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Abstract. Donor-Recipient matching constitutes a complex scenario
not easily modelable. The risk of subjectivity and the likelihood of falling
into error must not be underestimated. Computational tools for decision-
making process in liver transplantation can be useful, despite its inherent
complexity. Therefore, a Multi-Objective Evolutionary Algorithm and
various techniques of selection of individuals are used in this paper to
obtain Artificial Neural Network models to assist in making decisions.
Thus, the experts will have a mathematical value that enables them to
make a right decision without deleting the principles of justice, efficiency
and equity.

1 Introduction

Liver transplantation is an accepted treatment for patients with end-stage
chronic liver disease. Numerous donor and recipient risk factors interact to in-
fluence the probability of survival at 3 months after liver transplantation. It
is critical to balance waitlist mortality against posttransplant mortality. Our
objective was to devise a scoring system that predicts recipient survival at 3
months following liver transplantation to complement the model for end-stage
liver disease score (MELD) to predicted waitlist mortality.

Most current organ allocation systems are based on the principle that the
sickest patients should be treated first. Models have been developed to estimate
the risk of death, considering the underlying disease and urgency of the receiv-
ing patient assuming that all donor livers carry the same risk of failure. This,
however, is not the case: it has been shown in recent years that the risk of graft
failure, and even patient death, after transplantation differs among recipients.
While some patients may “tolerate” and overcome the initial poor function of
a compromised donor organ, others may not have the same reserve. Increasing

� Corresponding author at: Tel.: +34 957 218 349; Fax: +34 957 218 630; E-mail:
mcruz@uco.es M. Cruz-Ramı́rez’s research has been subsidized by the FPU Predoc-
toral Program (spanish Ministry of Education and Science), grant reference AP2009-
0487.

J. Cabestany, I. Rojas, and G. Joya (Eds.): IWANN 2011, Part II, LNCS 6692, pp. 129–136, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

mcruz@uco.es


130 M. Cruz-Ramı́rez et al.

awareness of the diversity in donor organ quality has stimulated the debate on
matching between specific recipient and donor factors to avoid futility, but also to
avoid personal and institutional differences in organ acceptance. The insufficient
supply of deceased donor livers for transplantation has motivated the expan-
sion of acceptance criteria; such organs are captured by the terms marginal and
expanded criteria livers. This context of aggressive liver utilization motivated
the derivation of the donor risk index, a quantitative, objective, and continuous
metric of liver quality based on factors known or knowable at the time of an
organ offer.

Thus, predicting the survival of liver transplant patients has the potential
to play a critical role in understanding and improving the matching procedure
between the recipient and graft. Although voluminous data related to the trans-
plantation procedures is being collected and stored, only a small subset of the
predictive factors has been used in modeling liver transplantation outcomes.
The previous studies have mainly focused on applying statistical techniques to
a small set of factors selected by the domain-experts in order to reveal the sim-
ple linear relationships between the factors and survival. Machine learning and
soft computing methods offer significant advantages over conventional statistical
techniques in dealing with the latter’s limitations such as normality assumption
of observations, independence of observations from each other, and linearity of
the relationship between the observations and the output measure(s). Among
these techniques, we will use Artificial Neural Network models (ANN). The use
of ANNs in biomedicine as an alternative to other classification methods is baised
on different approaches: a Fisher transformation [2,9], due to their flexibility and
high degree of accuracy to fit to biomedical data, sigmoid functions and other
types of basis functions (Multilayer Perceptron type networks) [11]. In the field of
transplantation, ANNs have been designed to diagnose cytomegalovirus (CMV)
disease [17] and acute rejection using data obtained from posttransplantation
renal biopsies [10] after kidney transplantation. In addition, the use of ANNs
was investigated in the prediction of graft failure [15] on the prediction of liver
transplantation outcome [6].

ANNs can be trained with Evolutionary Computation algorithms (EC). This
methodology widely used in the last few years to evolve neural-network archi-
tectures and weights. This is known as Evolutionary Artificial Neural Networks
(EANNs), and it has been used in many applications [13,16]. EANNs provide a
more successful platform for optimizing network performance and architecture
simultaneously.

In this work, we discuss learning and generalization improvement of classifiers
designed using a Multi-Objective Evolutionary learning Algorithm (MOEA) [4]
for the determination of survival at 3 months after liver transplantation. The
data come from eleven hospitals and we investigate the generation of neural net-
work classifiers that achieve high classification level for each class. The method-
ology is based on two measures: the correct classification rate or Accuracy (C)
and the Minimum Sensitivity (MS) as the minimum of the sensitivities of all
classes. The aim of this study is to determine which models obtained with the



MPDENN for Donor-Recipient Matching in Liver Transplantation 131

MOEA, presented the best results. In order to do this, different methods for se-
lection of individuals and ensembles techniques [14] are used, once the execution
of the MOEA is finished.

The paper is organized as follows: Section 2 describes the dataset used; Section
3 shows a description of the methodology used; Section 4 explains the experi-
mental design; Section 5 shows the results obtained, while the conclusions and
the future work are outlined in Section 6.

2 Dataset Description

A multi-centric retrospective analysis from 11 Spanish units of liver transplan-
tation was conducted, including all the consecutive liver transplants performed
between January 1, 2007, and December 31, 2008. The dataset included all trans-
plant recipients aged 18 years or older. Recipient and donor characteristics were
reported at the time of transplant. Patients undergoing partial, split or living
donor liver transplantation and patients undergoing combined or multi-visceral
transplants were excluded from the study. All patients were followed from the
date of transplant until either death, graft loss or the first year after liver trans-
plant. Units of liver transplantation were homogeneously distributed throughout
Spain.

16 recipient characteristics, 20 donor characteristics and 3 operative factors
were reported for each donor-recipient pair. The end-point variable for artificial
neural network modeling was 3-month graft mortality. A total of 1031 liver
transplants were initially included. The follow-up period was fulfilled in 1003 liver
transplants. 28 cases were excluded because the absence of graft survival data.
All losses were well distributed among the participating institutions. Donor or
recipients with missing entries were not eliminated but missing values were filled
using data imputation techniques. Imputation techniques employed are those
commonly used. When the number of non-responses in a variable is less than
1%, we have substituted the value by the average if the variable is continuous
and by the mode if the variable is discrete (categorical). In another case, we used
polynomial regression models to estimate these values.

3 Methods

3.1 Accuracy and Minimum Sensitivity in Classification Problems

To evaluate a classifier, the machine learning community has traditionally used
Correct Classification Rate or Accuracy (C) to measure its default performance.
Actually, it suffices to realize that C cannot capture all the different behav-
ioral aspects found in two different classifiers in multi-class problems. For these
problems, two performance measures are considered: traditionally-used C, as the
number of patterns correctly classified and the Minimum of the Sensitivities of
all classes (MS), that is, the lowest percentage of examples correctly predicted
as belonging to each class, Si, with respect to the total number of examples in
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the corresponding class, MS = min{Si} (for a more detailed description of these
measures, see [8]). This is, we assume the premise that a good classifier should
combine a high classification rate level in the testing set with an acceptable level
for each class.

In [8], C and MS are presented as objectives that could be positively corre-
lated, but, while this may be true for small values of MS and C, it is not so for
values close to 1 on both MS and C, where the objectives are competitive and
conflicting. This fact justifies the use of a MOEA for training ANNs optimizing
both objectives.

3.2 Pareto Differential Evolution Algorithm

This paper uses the MOEA described in [5] for training ANN with sigmoid basis
functions. The next section briefly explains the this algorithm. For more details
about the Base Classifier Framework or Fitness Functions, see [5].

In this paper, we use one of the most prominent Multi-Objective Evolution-
ary Algorithms in the bibliography. This algorithm is the MPDENN (Memetic
Pareto Differential Evolution Neural Network) algorithm developed by R. Storn
and K. Price in [18], modified by H. Abbass to train neural networks [1] and
adapted for C and MS [7]. The fundamental bases of this algorithm are
Differential Evolution (DE) and the concept of Pareto dominance.

The main feature of the MPDENN algorithm is the inclusion of a crossover
operator together with the mutation operator. The crossover operator is based
on a random choice of three parents, where one of them (main parent) is modi-
fied using the weighted difference of the two other parents (secondary parents).
The child generated by the crossover and mutation operator is included in the
population if it dominates the main parent, if it has no relationship with him or
if it is the best child of the rejected children. At the beginning of each genera-
tion, individuals dominated are eliminated from the population. A generation of
the evolutionary process ends when the population has been completed. In three
generations of the evolution (the first initially, the second in the middle and the
third at the end), a local search algorithm is applied to the most representative
individuals of the population. The local search algorithm used by MPDENN
algorithm is iRprop+ [12] (more details in [5]).

3.3 Automatic Selection Method Used in the Experimentation

Once the execution of MPDENN algorithm ends, various automatic selection
methods of individuals are used for each run:

– MPDENN-E: It consists of choosing the Pareto upper extreme value in
training, that is, the best individual in Entropy (E), because one of the
fitness function of the MOEA is E. This method is described in [8].

– MPDENN-MS: This technique is similar to the previous one, but selecting
the best individual in MS, i.e., the individual at the Pareto lower extreme.
This method is described in [8].
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– MPDENN-CC: This method selects all individuals from the first and sec-
ond Pareto front obtained with the MPDENN algorithm. This group of
individuals is divided into two subgroups by a 2-means algorithm (because
there are two objective functions, C and MS). The individual that is closest
to the centroid of the upper cluster (cluster that takes the C measure into
account) is selected.

– MPDENN-CMS: This automatic method works in a similar way to the
MPDENN-CC automatic method, but in this case, the individual that is clos-
est to the centroid is selected taking the MS measure into account (lower
cluster).

Individuals selected by MPDENN-CC and MPDENN-CMS are consid-
ered the most representative individuals in the population (the fact that
these individuals do not have the greatest value in any objective does not
mean that they do not generalize well).

We decided to include the second Pareto front in the clustering process,
in order to expand the number of individuals and to increase diversity. In
addition, individuals belonging to this front may have a high percentage of
classification in generalization because it is a way to avoid over-training.
In the extreme case that is only one individual in each of the fronts (there
would be only two individuals), each of these individuals will be assigned to
a cluster.

– MPDENN-MV [19]: Majority Voting (MV) is an ensemble technique that
uses all individuals in the first Pareto front. With this technique, a pattern
belong to the class that has the higher number of votes, according to the
independent classification of each of the elements that make up the ensemble.
To estimate the a posteriori probability of a pattern to belong to a class, the
average of the output probabilities of the models who voted for this class
are used. This is performed for each pattern in the training of generalization
dataset so that a probability matrix is formed to obtain the RMSE measure
(Root Mean Square Error).

– MPDENN-SA [19]: The Simple Averaging (SA) ensemble technique uses
the first Pareto front to calculate for each pattern the arithmetic mean of
the probability for each Q class for each of the models in the ensemble. The
assignment will take the class that has the highest average probability. For
the case of the RMSE measure, the arithmetic mean of the probabilities
is obtained for each output of each model in the ensemble for a particular
pattern. Then we use the probabilities of the output with the maximum
mean probability for each model of the ensemble for that particular pattern.
This is done for each pattern in the training and generalization dataset, and
a probability matrix is formed to obtain the RMSE measure.

– MPDENN-WT [19]: With the Winner Take All (WT) ensemble method,
for each pattern the probabilities of the model with the highest probability
in one of the outputs are used as the output of the ensemble. This ensemble
method uses the individuals in the first Pareto front.
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Table 1. Features of the dataset

#Patterns #Training #Test #Input #Classes #Patterns
patterns patterns variables per class

1003 751 252 64 2 (890,113)

4 Experimental Study

The Experimental design was conducted using a stratified holdout procedure
with 30 runs, where approximately 75% of the patterns were randomly selected
for the training set and the remaining 25% for the test set. During the creation
of these two sets, the proportion of 75-25% for the training-testing patterns for
each of the participating hospotals was also kept. Table 1 shows the features of
the dataset.

In all the experiments, the population size for MPDENN is established as
M = 25. The crossover probability is 0.8 and the mutation probability is 0.1.
For iRprop+ as local search algorithm, the adopted parameters are η+ = 1.2,
η− = 0.5, Δ0 = 0.0125 (the initial value of the Δij), Δmin = 0, Δmax = 50 and
Epochs = 10, see [12] for the iRprop+ parameter description.

To start processing data, each one of the input variables was scaled in the
ranks [−1.0, 1.0] to avoid the saturation of the signal. Addition, categorical vari-
ables have been transformed into many binary variables as possible category.

5 Results

The C and the RMSE represent two most often used metrics in classification [3].
In our paper, we use these two metrics together with the MS. Table 2 presents
the values of mean and Standard Deviation (SD) for C, MS and RMSE in
generalization in 30 runs of all the experiments performed. The analysis of the
results leads us to conclude that the MPDENN-E obtained the best performance
in the dataset considering CG and the second best value in RMSEG. The best
result in RMSEG is obtained by the MPDENN-CC. For MSG, the MPDENN-
MS obtained the best results in the analyzed dataset. From this analysis, we can
consider that the best method for CG and RMSEG is the MPDENN-E while it
is MPDENN-MS for MSG.

The best models obtained by MPDENN-E and MPDENN-MS methods are
shown in Table 2. The best MPDENN-E model has a high value on C = 89.29
and RMSE = 0.3212, while the best MPDENN-MS model produces a very
acceptable value on MS = 62.07. The confusion matrix for the best MPDENN-
E model in generalization is: True Positive (TP)=221, False Negative (FN)=2,
False Positive (FP)=25, True Negative (TN)=4; and for the best MPDENN-MS
model is: TP=143, FN=80, FP=11, TN=18.

These results suggest that a combination of the two models extremes of the
Pareto front would provide a useful tool for the problem of donor-recipient assign-
ment. This combination could be a rule-based system or a weighted aggregation
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Table 2. Statistical results for different methods in generalization

Method
CG(%) MSG(%) RMSEG

Mean ± SD Mean ± SD Mean ± SD

MPDENN-E 88.34 ± 0.68 1.15 ± 3.98 0.3282 ± 0.0071
MPDENN-MS 60.66 ± 3.04 50.39 ± 6.56 0.4492 ± 0.0763
MPDENN-CC 88.24 ± 0.66 1.03 ± 4.54 0.3261 ± 0.0068
MPDENN-CMS 60.71 ± 3.14 50.23 ± 8.48 0.4160 ± 0.0561
MPDENN-MV 68.33 ± 8.49 27.35 ± 11.11 0.3583 ± 0.0184
MPDENN-SA 84.26 ± 3.87 8.97 ± 7.72 0.3454 ± 0.0122
MPDENN-WT 88.25 ± 0.67 0.69 ± 2.29 0.3581 ± 0.0733

Method CG(%) MSG(%) RMSEG

Best MPDENN-E model 89.29 13.79 0.3212
Best MPDENN-MS model 63.89 62.07 0.3863

The best result is in bold face and the second best result in italics.

of the outputs of both models, although in our opinion, the rules-based system
would provide a more understandable and comprehensible tool for experts. The
system would receive as input a set of potential recipients and form a donor-
recipient pair between each of them and donor/organ data. These pairs would
be the input for these neural network models. With the results provided by these
models and using a simple set of rules, the system would determine which of the
recipients receiving the organ.

6 Conclusions

With the study presented in this paper, we obtain some artificial neural networks
models that can help medical experts in the donor-recipient allocation. These
models are obtained by a multi-objective evolutionary algorithm where Accu-
racy is the measure considered to evaluate model performance along with the
Minimum Sensitivity measure. Minimum Sensitivity is used to avoid the design
of models with high global performance but bad performance when considering
the classification rate for each class (survival or not-survival).

With the two best models (obtained by MPDENN-E and MPDENN-MS meth-
ods), a rule-based system can be used to perform the matching between donor
and recipient. This rule-based system must be generated by the medical experts
and machine learning experts, for maintaining the principles of justice, efficiency
and equity. The current allocations systems are based on thee risk of death on
the waiting list and do not recognize distinctions in “donor organ quality”. With
the rule-based system, the “donor organ quality” would be taken into account
to improve the allocation and ensure the survival of recipients.
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12. Igel, C., Hüsken, M.: Empirical evaluation of the improved rprop learning algo-
rithms. Neurocomputing 50(6), 105–123 (2003)

13. Kondo, T.: Evolutionary design and behavior analysis of neuromodulatory neural
networks for mobile robots control. Appl. Soft Comput. 7, 189–202 (2007)
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