
A Sensitivity Clustering Method for Memetic Training of Radial Basis Function
Neural Networks

F. Fernández-Navarro, P.A. Gutiérrez
C. Hervás-Martı́nez

Department of Computer Science and Numerical Analysis, University of Córdoba,
Campus de Rabanales, C2 building,1004

i22fenaf@uco.es

Abstract

In this paper, we propose a Memetic Algorithm (MA)
for classifier optimization based on a clustering method
that applies the k-means algorithm over a specific derived
space. In this space, each classifier or individual is rep-
resented by the set of the accuracies of the classifier for
each class of the problem. The proposed sensitivity clus-
tering is able to obtain groups of individuals that perform
similarly for the different classes. Then, a representative
of each group is selected and it is improved by a local
search procedure. This method is applied in specific stages
of the evolutionary process. The sensitivity clustering pro-
cess is compared to a clustering process applied over the n-
dimensional space that represent the behaviour of the clas-
sifier over each training pattern, where n is the number of
patterns. This second method clearly results in a higher
computational cost. The comparison is performed in ten im-
balanced datasets, including the minimun sensitivity results
(i.e. the accuracy for the worst classified class). The results
indicate that, although in general the differences are not
significant, the sensitivity clustering obtains the best perfo-
mance for almost all datasets both in accuracy and mini-
mum sensitivity, involving a lower computational demand.

1. Introduction

Evolutionary Algorithms (EAs) [2], generally require a
great number of iterations and they converge slowly, espe-
cially in the neighbourhood of the global optimum [5]. It
thus makes sense to incorporate a faster Local Search (LS)
algorithm into the EA in order to overcome this lack of
efficiency while keeping advantages of both optimization
methods. During last years new methods have been devel-
oped in order to improve the lack of precision of EAs using

local optimization algorithms as part of the EA cycle, what
is known as Memetic Algorithms (MAs) [10]. However the
use of the LS in every generation and for every individual
of the EA would result in a prohibitive computational cost.
Clustering methods can help to select the individuals of an
EA which the LS is applied. They are a class of global
optimization methods of which an important part includes a
cluster-analysis technique [4]. These methods create groups
(clusters) of mutually close points that could correspond to
relevant regions of attraction. The use of a clustering algo-
rithm allows the selection of individuals representing sim-
ilar behaviours in the problem. In this way, the optimized
individuals are more likely to converge towards different lo-
cal optima.

In this paper, we present a MA which combines the
ideas of genetic algorithms, LS and clustering techniques
to solve the complex problem of finding the optimal struc-
ture and weights of Radial Basis Function Neural Net-
works (RBFNNs) for multi-classification problems. This
MA is based on a previously Hybrid Algorithm for regres-
sion problems and Product Unit Neural Networks [8]. We
propose a specific clustering method (a sensitivity cluster-
ing) applied over a derived space, where each classifier or
individual is represented by the set of the accuracies of the
classifier for each class of the problem. The sensitivity clus-
tering process is compared to the clustering process applied
over the n-dimensional space that represent the behaviour
of the classifier over each training pattern, where n is the
number of patterns. This second method was the cluster-
ing method used in [8], which clearly resulted in a higher
computational cost than the sensitivity clustering proposed
in this paper. The results indicate that, although in general
the differences are not significant, the sensitivity clustering
obtains the best perfomance for almost all datasets both in
accuracy and minimum sensitivity, involving also a lower
computational demand.

This paper is organized as follows: Section 2 presents

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.209

187

the sensitivity measure; Section 3 describes the two clus-
tering techniques used to select the individuals which the
LS will be applied to; Section 4 is dedicated to a short de-
scription of the RBFNN model; Section 5 states the most
relevant aspects of the MA used for training the RBFNNs;
Section 6 explains the experiments carried out; and Section
7 summarizes the conclusions of the paper.

2. Sensitivity Measure

A classification problem with Q classes and N training
or testing patterns is considered with g as a classifier obtain-
ing a Q×Q contingency or confusion matrixM(g):

M (g) =

⎧⎨
⎩nij ;

Q∑
i,j=1

nij = N

⎫⎬
⎭ (1)

where nij represents the number of times the patterns are
predicted by classifier g to be in class j when they really
belong to class i. The diagonal corresponds to correctly
classified patterns and the off-diagonal to mistakes in the
classification task, as shown in Table 1.

Table 1. Confusion matrix of a classifier
Class 1 2 . . . Q Priors

1 n11 n12 . . . n1Q f1

2 n21 n22 . . . n2Q f2

.
Q nQ1 nQ2 . . . nQQ fQ

Let us denote the number of patterns associated with
class i by fi =

∑Q

j=1 nij , i = 1, . . . , Q. Different scalar
measures can be defined in order to take the elements of the
confusion matrix into consideration from different points of
view. Let Si = nii/fi be the number of patterns correctly
predicted to be in class i with respect to the total number
of patterns in class i (sensitivity for class i). Therefore, the
sensitivity for class i independently estimates the probabil-
ity of correctly predicting a pattern of class i.

3. Clustering Techniques

3.1. Sensitivity Clustering

In this paper, a clustering process for obtaining groups
of RBFNN models is proposed based on the performance
of each RBFNN for each class. This method could be used
for any type of classifier. In this way, given a classifier g,
the following application to the space RQ is considered:

sg = {Sg1, Sg2, ..., SgQ} (2)

Figure 1. Sensitivity Clustering: 40 RBFNNs
trained for Balance dataset, and a k-means
process with k = 3.

where Sgi is the sensitivity of the classifier g for the i-th
class obtained as indicated in the previous section. Then,
we can define the distance between two classifiers g1 and
g2 as the Euclidean distance between the associated vectors
sg1
and sg2

:

d(g1, g2) = ||sg1
− sg2

|| =

√√√√ Q∑
i=1

(Sg1i − Sg2i)2 (3)

Now considering a group of M classifiers
G = {g1, ..., gM}, the associated vectors are derived,
{sg1

, ..., sgM
}. With this distance measure, we apply the

standard k-means [4] algorithm for obtaining a partition
P = {C1, ..., Ck}. The obtained groups represent classi-
fiers that have a similar behaviour for the different classes
of the problem. The classifier that is closest to the centroid
of the i-th cluster is represented by si and the members of
the set {s1, ..., sk} are selected as the most representative
classifiers of the set G. An example for a group of 40
classifiers for the Balance dataset of 3 classes is given in
Figure 1, where we apply k-means with k = 3 clusters.

3.2. Training Behavior Clustering

This is the clustering process proposed in [8]. In this
case, given a classifier g, the following application to the
space RN is considered:

cg = {cg1, cg2, ..., cgN} (4)

where N is the number of training patterns and cgi is a bi-
nary value indicating if the i-th pattern has been correctly

188

classified by the g classifier. After that, to obtain the most
representative models in the search space, the same process
as the Sensitivity Clustering is applied.

4. Architecture of the RBFNNs

We consider RBFNNs [3, 6] as the base classification
model. An RBFNN is a three-layer feed-forward neural
network. Let the number of nodes in the input layer, in
the hidden layer and in the output layer be p, m and Q re-
spectively. For any sample x = (x1, x2, . . . , xp), the output
of the RBFNN is f(x) = (f1(x), f2(x), . . . , fQ(x)). The
model of a RBFNN can be described with the following
equation:

fj(x) = β0j +
m∑

i=1

βij ·φi(‖x−ci‖), j = 1, 2, . . . , Q, (5)

where φi(x) is a non-linear mapping from the input layer
to the hidden layer, while the mapping from hidden layer
to output layer (i.e. φi(x) to fj(x)) is linear. βj =

(β1j , β2j , . . . , βmj)
T , where j = 1, 2, ..., Q, βij is the con-

nection weight between the i-th hidden node and the j-th
output node and β0j is the bias value for class j. Finally,
‖.‖ represents the Euclidean norm and φ(.) is the Gaussian
function:

φ(‖x− ci‖) = e
−
‖x−ci‖

2

2·σ2

i , (6)

where ci = (c1
i , c

2
i , . . . , c

m
i) ∈ R

m represents the i-th cen-
tre in the hidden layer, i = 1, 2, . . . , m and σi controls the
attenuation speed of Gaussian function [13].
The activation function of each output node is the soft-

max function given by:

pj(x) =
efj(x)

∑Q

i=1 efi(x)
; j = 1, ..., Q (7)

where pj(x) is the probability that pattern x belongs to class
j.
Under this probabilistic interpretation of the model out-

puts, it is possible to evaluate the model using the cross-
entropy error function, given by:

l(g) = −
1

N

N∑
i=1

Q∑
j=1

(yj(xi)ln(pj(xi))) (8)

where yj(xi) is the expected value for the class j and pat-
tern i (i.e. yj(xi) is 1 if xi belongs to the class j and 0
otherwise), g is the evaluated RBFNN andN is the number
of training patterns.

5. Memetic Algorithm

A MA has been combined with the previously presented
clustering processes for optimizing the structure and the
weigths of RBFNNs. The basic framework of the MA is
the following: the search begins with an initial population
of RBFNNs and, in each iteration, the population is updated
using a population-update algorithm which evolves both its
structure and weights. The population is subject to the op-
erations of replication, mutation and recombination. The
main characteristics of the algorithm are the following:

1. Representation of the Individuals. The algorithm
evolves architectures and connection weights simul-
taneously, each individual being a fully specified
RBFNN. RBFNNs are represented using an object-
oriented approach and the algorithm deals directly
with the RBFNN phenotype. Each connection is spec-
ified by a binary value indicating if the connection ex-
ists and a real value representing its weights.

2. Error and Fitness Functions. We consider l(g) (see
Eq. 8) as the error function of an individual g of the
population. The fitness measure needed for evaluating
the individuals is a strictly decreasing transformation
of l(g) given by A(g) = 1/(1 + l(g)) , where 0 <
A(g) ≤ 1 .

3. Initialization of the Population. The initial population
is generated trying to obtain RBFNNs with the max-
imun possible fitness. First, 5.000 random RBFNNs
are generated. The number of connections between all
RBFs of an individual and the input layer is a random
value in the interval [1, k], and all of them are con-
nected with the same randomly chosen input variables.
In this way, all the RBFs of each individual are ini-
tialized in the same random subspace of the input vari-
ables. A pattern of the training set is randomly selected
for assigning the weights between the input layer and
the hidden layer, considering the value of the selected
input variables for the corresponding pattern. The con-
nections between the hidden layer and the output layer
are initialized in the [−O, O] interval. The obtained
individuals are evaluated using the fitness function and
the initial population is finally obtained by selecting
the best 500 RBFNNs.

In order to improve the randomly generated centres,
the standard k-means clustering algorithm is applied
using these random centres as the initial centroids for
the algorithm and a maximun number of 100 iterations.

4. Recombination. Different crossover operators are ap-
plied:

189

Table 2. Characteristics of the ten datasets used for the experiments: number of instances (Size),
number of Real (R), Binary (B) and Nominal (N) input variables, total number of inputs (#In.), number
of classes (#Out.), per-class distribution of the instances (Distribution) and minimum and maximum
number of hidden nodes used for each dataset ([Mmin, Mmax])

Dataset Size R B N #In. #Out. Distribution [Mmin, Mmax]

Hepatitis 155 6 13 − 19 2 (32, 123) [1, 3]

Breast-Cancer 286 4 3 2 15 2 (201, 85) [1, 3]

Haberman 306 3 − − 3 2 (225, 81) [1, 3]

YeastCYTvsPOX 482 8 − − 8 2 (463, 19) [4, 9]

Newthyroid 215 5 − − 5 3 (150, 35, 30) [4, 9]

Balance 625 4 − − 4 3 (288, 49, 288) [4, 9]

Glass 214 9 − − 9 6 (70, 76, 17, 13, 9, 29) [9, 12]

Zoo 101 1 15 − 16 7 (41, 20, 5, 13, 4, 8, 10) [4, 9]

Ecoli 336 7 − − 7 8 (143, 77, 52, 35, 20, 5, 2, 2) [4, 9]

Yeast 1484 8 − − 8 10 (463, 429, 244, 163, 51, 44, 35, 30, 20, 5) [9, 12]

All nominal variables are transformed to binary variables.

• Binary Crossover Operator. This binary-
operator needs two RBFNNs to be applied, al-
though it only changes one of them. The oper-
ator takes an uniformly randomly chosen num-
ber of consecutive hidden neurons from the first
network, and another random sequence from the
second. Then it replaces the first of these se-
quences by the second one, so that the second
individual remains unchanged.

• Multipoint Crossover Operator. This operator re-
places with probability 0.2 every hidden neuron
of the first RBFNN by a randomly chosen neuron
coming from the second net.

5. Structural Mutation. Structural mutation implies a
modification in the structure of the RBFNNs and al-
lows the exploration of different regions in the search
space, helping to keep the diversity of the population.
There are four different structural mutations: hidden
node addition, hidden node deletion, connection addi-
tion and connection deletion. These four mutations are
applied sequentially to each network.

6. Parametric Mutation. Different weight mutations are
applied:

• Centre and RadiiMutation. These parameters are
modified in the following way:

– Centre creep. It changes the values for the
centres applying a Normal noise. For each

dimension of the centre point, the Normal
distribution is centred on the current value
and it is as wide as the radius.

– Radius creep. It changes the values for the
radii applying another Normal noise. The
Normal distribution is centred on the current
value and is as wide as the range of each di-
mension.

– Randomize centres. Changes the values of
the centres of the hidden neurons to random
values in the range allowed for each dimen-
sion of the input space.

– Randomize radii. It changes radius values
randomly, always with values in the corre-
sponding range of each input space dimen-
sion.

• Output-to-Hidden Node Connection Mutations
[9]. These connections are modified by adding a
Normal noise, w(t + 1) = w(t) + ξ(t), where
ξ(t) ∈ N(0, T (g)) and N(0, T (g)) represents
a one-dimensional normally distributed random
variable with mean 0 and with variance the net-
work temperature (T (g) = 1−A(g)).

7. Local Search. The proposed methodology is based on
the combination of the EA, a clustering process, and
a local improvement procedure. The local optimiza-
tion algorithm used in our paper is the iRprop+ [7]
optimization method.

190

Two different versions of the MA are presented in this
paper, depending of the clustering technique we carry out.
Both methodologies apply the clustering process presented
on Section 3.1 and 3.2 on the complete set of the individ-
uals every G0 generations. After that, we apply iRprop+
algorithm to the individual closest to the centroid obtained
in each cluster and they are returned to the population with
its fitness and values updated since our MA is based on the
Lamarckian model [12].

6. Experiments

The two proposed methodologies are applied to ten
datasets taken from the UCI repository [1], to test its over-
all performance when compared each other. Since we are
interested on improving the sensitivity for the worst classi-
fied class in each dataset, we have selected ten imbalanced
dataset. The selected datasets include both binary problems
and multi-class problems and present different numbers of
instances, features and classes (see Table 2). The Yeast-
CYTvsPOX dataset is the Yeast dataset considering only
patterns from CYT and POX classes. The minimum and
maximum number of hidden nodes have been obtained as
the best result of a preliminary experimental design, con-
sidering a small, medium and high value: [Mmin, Mmax] ∈
{[1, 3], [4, 9], [9, 12]}. This value is also included in Table
2. The next subsection defines the experimental design and
the following shows the results obtained.

6.1. Experimental Design

The experimental design was conducted using a 10-fold
cross validation, with 10 repetitions per each fold. The
performance of each method has been evaluated using the
correct classification rate (C) and the Minimun Sensitivity
(MS) value for the generalization set, i.e. the accuracy for
the class that is worst classified.
All the parameters used in the evolutionary algorithm ex-

cept the maximun and minimun number of RBFs in the hid-
den layer have the same values for all problems considered.
We have done a simple linear rescaling of the input vari-
ables in the interval [−2, 2],X∗

i being the transformed vari-
ables. The connection between hidden and output layer are
initialized in the [−5, 5] interval (i.e. [−O, O] = [−5, 5]).
The initial value of the radii rj is obtained in the interval
(0, dmax], where dmax is the maximun distance between
two training input examples.
The size of the population isN = 500. For the structural

mutation, the number of nodes that can be added or removed
is within the [1, 2] interval, and the number of connections
to add or delete in the hidden and the output layer during
structural mutations is within the [1, 7] interval. The num-
ber of the clusters is k = 6 for the k-mean algorithm. The

iRprop+ local improvement procedure is performed every
50 generations (i.e. G0 = 50), 8 times during the evolu-
tion, considering a maximum of 75 cicles. In this way, the
algorithm stops when 400 generations are completed.

6.2. Analysis of the Results

In Table 3, the mean and the standard deviation of
the correct classification rate and minimun sensitivity in
the generalization set (CG and MSG) are shown for each
dataset and a total of 100 executions. From the analysis of
the results, it can be concluded, from a purely descriptive
point of view, that the Sensitivity Clustering obtained the
bestCG results for eight datasets, and the Training Behavior
Clustering yielded the higher performance for the other two
datasets. For the MSG measure, the Sensitivity Clustering
got the higher performance for seven datasets, the Training
Behavior only for two datasets and both methods obtained
the same value for Yeast dataset.
To ascertain the statistical significance of the differences

observed in each dataset performance, we have carried out
an t-test (for those cases in which a normal distribution
could be considered) or a Mann-Whitney test [11] (for those
cases in which a normal distribution could not be con-
sidered), with the CG and the MSG of the best models
as the test variable (previously evaluating if the CG and
MSG values follow or not a normal distribution, using a
Kolmogorov-Smirnov test). In Table 4, we have included
the statistical results obtained, concluding that the differ-
ences obtained for almost all datasets are not significant, ex-
cept for CG andMSG values of YeastCYTvsPOX datasets
andMSG values of Glass dataset.

Table 4. p-values of the t-test or the Mann-
Whitney test considering the CG and MSG

values as the test variable. Sensitivity Clus-
tering vs Training Behaviour Clustering

p-values
CG MSG

Dataset t-test M-W t-test M-W
Hepatitis − 0.622 − 0.941

Breast-Cancer 0.331 − − 0.143
Haberman − 0.984 − 0.324

YeastCYTvsPOX 0.000(∗) − 0.000(∗)

Newthyroid − 0.617 − 0.966
Balance − 0.866 − 0.857
Glass 0.510 − − 0.004(∗)

Zoo − 0.538 − 0.504
Ecoli 0.704 − − 0.838
Yeast 0.397 − − −

(∗): Statistically significant differences with α = 0.05

191

Table 3. Mean and Standard Deviation of the Accuracy (CG(%)) and Minimun Sensitivity (MSG(%))
Results From 100 Executions of a 10-Fold Cross Validation

Method(CG(%) andMG(%))
SensitivityClustering TrainingBehaviorClustering

Dataset CG(%) MSG(%) CG(%) MSG(%)
Hepatitis 81.82± 8.05 51.00± 18.85 81.57± 7.00 49.78± 21.27

Breast-Cancer 74.07± 8.13 38.79± 13.90 73.87± 7.54 35.89± 13.56
Haberman 73.28± 5.80 27.12± 11.60 73.24± 6.38 28.60± 13.16

YeastCYTvsPOX 99.14± 0.41 79.00± 10.14 97.26± 1.64 45.91± 28.86
Newthyroid 96.54± 2.71 86.73± 14.41 96.91± 2.40 86.21± 14.82
Balance 95.70± 2.37 73.58± 21.14 95.61± 2.57 73.51± 21.23
Glass 68.40± 8.92 6.97± 17.53 67.59± 8.40 0.96± 5.67
Zoo 95.33± 6.56 62.50± 48.39 94.84± 6.56 58.00± 49.09
Ecoli 84.82± 8.55 26.18± 31.01 84.46± 8.80 27.75± 32.42

Yeast 57.85± 4.65 0.00± 0.00 57.82± 3.79 0.00± 0.00

Mean 83.84 41.91 83.72 41.11
The best result is in bold face

7. Conclusions

In this paper, we have proposed a MA to solve multi-
classification problems. This algorithm is based on the com-
bination of an EA, a new sensitivity clustering process, and
a local-search procedure. The proposed clustering process
allows the selection of individuals representing different re-
gions in the search space. These selected individuals are
the ones subject to local optimization. In this way, the opti-
mized individuals are more likely to converge towards dif-
ferent local optima. We have compared this algorithm to
the same algorithm using the clustering process proposed in
[8], where each of the clustered individuals is represented
by an N -dimensional vector, N being the number of train-
ing patterns.
The MA proposed was applied to ten imbalanced clas-

sification problems of the UCI repository [1]. The results
show that the proposed sensitivity clustering process results
in better CG and MSG performance, although these dif-
ferences are not in general statistically significant. These
results present the sensitivity clustering as a very advisable
alternative for selecting the individuals to apply the LS pro-
cess in MAs when applied to classification problems, given
that the computational cost of this process is lower than that
of the originally proposed clustering technique.

References

[1] A. Asuncion and D. Newman. UCI machine learning repos-
itory, 2007.

[2] T. Back. Evolutionary Algorithms in Theory and Practice.
Oxford, 1996.

[3] J. A. S. Freeman and D. Saad. Learning and generaliza-
tion in radial basis function networks. Neural Computation,
7(5):1000–1020, 1995.

[4] K. Fukunaga. Introduction to Statistical Pattern Recogni-
tion. Academic Press, 2nd edition, 1999.

[5] C. R. Houck, J. A. Joines, M. G. Kay, and J. R. Wilson. Em-
pirical investigation of the benefits of partial lamarckianism.
Evol. Comput., 5(1):31–60, 1997. 1326739.

[6] Y. Hwang and S. Bang. An efficient method lo construct
radial basis function neural network classifier. Neural Net-
works, 10(8):1495–1503, 1997.

[7] C. Igel and M. Hsken. Empirical evaluation of the improved
rprop learning algorithms. Neurocomputing, 50(6):105–123,
2003.

[8] A. C. Martinez-Estudillo, C. Hervas-Martnez, F. J.
Martinez-Estudillo, and N. Garcia-Pedrajas. Hybridization
of evolutionary algorithms and local search by means of a
clustering method. IEEE Transactions on Systems, Man and
Cybernetics, Part B: Cybernetics, 36(3):534–545, 2006.

[9] F. J. Martnez-Estudillo, C. Hervs-Martnez, P. A. Gutirrez,
and A. C. Martnez-Estudillo. Evolutionary product-unit
neural networks classifiers. Neurocomputing, 72(1-2):548–
561, 2008.

[10] P. Moscato and C. Cotta. A gentle introduction to memetic
algorithms. In Handbook of Metaheuristics, volume 57 of
International Series in Operations Research and Manage-
ment Science, pages 105–144. Springer New York, 2003.

[11] A. C. Tamhane and D. D. Dunlop. Statistics and Data Anal-
ysis. Prentice Hall, 2000.

[12] D. L. Whitley, V. S. Gordon, and K. E. Mathias. Lamarck-
ian evolution, the baldwin effect and function optimization.
In Y. Davidor, H. P. Schwefel, and R. Männer, editors, Par-
allel Problem Solving from Nature – PPSN III, pages 6–15,
Berlin, 1994. Springer.

[13] Z. R. Yang. A novel radial basis function neural network
for discriminant analysis. IEEE Transactions on neural net-
works, 17(3):604–612, 2006.

192

