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Abstract—
In this work we study the behaviour of a Fuzzy Rule Based Clas-

sification System, and its relationship to a certain data complexity
measures family. As Fuzzy Rule Based Classification System we have
selected a recent proposal called Positive Definite Fuzzy Classifier,
which is a Fuzzy System that uses Support Vector Machines for its
training, obtaining accurate results and a low number of rules.

We have examined several data complexity metrics of separability
of classes over a wide range of data sets built from real data, and
try to extract behaviour patterns from the results for this learning
method. Using these data complexity measures and the accuracy
results of the Positive Definite Fuzzy Classifier, we have built a rule
set which describes both good or bad behaviours of this Fuzzy Rule
Based Classification System.

These rules use different values of such data complexity measures
as antecedents, so we aim to predict the behaviour of the method from
the data set complexity metrics prior to its application. Therefore,
the rule set could characterise the domains of competence of this
particular Fuzzy Rule Based Classification System.

Keywords— Classification, Data complexity, Fuzzy Rule Based
Systems, Support Vector Machines

1 Introduction
Fuzzy Rule Based Classification Systems (FRBCSs) [12, 14]
are a very useful tool in the ambit of Data Mining, since they
are capable of building a linguistic model clearly interpretable
by human beings. There is a vast literature in the field of FR-
BCSs [14], which is very active at this time [9, 1, 16, 13].

The prediction capabilities of classifiers are strongly depen-
dent on the problem’s characteristics. An emergent field, that
uses a set of complexity measures applied to the problem to
describe its difficulty, has recently arisen. These measures
quantify particular aspects of the problem which are consid-
ered complicated to the classification task [11]. Studies of
data complexity metrics applied to particular classification’s
algorithms can be found in [11, 4, 3, 19].

In this work we are interested in analysing the relationship
between FRBCSs and the complexity measures, considering
a case of study using the Positive Definite Fuzzy Classifier
(PDFC) proposed by Chen and Wang [5]. In particular we
consider one type of data complexity measures based on the
separability of classes.

To perform this study, we have created several binary clas-
sification data sets from real world problems, 438 ones, and
computed the value of 3 metrics proposed by Ho and Basu
[10]. We have analysed the intervals of the complexity mea-
sures values related to the created data sets, in which PDFC

method performs well or badly, and then formulated a rule for
such intervals. The rules try to describe the ranges where some
information and conclusions about the behaviour of PDFC
method can be stated.

This contribution is organised as follows. In Section 2 we
describe the FRBCS we have used. In Section 3 the considered
complexity measures are described. In Section 4 we include
the experimental set-up, the results obtained and the rules ex-
tracted, along with their analysis. Finally, in Section 5 some
concluding remarks are made.

2 Preliminaries: Fuzzy Rule Based
Classification System

Any classification problem consists of l training patterns xp =
(xp1, . . . , xpn), p = 1, 2, . . . , l from M classes where xpi is
the ith attribute value (i = 1, 2, . . . , n) of the p-th training
pattern.

Let us consider a two-class classification problem of assign-
ing class label y ∈ {+1,−1} to input feature vector xp. In this
work we consider the additive FRBCSs with constant THEN-
parts.

As learning method we use the PDFC method [5], which
uses a Support Vector Machine (SVM) approach to build up
the model. In the following two Subsections, first we include
the fuzzy inference model and a complete description of the
PDFC algorithm.

2.1 Fuzzy Inference Model: PDFC Method

Consider a fuzzy model with m fuzzy rules of the form:

Rule j : If A1
j AND A2

j AND . . . AND An
j THEN bj (1)

where Ak
j is a fuzzy set with membership function ak

j : R →
[0, 1], j = 1, . . . , m, k = 1, . . . , n, bj ∈ R. If we choose
product as the fuzzy conjunction operator, addition for fuzzy
rule aggregation, and center of area defuzzification, then the
model becomes a special form of the Takagi-Sugeno fuzzy
model, and the input output mapping, F : Rn → R , of the
model is defined as

F(xp) =

∑m
j=1 bj

∏n
k=1 ak

j (xk)∑m
j=1

∏n
k=1 ak

j (xk)
. (2)

Equation (2) could not be well-defined on R if∑m
j=1

∏n
k=1 ak

j (xk) = 0 for some xp ∈ Rn, which could
happen if the input space is not wholly covered by fuzzy rule
“patches”. To fix this problem, we add a fuzzy rule so that the
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denominator
∑m

j=1

∏n
k=1 ak

j (xk) > 0 for all xp ∈ R. Thus
the following rule is added:

Rule 0 : If A1
j AND A2

j AND . . . AND An
j THEN b0 (3)

where b0 ∈ R, the membership functions ak
0(xk) ≡ 1 for

k = 1, . . . , n and any xp ∈ Rn. Consequently, the input
output mapping becomes

F(xp) =
b0 +

∑m
j=1 bj

∏n
k=1 ak

j (xk)

1 +
∑m

j=1

∏n
k=1 ak

j (xk)
. (4)

A classifier associates class labels with input features, i.e.,
it is essentially a mapping from the input space to the set of
class labels. In binary case, thresholding is one of the simplest
ways to transform F(xp) to class labels +1 or −1.

Considering the FRBCS with m+1 fuzzy rules where Rule
0 is given by (3), then the system induces a binary fuzzy clas-
sifier, f , with decision rule

f(xp) = sign(F(xp) + t) (5)

where t ∈ R is a threshold. We can assume t = 0 without loss
of generality.

The membership functions for a binary fuzzy classifier de-
fined above could be any function from R to [0, 1]. We narrow
our interests to a class of membership functions, ak

j : R →
[0, 1], j = 1, . . . , m, which are generated from a reference
function ak through location transformation [8], and the clas-
sifiers defined on them. In [5] well-known types of reference
functions can be found, like the symmetric triangle and the
gaussian function.

As consequence of the presented formulation, the decision
rule of our binary fuzzy classifier can be written as:

f(xp) = sign

(
m∑

j=1

bjK(xp, zj) + b0

)
(6)

where zj = [z1
j , z2

j , . . . , zn
j ]T ∈ R contains the location pa-

rameters of ak
j . K : Rn×Rn → [0, 1] is a translation invariant

kernel defined as

K(xp, zj) =

n∏
k=1

ak(xk
p − zk

j ) (7)

which is actually a Mercer Kernel [6], if it has nonnegative
Fourier transform. Again, from [5] some Mercer kernels can
be built using the reference functions mentioned above.

Thus, the decision rule of a binary fuzzy classifier is

f(xp) = sign

(
b0 +

m∑
j=1

bj

n∏
k=1

ak
j (xk

p)

)
(8)

2.2 Learning method: SVM approach to build PDFC

Here, we assume that the reference functions are predeter-
mined. So the remaining question is how to find a set of fuzzy
rules ({z1, . . . , zm} and {b0, . . . , bm}) from the given training
so that the PDFC method has good generalization.

As given in (7), for a PDFC, a Mercer kernel can be con-
structed from the positive definite reference functions. The
kernel implicitly defines a nonlinear mapping Φ that maps X
into a kernel-induced feature space F. Theorem 3.12 in [5]
states that the decision rule of a PDFC can be viewed as a hy-
perplane in F. It is well-known that the SVM algorithm finds

a separating hyperplane with good generalization by reducing
the empirical risk and, at the same time, controlling the hyper-
plane margin [21]. Thus we can use the SVM algorithm to find
an optimal hyperplane in F. Once we get such a hyperplane,
fuzzy rules can be easily extracted. The whole procedure is
described by the following algorithm 1.

Algorithm 1 SVM learning for PDFC
INPUTS: Positive definite reference functions ak(xp) asso-
ciated with n input variables, and a set of training samples
OUTPUTS: A set of fuzzy rules parameterized by zj , bj ,
and m. zj contains the location parameters of the IF-part
membership functions of the jth fuzzy rule, bj is the THEN-
part constant of the jth fuzzy rule, and m+1 is the number
of fuzzy rules.
Steps:
1 Construct a Mercer kernel, K, from the given positivedef-
inite reference functions according to (7).
2 Construct an SVM to get a decision rule of the form

f(x) = sign

(∑
i∈S

yiαiK(x, xi) + b

)
,

being S the index set of the support vectors:
2.1 Assign some positive number to the cost C, and solve

the quadratic program defined by the proper SVM to get the
Lagrange multipliers αi.

2.2 Find b (details can be found in, for example, [18]).
2.3 Extracting fuzzy rules from the decision rule of the

SVM:
b0 ← b
j ← 1
for i = 1 to l do

if αi > 0 then
zj ← xi

bj ← yiαi

j ← j + 1
end if

end for
m ← j − 1

In our study, we have considered the parameters values rec-
ommended by the authors. They are summarized as follows:

• C = 100 (weight of the classification error)

• d = 0.25 (parameter used by the reference functions)

• Type of reference functions: Gaussian

3 Data Complexity Measures Based on the
Separability of Classes

In this section we describe the three metrics we have used in
this contribution, with their correspondent acronym.

For our study, we will examine three measures of separabil-
ity of classes from [10] which offer information for the PDFC
method. They are described next.

• N1: fraction of points on class boundary. This method
constructs a class-blind minimum spanning tree over the
entire data set, and counts the number of points incident
to an edge going across the two classes. The fraction of
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such points over all points in the data set is used as a
measure. For two heavily interleaved classes, a majority
of points are located next to the class boundary. However,
the same can be true for a sparsely sampled linearly sep-
arable problem with margins narrower than the distances
between points of the same class.

• N2: ratio of average intra/inter class Nearest Neighbour
(NN) distance. For each input instance xp, we calcu-
late the distance to its nearest neighbour within the class
(intraDist(xp)) and the distance to nearest neighbour of
any other class (interDist(xp)). Then, the result is the ra-
tio of the sum of the intra-class distances to the sum of
the inter-class distances for each input example, i.e.,

N2 =
∑m

i=0 intraDist(xi)∑m
i=0 interDist(xi)

,

where m is the number of examples in the data set. This
metric compares the within-class spread with the dis-
tances to the nearest neighbours of other classes. Low
values of this metric suggest that the examples of the
same class lay closely in the feature space. Large values
indicate that the examples of the same class are disperse.
It is sensitive to the classes of the closest neighbours to
a point, and also to the difference in magnitude of the
between-class distances and that of the within-class dis-
tances.

• N3: error rate of 1-NN classifier. This is simply the error
rate of a nearest-neighbour classifier measured with the
training set. The error rate is estimated by the leave-one-
out method. The measure denotes how close the exam-
ples of different classes are. Low values of this metric
indicate that there is a large gap in the class boundary.

4 Experimental Study: Analysis of the PDFC
with Data Complexity Measures

In this Section we analyse the obtained results for the PDFC
method. First, in Subsection 4.1 we present the experimen-
tal framework, with the data sets generation method, accuracy
validation scheme, and the global average results of the PDFC
method. Next we determine several rules based on PDFC’s
behaviour in Subsection 4.2. Finally we analyse the collective
evaluation of the set of rules in Subsection 4.3.

4.1 Experimental Framework: Data Sets Generation

We evaluate the PDFC method on a set of 438 binary clas-
sification problems. These problems are generated from pair-
wise combinations of the classes of 20 problems from the Uni-
versity of California, Irvine (UCI) repository [2]. These are
iris, wine, new-thyroid, solar-flare, led7digit, zoo, yeast, tae,
balanced, car, contraceptive, ecoli, hayes-roth, shuttle, aus-
tralian, pima, monks, bupa, glass, haberman and vehicle.

In order to do that, first we take each data set and extract
the examples belonging to each class. Then we construct a
new data set with the combination of the examples from two
different classes. This will result in a new data set with only 2
classes and the examples which have two such classes as out-
put. We perform this process for every possible pairwise com-
bination of classes. However, if an obtained data set with this

procedure proves to be linearly-separable, we discard it (since
we could classify it with a linear classifier with no error). The
complexity measure L1 from [10] indicates if a problem is
linearly-separable if its value is zero, so every data set with a
L1 value of zero will be discarded.

This method for generating binary data sets is limited by the
proper combinatorics, and we can only obtain over 200 new
data sets with the original 20 data sets with this first approach.
In order to obtain more data sets, we group the classes two by
two, that is, we create a new binary data set, and each of its
two classes are the combination of two original classes each.
For this second approach we have used ecoli, glass and flare
data sets, since they have a high number of class labels. Again,
those data sets with a L1 value of zero are discarded.

In order to measure the PDFC performance, we have ap-
plied a 10-fcv validation scheme. In Table 1 we show the
global Training and Test accuracy obtained by the PDFC
method.

Table 1: Global Average PDFC Training and Test Accuracy
PDFC Global % Accuracy Training 94.06%
PDFC Global % Accuracy Test 91.22%

4.2 Determination of Rules Based on the PDFC Behaviour

In the following we present the results of the execution over
the 438 data sets summarized in Figures 1 to 3.
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Figure 1: PDFC accuracy in Training/Test sorted by N1
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Figure 2: PDFC accuracy in Training/Test sorted by N2

For each complexity measure (N1, N2 and N3), the data
sets are sorted by the ascending value of the corresponding
complexity measure, and put altogether in a Figure. In the X
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Table 3: Rules with one metric obtained from the intervals
Id. Rule Support %Training Training % Test Test

Diff. Diff.
R1+ If N1[X] < 0.089 33.11% 99.09% 4.91% 98.15% 6.55%

then good behaviour
R2+ If 0 < N3[X] < 0.047 28.31% 98.92% 4.86% 97.70% 6.48%

then good behaviour
R1- If N1[X] ≥ 0.25 25.57% 84.64% -9.42% 79.01% -12.21%

then bad behaviour
R2- If N2[X] > 0.5196 24.89% 86.14% -7.92% 80.88% -10.34%

then bad behaviour
R3- If N3[X] > 0.175 19.41% 82.64% -11.42% 76.77% -14.45%

then bad behaviour
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Figure 3: PDFC accuracy in Training/Test sorted by N3

axis we represent the data sets, not the complexity measure
value, and the Y axis depicts the accuracy obtained both in
training and test. The reason to do so is to give each data
set the same space in the graphic representation. For those
measures where we can find different ad-hoc intervals which
present good or bad behaviour of the PDFC, we use a vertical
line to delimit the interval of the region of interest.

• We understand for good behaviour an average high test
accuracy in the interval, as well as the absence of over-
fitting.

• By bad behaviour we refer to the presence of over-fitting
and/or average low test accuracy in the interval.

In Table 2 we have summarized the intervals found ad-hoc
from Figures 1 to 3.

Table 2: Significant intervals
Interval PDFC Behaviour
N1 < 0.089 good behaviour
0 < N3 < 0.047 good behaviour
N1 ≥ 0.25 bad behaviour
N2 > 0.5196 bad behaviour
N3 > 0.175 bad behaviour

From these ad-hoc intervals we construct several rules that
model the performance of the FRBCS we have used. In Table
3 we have summarized the rules derived from Table 2. Given
a particular data set X , we get the complexity measure of X
with the notation CM [X]. Table 3 is organised with the fol-
lowing columns.

• The first column corresponds to the identifier of the rule
for further references.

• The “Rule‘” column presents the rule itself.

• The third column “Support” presents the percentage of
data sets which verifies the antecedent of the rule.

• The column “% Training” shows the average accuracy
in training of all the examples which are covered by the
rule.

• The column “Training Diff.” contains the difference be-
tween the training accuracy of the rule and the training
accuracy across all 438 data sets.

• The column “% Test” shows the average accuracy in test
of all the examples which are covered by the rule.

• The column “Test Diff.” contains the difference between
the test accuracy of the rule and the test accuracy across
all 438 data sets.

As we can see in Table 3, the positive rules (denoted with a
“+” symbol in their identifier) always show a positive differ-
ence with the global average, both in training and test accu-
racy. The negative ones (with a “-” symbol in their identifier)
verify the opposite case. The support of the rules shows us
that we can characterize a wide range of data sets and obtain
significant differences in accuracy.

From this set of rules we can state that a low N1 value re-
sults in a good behaviour of the PDFC method. A low N3
value obtains the same results. In the other hand, a high value
in the N1 metric produces a bad behaviour of the PDFC con-
sidered in our analysis. A high N3 value will also produce a
bad behaviour of the PDFC method. With similar outcome, if
N2 presents a high value, the PDFC method will obtain bad
behaviour.

Although we have obtained some interesting rules, we can
extend our study by considering the combination of these
complexity metrics in order to obtain more precise and de-
scriptive rules.

4.3 Collective Evaluation of the Set of Rules

The objective of this section is to analyse the good rules
jointly, and the bad rules together as well. Thus we can ar-
rive at a more general description, with wider support, of the
behaviour of the PDFC with these joint rules. We perform the
disjunctive combination of all the positive rules to obtain a sin-
gle rule, and all the negative ones, so we obtain another rule.
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Table 4: Disjunction Rules from all simple rules
Id. Rule Support %Training Training % Test Test

Diff. Diff.
PRD If R1+ or R2+ 37.44% 98.99% 4.93% 97.90% 6.68%

then good behaviour
NRD If R1- or R2- or R3- 31.51% 86.23% -7.83% 81.24% -9.98%

then bad behaviour
not charac- If not PRD and not NRD 31.05% 96.06% 2.00% 93.27% 2.05%

terised then good behaviour
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Figure 4: Three blocks representation for PRD, NRD and not covered data sets for PDFC

The new disjunctive rule will be activated if any of the compo-
nent rules’ antecedents are verified. In Table 4 we summarize
both disjunctions, and a third rule representing those data sets
which are not charaterised by either disjunction rules.

From the collective rules we can observe that the support
has been increased from the single rules both for the Posi-
tive Rule Disjunction (PRD) and Negative Rule Disjunction
(NRD). In the other hand, the Test and Training Accuracy Dif-
ferences are similar to the single rules from Table 3. Since
there are no data sets in PRD and NRD simultaneously, we
can consider three blocks of data sets with their respective
support, as depicted in Figure 4 (with no particular data set
order within each block):

• The first block (the left-side one) represents the data sets
covered by the PRD rule. They are the data sets recog-
nized as being those in which the PDFC has good accu-
racy.

• The second block (the middle one) plots the data sets
for the rule NRD, which are bad data sets for the PDFC
method considered.

• The third and last block (the right-side one) contains the
unclassified data sets by the previous two rules.

We can see that almost the 70% of the analysed data sets
are covered by these two rules, and hence the good behaviour

and bad behaviour consequents represent well the accuracy of
PDFC methods.

5 Concluding Remarks
We have performed a study over a set of binary data sets with
the PDFC method. We have computed some data complex-
ity measures for the data sets in order to obtain intervals of
such metrics in which the method’s performance is signifi-
cantly good or bad. We have constructed descriptive rules, and
studied the interaction between the intervals and the proper
rules.

We have obtained two rules which are simple and precise
to describe both good and bad performance of the PDFC. Fur-
thermore, we present the possibility of determining which data
sets PDFC would performs well or badly prior to their execu-
tion, using the Data Complexity measures.

We must point out that this is a particular study for one
specific method, the PDFC. On the other hand, this work
presents a new challenge that could be extended to other FR-
BCSs, to analyse their domains of competence, and to develop
new measures which could give more information on the be-
haviours of FRBCSs for pattern recognition.
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