measure. Then the certainty table is updated by 
means of Eq. 2, Eq. 3 and Eq. 4. Each value in CT is an interval value initialized to 
the crisp value of 0. 
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Finally, some relationships are extracted from the CT given the following rules of 

thumb. Let {LOW, MEDIUM, HIGH} be the linguistic terms of a fuzzy variable, and 
Let be fi and fj a pair of features for which relationships are to be found. The linguistic 
rules used to extract the relationships are: “if CT(fi, fj) is HIGH and CT(fi, fj) is HIGH 
then there exists an Equivalence between fi and fj” and “if CT(fi, fj) is HIGH and 
CT(fi,fj) is LOW then there exists a DEPENDENCE of fj in fi”.  These rules are used to 
prove that the algorithm is valid; it could be easily improved using the frequent 
pattern matching or any other algorithm that outperforms these simple rules. 

Both N and K are parameters given to the FUMIFS. If N is set to the dimension of 
the original data set then the FUMIFS behaves like the FMIFS. K is typically set to 
less than half the value of N. The value of β should also be given as a parameter so 
FMIFS could be executed. The number of iterations (nIter), the population size 
(popSize) and the crossover and mutation probabilities must also be given. Care must 
be taken in setting the FUMIFS parameters to avoid infinite loops in the genetic 
algorithm. As the random subspace method is used there should not be a repeated 
individual. To prevent such an occurrence the number of iterations and the population 
size are bounded to not search more than the possible combinations of feature 
subspaces. 



4 Experiments and results 

The FUMIFS is to be compared with the FMIFS in order to test its goodness. So the 
same experimentation carried out in [13] is to be repeated for the FUMIFS. The 
datasets are available in the KEEL Project [1]. To provide unsupervised datasets the 
class feature has been considered as an input feature. The datasets have been modified 
to introduce vagueness, and both versions, the crisp and the imprecise ones, have been 
tested. After a FUMIFS run two data sets are generated: the first with all the features 
for which a relationship has been found with the class feature and the second data set 
with only those features for which dependency of the class feature was found. Then 
FMIFS has been run to choose the same number of features as FUMIFS. The values 
in all output files from each run are crisp according to [13], using the central point to 
convert an interval into a crisp value. Due to the length of this work, neither the crisp 
data sets results nor the boxplot graphics have been included. However, the results are 
commented. 

The same thirteen different fuzzy rule-learning algorithms have been considered, 
both heuristic and genetic algorithms-based. In all cases, the number of linguistic 
terms in each partition is set beforehand, and not optimized by the learning algorithm. 
The experiments have been repeated ten times for different permutations of the 
datasets (10cv experimental setup). The heuristic classifiers use weighted fuzzy rules: 
always 1 (H1), the same weight as the confidence (H2), differences between the 
confidences (H3, H4, H5), weights tuned by reward-punishment (RE) and analytical 
learning (AL). The genetic fuzzy classifiers are the Genetic selection of rules taken 
from HEU3 (GE), Michigan learning (MI) –with population size 25 and 1000 
generations–, Pittsburgh learning (PI) –with population size 50, 25 rules each 
individual and 50 generations–, the Hybrid learning (HY) –same parameters as PI, 
macromutation with probability 0.8–, the Fuzzy Ababoost (AD) –less than 25 rules 
with a single consequent, fuzzy inference by sum of votes– and Fuzzy Logitboost 
(LO) –less than 10 rules with multiple consequents, fuzzy inference by sum of votes–. 

In Table 1 the classification mean errors for the thirteen methods are shown with 
the imprecise data sets. For each data set and method four results are given: the 
FUMIFS with only the dependence relationships found for the class feature 
(fumifs_d), the FUMIFS with all the relationships found for the class feature 
(fmifs_r), and the FMIFS results with the same number of features (fmifs_d and 
fmifs_r, respectively).  Comparing the results of the FMIFS and the FUMIFS, it can 
be seen that the classification mean error is quite similar in both cases: with the 
dependence relationships and with any relationship between input features and the 
class output. Also the experiments run with the crisp data sets produced analogous 
results. Although they could not be included due to space limitations, the statistics 
boxplot graphics showed that results are totally comparable and it can not be 
concluded which method is better.  

5 Conclusions and future works 

In this work an unsupervised feature selection method has been described. It makes 
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H1 0.259 0.300 0.317 0.300 0.126 0.140 0.204 0.129 0.314 0.140 0.357 0.129 
H2 0.286 0.300 0.288 0.300 0.177 0.209 0.240 0.194 0.338 0.209 0.361 0.194 
H3 0.285 0.300 0.302 0.300 0.183 0.203 0.241 0.197 0.345 0.203 0.351 0.197 
H4 0.285 0.300 0.302 0.300 0.183 0.203 0.241 0.197 0.345 0.203 0.351 0.197 
H5 0.285 0.300 0.302 0.300 0.103 0.203 0.206 0.197 0.345 0.203 0.351 0.197 
RE 0.272 0.300 0.282 0.300 0.129 0.143 0.205 0.154 0.305 0.143 0.312 0.154 
AL 0.274 0.300 0.288 0.300 0.137 0.140 0.208 0.137 0.328 0.140 0.295 0.137 
GE 0.279 0.300 0.293 0.300 0.251 0.126 0.299 0.157 0.325 0.126 0.355 0.157 
MI 0.300 0.300 0.300 0.300 0.114 0.311 0.230 0.309 0.350 0.311 0.350 0.309 
PI 0.286 0.300 0.300 0.300 0.089 0.183 0.219 0.203 0.333 0.183 0.350 0.203 
H 0.288 0.300 0.300 0.300 0.143 0.143 0.219 0.203 0.330 0.143 0.350 0.203 
AD 0.265 0.292 0.277 0.294 0.149 0.149 0.218 0.200 0.230 0.149 0.288 0.200 
LO 0.271 0.273 0.273 0.285 0.143 0.134 0.211 0.194 0.229 0.134 0.266 0.194 

Table 1. FMIFS and FUMIFS classification mean error with the German Credit, the Ionosphere 
and the Pima Indian cancer data sets when vagueness is introduced in the data. 

use of the Fuzzy Mutual Information measure and Battiti’s algorithm which, 
combined with a genetic algorithm, generates a new data set that is to be post 
processed.  It is proposed to use a frequent pattern matching method, but for this work 
only two rules of thumb were used. Results show that the FUMIFS behaves similarly 
to the previous work FMIFS. The FUMIFS is really influenced by the simple rules of 
thumb used. Also, both the aggregation method and the generation of the so-called 
certainty table have not been optimized. Nevertheless, this unsupervised feature 
selection method behaves properly, and the results encourage the authors to apply 
frequent pattern matching in order to improve the goodness of the relationships found. 
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