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Abstract. In this paper we present a new method for hybrid evolutionary 
algorithms where only a few best individuals are subject to local optimization. 
Moreover, the optimization algorithm is only applied at specific stages of the 
evolutionary process. The key aspect of our work is the use of a clustering 
algorithm to select the individuals to be optimized. The underlying idea is that 
we can achieve a very good performance if, instead of optimizing many very 
similar individuals, we optimize just a few different individuals. This approach 
is less computationally expensive. Our results show a very interesting 
performance when this model is compared to other standard algorithms. The 
proposed model is evaluated in the optimization of the structure and weights of 
product-unit based neural networks.  

1   Introduction 

Evolutionary algorithms (EAs) are efficient at exploring the entire search space; 
however, they are relatively poor at finding the precise optimum solution in the region 
where the algorithm converges to [1]. During the last few years new methods have 
been developed in order to improve the lack of precision of the EAs using local 
optimization algorithms [2]. These new methodologies are based on the combination 
of local optimization procedures, which are good at finding local optima (local 
exploiters), and evolutionary algorithms (global explorers). These are commonly  
known as hybrid algorithms. 

In this paper, we propose an alternative approach to hybrid algorithms using local 
optimization procedures. The methodology is based on the combination of an 
evolutionary algorithm, a clustering process and a local improvement procedure. If we 
want to efficiently use the hybrid algorithm, we have to reduce the computation time 
spent by the local search. So, our approach is to select a subset of the best individuals, 
perform a cluster analysis to group them, and optimize only the best individual of 
every group. 
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The main advantage of this method is that the computational cost of applying the 
optimization algorithm to just a few individuals hardly affects the total time spent by 
the algorithm. On the other hand, the use of a clustering algorithm allows the 
selection of individuals representing different regions in the search space. In this way, 
the optimized individuals are more likely to converge towards different local optima. 
The model developed is applied to the evolution of the structure and weights of 
evolutionary product-unit based neural networks. These kinds of networks are a very 
interesting alternative to sigmoid-based neural networks, but their  major drawback is 
that the optimization algorithms usually used for training a network are quite 
inefficient for training product-unit networks. So, an effective algorithm for training 
these networks is of great practical interest. In order to test the performance of the 
proposed algorithms, the networks are applied to benchmark regression problems. 

This paper is organized as follows: Section 2 describes our model in depth; Section 
3 is dedicated to a short description of product-unit based networks; Section 4 states 
the most relevant aspects of the evolution of product-unit neural networks using the 
proposed approach; Section 5 explains the experiments carried out; and finally 
Section 6 summarizes the conclusions of our work. 

2   Hybrid Evolutionary Programming Algorithms 

We propose two methods of hybrid evolutionary algorithms based on the use of a 
clustering algorithm for deciding which individuals are subject to local optimization. 
We have two different versions for the hybrid evolutionary algorithm depending on 
the stage when we carry out the local search and the cluster partitioning. The hybrid 
evolutionary programming with the clustering (HEPC) algorithm applies the 
clustering process on a large enough subset of the best individuals of the final 
population. In this method it is very important to determine the number of best 
individuals to consider as well as the number of clusters. After that, we apply the L-M 
algorithm to the best individual of each cluster. The algorithm named dynamic hybrid 
evolutionary programming with clustering (Dynamic HEPC) carries out both the 
clustering process and the L-M local search dynamically every 0G  generation. The 
final solution is the best individual among the local optima found during the 
evolutionary process. The basic aim of our methodology is the optimization of the 
number of times a local optimization algorithm is applied without reducing the 
efficacy of this algorithm. This is especially important when the algorithm is of a high 
computational cost. On the other hand, removing the local optimization procedure 
usually yields a worse performance. So, our method is a good compromise, as we 
applied the optimization algorithm to a reduced number of individuals. Moreover, the 
clustering process avails us with the possibility of selecting a subset of individuals 
with different features. In this way, the optimization algorithm is more efficient. 

The local optimization algorithm used in our work is the Levenberg- Marquardt (L-
M) optimization method. This algorithm is designed specifically for minimizing a 
sum-of-squares error [3]. In any case, any other local optimization algorithm can be 
used in a particular problem. Another feature of our approach is that the optimized 
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individuals are not included in the new population. Once the optimization algorithm is 
applied, we think that any further modification of the individual would be counter-
productive. So, these individuals are stored in a separate population till the end of the 
evolutionary algorithm. 

3   Product-Unit Neural Networks 

In order to test the validity of our model we have chosen a difficult problem, hard 
enough to justify the use of complex approaches. The problem is the automatic 
determination of the structure and weights of product-unit neural networks [4]. 
Product units enable a neural network to form higher-order combinations of inputs, 
having the advantages of increased information capacity and smaller network 
architectures when we have interaction between the input variables. Neurons with 
multiplicative responses can act as powerful computational elements in real neural 
networks. Product-unit based neural networks have a major drawback, since their 
training is more difficult than the training of standard sigmoid based networks. 
Unfortunately, the error surface for product units can be extremely convoluted, with 
numerous minima that trap backpropagation. This is because small changes in the 
exponents can cause large changes in the total error. Several efforts have been made 
to develop learning methods for product units [5],[6],[7].  Let us consider the family 
of real functions F  defined by: 
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Weierstrass Theorem it is straightforward to prove that this family of functions is a 
dense subset of the continuous functions space defined in a compact. On the other 
hand, every function of the family can be represented as a neural network. The 
network must have the following structure: an input layer with a node for every input 
variable, a hidden layer with several nodes, and an output layer with just one node. 
There are no connections between the nodes of a layer and none between the input 
and output layers either. The network has k  inputs that represent the independent 
variables of the model, m  nodes in the hidden layer, and one node in the output layer. 
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where jβ  is the weight of 

the connection between the hidden node j  and the output node. The transfer function 

of all nodes is the identity function. 
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4   Hybrid Evolutionary Model 

The evolution of product-unit networks uses the operations of replication and two 
types of mutation: structural and parametric. There is no crossover, as this operation is 
usually regarded as harmful [8] for network evolution. In the following paragraphs we 
are going to describe each one of the different aspects of the algorithm in detail.  

Initial population. We generate randomly 10 PN  networks and we select the best PN  

among them. So, we construct the initial population B  whose size is PN . 

Selection plan. The %r  best individuals of the population are selected from the set 

{ }best individual of B B B∗ = −  of cardinality 1PN N∗ = − . With these individuals we 

make up the population B′  of size /100PrN⎢ ⎥⎣ ⎦ . 

Structural and parametric mutations. Every individual of the population B′  is 
subject to structural mutation, obtaining strucB′ . The parametric mutation is applied 

only to the best (100 ) /100pr N ∗−   individuals of  B′  obtaining paramB′ . We construct 

the population struc paramB B B′′ ′ ′= ∪ , where the cardinality of B′′  is 1PN N∗ = − . 

The structural mutation implies a modification in the structure of the function 
performed by the network and allows an exploration of different regions in the search 
space. There are five different structural mutations: node addition, node deletion, 
connection addition, connection deletion and node fusion. Parametric mutation is 
accomplished for each coefficient of the model with Gaussian noise, using a self-
adaptive annealing algorithm. For more details see [9]. 

Updated plan. The new population will be { }Best of B B B′′= ∪ . 

4.1   Clustering Partitioning Techniques 

Let { }( , ) : 1, 2,..,l l TD y l n= =x  be the training data set, where the number of samples 

is Tn . We define the following application from the family of functions F  to the 

Euclidean space Tn\ : 
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where θ   is the set of parameters of f . The application assigns to each function of 

the family the vector obtained with the values of the function over the training data 
set. Thus we can define the distance between two functions of the family as the 
Euclidean distance between the associated vectors: 
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With this distance measure, the proximity between two functions is related to their 
performance. So, similar functions using this distance will have a similar performance 
over the same regression problem. Now, considering a set of functions { }1 2, ,..., Mf f f  

of the family F , we can build the set of associated vectors { }
1 2

ˆ ˆ ˆ, ,...,
Mf f fy y y  of  n\ . 

The minimum sum-of-squares clustering problem is to find a partition 

{ }1 2, ,..., KP C C C=  of  { }
1 2

ˆ ˆ ˆ, ,...,
Mf f fy y y  in K  disjoint subsets (clusters) such that the 

sum of squared distances from each point to the centroid of its cluster is minimum. 
We use k-means clustering [10]. In this algorithm, the cluster centroid is defined as 
the mean data vector averaged over all items in the cluster. The number of clusters 
must be pre-assigned.  

4.2   Hybrid Evolutionary Algorithm 

As stated, we have two different algorithms depending on the stage when the 
clustering and local search algorithms are carried out: 

1. Algorithm HEPC. We apply the clustering process to the best psN�  individuals 

of the final population which is divided into K  clusters 1 2, ,..., KC C C . After 

that, we apply the L-M algorithm to the best individual of each cluster. The 
individuals obtained with the local-search algorithm are stored in a local 
optimum set C .  

2. Algorithm Dynamic HEPC. We apply the clustering process and the L-M 
algorithm to the best individual of each cluster every 0G  generation and in the 

final population. The clustering process is applied on each selected generation to 
the best psN�  individuals of the current population .The individuals obtained 

with the local-search algorithm are stored in C . 

In cases 1 and 2, the final solution is the best individual among the local optimum 
of set C . 

On the other hand, the parameters used are: the exponents jiw  are initialized in the 

interval [ 5,5]− , the coefficients jβ  are initialized in [ 10,10]− . The size of the 

population is 1000pN = . The maximum number of generations is 4000. The only 

parameter of the L-M algorithm is the tolerance of the error to stop the algorithm, in 
our experiment this parameter has the value 0.01. The k-means algorithm is applied to 
25%  of  the best individuals of the population. The number of clusters K  is 4 in the 
static version of HEPC. In the dynamic version the number of clusters varies from 6, 
at the beginning of the evolution, to a final value of 4 in the last generation. 

5   Experiments 

In order to test the performance of the proposed algorithms, they are applied to two 
benchmark regression problems: Friedman #1 and Sugeno functions. 
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5.1   Friedman#1 Function 

This is a synthetic benchmark dataset proposed in [11]. The function is given by: 

2
1 2 3 4 5( ) 10 sin ( ) 20( 0.5) 10 5f x x x x xπ ε= + − + + +x  

where ε  is a Gaussian random noise N(0;1) and the input variables are uniformly 
distributed in the interval (0;1]. 1000 samples are created randomly, 750 are randomly 
selected for the training set, and the remaining 250 are used as a test set. Table 1 
shows the results for Friedman#1 function. The final solution has 6 nodes in the 
hidden layer. Table 1 shows a comparison of the results of the different algorithms 
proposed, where MSEG is  
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where the ˆiy  are the predicted values. In order to test the soundness of the clustering 

approach, we carried out two additional experiments. First, the same methodology of 
HEPC was applied, removing the cluster analysis. Instead of performing the 
clustering, we applied the L-M algorithm to 4K =  randomly selected individuals 
from the best 25% of the population. The generalization results after 10 runs of the 
algorithm using both methods are shown in Table 2. 

Table 1. Statistics of MSEG for different models in the Friedman#1 problem. Results of 
NeuralBAG (NBAG), Simple and General Regression Neural Networks (GRNNFA) are 
adapted from [12] and [13] 

Algorithms Mean SD Runs 
NBAG 4.502 0.268 20 
Simple 4.948 0.589 20 

GRNNFA  4.563 0.195 20 

HEPC 1.105 0.102 30 

Dynamic HEPC 1.081 0.040 30 

Table 2. Statistics of MSEG for Friedman#1 function for 10 runs of HEPC and randomly 
selecting the individuals to optimize 

Algorithm Mean SD Best Worst Mann-Whitney's U test 
HEPC 1.095 0.114 1.066 1.607  
Random 1.408 0.665 1.068 2.981 p value=0.003 

Table 2 shows that, on average, the results using the clustering are better and have 
less variance. We performed a Mann-Whitney's U test, as the results of HEPC did not 
follow a normal distribution, with a p-value of 0.003. We can conclude that the 
application of the clustering algorithm improves the results for the Friedman function. 
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The second experiment was carried out to confirm the performance of our 
approach. The HEPC method was compared to an evolutionary process, denoted by 
L-M all, where, instead of applying the optimization algorithm to the best individual 
of each cluster, we apply the optimization algorithm to every individual in  the best 
25% of the population. The results in performance and time are shown in Table 3. 

Table 3. Results for Friedman#1 function for 10 runs of HEPC and selecting all the individuals 
to be optimized. The time is measured in average seconds per generation 

 MSEG 
Algorithm Mean SD Best Worst t-test 

HEPC 1.081 0.009 1.064 1.093  
L-M all 1.081 0.010 1.071 1.098 0.993 

 Time 

Algorithm Mean SD Best Worst t-test 

HEPC 5.3 0.67 4 6  
L-M  all 76.9 8.65 64 91 0.000 

5.2   Sugeno Function 

The second benchmark problem concerns an approximation of the Sugeno function 
defined as 0.5 1 1.5 2

1 2 3 1 2 3( , , ) (1 )f x x x x x x− −= + + + . For training, 216 points for [1,6] 

interval and 125 points for testing from [1.5,5.5] interval were randomly created. The 
Average Percentage Error (APE) was used as a measure of approximation error 

1

ˆ1
*100%

n
i i

i i

y y
APE

N y=

−
= ∑  

Final networks had at most 11 nodes in the hidden layer. Results using Dynamic 
HEPC are compared to other results obtained by Kosinski and Hirikawa [14] and 
Jankowski [15] (see Table 4).  

Table 4. Results for the Sugeno function for 30 runs of dynamic HEPC. Results of Fuzzy 
Neural Networks (FNN3), MDelt, FuzzyVINET, Incremental Neural Network (IncNet) and 
Incremental Neural Network with Rotation (Incnet Rot) are adapted from [15] 

 FNN3 MDelt FuzzyIne FuzzyVine IncN
t

IncNetRo
t

Dyn.HEPC

APET 0.63 0.72 0.18 0.076 0.119 0.053 0.065 

APEG 1.25 0.74 0.24 0.18 0.122 0.061 0.060 

 

6   Conclusions 

In this work we have proposed a new method for using local optimization procedures 
in hybrid evolutionary algorithms. This approach is based on the application of a 
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clustering algorithm for the selection of a small number of individuals subject to local 
optimization. The algorithm is applied to the optimization of the structure and weights 
of product-unit based neural networks. The results obtained in two benchmark 
problems of regression show that the hybrid algorithm provides a very good 
compromise between performance and computatioal cost.  
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