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Summary. Neural network ensembles are widely use for classification and regres-
sion problems as an alternative to the use of isolated networks. In many applications,
ensembles has proven a performance above the performance of just one network.

In this paper we present a new approach to neural network ensembles that we
call “cascade ensembles”. The approach is based on two ideas: (i) the ensemble is
created constructively, and (ii) the output of each network is fed to the inputs of
the subsequent networks. In this way we make a cascade of networks.

This method is compared with standard ensembles in several problems of clas-
sification with excellent performance.

1 Introduction

Neural network ensembles[11] are receiving increasing attention in recent neu-
ral network research, due to their interesting features. They are a powerful
tool especially when facing complex problems. Network ensembles are usually
made up of a linear combination of several networks that have been trained
using the same data (see Figure 1, although the actual sample used by each
network to learn can be different. Each network within the ensemble has a
potentially different weight in the output of the ensemble. Several works have
shown [11] that the network ensemble has a generalisation error generally
smaller than that obtained with a single network and also that the variance
of the ensemble is lesser than the variance of a single network. If the networks
have more than one output, a different weight is usually assigned to each out-
put. The ensembles of neural networks have some of the advantages of large
networks without their problems of long training time and risk of over-fitting.
For more detailed descriptions of ensembles the reader is referred to [2] [14]
[3] [10] [5].

Although there is no clear distinction between the different kinds of multi-
net networks [7] [1] [6], we follow the distinction of [13]. In an ensemble sev-
eral redundant approximations to the same function are combined by some



Fig. 1. Standard ensemble of neural networks

method, and in a modular system the task is decomposed into a number of
simpler components.

This combination of several networks that cooperate in solving a given
task has other important advantages such as [8] [13]:

• They can perform more complex tasks than any of their subcomponents
[15].

• They can make an overall system easier to understand and modify, as the
whole system is decomposed in smaller parts.

• They are more robust than a single network.

In most cases, neural networks in an ensemble are designed indepen-
dently or sequentially, so the advantages of interaction and cooperation among
the individual networks are not exploited. Earlier works separate the design
and learning process of the individual networks from the combination of the
trained networks. In this work we propose a framework for designing ensem-
bles, where the training and combination of the individual networks are carried
out together, in order to get more cooperative networks and more effective
combinations of them.

The design of neural network ensembles implies making many decisions
that have a major impact on the performance of the ensembles. The most
important decisions that we must face when designing an ensemble are the
following:



• The method for designing and training the individual networks.
• The method of combining the individual networks, and the mechanism for

obtaining individual weights for each network if such is the case.
• The measures of performance of the individual networks.
• The methods for encouraging diversity among the members of the ensem-

bles and how to measure such diversity.
• The method of selection of patterns that are used by each network to learn.
• Whether to include regularization terms and their form.

Techniques using multiple models usually consist of two independent
phases: model generation and model combination[10]. The disadvantage of
this approach is that the combination is not considered during the generation
of the models. With this approach the possible interactions among the trained
cannot be exploited until the combination stage [8], and the benefits that can
be obtained from this interactions during the learning stage are lost.

However, several researchers[16][9] have recently shown that some infor-
mation about cooperation is useful for obtaining better ensembles. This new
approach opens a wide field where the design and training of the different
networks must be interdependent.

In this paper, we present a new model for constructively making the en-
semble. Our basic aim is improving the combination of networks. In this way
we created an ensemble where the i-th network receives as inputs the outputs
of the i − 1 already trained networks. This ensemble is so-called cascade en-

semble. In this way, some of the ideas of the constructive cascade-correlation
networks are applied to ensemble construction [4].

This paper is organised as follows: Section 2 describes our model of cascade
ensembles; Section 3 shows the experimental results of our model and its
comparison with standard ensembles; finally Section 4 states the conclusions
of our work.

2 Cascade ensembles

The main advantage of cascade ensembles is that each time a new network
is added to the ensemble, that network knows the outputs of the previously
trained networks. In this way, the construction of the ensemble is not separated
in two stages: training and combination of the networks.

In the proposed model, each network tries to refine the classification carried
out by the previous models. For a pattern x the input to k-th network is
(x, y1, y2, . . . , yk−1), where yi is the output of network i (see Figure 2).

Cascade ensembles can also be defined in other ways that are under de-
velopment. The main advantages of this approach are:

1. The ensemble is made constructively. In this way, the complexity of the
ensemble can match the problem, as the addition of new networks can be
stopped when the required performance is achieved.



Fig. 2. Cascade ensemble of neural networks

2. The stages of training and combination are not separated. The new net-
works have the knowledge acquired by previous networks.

3. There is no need of an additional combination scheme and the subsequent
optimisation algorithm needed to set its parameters.

3 Experiments

The experiments were carried out with the objective of testing our model
against an standard ensemble. We have applied our model and standard en-
semble method to several real-world problems of classification. These problems
are briefly described in Table 1. These nine datasets cover a wide variety of
problems. There are problems with different number of available patterns,
different number of classes, different kind of inputs, and of different areas of
application. Testing our model on this variety of problems can give us a clear
idea of its performance.

The tests were conducted following the guidelines of L. Prechelt [12]. Each
set of available data was divided into three subsets: 50% of the patterns were
used for learning, 25% of them for validation and the remaining 25% for
testing the generalization error. There is an exception, Sonar problem, as the
patterns of this problem are prearranged in two subsets due to their specific
features. The ensembles are made up by 10 networks, each one with 10 hidden
nodes with logistic transfer function. The training parameters for the back-
propagation algorithm are η = 0.01 and α = 0.01.

The training and generalisation results are shown in Table 2. The table
shows also the p-values of paired t-test for generalisation error. The results



Table 1. Summary of data sets. The features of each data set can be C(continuous),
B(binary) or N(nominal). The Inputs column shows the number of inputs of the
network as it depends not only on the number of input variables but also on their
type.

Data set Cases Classes Features Inputs

Train Test C B N

Anneal 674 224 5 6 14 18 59

Glass 161 53 6 9 – – 9

Heart 202 68 2 6 1 6 13

Hepatitis 117 38 2 6 13 – 19

Horse 273 91 3 13 2 5 58

Pima 576 192 2 8 - - 8

Sonar 104 104 2 60 – – 60

Promoters 80 26 2 – – 57 114

Vehicle 635 211 4 18 – – 18

show that the cascade algorithm performs better than standard ensembles in
7 problems (in three of them with statistical significance). This is interesting
as the cascade models avoids the use any method for combining the outputs.

4 Conclusions and future work

In this paper we have introduced a new approach to neural network ensembles
called cascade ensembles where the ensemble is created constructively. The
preliminary results showed in this paper are very promising and open a wide
field of study for this approach.

As work for the future, we are working in two ideas. Firstly, the application
of sampling methods, such as bagging and boosting, to our model. Secondly,
the modification of the cascade inputs, as there different ways for feeding the
outputs of the trained networks to the new networks.
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