

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 83 – 90, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Memetic Algorithms to Product-Unit Neural
Networks for Regression1

Francisco Martínez-Estudillo1, César Hervás-Martínez2,
Alfonso Martínez-Estudillo1, and Domingo Ortíz-Boyer2

1 Department of Management and Quantitative Methods, ETEA, Spain
{acme, fjmestud}@etea.com

2 Department of Computing and Numerical Analysis of the University of Córdoba, Spain
{chervas, ma1orbod}@uco.es

Abstract. In this paper we present a new method for hybrid evolutionary
algorithms where only a few best individuals are subject to local optimization.
Moreover, the optimization algorithm is only applied at specific stages of the
evolutionary process. The key aspect of our work is the use of a clustering
algorithm to select the individuals to be optimized. The underlying idea is that
we can achieve a very good performance if, instead of optimizing many very
similar individuals, we optimize just a few different individuals. This approach
is less computationally expensive. Our results show a very interesting
performance when this model is compared to other standard algorithms. The
proposed model is evaluated in the optimization of the structure and weights of
product-unit based neural networks.

1 Introduction

Evolutionary algorithms (EAs) are efficient at exploring the entire search space;
however, they are relatively poor at finding the precise optimum solution in the region
where the algorithm converges to [1]. During the last few years new methods have
been developed in order to improve the lack of precision of the EAs using local
optimization algorithms [2]. These new methodologies are based on the combination
of local optimization procedures, which are good at finding local optima (local
exploiters), and evolutionary algorithms (global explorers). These are commonly
known as hybrid algorithms.

In this paper, we propose an alternative approach to hybrid algorithms using local
optimization procedures. The methodology is based on the combination of an
evolutionary algorithm, a clustering process and a local improvement procedure. If we
want to efficiently use the hybrid algorithm, we have to reduce the computation time
spent by the local search. So, our approach is to select a subset of the best individuals,
perform a cluster analysis to group them, and optimize only the best individual of
every group.

1
 This work has been financed in part by the TIC2002-04036-C05-02 project of the Spanish

Inter-Ministerial Commission of Science and Technology (CICYT) and FEDER funds.

84 F. Martínez-Estudillo et al.

The main advantage of this method is that the computational cost of applying the
optimization algorithm to just a few individuals hardly affects the total time spent by
the algorithm. On the other hand, the use of a clustering algorithm allows the
selection of individuals representing different regions in the search space. In this way,
the optimized individuals are more likely to converge towards different local optima.
The model developed is applied to the evolution of the structure and weights of
evolutionary product-unit based neural networks. These kinds of networks are a very
interesting alternative to sigmoid-based neural networks, but their major drawback is
that the optimization algorithms usually used for training a network are quite
inefficient for training product-unit networks. So, an effective algorithm for training
these networks is of great practical interest. In order to test the performance of the
proposed algorithms, the networks are applied to benchmark regression problems.

This paper is organized as follows: Section 2 describes our model in depth; Section
3 is dedicated to a short description of product-unit based networks; Section 4 states
the most relevant aspects of the evolution of product-unit neural networks using the
proposed approach; Section 5 explains the experiments carried out; and finally
Section 6 summarizes the conclusions of our work.

2 Hybrid Evolutionary Programming Algorithms

We propose two methods of hybrid evolutionary algorithms based on the use of a
clustering algorithm for deciding which individuals are subject to local optimization.
We have two different versions for the hybrid evolutionary algorithm depending on
the stage when we carry out the local search and the cluster partitioning. The hybrid
evolutionary programming with the clustering (HEPC) algorithm applies the
clustering process on a large enough subset of the best individuals of the final
population. In this method it is very important to determine the number of best
individuals to consider as well as the number of clusters. After that, we apply the L-M
algorithm to the best individual of each cluster. The algorithm named dynamic hybrid
evolutionary programming with clustering (Dynamic HEPC) carries out both the
clustering process and the L-M local search dynamically every 0G generation. The
final solution is the best individual among the local optima found during the
evolutionary process. The basic aim of our methodology is the optimization of the
number of times a local optimization algorithm is applied without reducing the
efficacy of this algorithm. This is especially important when the algorithm is of a high
computational cost. On the other hand, removing the local optimization procedure
usually yields a worse performance. So, our method is a good compromise, as we
applied the optimization algorithm to a reduced number of individuals. Moreover, the
clustering process avails us with the possibility of selecting a subset of individuals
with different features. In this way, the optimization algorithm is more efficient.

The local optimization algorithm used in our work is the Levenberg- Marquardt (L-
M) optimization method. This algorithm is designed specifically for minimizing a
sum-of-squares error [3]. In any case, any other local optimization algorithm can be
used in a particular problem. Another feature of our approach is that the optimized

 Memetic Algorithms to Product-Unit Neural Networks for Regression 85

individuals are not included in the new population. Once the optimization algorithm is
applied, we think that any further modification of the individual would be counter-
productive. So, these individuals are stored in a separate population till the end of the
evolutionary algorithm.

3 Product-Unit Neural Networks

In order to test the validity of our model we have chosen a difficult problem, hard
enough to justify the use of complex approaches. The problem is the automatic
determination of the structure and weights of product-unit neural networks [4].
Product units enable a neural network to form higher-order combinations of inputs,
having the advantages of increased information capacity and smaller network
architectures when we have interaction between the input variables. Neurons with
multiplicative responses can act as powerful computational elements in real neural
networks. Product-unit based neural networks have a major drawback, since their
training is more difficult than the training of standard sigmoid based networks.
Unfortunately, the error surface for product units can be extremely convoluted, with
numerous minima that trap backpropagation. This is because small changes in the
exponents can cause large changes in the total error. Several efforts have been made
to develop learning methods for product units [5],[6],[7]. Let us consider the family
of real functions F defined by:

1 1

: : () ji

km
wk

j i
j i

F f A f xβ
= =

⎧ ⎫⎛ ⎞= ⊂ → =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑ ∏x,θ\ \

where 1 2(, ,...,)kx x x=x , ,(,)j ij i jwβ=θ , [] [], , , ,j ijM M w L Lβ ∈ − ⊂ ∈ − ⊂\ \

1,2,..., , 1,2...,i k j m= = y m ∈` . The domain of the definition of f is the subset

A of k\ given by { }1 2 0(, ,...,) : 0k
n iA x x x x k= ∈ < ≤\ . Using the Stone-

Weierstrass Theorem it is straightforward to prove that this family of functions is a
dense subset of the continuous functions space defined in a compact. On the other
hand, every function of the family can be represented as a neural network. The
network must have the following structure: an input layer with a node for every input
variable, a hidden layer with several nodes, and an output layer with just one node.
There are no connections between the nodes of a layer and none between the input
and output layers either. The network has k inputs that represent the independent
variables of the model, m nodes in the hidden layer, and one node in the output layer.

The activation of j-th node of the hidden layer is given by
1

() ji

k
w

j i
i

B x
=

= ∏jx,w where

jiw is the weight of the connection between input node i and hidden node j . The

activation of the output node is given by
1

()
m

j j
j

Bβ
=
∑ jx,w

where jβ is the weight of

the connection between the hidden node j and the output node. The transfer function

of all nodes is the identity function.

86 F. Martínez-Estudillo et al.

4 Hybrid Evolutionary Model

The evolution of product-unit networks uses the operations of replication and two
types of mutation: structural and parametric. There is no crossover, as this operation is
usually regarded as harmful [8] for network evolution. In the following paragraphs we
are going to describe each one of the different aspects of the algorithm in detail.

Initial population. We generate randomly 10 PN networks and we select the best PN

among them. So, we construct the initial population B whose size is PN .

Selection plan. The %r best individuals of the population are selected from the set

{ }best individual of B B B∗ = − of cardinality 1PN N∗ = − . With these individuals we

make up the population B′ of size /100PrN⎢ ⎥⎣ ⎦ .

Structural and parametric mutations. Every individual of the population B′ is
subject to structural mutation, obtaining strucB′ . The parametric mutation is applied

only to the best (100) /100pr N ∗− individuals of B′ obtaining paramB′ . We construct

the population struc paramB B B′′ ′ ′= ∪ , where the cardinality of B′′ is 1PN N∗ = − .

The structural mutation implies a modification in the structure of the function
performed by the network and allows an exploration of different regions in the search
space. There are five different structural mutations: node addition, node deletion,
connection addition, connection deletion and node fusion. Parametric mutation is
accomplished for each coefficient of the model with Gaussian noise, using a self-
adaptive annealing algorithm. For more details see [9].

Updated plan. The new population will be { }Best of B B B′′= ∪ .

4.1 Clustering Partitioning Techniques

Let { }(,) : 1, 2,..,l l TD y l n= =x be the training data set, where the number of samples

is Tn . We define the following application from the family of functions F to the

Euclidean space Tn\ :

() ()()
1,2,...,

:

ˆ() ()

T

T

n

f l l n

H F

f H f y f
=

→

→ = =x,θ x,θ x ,θ
\

where θ is the set of parameters of f . The application assigns to each function of

the family the vector obtained with the values of the function over the training data
set. Thus we can define the distance between two functions of the family as the
Euclidean distance between the associated vectors:

1/ 2
2

1

ˆ ˆ(,) () ()
Tn

f g l l
l

d f g y y f g
=

⎡ ⎤
= − = −⎢ ⎥

⎣ ⎦
∑ x ,θ x ,θ

 Memetic Algorithms to Product-Unit Neural Networks for Regression 87

With this distance measure, the proximity between two functions is related to their
performance. So, similar functions using this distance will have a similar performance
over the same regression problem. Now, considering a set of functions { }1 2, ,..., Mf f f

of the family F , we can build the set of associated vectors { }
1 2

ˆ ˆ ˆ, ,...,
Mf f fy y y of n\ .

The minimum sum-of-squares clustering problem is to find a partition

{ }1 2, ,..., KP C C C= of { }
1 2

ˆ ˆ ˆ, ,...,
Mf f fy y y in K disjoint subsets (clusters) such that the

sum of squared distances from each point to the centroid of its cluster is minimum.
We use k-means clustering [10]. In this algorithm, the cluster centroid is defined as
the mean data vector averaged over all items in the cluster. The number of clusters
must be pre-assigned.

4.2 Hybrid Evolutionary Algorithm

As stated, we have two different algorithms depending on the stage when the
clustering and local search algorithms are carried out:

1. Algorithm HEPC. We apply the clustering process to the best psN� individuals

of the final population which is divided into K clusters 1 2, ,..., KC C C . After

that, we apply the L-M algorithm to the best individual of each cluster. The
individuals obtained with the local-search algorithm are stored in a local
optimum set C .

2. Algorithm Dynamic HEPC. We apply the clustering process and the L-M
algorithm to the best individual of each cluster every 0G generation and in the

final population. The clustering process is applied on each selected generation to
the best psN� individuals of the current population .The individuals obtained

with the local-search algorithm are stored in C .

In cases 1 and 2, the final solution is the best individual among the local optimum
of set C .

On the other hand, the parameters used are: the exponents jiw are initialized in the

interval [5,5]− , the coefficients jβ are initialized in [10,10]− . The size of the

population is 1000pN = . The maximum number of generations is 4000. The only

parameter of the L-M algorithm is the tolerance of the error to stop the algorithm, in
our experiment this parameter has the value 0.01. The k-means algorithm is applied to
25% of the best individuals of the population. The number of clusters K is 4 in the
static version of HEPC. In the dynamic version the number of clusters varies from 6,
at the beginning of the evolution, to a final value of 4 in the last generation.

5 Experiments

In order to test the performance of the proposed algorithms, they are applied to two
benchmark regression problems: Friedman #1 and Sugeno functions.

88 F. Martínez-Estudillo et al.

5.1 Friedman#1 Function

This is a synthetic benchmark dataset proposed in [11]. The function is given by:

2
1 2 3 4 5() 10 sin () 20(0.5) 10 5f x x x x xπ ε= + − + + +x

where ε is a Gaussian random noise N(0;1) and the input variables are uniformly
distributed in the interval (0;1]. 1000 samples are created randomly, 750 are randomly
selected for the training set, and the remaining 250 are used as a test set. Table 1
shows the results for Friedman#1 function. The final solution has 6 nodes in the
hidden layer. Table 1 shows a comparison of the results of the different algorithms
proposed, where MSEG is

[] 2

G
1

1
ˆMSE

Gn

i i
iG

y y
n =

= −∑

where the ˆiy are the predicted values. In order to test the soundness of the clustering

approach, we carried out two additional experiments. First, the same methodology of
HEPC was applied, removing the cluster analysis. Instead of performing the
clustering, we applied the L-M algorithm to 4K = randomly selected individuals
from the best 25% of the population. The generalization results after 10 runs of the
algorithm using both methods are shown in Table 2.

Table 1. Statistics of MSEG for different models in the Friedman#1 problem. Results of
NeuralBAG (NBAG), Simple and General Regression Neural Networks (GRNNFA) are
adapted from [12] and [13]

Algorithms Mean SD Runs
NBAG 4.502 0.268 20
Simple 4.948 0.589 20

GRNNFA 4.563 0.195 20

HEPC 1.105 0.102 30

Dynamic HEPC 1.081 0.040 30

Table 2. Statistics of MSEG for Friedman#1 function for 10 runs of HEPC and randomly
selecting the individuals to optimize

Algorithm Mean SD Best Worst Mann-Whitney's U test
HEPC 1.095 0.114 1.066 1.607
Random 1.408 0.665 1.068 2.981 p value=0.003

Table 2 shows that, on average, the results using the clustering are better and have
less variance. We performed a Mann-Whitney's U test, as the results of HEPC did not
follow a normal distribution, with a p-value of 0.003. We can conclude that the
application of the clustering algorithm improves the results for the Friedman function.

 Memetic Algorithms to Product-Unit Neural Networks for Regression 89

The second experiment was carried out to confirm the performance of our
approach. The HEPC method was compared to an evolutionary process, denoted by
L-M all, where, instead of applying the optimization algorithm to the best individual
of each cluster, we apply the optimization algorithm to every individual in the best
25% of the population. The results in performance and time are shown in Table 3.

Table 3. Results for Friedman#1 function for 10 runs of HEPC and selecting all the individuals
to be optimized. The time is measured in average seconds per generation

 MSEG
Algorithm Mean SD Best Worst t-test

HEPC 1.081 0.009 1.064 1.093
L-M all 1.081 0.010 1.071 1.098 0.993

 Time

Algorithm Mean SD Best Worst t-test

HEPC 5.3 0.67 4 6
L-M all 76.9 8.65 64 91 0.000

5.2 Sugeno Function

The second benchmark problem concerns an approximation of the Sugeno function
defined as 0.5 1 1.5 2

1 2 3 1 2 3(, ,) (1)f x x x x x x− −= + + + . For training, 216 points for [1,6]

interval and 125 points for testing from [1.5,5.5] interval were randomly created. The
Average Percentage Error (APE) was used as a measure of approximation error

1

ˆ1
*100%

n
i i

i i

y y
APE

N y=

−
= ∑

Final networks had at most 11 nodes in the hidden layer. Results using Dynamic
HEPC are compared to other results obtained by Kosinski and Hirikawa [14] and
Jankowski [15] (see Table 4).

Table 4. Results for the Sugeno function for 30 runs of dynamic HEPC. Results of Fuzzy
Neural Networks (FNN3), MDelt, FuzzyVINET, Incremental Neural Network (IncNet) and
Incremental Neural Network with Rotation (Incnet Rot) are adapted from [15]

 FNN3 MDelt FuzzyIne FuzzyVine IncN
t

IncNetRo
t

Dyn.HEPC

APET 0.63 0.72 0.18 0.076 0.119 0.053 0.065

APEG 1.25 0.74 0.24 0.18 0.122 0.061 0.060

6 Conclusions

In this work we have proposed a new method for using local optimization procedures
in hybrid evolutionary algorithms. This approach is based on the application of a

90 F. Martínez-Estudillo et al.

clustering algorithm for the selection of a small number of individuals subject to local
optimization. The algorithm is applied to the optimization of the structure and weights
of product-unit based neural networks. The results obtained in two benchmark
problems of regression show that the hybrid algorithm provides a very good
compromise between performance and computatioal cost.

References

[1] Houck, C. R., Joines, J. A., and Kay, M. G.: Empirical investigation of the benefits of
partial lamarckianism, Evolutionary Computation, Vol. 5, no. 1, (1997), pp. 31-60.

[2] Moscató, P. and Cotta, C., “A gentle introduction to memetic algorithms”: In: Glover, F.
and Kochenberger, G., (eds.): Handbook of Metaheuristics, pp. 1-56. Kluwer, 1999.

[3] Bishop, C. M.: Neural Networks for Pattern Recognition. Oxford University Press,
(1995).

[4] Durbin, R., Rumelhart D.: Product units: A computationally powerful and biologically
plausible extension to backpropagation networks. Neural Computation, Vol. 1, (1989),
pp. 133-142.

[5] Ismail, A., Engelbrecht, A. P.: Training product units in feedforward neural networks
using particle swarm optimisation. In: Bajic, V. B., Sha, D. (eds.): Development and
Practice of Artificial Intelligence Techniques, Proceeding of the International Conference
on Artificial Intelligence, Durban, South Africa, (1999), pp. 36-40.

[6] Leerink, L. R., Giles, C. L., Horne, B. G, Jabri, M. A.: Learning with product units.
Advances in Neural Information Processing Systems 7, MIT Press, (1995), pp. 537-544.

[7] Saito, K., Nakano, R.: Extracting regression rules from neural networks. Neural
Networks, Vol. 15, no. 10, (2002). pp. 1279-1288

[8] Angeline P. J., Saunders, G. M., Pollack, J. B.: An evolutionary algorithm that constructs
recurrent neural networks. IEEE Transactions on Neural Networks, Vol. 5, no. 1, January
(1994), pp. 54-65.

[9] Martínez, A., Martínez, F., Hervás, C., García, N.: Model Fitting by evolutionary
computation using product units. Neural Networks, (2004) (Submitted).

[10] Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, (1990).
[11] Friedman, J., Multivariate adaptive regression splines (with discussion). Ann. Stat., Vol.

19, (1991), pp. 1-41.
[12] Carney, J., Cunningham, P.: Tuning diversity in bagged ensembles. Int. J. Neural

Systems, Vol. 10, no. 4, (2000), pp. 267-279.
[13] Lee, W. M., Lim, Ch. P., Yuen, K. K., Lo, S. M.: A hybrid neural network model for

noisy data regression. IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol.
34, no. 2, (2004), pp. 951-960.

[14] Kosinski, W., Weigl, M.: Mapping neural networks and fuzzy inference systems for
approximation of multivariate function. In Kacki E., (eds.): System Modelling Control,
Artificial Neural networks and Their Applications, Vol.3, Lodz, Poland, May (1995), pp.
60-65.

[15] Jankowski, N.: Approximation with RBF-type neural networks using flexible local and
semi-local transfer functions. In 4th Conference on Neural Networks and Their
Applications, Zakopane, Poland, May (1999), pp. 77-82.

	Introduction
	Hybrid Evolutionary Programming Algorithms
	Product-Unit Neural Networks
	Hybrid Evolutionary Model
	Clustering Partitioning Techniques
	Hybrid Evolutionary Algorithm

	Experiments
	Friedman#1 Function
	Sugeno Function
	Conclusions
	References

