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Abstract. This paper proposes a Radial Basis Function Neural Network
(RBFNN) which reproduces different Radial Basis Functions (RBFs) by
means of a real parameter q, named q-Gaussian RBFNN. The architec-
ture, weights and node topology are learnt through a Hybrid Algorithm
(HA) with the iRprop+ algorithm as the local improvement procedure.
In order to test its overall performance, an experimental study with
four gene microarray datasets with two classes taken from bioinformatic
and biomedical domains is presented. The Fast Correlation–Based Filter
(FCBF) was applied in order to identify salient expression genes from
thousands of genes in microarray data that can directly contribute to
determining the class membership of each pattern. After different gene
subsets were obtained, the proposed methodology was performed using
the selected gene subsets as the new input variables. The results confirm
that the q-Gaussian RBFNN classifier leads to promising improvement
on accuracy.

1 Introduction

The importance of the use of Artificial Neural Networks (ANNs) in the classifi-
cation of microarray gene expression as an alternative to other techniques was
stated in serveral research works [1,2] due to their flexibility and high degree
of accuracy to fit to experimental data. In this work, we focus on Radial Basis
Function Neural Networks (RBFNNs) which have been succesfully employed in
different pattern recognition problems including the classification of microarray
gene [2].

In high-dimensional space, the distances to the nearest and furthest neigh-
bours look nearly identical. Therefore, in this kind of problem, the distances are
concentrated and the Gaussian kernel looses its interpretation in terms of local-
ity around its centre [3]. For that reason, we propose a novelty RBF based on
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the q-Gaussian Distribution which parametrize the standard Normal distribu-
tion by replacing the exponential expressions for q-exponential expressions, and
maximizing Tsallis entropy [4] under certain constraints [5]. This novelty basis
function incorporates a real parameter q (besides the centers and width of the
RBF) which can relax or contract the shape of the kernel. This basis function
matches better the shape of the kernel and the distribution of the distances, since
the modification of the q parameter allows representing different basis functions
(Cauchy RBF, Gaussian RBF, etc). Due to severe ill-conditioning of the coeffi-
cient matrix of the q-Gaussian RBF, a Hybrid Evolutionary Algorithm (HEA)
based on heuristics is employed to select the parameters of the model.

The motivation for applying feature selection (FS) techniques has shifted from
being an optional subject to becoming a real prerequisite for model building. The
main reason is the high–dimensional nature of many modelling task in this field.
A typical microarray dataset may contain thousands of genes but only a small
number of samples (often less than two hundred).

Based on the generation procedure, FS can be divided into individual feature
ranking (FR) and feature subset selection (FSS). FR measures the feature-class
relevance, then rank features by their scores and select the top–ranked ones. In
contrast, FSS attempts to find a set of features with good performance. Hybrid
models were proposed to handle large datasets to take advantage of the above
two approaches (FR, FSS). In this work, the relevant features were obtained by
the Fast Correlation–Based Filter (FCBF), a hybrid approach proposed in [6].

One of the major advantages of the proposed method is the reduced num-
ber of features and q-Gaussian RBFs included in the final expression, since the
HEA reduces its complexity by pruning connections and removing hidden nodes.
Therefore, using the proposed approach, the feature selection is performed in two
stages: Firstly, in the preprocessing by means of the features selector and sec-
ondly, in the HEA by pruning connections.

This paper is organized as follows: Section 2 formally presents the q-Gaussian
RBF model considered in this work and the main characteristics of the algo-
rithm used for training the model. Section 3 introduces the feature selection
algorithm used in this paper. Section 4 describes the experiments carried out
and discusses the results obtained. Finally, Section 5 completes the paper with
the main conclusions and future directions suggested by this study.

2 Classification Method

2.1 Related Works

A RBFNN is a three-layer feed-forward neural network. Let the number of nodes
of the input layer, of the hidden layer and of the output layer be p, m and 1
respectively. For any sample x = [x1, x2, . . . , xp], the output of the RBFNN is
f(x). The model of a RBFNN can be described with the following equation:

f(x) = β0 +
m∑

i=1

βi · φi(di(x)) (1)



Evolutionary q-Gaussian RBFs for Improving Prediction Accuracy 329

where φi(di(x)) is a non-linear mapping from the input layer to the hidden layer,
β = (β1, β2, . . . , βm) is the connection weight between the hidden layer and the
output layer, and β0 is the bias. The function di(x) can be defined as:

di(x) =
‖x− ci‖2

θ2
i

(2)

where θi is the scalar parameter that defines the width for the i-th radial unit, ‖.‖
represents the Euclidean norm and ci = [c1, c2, . . . , cp] the center of the RBFs.
The standard RBF (SRBF) is the Gaussian function, which is given by:

φi(di(x)) = e−di(x), (3)

The radial basis function φi(di(x)) can take different forms, including the Cauchy
RBF (CRBF) or the Inverse Multiquadratic RBF (IMRBF). Fig. 1a ilustrates
the influence of the choice of the RBF in the hidden unit activation. One can
observe that the Gaussian function presents a higher activation close to the
radial unit center than the other two RBFs. In this paper, we propose the use
of the q-Gaussian function as RBF. This basis function is obtained by replacing
the exponential expression of the SRBF for a q-exponential expression [5]. The
q-Gaussian can be defined as:

φi(di(x)) =
{

(1 − (1 − q)di(x))
1

1−q if (1 − (1 − q)di(x)) ≥ 0
0 Otherwise.

(4)

The q-Gaussian can reproduce different RBFs for different values of the real
parameter q. As an example, when the q parameter is close to 2, the q-Gaussian
is the CRBF, for q = 3, the activation of a radial unit with an IMRBF for di(x)
turns out to be equal to the activation of a radial unit with a q-Gaussian RBF for
di(x)/2 and, finally, when the value of q converges to 1, the q-Gaussian converges
to the Gaussian function (SRBF). Fig. 1b presents the radial unit activation for
the q-Gaussian RBF for different values of q.

2.2 q-Gaussian RBF for Classification

To construct a probabilistic classification model, we consider a RBFNNs with
softmax outputs and the standard structure: an input layer with a node for every
input variable; a hidden layer with several RBFs; and an output layer with 1
node. There are no connections between the nodes of a layer and none between
the input and output layers either. The activation function of the i-th node in
the hidden layer (φi(di(x))) is given by Eq. 4 and the activation function of the
output node (f(x)) is defined in Eq 1. The transfer function of all output nodes
is the identity function.

In this work, the outputs of the neurons are interpreted from the point of view
of probability through the use of the softmax activation function.

g(x) =
exp f(x)

1 + exp f(x)
(5)
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Fig. 1. Radial unit activation in one-dimensional space with c = 0 and θ = 1 for
different RBFs: (a) SBRF, CRBF and IMRBF and (b) q-Gaussian with different values
of q

where g(x) is the probability that a pattern x belongs to class 1. The probability
a pattern x has of belonging to class 2 is 1 − g(x).

The error surface associated with the model is very convoluted. Thus, the
parameters of the RBFNNs are estimated by means of a HEA (detailed in Section
2.3). The HEA was developed to optimize the error function given by the negative
log-likelihood for N observations, which is defined for a classifier g:

l(g) =
1
N

N∑

n=1

[−ynf(xn) + log exp f(xn)] (6)

where yn is the class that the pattern n belongs to.

2.3 Hybrid Evolutionary Algorithm

The basic framework of the HEA is the following: the search begins with an initial
population of RBFNNs and, in each iteration, the population is updated using a
population-update algorithm which evolves both its structure and weights. The
population is subject to operations of replication and mutation. We consider
l(g) as the error function of an individual of the population. The fitness measure
needed for evaluating the individuals is a strictly decreasing transformation of
the error function l(g) given by A(g) = 1

1+l(g) , where 0 < A(g) ≤ 1. Figure 2
describes the procedure to select the parameters of the radial units. The main
characteristics of the algorithm are the following:

1. Initialization of the Population. First, 5, 000 random RBFNNs are generated.
The centers of the radial units are firstly defined by the k-means algorithm
for different values of k, where k ∈ [Mmin, Mmax], being Mmin and Mmax the
minimum and maximum number of hidden nodes allowed for any RBFNN
model. The widths of the RBFNNs are initialized to the geometric mean of



Evolutionary q-Gaussian RBFs for Improving Prediction Accuracy 331

1: Hybrid Algorithm:
2: Generate a random population of size N
3: repeat
4: Calculate the fitness of every individual in the population
5: Rank the individuals with respect to their fitness
6: The best individual is copied into the new population
7: The best 10% of population individuals are replicated and they substitute the

worst 10% of individuals
8: Apply parametric mutation to the best (pm)% of individuals
9: Apply structural mutation to the remaining (100 − pm)% of individuals

10: until the stopping criterion is fulfilled
11: Apply iRprop+ to the best solution obtained by the EA in the last generation.

Fig. 2. Hybrid Algorithm (HA) framework

the distance to the two nearest neighbours and the q parameter to values
near to 1, since when q → 1 the q-Gaussian reduces to the standard Gaussian
RBFNN. A random value in the [−I, I] interval is assigned for the weights
between the hidden layer and the output layer. Finally, the initial population
is obtained by selecting the best 500 RBFNNs.

2. Parametric and Structural Mutations. Parametric mutation consists of a sim-
ulated annealing algorithm. Structural mutation implies a modification in
the structure of the RBFNNs. There are four different structural mutations:
hidden node addition, hidden node deletion, connection addition and con-
nection deletion. More information about genetic operators proposed can
be seen in [7,8]. It is important to describe the structural and parametric
mutations of the q parameter:
– Structural Mutation: If the structural mutator adds a new node in the

RBFNN, the q parameter is assigned to 1, since when q = 1 the q-
Gaussian RBF reproduce to the Gaussian RBF.

– Parametric Mutation: The q parameter is updated by adding a ε value,
where ε ∈ [−0.25, 0.25], since the modification of the q-Gaussian is very
sensible to q variation.

3. iRprop+ Local Optimizer. The local optimization algorithm used in our pa-
per is the iRprop+ [9] optimization method. In the proposed methodology,
we run the EA and then apply the local optimization algorithm to the best
solution obtained by the EA in the last generation.

3 Feature Selection: Fast Correlation–Based Filter
(FCBF)

The limitations of FR and FSS approaches in high-dimensional spaces, clearly
suggest the need for a hybrid model. The FCBF method can be labelled as this
kind of framework, Hybrid–Generation Feature Selection.
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In feature subset selection, it is a fact that two types of features are generally
perceived as being unnecessary: features that are irrelevant to the target concept,
and features that are redundant given other features.

Notions of feature redundancy are normally in terms of feature correlation. It
is widely accepted that two features are redundant to each other if their values
are completely correlated. There are two widely used types of measures for the
correlation between two variables: linear and non–linear. In the linear case, the
Pearson correlation coefficient is used, and in the non–linear case, many measures
are based on the concept of entropy, or measure of the uncertainty of a random
variable. Symmetrical uncertainty (SU) is frequently used, defined as

SU(x,y) = 2
[

IG(x|y)
H(x) + H(y)

]

where H(x)= −∑p
i p(xi) log2(p(xi)) is the entropy of a variable x and IG(x|y)=

H(x)−H(x|y) is the information gain from x provided by y. Both of them are
between pairs of variables. However, it may not be as straightforward in deter-
mining feature redundancy when one is correlated with a set of features. [10]
apply a technique based on cross–entropy, named Markov blanket filtering, to
eliminate redundant features.

FCBF calculates SU–correlation between any feature Fi and the class C gen-
erating a list in descending order, and heuristically decides a feature Fi to be
relevant if it is highly correlated with the class C, i.e., if SUi,c > δ, where δ is
a relevance threshold which can be determined by users. The selected relevant
features are then subject to redundancy analysis. Similarly, FCBF evaluates the
SU–correlation between individual features for redundancy analysis based on
an approximate Markov blanket concept. For two relevant features Fi and Fj

(i �= j), Fj can be eliminated if SUi,c ≥ SUj,c and SUi,j ≥ SUj,c. The iteration
starts from the first element in the ranking and continues as follows. For all the
remaining features, if Fi happens to form an approximate Markov blanket for
Fj , Fj will be removed from list. After one round of filtering features based on
Fi, the algorithm will take the remaining feature right next to Fi as the new ref-
erence to repeat the filtering process. The algorithm stops until no more features
can be eliminated.

4 Experiments

This section presents the experimental results and analysis of q-Gaussian RBF
models on 4 public microarray datasets with high dimensionality/small sample
size and two classes (Table 1). At the beginning, the datasets and several machine
learning algorithms used in this analysis are briefly described. Subsequently,
experimental results are given and discussed from different aspects.

4.1 Microarray Data

These datasets were taken from bioinformatic and biomedical domains. They
are often used to validate the performance of classifiers and gene selectors. Due
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Table 1. Characteristics of the four datasets used for the experiments: number of
instances (Size), number of Real (R), Binary (B) and Nominal (N) input variables,
total number of inputs (#In.), number of classes (#Out.), per-class distribution of the
instances (Distribution) and the number of generations (#Gen.)

Dataset Source Size R B N In Out Distribution Gen

Breast Van’t Veer et al [11] 97 493 - - 493 2 (46,51) 100

CNS Pomeroy et al [12] 60 170 - - 170 2 (21,39) 10

Colon Alon et al [13] 62 59 - - 59 2 (40,22) 10

Leukemia Golub et al [14] 72 203 - - 203 2 (42,25) 50

Table 2. Comparison of the proposed method to other probabilistic methods: Results
of accuracy (CG(%)), Root Mean Square Error (RMSEG) and Area Under Curve
(AUCG) on the generalization set

RBFN MLogistic SLogistic C4.5 LMT SVM QRBF
Dataset Metric Result Result Result Result Result Result Mean ± std

Breast C 80.00 84.00 84.00 64.00 84.00 76.00 85.00 ± 3.05
CNS C 86.66 100.00 80.00 60.00 80.00 66.67 97 .38 ± 1 .02
Colon C 87.50 75.00 81.25 75.00 75.00 62.50 85 .35 ± 2 .06

Leukemia C 94.44 94.44 83.33 83.33 83.33 66.67 100.00 ± 0.00

Breast AUC 0.85 0.91 0.96 0.71 0.96 0.81 0.88 ± 0.08
CNS AUC 0.78 1.00 0.78 0.58 0.78 0.50 0 .93 ± 0 .03
Colon AUC 0.86 0.75 0.90 0.70 0.90 0.50 0.83 ± 0.12

Leukemia AUC 0.95 0.95 0.80 0.83 0.80 0.50 1.00 ± 0.00

Breast RMSE 0.41 0.37 0.34 0.57 0.34 0.42 0.32 ± 0.02
CNS RMSE 0.37 0.00 0.46 0.61 0.46 0.47 0 .23 ± 0 .05
Colon RMSE 0.33 0.50 0.36 0.48 0.39 0.49 0.29 ± 0.08

Leukemia RMSE 0.23 0.23 0.40 0.39 0.40 0.47 0.00 ± 0.00

The best result is in bold face and the second best result in italics.

to high dimensionality and small sample size, gene selection is an essential pre-
requisite for further data analysis. The selected datasets were: Breast [11], CNS
[12], Colon [13] and Leukemia [14]. In these 4 microarray datasets, all expres-
sion values of genes are reals. For convenience, they were standarized before our
experiments, that is, for each represented gene, its mean and standard deviation
were zero and one, respectively, after the standarized operation had been per-
formed. Finally, in the preprocessing stage, the number of features was reduced
by means of the FCBF feature selector.

4.2 Alternative Statistical and Artificial Intelligence Methods Used
for Comparison Purposes

Different state-of-the-art Statistical and Artificial Intelligence algorithms have
been implemented for comparison purposes. Specifically, the results of the
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following algorithms have been compared with the q-Gaussian RBF (QRBF)
model presented in this paper:

1. A Gaussian Radial Basis Function Network (RBFN), deriving the centres
and width of hidden units using k-means, and combining the outputs ob-
tained from the hidden layer using logistic regression.

2. The MultiLogistic (MLogistic) algorithm. It is a method for building a multi-
nomial logistic regression model with a ridge estimator to guard against
overfitting by penalizing large coefficients.

3. The SimpleLogistic (SLogistic) algorithm. It is based on applying LogitBoost
algorithm with simple regression functions and determining the optimum
number of iterations by a five fold cross-validation.

4. The C4.5 classification tree inducer.
5. The Logistic Model Tree (LMT) classifier.
6. The Support Vector Machine (SVM) classifier with RBF kernels.

These algorithms have been selected because many of these approaches have also
been tested before in the classification problem of microarray gene expression.
The detailed description and some previous results of these methods can be
found in [15].

4.3 Experimental Design

The evaluation of the different models has been performed using three different
measures: Correctly Classified Rate (C) or accuracy, Root Mean Square Error
(RMSE) and Area Under the ROC Curve (AUC) because they have been iden-
tified as three of the most commonly used metric to determine the performance
of a classifier [16]. C represents threshold metrics, AUC is a probability metric,
and RMSE is a rank metric.

All the parameters used in the HA (Section 2.3) except the number of gener-
ations (#Gen) have the same values in all problems analyzed below (Table 1).
The maximun and minimun number of RBFs in the hidden layer ([Mmin, Mmax])
is [1, 3]. The connections between hidden and output layer are initialized in the
[−5, 5] interval (i.e. [−I, I] = [−5, 5]). The size of the population is N = 500.

For the selection of the SVM hyperparameters (regularization parameter, C,
and width of the Gaussian functions, γ), a grid search algorithm has been applied
with a ten-fold cross-validation, using the following ranges: C ∈ {2−5 , 2−3 , . . . ,
215} and γ ∈ {2−15 , 2−13 , . . . , 23}.

The experimental design was conducted using a holdout cross validation pro-
cedure with 3n/4 instances for the training dataset and n/4 instances for the
generalization dataset. In order to evaluate the stability of the methods, the
evolutionary algorithm is run 30 times.

The HA and the model proposed was implemented in JAVA. We also used
“libsvm” [17] to obtain the results of the SVM method, and WEKA to obtain
the results of the remaining methods.
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4.4 Results

Table 2 shows the results of the correct classification rate (CG), Root Mean
Square Error (RMSEG) and Area Under the ROC Curve (AUCG) in the gener-
alization set for each dataset and the RBFN, MLogistic, SLogistic, C4.5, LMT,
SVM and QRBF methods.

From the analysis of the results, it can be concluded, from a purely descriptive
point of view, that the QRBF model obtained the best results for two datasets in
CG, for one datasets in AUCG and for three datasets in RMSEG. Importantly,
the perfect classification is obtained with the best QRBF model for leukemia
dataset. The results confirm that the QRBF classifier leads to promising im-
provement on accuracy.

Finally, since the proposed model (QRBF) is stochastic and the remaining
classifiers are deterministic, the use of statistical tests for comparison of means
or ranking would not make much sense.

5 Conclusions

In this paper, we propose a methodology (composed by two stages) for mi-
croarray gene classification that allows reducing the number of features of thou-
sands to tens. This reduction of features is obtained by applying the FCBF
feature selector algorithm, in the preprocessing stage and by means of perform-
ing the operations of remove connections and hidden nodes that incorporates
the Hybrid Evolutionary Algorithm (HEA) which evolves the proposed base
classifier, namely q-Gaussian Radial Basis Function Neural Networks. The pro-
posed methodology achieved for the best models, the best results in CG over all
datasets, which justifies the proposal.

Finally, because of the reduced number of features that included the best
models, it is possible to interpret them and then analyze the causal relationship
between gene characteristics and the probability of belonging to each class.
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9. Igel, C., Hüsken, M.: Empirical evaluation of the improved rprop learning algo-
rithms. Neurocomputing 50(6), 105–123 (2003)

10. Koller, D., Sahami, M.: Toward optimal feature selection. In: 13th Int. Conf. on
Machine Learning, pp. 284–292 (1996)

11. Van’t Veer, L.J., Dai, H., Van de Vijver, M.J., He, Y.D., Hart, A.A.M., Mao,
M., Peterse, H.L., Van Der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber,
G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene
expression profiling predicts clinical outcome of breast cancer. Nature 415(6871),
530–536 (2002)

12. Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin,
M.E., Kim, J.Y.H., Goumnerova, L.C., Black, P.M., Lau, C., Allen, J.C., Zagzag,
D., Olson, J.M., Curran, T., Wetmore, C., Biegel, J.A., Poggio, T., Mukherjee, S.,
Rifkin, R., Califano, A., Stolovitzky, G., Louis, D.N., Mesirov, J.P., Lander, E.S.,
Golub, T.R.: Prediction of central nervous system embryonal tumour outcome
based on gene expression. Nature 415(6870), 436–442 (2002)

13. Alon, U., Barka, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.:
Broad patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Proceedings of the National
Academy of Sciences of the United States of America 96(12), 6745–6750 (1999)

14. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P.,
Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander,
E.S.: Molecular classification of cancer: Class discovery and class prediction by
gene expression monitoring. Science 286(5439), 527–531 (1999)

15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, Data Management Systems, 2nd edn. Morgan Kaufmann, Elsevier (2005)

16. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Information Processing and Management 45, 427–437 (2009)

17. Chang, C., Lin, C.: Libsvm: a library for support vector machines (2001)


	Evolutionary q-Gaussian Radial Basis Functions for Improving Prediction Accuracy of Gene Classification Using Feature Selection
	Introduction
	Classification Method
	Related Works
	q-Gaussian RBF for Classification
	Hybrid Evolutionary Algorithm

	Feature Selection: Fast Correlation–Based Filter (FCBF)
	Experiments
	Microarray Data
	Alternative Statistical and Artificial Intelligence Methods Used for Comparison Purposes
	Experimental Design
	Results

	Conclusions
	References


