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Abstract—The social security administrations have to evaluate
the degree of disability to offer compensation to those workers
who suffer from a continuous alteration of health preventing
them from continuing their work. Thanks to the accurate model
of classification of disability presented in this paper, it is possible
to obtain an approximation of the expected result for each case of
disability prior to an individualized evaluation. In this paper, we
introduce a novel model for classification of permanent disability,
based on the hybridization of a standard logistic regression with
Product Unit (PU) neural networks and Radial Basis Function
(RBF) networks. The proposed techniques are shown to perform
better than other existing Statistical and Artificial Intelligence
methods.

I. INTRODUCTION

Permanent disability is a term used in the insurance industry
and law. Generally speaking, it means that due to a sickness
or injury a person is unable to work in their own, or any
occupation for which they are suited by training, education,
or experience. In Spain, the evaluation and classification of
permanent disability follows a procedure which is clearly de-
fined and divided into three development phases: introduction,
instruction and resolution.

The main principles of the measures considered to obtain a
consolidated and rational system of permanent disability clas-
sification are the contributory element, equity and solidarity.
Furthermore, in order to establish greater legal security in the
process of determining permanent disability, it is mandatory to
elaborate a list of diseases and evaluate their influence on the
reduction of work capacity. This list must be created according
to objective criteria based on the actual evaluations and the
reports of the disability assessment teams.

To understand the nature of permanent disability, the ter-
minology is defined next. Permanent disability takes into
account continuous alteration of health and its impact on
the worker’s occupational situation. The disability assessment
team is supported by a medical unit. The medical unit’s
tasks are: to examine the disability situation of the worker, to
determine the reduction or alteration of the physical integrity
of the worker, to determine the level of incapacity for working,
to determine whether the character of the disease is common
or professional, to extend the period of medical observation
in case of professional diseases, to monitor programs for the
control of temporal disability compensations, and to provide

technical assistance and advice on any contentious issues
concerning occupational disabilities.

In our work we consider three main categories that can be
assigned to a worker depending on the degree of permanent
disability: no disability (when the worker is not assigned the
status of permanent disability), permanent disability (when the
worker is assigned some degree of permanent disability) and
fee (when the worker is not assigned any degree of permanent
disability, but it is financially compensated).

Tulo et al. expose in their work [1] the necessity of estab-
lishing innovative solutions regarding to permanent disability
evaluation process, and data mining techniques are referenced
as a tool to uncover trends in this evaluation. In this sense,
the motivation of this study is to obtain an initial model
which helps to prepare reports in the process of determining
permanent disability. Using this model, a worker could obtain
an approximation of the expected result for each case of
permanent disability evaluation. The training dataset used to
obtain the model is composed of information from reports
of a medical unit. Each report is tagged with one of the
three categories (no disability, permanent disability or fee).
An important characteristic of the dataset is that it is highly
unbalanced.

Other related works, using data mining techniques for
occupational health analysis, includes the identification of
relationships between occupational risk level and immedi-
ate/root causes and corrective actions [2], the identification of
specific risk groups and factors in occupational safety using
regression trees [3], and the identification of characteristics
of occupational injuries in the construction industry using
association rules [4].

In recent years, artificial neural networks (ANNs) and other
related techniques have been successfully used for assessing
the risk of occupational injury [5], for classification of in-
dustrial jobs with respect to the risk of work related low
back disorders [6] and for forecasting occupational accidents
[7]. The most popular neural network model is perhaps the
back-propagation (BP) neural network [8] due to its simple
architecture yet powerful problem-solving ability. In ANNs,
the hidden neurons are the functional units and can be
considered as generators of function spaces. Most existing
neuron models are based on the summing operation of the
inputs, and, more particularly, on sigmoidal unit functions,
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resulting in what is known as the Multilayer Perceptron
(MLP). However, alternatives to MLP emerged in the last few
years: Product Unit Neural Network (PUNN) models are an
alternative to MLPs and are based on multiplicative neurons
instead of additive ones. They correspond to a special class
of feed-forward neural network introduced by Durbin and
Rumelhart [9]. While MLP network models have been very
successful, networks that make use of Product Units (PUs)
have the added advantage of increased information capacity
[9]. That is, smaller PUNNs architectures can be used rather
than those used with MLPs [10]. They aim to overcome the
non-linear effects of variables by means of non-linear basis
functions, constructed with the product of the inputs raised
to arbitrary powers. These basis functions express possible
strong interactions between the variables, where the exponents
may even take on real values and are suitable for automatic
adjustment.

Another interesting alternative to MLPs are Radial Basis
Function networks (RBFNNs). RBFNNs can be considered a
local approximation procedure, and the improvement in both
its approximation ability, as well as in the construction of its
architecture has been noteworthy [11]. RBFNNs have been
used in the most varied domains, from function approximation
to pattern classification, time series prediction, data mining,
signals processing, and non-linear system modelling and con-
trol [12]. RBFNNs use, in general, hyper-ellipsoids to split the
pattern space. In many cases, MLP, PU and RBF networks are
trained by using evolutionary algorithms (EAs),thus obtaining
advantages with respect to traditional training approaches [13],
[14], [15].

Logistic Regression (LR) has become a widely used and
accepted method of analysis of binary or multi-class outcome
variables as it is more flexible and it can predict the probability
of the state of a multi-class variable based on the predictor
variables. In this paper, we consider the hybridization of
some novel networks (PUs and RBFs) with a standard logistic
regression to improve the performance of the classifiers in the
problem of permanent disability prediction. The hybridization
of LR and PUNNs or RBFNNs is done by considering some
works in classifier construction, where the hybridization of
the LR model and Evolutionary PUNNs (EPUNNs) to obtain
binary [16], [17] and multiclass [18] classifiers is proposed.
The work has been recently adapted for RBFs [19]. In a first
step, an evolutionary algorithm [13] is used to determine the
basic structure of the product-unit model. That step can be seen
as a global search in the space of the model coefficients. Once
the basis functions have been determined by the EA, a trans-
formation of the input space is considered. This transformation
is performed by adding the non-linear transformations of the
input variables given by the PU functions obtained by the EA.
The final model is linear in these new variables together with
the initial covariates. On the other hand, the hybridization of
the LR and evolutionary RBFNNs is also tested in this paper,
in such a way that we combine a linear model with a Radial
Basis Function Neural Network (RBFNN) non-linear model
and then we estimate the coefficients using logistic regression.

The main contribution of present work is the generation
of a model based on artificial neural networks and logistic
regression that can be used to obtain an prediction of perma-
nent disability. We experimentally show that the hybrid models
involving LR, PUNNs and RBFNNs outperform several other
existing classification techniques in the problem of permanent
disability prediction, and they are therefore a very interesting
tool to be taken into account in this field.

II. OCCUPATIONAL SITUATION AND PERMANENT

DISABILITY

Permanent disability (PD), in its contributory modality,
takes into account the continuous alteration of health and,
particularly, its impact on occupational situation.

It has an exclusively professional profile and its evaluation
should avoid references to other circumstances, such as socio-
economic status, age, family, etc. These circumstances may be
considered in order to evaluate other effects, but should not be
taken into account when determining the degree of disability
to be protected by contributory income.

The occupational situations to be protected by the status of
permanent disability are:

• Permanent disability which, in practice, stands for the
lack of income due to the loss of salary which is a result
of either temporary, or permanent disability. This lack of
income is alleviated by financial aid.

• The necessity to recover psycho-physical well being.
• The necessity to receive financial support during the

process of recovery.
• The process of reintegrating a disabled person into work

environment, which should be protected by selective
employment.

Depending on the determining cause, permanent disability
is classified according to the following degrees:

• Partial PD for usual occupation means that a worker’s
capacity to perform his/her job is diminished by not
less than 33%. However, it does not prevent him/her
from performing tasks which are fundamental for his/her
occupation.

• Total PD for usual occupation means that a worker is
unable to perform tasks which are fundamental for his/her
occupation, but may opt for a different occupation.

• Absolute PD means that a worker is unable to perform
any profession.

• Grand disability means that a worker who is affected by
PD due to his/her physical and functional impairments
requires assistance in basic life activities such as dressing
up, moving from one place to another, eating, etc.

• Non-Disabling Permanent Damages refers to permanent
impairments which do not have impact on work capacity,
but mean that a worker’s physical integrity is reduced.

In case of accidents the term “usual occupation” should
be understood as the work performed by the worker at the
moment of the accident.
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A. Initial data and variables

The medical unit of the disability assessment team elabo-
rates synthesis medical reports (SMR) to evaluate permanent
disability. We use these reports as a source of information for
our experiments. Synthesis medical reports are based on:

1) Clinical examination performed by a medical evaluator.
2) Medical reports provided by the patient.
3) Complementary tests and examinations requested by the

medical evaluator.

The data used here had been obtained from the SMRs and
the reports of the sessions held by the disability assessment
team which were then compiled into files. Some data, like
age or sex, have been extracted directly from these documents
while others, like occupational repercussion, have been col-
lected by qualified personal.

For each file, the following attributes have been obtained:

• From the SMRs:
Age, sex, occupation, sick leave period, and diseases.

• From the reports of the sessions held by the disability
assessment team:
Classification (permanent disability degree), contingency,
and period of time between examinations.

• From the qualified personal:
Occupational repercussion. The following information
has been taken into account when evaluating it as low,
middle or high:

– Functional repercussion of different diseases.
– Worker’s occupation.

The classification (permanent disability degree) is grouped
into:

• No disability (ND).
• Permanent disability (PD).
• Fee (F).

The contingency can be classified into two types:

• Common

- Common disease (CD)
- Non-working accident (NWA)

• Professional

- Occupational disease (OD)
- Working accident (WA)

We have considered the code of the Spanish “National
Classification of Occupations” (CNO-94) to collect the data
related to the professions. To gather the data related to the
diseases, the “International Classification of Diseases” (ICD9-
CM) has been considered.

The final variables used in our work are shown in table I. A
total of 978 records have been extracted from the data between
2002 and 2003.

III. NEURO-LOGISTIC MODELS

In the classification problem, some measurements xi, i =
1, 2, ..., k are taken on a single pattern, and the patterns are
classified into one of J categories. The measurements xi are
random observations from these J classes, J being a finite

TABLE I
LIST OF VARIABLES AND ASSOCIATED DESCRIPTION OF THE DATASET

OBTAINED FROM THE SYNTHESIS MEDICAL REPORTS AND THE REPORTS

OF THE SESSIONS HELD BY THE DISABILITY ASSESSMENT TEAM

Variable Description

x1 Age

x2 Sex

x3−21 CNO-94

x22 Sick leave time

x23−42 Principal categories of ICD9-CM

x43 Low occupational repercussion

x44 Middle occupational repercussion

x45 High occupational repercussion

x46 Total number of diseases

x47 CD contingency

x48 NWA contingency

x49 OD contingency

x50 WA contingency

x51 Period of time between examinations

Class Description

ND No disability

PD Permanent disability

F Fee

number. A training sample D = {(xn,yn);n = 1, 2, ..., N}
is available, where xn = (x1n, ..., xkn) is the vector of
measurements taking values in Ω ⊂ Rk, and yn is the
class level of the n-th individual. The common technique of
representing the class levels using a “1-of-J” encoding vector
is adopted, y =

�
y(1), y(2), ..., y(J)

�
, such as y(l) = 1 if x

corresponds to an example belonging to class l and y(l) = 0
otherwise. Based on the training sample, we wish to find
a decision function F : Ω → {1, 2, ..., J} for classifying
the individuals. In other words, F provides a partition, say
D1, D2, ..., DJ , of Ω, where Dl corresponds to the l-th class,
l = 1, 2, ..., J , and measurements belonging to Dl will be
classified as coming from the l-th class. A misclassification
occurs when the decision rule F assigns an individual (based
on the measurement vector) to a class j when it is actually
coming from a class l �= j.

To evaluate the performance of the classifiers the corrected
classified rate (CCR or C) is defined by

C =
1

N

N�

n=1

I(F (xn) = yn), (1)

where I(•) is the zero-one loss function. A good classifier
tries to achieve the highest possible C in a given problem. It
is usually assumed that the training data are independent and
identically distributed samples from an unknown probability
distribution. Suppose that the conditional probability that x
belongs to class l verifies: p

�
y(l) = 1

�
�x

�
> 0, l = 1, 2, ..., J ,

x ∈ Ω, and sets the function:

fl(x,θl) = log
p
�
y(l) = 1

�
�x

�

p
�
y(J) = 1

�
�x

� ,
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where θl is the weight vector corresponding to class l, and
fJ(x,θJ) = 0. Under a multinomial logistic regression, the
probability that x belongs to class l is then given by:

p
�
y(l) = 1

�
�
�x,θ

�
=

exp fl (x,θl)
�J

j=1 exp fj (x,θj)
, l = 1, 2, ..., J,

where θ = (θ1,θ2, ...,θJ−1). For binary problems (J = 2),
this is known as logistic regression (or soft-max in neural
network literature).

The classification rule coincides with the optimal Bayes’
rule. In other words, an individual should be assigned to
the class which has the maximum probability, given the
measurement vector x:

F (x) = l̂,where l̂ = argmax
l

fl(x, θ̂l), for l = 1, ..., J.

On the other hand, due to the normalization condition we
have:

J�

l=1

p
�
y(l) = 1

�
�
�x,θ

�
= 1,

and the probability for one of the classes (the last one, in our
case) does not need to be estimated. Observe that we have
considered fJ(x,θJ) = 0.

The hybrid Neuro-Logistic models are based on the combi-
nation of the standard linear model and nonlinear terms con-
structed with RBFs or PUs, which captures possible locations
in the covariate space. The general expression of the model is
given by:

fl(x,θl) = αl
0 +

k�

i=1

αl
ixi +

m�

j=1

βl
jBj(x,wj) (2)

where l = 1, 2, ..., J−1, θl = (αl,βl,W) is the vector of pa-
rameters for each discriminant function, αl = (αl

0, α
l
1, ..., α

l
k)

and βl =
�
βl
1, ...., β

l
m

�
are the coefficients of the multilo-

gistic regression model and W = (w1,w2, ...,wm) are the
parameters of the nonlinear transformations. The difference
between PUNNs and RBFNNs is related to the activation
function considered in the hidden layer. In this way, Product
Units (PUs) are considered for PUNNs:

Bj(x,wj) =
k�

i=1

x
wji

i (3)

where wji is the weight of the connection between input
neuron i and hidden neuron j and wj = (wj1, . . . , wjk) is
the weight vector. On the other hand, Gaussian RBFs are
considered for RBFNNs:

Bj(x,wj) = exp

�

−
�x− cj�

2

r2j

�

(4)

where wj = (cj , rj), cj = (cj1, cj2, . . . , cjk) is the centre
or average of the j-th Gaussian RBF transformation, rj is the
corresponding radius or standard deviation and cji, rj ∈ R.
The general structure of this kind of models can be analyzed
in Fig. 1.

Fig. 1. Structure of Radial Basis Function Neural Networks: an input layer
with k input variables, a hidden layer with m RBFs and an output layer with
J nodes

IV. HYBRID LEARNING ALGORITHM

In the supervised learning context, the components of the
weight vectors θ = (θ1,θ2, ...,θJ−1) are estimated from
the training dataset D. To perform the maximum likelihood
estimation of θ, one can minimize the negative log-likelihood
function:

L(θ) = − 1
N

�N
n=1

�J
l=1

�
y
(l)
n log p (yn|xn,θ)

�
=

= 1
N

�N
n=1

�
−
�J

l=1 y
(l)
n fl(xn,θl)+

+ log
�J

l=1 exp fl(xn,θl)
�
, (5)

where fl(x,θl) corresponds to the hybrid model defined in
(2).

The error surface associated with the model is convoluted
with numerous local optima. Given the nonlinearity of the
model with respect to the parameters wj , and the indefinite
character of the associated Hessian matrix of L(θ),the use
of gradient-based methods to maximize the log-likelihood
function is not recommended. Moreover, the optimal number
of basis functions of the model (i.e. m) is unknown. Thus, the
estimation of the vector parameter θ̂ is carried out by means
of a hybrid procedure described below.

The methodology proposed is based on the combination
of an Evolutionary Programming algorithm (EP) (global ex-
plorer) and a local optimization procedure (local exploiter)
carried out by the standard maximum likelihood optimization
method. In the first step, the EP algorithm is applied to design
the structure and training of the weights of a neural network.
Once the basis functions have been determined by the EP
algorithm, we consider a transformation of the input space by
adding these nonlinear transformations given by the RBFs of
the best individual in the final generation of the EP algorithm.
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The model is now linear in these new variables and the
initial covariates. The remaining coefficient vector α and β
are calculated by the maximum likelihood optimization method
which selects the parameters that maximize the probability of
the observed data points. In the next subsection, the algorithms
for obtaining this maximum likelihood solution are described.
Then, the different steps of the MLRIRBF learning algorithm
are described and, in the last subsection, the details of the EP
algorithm are given.

A. Algorithms for Multilogistic Regression Maximum Likeli-
hood Optimization

In this paper, two different algorithms have been considered
for obtaining the maximum likelihood solution for the multilo-
gistic regression model, both available in the WEKA machine
learning workbench [20]:
1) MultiLogistic: MultiLogistic is an algorithm for building

a multinomial logistic regression model with a ridge estimator
to guard against overfitting by penalizing large coefficients,
based on work of Le Cessie and Van Houwelingen [21].

In order to find the coefficient matrix θ for which L(θ) is
minimized, a Quasi-Newton Method is used. Specifically, the
method used is the active-sets’ method with Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update [22].
2) SimpleLogistic: This algorithm builds multinomial lo-

gistic regression models fitting them using the LogitBoost
algorithm [23], which was proposed by Friedman et al.
for fitting additive logistic regression models by maximum
likelihood. These models are a generalization of the (linear)
logistic regression models described above. SimpleLogistic
algorithm is based on applying LogitBoost with simple re-
gression functions and determining the optimum number of
iterations by a five fold cross-validation: the data is equally
split five times into training and test, LogitBoost is run on
every training set up to a maximum number of iterations
(500) and the classification error on the respective test set is
logged. Afterwards, LogitBoost is run again on all data using
the number of iterations that gave the smallest error on the
test set averaged over the five folds. Further details about the
algorithm can be found in [24].

B. Estimation of the model coefficients

The process is divided into three steps.
Step 1. We apply an EP algorithm to find the basis

functions:

B(x,W) = {B1(x,w1), B2(x,w2), ..., Bm(x,wm)} ,

corresponding to the nonlinear part of f(x,θ). We have to
determine the number of basis functions m and the weight
vector W = (w1,w2, ...,wm). To apply evolutionary neural
network techniques, we consider a neural network with soft-
max outputs and the standard structure: an input layer with
a node for every input variable; a hidden layer with several
nodes; and an output layer with one node for each class minus
one. There are no connections between the nodes of a layer
and none between the input and output layers either.

The weight vector W = (w1,w2, ...,wm) is estimated by
means of an evolutionary neural network algorithm that opti-
mizes the error function given by the negative log-likelihood
for N observations associated with the neural network model
(see (5)).

The specific details of this EP algorithm can be found in
some previous works [25], [26].

Although in this step the evolutionary process obtains a
concrete value for the β vector, we only consider the estimated
weight vector Ŵ = (ŵ1, ŵ2, ..., ŵm), which builds the basis
functions. The values for the β vector will be determined in
step 3 together with those of the α coefficient vector.
Step 2. We consider the following transformation of the

input space by including the nonlinear basis functions obtained
by the EP algorithm in step 1:

H : Rk → Rk+m,
(x1, x2, ..., xk) → (x1, x2, ..., xk, z1, ..., zm),

where z1 = B1(x, ŵ1), ..., zm = Bm(x, ŵm).
Step 3. In the third step, we minimize the negative log-

likelihood function for N observations:

L(α,β) = 1
N

�N
n=1

�
−
�J

l=1 y
(l)
n (αlxn + βlzn)+

+ log
�J

l=1 exp(α
lxn + βlzn)

�
,

where xn = (1, x1n, ..., xkn) and zn = (z1n, ..., zkn). Now,
the Hessian matrix of the negative log-likelihood in the new
variables x1, x2, ..., xk, z1, ..., zm is semi-definite positive. The
estimated coefficient vector θ̂ = (α̂, β̂,Ŵ) determines the
model of (2) with Bj(x,wj) defined as (3) or (4).

In this final step, both algorithms presented in subsection
IV-A have been used for obtaining the parameter matrix θ.
Bj(x,wj) is defined by (3) or (4). Moreover, two different
versions of the hybrid neuro-logistic models have been con-
sidered:

• LR models with only the non-linear part, i.e. the model
does not include the initial covariates of the problem (left
part of Fig. 1. The different neural networks, together
with the two ML algorithms applied in Step 3, result
in four different methods: MultiLogistic regression using
Product Units (MLPU), SimpleLogistic regression using
Product Units (SLPU), MultiLogistic regression using
RBFs (MLRBF) and SimpleLogistic regression using
RBFs (SLRBF).

• LR models with both the linear and the non-linear part,
i.e. the models of Fig. 1. In the same way that with
the previously presented models, two different logistic
regression algorithms are applied (SimpleLogistic and
MultiLogistic) over the two different models defined by
considering (3) or (4) for Bj(x,wj), what finally results
in four different methods: MultiLogistic regression using
Initial covariates and PUs (MLIPU), SimpleLogistic re-
gression using Initial covariates and PUs (SLIPU), Mul-
tiLogistic regression using Initial covariates and RBFs
(MLIRBF) and SimpleLogistic regression using Initial
covariates and RBFs (SLIRBF).
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V. EXPERIMENTS

The methods compared are the following: PU methods
(EPUNN, MLPU, SLPU, MLIPU and SLIPU) and RBF
methods (ERBF, MLRBF, SLRBF, MLIRBF and SLIRBF).
Different state-of-the-art Statistical and Artificial Intelligence
algorithms have been considered for the sake of comparison.
Specifically, the results of the following algorithms have been
compared with the soft-computing techniques presented in this
paper:

1) RandomForest, an ensemble classifier that consists of
many decision trees [27].

2) Naive Bayes Tree learning algorithm (NBTree) [20].
3) Logistic Model Tree (LMT) [24] classifier.
4) The k Nearest Neighbour (k-NN) classifier, adjusting

the value of k using a nested 10-fold cross-validation.
5) A Gaussian Radial Basis Function Network (RBFNet-

work) [20], deriving the centers and width of hidden
units using k-means, and combining the outputs obtained
from the hidden layer using logistic regression.

6) Both standard logistic regression algorithms presented
in section IV-A: SimpleLogistic (SLogistic) and Multi-
Logistic (MLogistic).

7) The Naive Bayes standard learning algorithm (Naive-
Bayes) [20].

These algorithms have been selected for comparison since they
are some of the best performing algorithms of recent literature
on classification problems.

A 10-fold cross-validation has been applied and the perfor-
mance has been evaluated by using the C measure defined in
(1) considering the generalization set (CG). When applying the
algorithms proposed (PU and RBF methods), ten repetitions
are performed per each fold, and when applying the rest of
methods, the 10-fold process is repeated ten times, in order
to obtain an average and a standard deviation of the CG from
the same sample size (100 models).

In order to apply logistic regression analyses, all nominal
variables of the problems have been transformed to binary
ones, resulting in a total of 51 variables. Moreover, the
variables are scaled to the [0.1, 0.9] interval for PUs and to
[−2.0, 2.0] for RBFs.

The results are included in Table II, where the mean and
standard deviation values of CG are given. The first analysis of
these results (without taking into consideration the statistical
significance) reveals that the best performing method is SLIPU
and the second one SLIRBF. Other important observation is
that PU methods generally outperform their RBF equivalents,
obtaining also a lower standard deviation. Consequently, PUs
are better suited for classifying permanent disability than RBFs
as they are charcaterized by a higher performance and stability.

In order to ascertain the statistical significance of the
observed differences between the mean CG of the best models
obtained for each methodology, we have applied statistical
tests. First of all, a non-parametric Kolmogorov-Smirnov test
(KS-test) with a signification level α = 0.05 was used to
evaluate if the CG values of all methods followed a normal

TABLE II
MEAN, STANDARD DEVIATION, MAXIMUM AND MINIMUM VALUES OF THE

ACCURACY RESULTS (CG) FROM 100 EXECUTIONS OF A 10-FOLD CROSS

VALIDATION, USING THE DIFFERENT METHODS COMPARED. NUMBER OF

WINS, DRAWS AND LOSES WHEN COMPARING THE DIFFERENT METHODS

USING THE MANN–WHITNEY U RANK SUM TEST WITH α = 0.05

CG(%) Mann–Whitney U test

Mean±SD # Wins # Draws # Loses

EPUNN 85.04± 9.48 5 3 9

MLPU 85.00± 9.50 5 3 9

SLPU 85.06± 9.52 5 5 7

MLIPU 86.64± 8.93 7 5 5

SLIPU 90.05± 9.44 16 1 0

ERBF 79.76± 11.36 1 2 14

MLRBF 79.88± 11.20 1 2 14

SLRBF 79.56± 13.54 1 2 14

MLIRBF 86.39± 8.96 5 7 5

SLIRBF 89 .86 ± 9 .40 14 3 0

RandomForest 88.02± 9.41 12 1 4

NBTree 87.07± 9.35 8 5 4

LMT 89.85± 9.41 14 2 1

k-NN 66.04± 8.12 0 0 17

RBFNetwork 86.75± 9.30 8 4 5

SLogistic 89.77± 9.39 14 2 1

MLogistic 86.54± 9.31 7 5 5

NaiveBayes 84.17± 9.15 4 0 13

The best result is in bold face and the second best result in italic.

distribution. A normal distribution cannot be assumed because
only 8 from 18 obtained a p-value lower than the critical
level (i.e. only a 44.44% of the methods follows a normal
distribution). As a consequence, a non-parametric Kruskal-
Wallis test for independent samples was selected in order to
check if the methodology applied is significantly affecting
the results obtained. The test concludes that these differences
are significant (with a p−value = 0.00). So, we finish the
statistical analysis applying the Mann-Whitney U rank sum
test for all pairs of algorithms and the results are also included
in Table II. These results include, for each algorithm, the
number of algorithms statistically outperformed (Wins), the
number of draws (non significant differences) and the number
of loses (number of algorithms that outperform the method).

From the analysis of these results, the SLIPU method has
to be highlighted as the most competitive one (with only one
draw), followed by SLIRBF and then by LMT and SLogistic.

A. Extracting information from the best SLIPU model

In this subsection, the main objective is to obtain some
information about the importance each variable has for the
classification problem considered, by analyzing the probability
expression of the best SLIPU model. This model is included
in Table III. The reduced number of non-linear terms and
variables is notably low, which makes the process of inter-
preting the expression easier. Let us highlight again that all
the variables are scaled to [0.1, 0.9] interval.

The model is composed of two hybrid functions, fND and
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fPD that share the same Product Unit (PU1).
Starting with the interpretation of the linear part in the

model for “No disability” (ND), the set of variables with
higher absolute coefficient is represented by x42, x47, x43, and
x49. These variables are associated with “injury and poison-
ing” ICD9 group (x42), “common disease” contingency (x47),
the number of diseases with low occupational repercussion
(x43) and “working accident” contingency (x49). While (x42)
is the variable with higher coefficient, it does not apply to
most of the cases, hence (x43) is the most important variable
for this model.

Analyzing the linear part in the model for “Permanent
Disability” (PD), we found that the set of variables with higher
absolute coefficient is represented by x47, x41 and x42. The
variable x41 is associated with “symptoms, signs, and ill-
defined conditions” ICD9 group.

With regard to the Product Unit PU1, the non-linear part
of the model, we can observe that it is a critical component
for the classification. PU1 has a high positive influence on
the classification of “No disability” files and a relatively
high negative influence on the classification of “Permanent
Disability”.

The occurrence of variables representing low occupational
repercussion has a clear influence on the first model. It also
has an indirect influence on the rest of the models based on
the complementary implication: a file without diseases of low
occupational repercussion contains diseases of middle or high
occupational repercussion. Hence there is a high probability
that the file with diseases of middle or high occupational
repercussion will be classified as Permanent Disability. In this
sense, the criterion established by a qualified person plays a
crucial role in determining permanent disability.

VI. CONCLUSIONS

The hybrid neuro-logistic models have proved to serve as
an accurate tool in the classification of permanent disability. A
comparative study between an extensive collection of standard
classifiers and the results of the statistical tests applied, and
the hybrid neuro-logistic models shows that the latter are more
precise in determinig the degree of permanent disability.

Our hybrid models include a non-linear component (from
different kinds of neural networks) and a standard linear
component, combining both in a logistic regression predic-
tor. The complexity of the model and the high amount of
parameters involved in these classifiers encouraged us to use
a combined methodology, including an evolutionary algorithm
and a standard maximum-likelihood optimization process.

Useful information has been extracted from the most accu-
rate model, given its simple structure (number of connections
and number of hidden neurons). Simple structure is one of the
main advantages of the models presented.

The obtained model is not intended to be a widely used
tool in the classification of permanent disability. First, it
would be necessary to examine more data as the scope of
the PD problem is very broad due to the high number and
complexity of cases. However, our findings can be used to

TABLE III
PROBABILITY EXPRESSION OF THE BEST SLIPU MODEL, CG AND TEST

CONFUSSION MATRIX

Best SLIPU Permanent Disability Probability Model

pND = efPD(x,θ)

1+efPD(x,θ)+efND(x,θ)

fND(x, θ) = −2.48 + 2.04x1 − 1.50x10 − 2.43x11 + 1.78x22−

−1.26x33 + 0.91x35 + 0.95x37 + 16.56x42 + 7.50x43−

−6.83x47 + 3.70x49 + 6.76PU1

pPD = efND(x,θ)

1+efPD(x,θ)+efND(x,θ)

fPD(x, θ) = 3.83 + 0.33x2 + 1.52x10 − 2.43x11 − 0.72x14+

+1.78x22 − 0.66x30 − 1.26x33 + 1.87x35 − 0.92x40+

+6.46x41 + 5.78x42 + 0.69x43 − 6.83x47 − 1.95x49−

−2.94PU1

PU1 = x−0.09
14 x0.06

22 x−0.14
37 x−0.28

40 x0.39
42 x0.67

43

x1 ← (age);x2 ← (sex);x10 ← (rcno94=12);x11 ← (rcno94=4);

x14 ← (rcno94=7);x22 ← (sick leave time);x30 ← (disease8);

x33 ← (disease11);x35 ← (disease13);x37 ← (disease15);

x40 ← (disease18);x41 ← (disease19);x42 ← (disease20);

x43 ← (low occupational repercussion);x47 ← (contingency=CD);

x49 ← (contingency=WA)

xi ∈ [0.1, 0.9]

CG = 95.24%

Generalization Confusion Matrix

Predicted

Target NI I B

NI 45 3 0

I 1 32 0

B 0 0 3

develop new, improved systems. For instance, an extended
model could be used to create an information system, both for
patients and professionals, which would provide assistance in
the evaluation of permanent disability.
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