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Abstract—The objective of this work is to select artificial
neural network models (ANN) automatically with sigmoid basis
units for multiclassification tasks. These models are designed
using a Memetic Pareto Differential Evolution Neural Network
algorithm (MPDENN) based on the Pareto dominance concept.
We propose different methodologies to obtain the best model from
the Pareto front obtained with the MPDENN algorithm. These
methodologies are based on choosing the best models for training
in both objectives, the Correct Classification Rate and Minimum
Sensitivity, and the two models closest to the centroids of two
clusters formed with the models of the first and second Pareto
fronts. These methodologies are compared with three standard
ensembles methodologies with very competitive results.

I. INTRODUCTION

Multiclassification tasks are very interesting in the real-
world, and there has been a growing interest in multiclass
classification problems in the machine learning community. A
classifier design method is usually an algorithm that develops
a classifier to approximate an unknown input-output mapping
function in finitely available data, i.e., training samples. Once
this classifier has been designed, it can be used to predict class
labels that correspond to unseen samples. Hence, the objective
in developing a good classifier is to ensure high prediction
accuracy for unseen future data, i.e., testing capability. Many
techniques have been proposed to improve the overall testing
capability for the designed classifier (assuming, for example,
the maximization of the correct classification rate), but very
few methods maintain this capability in all classes (assuming,
for example, the maximization of the correct classification of
each class). This second objective is very important in some re-
search areas (such as medicine, remote sensing, economy, etc.)
to ensure the benefits of one classifier over another. Therefore
it is necessary to perform a simultaneous optimization of
two conflicting objectives in multiclass problems [1], [2]. The
solution of such problems, called multi-objective, is different
from that in mono-objective optimization. The main difference
is that multi-objective optimization problems normally have
not just one solution, but a whole set of them which are all
equally good.
The question is: how to select one of the solutions from

the optimal solutions set? This is a complex task that depends

on the problem. One possibility is to select two solutions that
correspond to the two extremes of the Pareto front in training
[1]. These solutions represent the most valuables individuals
in any of the objective functions. The main problem with
this methodology is that it does not guarantee that these
individuals are the ones that render the best performance in
the generalization set, because there might be over-training
of the objective to get maximization to occur. To reduce this
problem, and to remove the task of selecting an unique model,
ensembles are used. An ensemble is a compound model,
formed from the aggregation of several basic models, i.e., an
ensemble prediction is, for example, a function of all the base
models included [3].
This paper proposes a new methodology to extract the best

artificial neural model from a Multi-Objective Evolutionary
Algorithm (MOEA) Pareto front based on a clustering al-
gorithm. This method has two phases. In the first phase,
a set of ANNs are trained using a MOEA, following the
normal procedure to obtain the Pareto front. ANNs are an
important tool which have been used in classification tasks
during the last two decades [4]. The MOEA used is based
on the Pareto dominance concept [5] and on Differential
Evolution (DE) [6]. DE is an evolutionary optimization method
for continuous search spaces used by Ilonen [7] to train the
weights of feed-forward neural networks, by H. Abbass [8]
to solve classification problems with ANNs and by Bhuiyan
[9] to optimize the architecture of ANNs, amongst others. The
second phase applies the K-means [10] clustering algorithm,
based on the Accuracy (C) and Minimum Sensitivity (MS)
obtained in the training set. The K-means algorithm is applied
for each ANN model on individuals belonging to the first and
second Pareto fronts. Then the two ANN models closest to
the centroids of the obtained clusters are selected, to have a
greater ability to generalize than methods based on the extreme
models of the Pareto front and than a three standard ensemble
methods.
The paper is organized as follows: Section 2 describes the

use of ensembles with MOEAs based on the Pareto front
concept, using DE or not; Section 3 shows an explanation
of C and MS as objectives to form an ensemble; Section 4
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describes the methodology used in this work and explains the
MPDENN algorithm and the proposed method for selection of
individuals; Section 5 explains the experimental design and the
methods used in the comparison; Section 6 shows the results
obtained, while the conclusions are outlined in Section 7.

II. ENSEMBLES WITH MOEAS BASED ON THE PARETO
FRONT CONCEPT

In our specialized literature there are many algorithms to
generate an ensemble. [11] provides a broad review of current
algorithms to create ensembles and discusses the aspects that
must be taken into account when generating an ensemble: the
classification error produced by the ensemble, the number of
base models used for its creation and the diversity among these
models.
In addition to what is stated in [11], there are specific

algorithms to form ensembles from the elements belonging to
the Pareto front obtained through a MOEA. These ensemble al-
gorithms take into account the presence of multiple conflicting
objectives. The problem is that individuals in the first Pareto
front may not be sufficiently diverse, making it necessary for
the multi-objective evolutionary process to lead to the optimal
Pareto front while maintaining distributions of solutions that
are as diverse as possible [12].
In the literature there are various methods for generating

ensembles with ANNs from the Pareto front obtained, that
select, according to the method, a number of individuals
considered important or even all individuals in the front. There
are three reference standard methods to create an ensemble:
Majority Voting, MV , Simple Averaging, SA, and Winner
Take All, WTA (see [13]).
Bellow a brief state of the art is presented on MOEAs

without DE, and about how these methods select individuals
obtained from the Pareto front.

A. Ensembles without Differential Evolution

A. Chandra and X. Yao [14], [15] propose the DIVACE
algorithm (DIVerse and ACcurate Ensemble learning algo-
rithm) which uses Liu’s idea [16] of Negative Correlation
Learning (NCL) to obtain diversity, and also uses the phi-
losophy of the MPANN algorithm (Memetic Pareto Artificial
Neural Networks) [17] to obtain several precise individuals,
minimizing the MSE. Both algorithms, MPANN and DIVACE
use Multilayer Perceptron (MLP) neural networks as our
algorithm does too. Using the ideas of NCL and MPANN
the learning is addressed as a multi-objective problem in an
evolutionary frame to obtain precision and diversity. DIVACE
tries to produce an ensemble of ANN models as it searches
for the optimum point on the diversity-accuracy curve. The
DIVACE algorithm chooses all individuals from the Pareto
front to build an ensemble.
M. Islam and X. Yao [18] present an algorithm for the

cooperative training of ensembles. An automatic constructive
method, which acts on the number of neurons in hidden
layer of the ANNs, is used to obtain precision. For diversity,
what are used are the NCL and special training by means of

epochs for some ANNs in the population [19]. The size of
the ensemble is determined depending on the error produced
by the individuals who compose it, and also depending on the
number of neurons that each individual has.

In [20], a framework is proposed to generate ensembles of
ANNs by cooperative co-evolution. Co-evolution is employed
to introduce diversity without using terms that may bias the
process of collaborative learning and network improvement.
In addition, several measures of diversity and accuracy are
used during the evolutionary process to maintain the balance
between the two measures. For these reasons, a MOEA is used
to evolve several sets of ANNs and the best combinations of
elements of these subsets, that is, two populations are evolved,
one with ANNs and the other with ensembles. The number of
elements in each ensemble is established at 25, as seen in
[21]; therefore the ensemble size is determined a priori, and
not automatically.

H. Chen and X. Yao proposed in [22] a Regularization
Negative Correlation Learning methodology (RNCL) uses the
NCL of Liu [19], but along with a regularization term on
each of the ANNs that compose the ensemble, and a parameter
optimization algorithm for the regularization term by Bayesian
inference, instead of optimizing the parameter λ, which is
responsible for establishing the best balance between bias-
variance-covariance for all networks. Therefore, RNCL divides
the training objectives of the ANNs, including the MSE and
the regularization term, into a set of sub-objectives, each
one implemented with an ANN. The number of sets of sub-
objectives matches the number of networks making up the
ensemble, which comprises the final ensemble. This number
is established before the training process starts. [23] presents
a variation of the RNCL method, called MRNCL (Multi-
objective Regulate Negative Correlation Learning).

[24] proposes a methodology for creating ensembles of
ANNs based on clustering and co-evolution. This methodology
is called CONE (Clustering and Co-evolution to Construct
Neural Network Ensembles). The clustering method is used
here to divide the input space of the training set into several
non-intersecting subspaces, so that each subspace is used to
train individuals from different species of ANNs. In addition,
clustering allows the number of nodes in the hidden layer
of each ANN to be reduced, thus reducing the run time in
the learning process while maintaining and improving the
precision of different ANNs specialized in a specific region
of the input space. Thus, CONE generates as many ensembles
as training subsets are created. In each of these ensembles are
used all individuals have to the Pareto front.

In continuation, some ensembles with MOEA using DE are
briefly presented.

B. Ensembles with Differential Evolution

The main reference to this type of methods, using a vari-
ation of the original DE algorithm [25], are H. Abbass [8]
and Y. Jin [26]. H. Abbass proposes a MOEA called PDE
(Pareto Differential Evolution) [8] for minimizing the MSE
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and the complexity of the ANNs. PDE returns the set of non-
dominated individuals, that is, the whole Pareto front.

From the onset of the PDE algorithm, and almost in parallel,
H. Abbass develops the MPANN [17], which is a version
of PDE with a local search algorithm. MPANN divides the
training set into two subsets to obtain diversity, minimizing
the MSE as the objective of the evolutionary process, and
choosing the Pareto front individual with the best generaliza-
tion (smallest test error). A variation of the MPANN algorithm
for cancer diagnosis applications is found in [27].

In [26], Y. Jin provides an overview of the existing research
on Pareto-based multi-objective learning algorithms. In addi-
tion, a number of machine learning case studies are provided
to illustrate the major benefits of the Pareto-based approach
versus Single-Objective Learning. Three approaches to Pareto-
based multi-objective ensemble generation are compared and
discussed, in terms of how to generate classifiers, how to
choose which classifier from among them and which ones have
formed the ensemble.

There are several interesting studies that use DE with
MOEAs as well as others regarding applications of this tech-
nique. Additionally there are some state of the art contributions
about DE with MOEA, all of which the reader can find in [28],
[29].

The methods described (using DE or not) do not follow
a common methodology for creating an ensemble, either to
create diversity and to ensure accuracy or to determine the
size of the ensemble. There are automated methods, semi-
automated ones and methods for creating ensembles manu-
ally and a priori. There is no good consensuated theoretical
background to show that choosing the whole population of the
Pareto front at the end of the evolutionary process of a MOEA
is better or worse than choosing a part of it.

III. ACCURACY AND MINIMUM SENSITIVITY IN

CLASSIFICATION PROBLEMS

This section presents two measures to evaluate a classifier:
the Correct Classification Rate or Accuracy, and Minimum
Sensitivity. To evaluate a classifier, the machine learning
community has traditionally used C to measure its default
performance. Actually, it suffices to realize that C cannot cap-
ture all the different behavioral aspects found in two different
classifiers in multiclassification problems. For these problems,
two performance measures are considered: traditionally-used
C, as the number of patterns correctly classified and the
MS in all classes, that is, the lowest percentage of examples
correctly predicted as belonging to each class, Si, with respect
to the total number of examples in the corresponding class,
MS = min{Si} (for a more detailed description of these
measures, see [1]).

One point in (MS,C) space dominates another if it is above
and to the right, i.e. it has greater C and the best MS. Let C
and MS be associated with a classifier g, then:

MS ≤ C ≤ 1− (1−MS)p∗,

where p∗ is the minimum for estimated prior probabilities
(p∗ = #Minority class patterns/#Total patterns).

A priori, it could seem that MS and C objectives could
be positively correlated, but while this may be true for small
values of MS and C, it is not so for values close to 1 on
both MS and C, where the objectives are competitive and
conflicting. This fact justifies the use of a MOEA in this
research.

IV. LEARNING METHODOLOGY

This paper uses the MOEA described in [30] for training
ANN with sigmoid basis functions. The next section briefly
explains the schema of this algorithm. For more details about
the Base Classifier Framework, Fitness Functions or Local
Search Algorithm used, see [30].

A. Memetic Pareto Algorithm

The MOEA used is called MPDENN (Memetic Pareto
Differential Evolutionary Neural Network). The MPDENN
algorithm is based on the PDE algorithm [8] and on the local
search algorithm iRprop+ [31].
MPDENN is also based on a previous algorithm described

in [32]. In MPDENN, local search does not apply to all
offspring to be added to the population. Instead, the most rep-
resentative offspring of the population are optimized through-
out several generations. Fig. 1 shows the framework of the
algorithm used in this paper.

Fig. 1. Framework for MPDENN.

The MPDENN algorithm starts generating a random popula-
tion of size M . The population is sorted according to the non-
domination concept and dominated individuals are removed
from the population. Then the population is adjusted until
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its size is between 3 and half the maximum size by adding
dominated individuals or deleting individuals according to
their respective distance from their nearest neighbor. After that,
the population is completed with new offspring generated from
three randomly selected individuals in the population. The
child is generated applying the crossover operator to the three
parents (α1, α2 and α3). The resultant child is a perturbation
of the main parent (α1). This perturbation occurs with a
probability pc for each neuron. It may be: structural, according
to expression (1), where neurons are removed or added to
the hidden layer; or parametric, according to expression (2)
(for the hidden layer); or (3) (for the output layer), where the
weight of the main parent (α1) is modified by the difference
between the weights of the secondary parents (α2 and α3)
multiplied by a random variable with normal distribution,
N (0, 1).

ρchildh ←

�
1 if (ρα1

h +)N (0, 1) (ρα2

h − ρα3

h ) ≥ 0.5
0 otherwise

, (1)

wchild
ih ← wα1

ih +N (0, 1) (wα2

ih − wα3

ih ) , (2)

wchild
ho ← wα1

ho +N (0, 1) (wα2

ho − wα3

ho ) , (3)

where ρα1

h , ρα2

h and ρα3

h represent whether or not the hidden
neuron h is in the parents α1, α2 and α3, respectively; w

α1

ih

is the weight between the input neuron i and hidden neuron
h in the parent α1 and w

α1

ho is the weight between the hidden
neuron h and output neuron o in the parent α1.
Afterwards, the mutation operator is applied to the child.

The mutation operator consists in adding or deleting neurons
in the hidden layer depending on a pm probability for each
of them. Taking into account the maximum number of hidden
neurons that may exist in an individual in a specific problem,
the probability is used the same number of times as the number
of neurons that are found in the classifier. If the neuron exists,
it is deleted, but if it does not exist, then it is created and the
weights are established randomly, according to expression (4).

ρchildh ←

�
1 ifρchildh = 0
0 otherwise

. (4)

Finally, the child is added to the population according to
dominance relationships with the main parent, that is, the child
is added if it dominates the main parent α1, if there is not
dominance relationship with him or if it is the best child of
the M rejected children (where M is the population size).
In three generations of evolution (the first initially, the

second in the middle and the third at the end), the local search
algorithm is applied once the population is completed. Local
search does not apply to all individuals, only to the most
representative. The process for selecting these individuals is as
follows: if the number of individuals in the first Pareto front
is lower than or equal to the desired number of representative
individuals (num), a local search is carried out on all individ-
uals in the first front without needing to apply K-means [10].

But, if the number of individuals in the first front is greater
than num, a K-means is applied to the first front to get the
most representative num individuals, who will then be the
object of a local search.
The algorithm terminates when the maximum number of

generations is reached.

B. Proposed Method for Individual Selection

The proposed method for individuals selection has two
phases. The first phase applies the MPDENN algorithm to
obtain a set of individuals, which are sorted in Pareto fronts.
The second selects all individuals from the first and second

Pareto front. This group of individuals is divided into two
subgroups by a 2-means algorithm (because there are two
objective functions, C and MS). Next, the two individuals
closest to the centroids of clusters are selected, as these
are considered the most representative individuals in the
population (the fact that these individuals do not have the
greatest value in any objective does not mean that they do
not generalize well).
We decided to include the second Pareto front in the clus-

tering process, in order to expand the number of individuals
and to increase diversity. In addition, individuals belonging
to this front may have a high percentage of classification in
generalization because there is not tend to not over-training
in the training phase. In the extreme case there is only one
individual in each of the fronts (there would be only two
individuals), each of these individuals will be assigned to a
cluster.

V. EXPERIMENTAL STUDY

This section details the experimental study performed using
7 datasets from the UCI repository and 7 methods of selection
of individuals from the Pareto front obtained by the MPDENN
algorithm.

A. Experimental Design

The experimental design considers 7 datasets taken from
the UCI repository [33]. The design was conducted using a
stratified holdout procedure with 30 runs, where approximately
75% of the patterns were randomly selected for the training
set and the remaining 25% for the test set. Table I shows the
features for each data set.

TABLE I
CHARACTERISTICS FOR THE 7 DATASETS FROM UCI

Dataset #Patterns #Input #Classes #Patterns p∗

variables per class

A. Card 690 51 2 307-383 0.4411

Balance 625 4 3 288-49-288 0.0641

Breast-W 699 9 2 458-241 0.3428

Ionos 351 34 2 126-225 0.3636

Labor 57 29 2 20-37 0.3571

Pima 768 8 2 500-258 0.3489

Vote 435 16 2 267-168 0.3853
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In all the experiments, the population size for MPDENN is
established at M = 25. The crossover probability is 0.8 and
the mutation probability is 0.1. For iRprop+ as local search
algorithm, the adopted parameters are η+ = 1.2, η− = 0.5,
Δ0 = 0.0125 (the initial value of the Δij), Δmin = 0,
Δmax = 50 and Epochs = 5, see [34] for the iRprop+

parameter description.

B. Automatic Methodologies used in the Experimentation

Once the Pareto front is built in one run, several strategies
or automatic selection methodologies of individuals are used
for each run on each problem:

• MPDENN-E andMPDENN-MS: It consists of choosing
the Pareto extreme values in training, that is, the best
individual in Entropy (E), because the fitness function of
the EA is E, and the best individual in MS.

• MPDENN-CC (Proposed method): This methodology
selects all individuals from the first and second Pareto
front (see Section IV-B) provided by fast sorting of non-
dominated of NSGAII [35]. The individual in training that
is chosen is the one closest to the centroids of clusters
obtained, taking the C measure into account.

• MPDENN-CMS (Proposed method): This automatic
methodology chooses in a similar way to the MPDENN-
CC automatic methodology, but in this case, the individ-
ual obtained closest to the centroids of clusters is selected
taking the MS measure into account.

• MPDENN-MV: With this technique, a pattern belong
to the class that has the most votes, according to the
independent classification of each of the elements that
make up the ensemble. To estimate the a posteriori
probability of a pattern to belong to a class, the average
of the output probabilities of the models who voted for
this class are used. This is performed for each pattern in
the training of generalization dataset so that a probability
matrix is formed to obtain the RMSE measure.

• MPDENN-SA: This technique calculates for each pattern
the arithmetic mean of the probability of assignment to
each Q class for each of the models in the ensemble.
The assignment will take the class that has the highest
average probability. For the case of the RMSE measure,
the arithmetic mean of the probabilities (using softmax
function) is obtained for each output of each model in
the ensemble for a particular pattern. Then we use the
probabilities of the output with the maximum mean prob-
ability for each model of the ensemble for that particular
pattern. This is done for each pattern in the training and
generalization dataset, and a probability matrix is formed
to obtain the RMSE measure.

• MPDENN-WT: With this ensemble method, for each
pattern the probabilities of the model with the highest
probability in one of the outputs are used as the output
of the ensemble.

VI. RESULTS

Table II presents the values of mean and Standard Devi-
ation (SD) for C, MS, RMSE and Cohen’s KAPPA in
generalization in 30 runs of all the experiments performed.
The analysis of the results leads us to conclude that the
MPDENN-CC obtained the best performance for five datasets
and MPDENN-CMS for two datasets considering CG. For
MSG, the MPDENN-MS obtained the best results for four
datasets and the MPDENN-CC and MPDENN-E yielded the
highest performance for three an two datasets respectively
(note that the Labor dataset produces many ties in all met-
rics, because the first Pareto front has a unique individual).
The MPDENN-CC got the best results for RMSEG for
four datasets. For KAPPAG, the MPDENN-CC, MPDENN-
CMS and MPDENN-E obtained the best performance for two
datasets each one and MPDENN-WT in the remaining dataset.
Table III shows the mean values for all metrics over all

datasets and the mean ranking of each of the methods. From a
descriptive point of view, we can consider that the best method
for CG, RMSEG and KAPPAG is the MPDENN-CC while
it is MPDENN-MS for MSG, because their mean ranking are
lower.
A performance analysis of the results using parametric

statistical treatment could lead to mistaken conclusions, since
a previous evaluation of the CG, MSG, RMSEG and
KAPPAG value resulted in rejecting the normality and the
equality of the variance hypothesis.
Therefore, in order to determine the statistical significance

of the rank differences observed for each method in the
different datasets, three non-parametric Friedman tests [36]
have been carried out with the ranking of CG,MSG, RMSEG

and KAPPAG of the best models as the test variables. These
tests show that the effect of the method used for classification
is statistically significant at a significance level of 5% for CG,
MSG, RMSEG and KAPPAG, as the confidence interval
is C0 = (0, F0.05 = 2.36) and the F-distribution statistical
values are F ∗ = 6.14 /∈ C0 for CG, F

∗ = 3.02 /∈ C0 for
MSG, F

∗ = 1.88 ∈ C0 for RMSEG and F ∗ = 1.89 ∈ C0

for KAPPAG. Consequently, we reject the null-hypothesis
stating that all algorithms perform equally in mean ranking of
CG andMSG and we accept it for RMSEG and KAPPAG.
As there are significant differences in CG and MSG, two

post-hoc statistical analyses were required. These analyses
chose the best performing model as the control method for
comparison with the rest of the methods (MPDENN-CC for
CG and MPDENN-MS for MSG).
Based on the rejection of the Friedman tests, the Bonferroni-

Dunn test is used to compare all classifier to each other. This
test considers that the performance of any two classifiers is
deemed to be significantly different if their mean ranks differ
by at least the critical difference (CD):

CD = q

�
K(K + 1)

6D
,

whereK is the number of classifiers,D the number of datasets
and the q value can be computed as suggested in [37]. Fig.
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TABLE II
STATISTICAL RESULTS FOR DIFFERENT METHODS IN GENERALIZATION

Dataset Methodology
CG(%) MSG(%) RMSEG KAPPAG

Mean±SD Mean±SD Mean±SD Mean±SD

MPDENN-E 86.26 ± 1.49 84.67 ± 2.15 0.3215 ± 0.0130 0.7222 ± 0.0305

MPDENN-MS 86.28 ± 1.72 85.17 ± 1.98 0.3225 ± 0.0147 0.7229 ± 0.0348

MPDENN-CC 86.47 ± 1.34 85.18 ± 1.74 0.3210 ± 0.0110 0.7267 ± 0.0271

A. Card MPDENN-CMS 86.28 ± 1.65 85.00 ± 1.97 0.3239 ± 0.0124 0.7231 ± 0.0333

MPDENN-MV 85.59 ± 1.83 84.89 ± 2.25 0.3231 ± 0.0136 0.7169 ± 0.0363

MPDENN-SA 85.82 ± 1.97 84.64 ± 2.54 0.3229 ± 0.0134 0.7138 ± 0.0397

MPDENN-WT 86.47 ± 1.97 84.65 ± 2.36 0.3256 ± 0.0154 0.7280 ± 0.0393

MPDENN-E 90.88 ± 1.36 28.67 ± 17.56 0.1931 ± 0.0061 0.8335 ± 0.0258

MPDENN-MS 91.47 ± 1.22 86.81 ± 5.29 0.2101 ± 0.0113 0.8538 ± 0.0204

MPDENN-CC 91.71 ± 1.13 33.00 ± 13.17 0.1921 ± 0.0077 0.8490 ± 0.0205

Balance MPDENN-CMS 92.12 ± 1.72 74.80 ± 14.48 0.1970 ± 0.0090 0.8622 ± 0.0298

MPDENN-MV 48.55 ± 1.26 1.19 ± 1.23 0.1957 ± 0.0050 0.1116 ± 0.0221

MPDENN-SA 91.56 ± 0.95 68.73 ± 12.63 0.1950 ± 0.0049 0.8518 ± 0.0171

MPDENN-WT 91.79 ± 0.78 80.42 ± 11.24 0.1924 ± 0.0073 0.8580 ± 0.0135

MPDENN-E 95.22 ± 0.83 90.44 ± 2.43 0.1897 ± 0.0155 0.8925 ± 0.0190

MPDENN-MS 95.16 ± 0.83 90.22 ± 2.47 0.1905 ± 0.0144 0.8911 ± 0.0191

MPDENN-CC 95.33 ± 0.86 89.50 ± 2.40 0.1930 ± 0.0160 0.8879 ± 0.0199

BreastW MPDENN-CMS 94.97 ± 0.83 89.39 ± 2.25 0.1945 ± 0.0164 0.8866 ± 0.0189

MPDENN-MV 94.82 ± 0.96 88.89 ± 2.20 0.1982 ± 0.0143 0.8859 ± 0.0218

MPDENN-SA 94.93 ± 0.90 89.00 ± 2.21 0.1980 ± 0.0142 0.8855 ± 0.0206

MPDENN-WT 94.86 ± 0.93 88.50 ± 2.37 0.1994 ± 0.0155 0.8836 ± 0.0214

MPDENN-E 92.61 ± 2.10 83.02 ± 5.73 0.2486 ± 0.0298 0.8351 ± 0.0489

MPDENN-MS 92.88 ± 2.15 84.06 ± 5.82 0.2452 ± 0.0304 0.8414 ± 0.0502

MPDENN-CC 92.73 ± 1.81 83.33 ± 4.37 0.2440 ± 0.0226 0.8380 ± 0.0410

Ionos MPDENN-CMS 92.92 ± 1.76 83.85 ± 4.27 0.2436 ± 0.0235 0.8424 ± 0.0399

MPDENN-MV 91.17 ± 2.47 81.04 ± 6.46 0.2745 ± 0.0377 0.8085 ± 0.0564

MPDENN-SA 91.33 ± 2.45 80.73 ± 6.72 0.2735 ± 0.0374 0.8058 ± 0.0573

MPDENN-WT 91.44 ± 2.58 81.52 ± 6.92 0.2748 ± 0.0386 0.8089 ± 0.0597

MPDENN-E 82.14 ± 9.14 70.44 ± 15.40 0.3705 ± 0.0761 0.6027 ± 0.2066

MPDENN-MS 82.14 ± 9.14 70.44 ± 15.40 0.3705 ± 0.0761 0.6027 ± 0.2066

MPDENN-CC 83.10 ± 8.28 64.89 ± 14.89 0.3732 ± 0.0754 0.6111 ± 0.1927

Labor MPDENN-CMS 82.38 ± 7.90 64.81 ± 14.82 0.3731 ± 0.0702 0.5966 ± 0.1839

MPDENN-MV 82.14 ± 9.14 70.44 ± 15.40 0.3705 ± 0.0761 0.6027 ± 0.2066

MPDENN-SA 82.14 ± 9.14 70.44 ± 15.40 0.3705 ± 0.0761 0.6027 ± 0.2066

MPDENN-WT 82.14 ± 9.14 70.44 ± 15.40 0.3705 ± 0.0761 0.6027 ± 0.2066

MPDENN-E 78.75 ± 1.69 62.34 ± 4.36 0.3909 ± 0.0054 0.5161 ± 0.0376

MPDENN-MS 76.48 ± 1.69 72.31 ± 3.48 0.3962 ± 0.0085 0.4963 ± 0.0379

MPDENN-CC 78.83 ± 2.08 63.93 ± 5.32 0.3904 ± 0.0085 0.5076 ± 0.0478

Pima MPDENN-CMS 76.94 ± 2.65 70.27 ± 5.35 0.3934 ± 0.0113 0.5003 ± 0.0596

MPDENN-MV 75.89 ± 2.37 67.11 ± 4.34 0.3925 ± 0.0100 0.4960 ± 0.0381

MPDENN-SA 77.12 ± 1.84 67.81 ± 3.89 0.3912 ± 0.0095 0.4977 ± 0.0410

MPDENN-WT 77.93 ± 1.97 58.16 ± 6.24 0.3975 ± 0.0124 0.4896 ± 0.0507

MPDENN-E 93.21 ± 1.44 90.63 ± 2.79 0.2370 ± 0.0228 0.8563 ± 0.0307

MPDENN-MS 93.21 ± 1.48 90.71 ± 2.89 0.2376 ± 0.0238 0.8564 ± 0.0316

MPDENN-CC 93.67 ± 1.33 91.03 ± 2.19 0.2277 ± 0.0209 0.8662 ± 0.0279

Vote MPDENN-CMS 93.43 ± 1.23 90.61 ± 2.38 0.2315 ± 0.0182 0.8609 ± 0.0263

MPDENN-MV 93.27 ± 1.66 90.40 ± 3.28 0.2308 ± 0.0217 0.8599 ± 0.0333

MPDENN-SA 93.39 ± 1.59 90.36 ± 3.34 0.2306 ± 0.0215 0.8599 ± 0.0341

MPDENN-WT 93.36 ± 1.57 90.16 ± 3.35 0.2314 ± 0.0217 0.8592 ± 0.0338
The best result is in bold face and the second best result in italics.
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TABLE III
MEAN VALUES OF ALL METRICS OVER ALL DATASETS IN GENERALIZATION AND MEAN RANKING

MPDENN-E MPDENN-MS MPDENN-CC MPDENN-CMS MPDENN-MV MPDENN-SA MPDENN-WT

CG(%) 88.43 88.23 88.83 88.43 81.63 88.04 88.28

RCG
4.35 4.42 1.64 2.64 6.42 4.71 3.78

MSG(%) 72.88 82.81 72.98 79.81 69.13 78.81 79.12

RMSG
4.00 1.71 3.42 3.57 5.0 5.0 5.28

RMSEG 0.2787 0.2818 0.2773 0.2795 0.2836 0.2831 0.2845

RRMSEG
3.00 4.42 2.28 4.71 4.57 3.71 5.28

KAPPAG 0.7512 0.7520 0.7552 0.7531 0.6402 0.7453 0.7471

RKAPPAG
4.00 3.71 2.42 3.00 5.35 5.07 4.42

The best result is in bold face and the second best result in italics.

2 shows the application of the Bonferroni-Dunn test for each
test variable. This graph is a bar chart where the bars have
a height proportional to the mean ranking obtained for each
algorithm, following the procedure of Friedman. Adding the
ranking value of the lowest bar (associated with the MPDENN-
CC method in CG and MPDENN-MS in MSG) to the CD
value, a vertical line is obtained (denoted as “Threshold”),
which is displayed in the graph. The bars exceeding this line
are those associated with the methods whose performance is
significantly worse than the control method. The CG threshold
is 4.68 andMSG threshold is 4.75 for α = 0.05. From the re-
sults of these tests, it can be concluded that the MPDENN-CC
(control method for CG) produced a significantly better CG

ranking than MPDENN-MV and MPDENN-SA and that the
MPDENN-MS (control method forMSG) obtained significant
differences in MSG compared to MPDENN-MV, MPDENN-
SA and MPDENN-WT.

Fig. 2. Bonferroni-Dunn graphic for α = 0.05.

More powerful tests, such as Holm’s and Hochberg’s tests
[37], were used to compar the control method (MPDENN-
CC for CG and MPDENN-MS for MSG) with the rest of
the models. Table IV shows all the adjusted p-values for each
comparison, using CG and MSG as the test variables. The
adjusted p-values represent the lowest level of significance

TABLE IV
ADJUSTED p-VALUES

Variable test: CG

Control method: MPDENN-CC

algorithm unadjusted p pBonf pHolm pHochberg

MPDENN-E 0.0187 0.1124 0.0633 0.0562

MPDENN-MS 0.0158 0.0950 0.0633 0.0562

MPDENN-CMS 0.3864 2.3188 0.3864 0.3864

MPDENN-MV 3.40 · 10−5 2.04 · 10−4 2.04 · 10−4 2.04 · 10−4

MPDENN-SA 0.0078 0.0468 0.0390 0.0390

MPDENN-WT 0.0634 0.3809 0.1269 0.1269

Variable test: MSG

Control method: MPDENN-MS

algorithm unadjusted p pBonf pHolm pHochberg

MPDENN-E 0.0477 0.2865 0.1432 0.1376

MPDENN-CC 0.1376 0.8258 0.2155 0.1376

MPDENN-CMS 0.1077 0.6465 0.2155 0.1376

MPDENN-MV 0.0044 0.0266 0.0221 0.0177

MPDENN-SA 0.0044 0.0266 0.0221 0.0177

MPDENN-WT 0.0019 0.0118 0.0118 0.0118

of a hypothesis that results in a rejection. This provides a
way to know whether two methods are significantly different
and also a metric to show how different they are. The results
of these tests indicate that there are significant differences as
determined by the Bonferroni-Dunn test.

VII. CONCLUSION

The present work studies the use of different techniques
for selecting Artificial Neural Networks in the Pareto front
in classification problems where Accuracy is the measure
considered to evaluate classifier performance along with the
Minimum Sensitivity measure. Minimum Sensitivity is used
to avoid the design of classifiers with high global performance
but bad performance when considering the classification rate
for each class, very frequently problem in imbalanced dataset.
Experimentally it has been proven that the MPDENN-CC

technique improves classifier accuracy. Furthermore, taking
into account the Minimum Sensitivity measure, the MPDENN-
MS technique achieved the best mean Minimum Sensitivity
value and the best Minimum Sensitivity mean ranking. Finally,
the methodologies proposed for the selection of classifiers
based on the application of the K-means algorithm over the
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Pareto front achieved, in general, a better significant mean
ranking than the standard ensemble techniques considered in
the literature (Majority Voting, Simple Averaging and Winner
Take All).
As a future work and in order to make the conclusions

more robust, it would be interesting to extend the experimental
study with more datasets. Especially it would be suitable to
study the result in multiclass and imbalanced problems, since
in them the Accuracy and Minimum Sensitivity measures are
more in conflict. In addition, the proposed method could be
compared with some state-of-the-art ensemble neural network
classification method or multi-class classification methods to
highlight the efficacy of the proposed scheme.
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