
Genetic Learning of Serial Hierarchical Fuzzy Systems for Large-Scale Problems

Alicia D. Benı́tez and Jorge Casillas1

1 Department of Computer Science and Artificial Intelligence
CITIC-UGR (Research Center on Information and Communications Technology)

University of Granada, E-18071 Granada, Spain
Email: aliciades@gmail.com, casillas@decsai.ugr.es

Abstract— When we face a problem with a high number of vari-
ables by a standard fuzzy system, the number of rules increases expo-
nentially and then the obtained fuzzy system is scarcely interpretable.
This problem can be handled by arranging the inputs in hierarchical
ways. The paper presents a multi-objective Genetic Algorithm that
learns Serial Hierarchical Fuzzy Systems with the aim of coping the
curse of dimensionality. By means of an experimental study, we have
observed that our algorithm obtains good results of interpretability
and precision with problems in which the number of variables is rel-
atively high.

Keywords— Curse of dimensionality, hierarchical fuzzy systems,
multi-objective genetic algorithms, variable selection.

1 Introduction
If a conventional fuzzy system is applied to large-scale prob-
lems (i.e, those with a high number of input variables), the
number of rules grows exponentially with respect to the num-
ber of inputs received [1, 2]. Indeed, if we have n variables
and k linguistic terms per variable, it requires up to nk rules
to build a complete Mamdani-based fuzzy system, and con-
sequently, the accuracy-interpretability balance would be bro-
ken. This problem is know as the “curse of dimensionality.”

In order to solve it, several approaches have been suggested
such as variable selection [3, 4] and rule set reduction [5, 6].
Nevertheless, when the number of variables increases consid-
erably, this kind of reduction is not enough to solve this prob-
lem. There exists a different approach which deals with this
problem: Hierarchical Fuzzy Systems (HFS). An HFS is made
up of a set of fuzzy subsystems or modules. These modules
are linked in such a way that the output of a module is the in-
put of other ones. Thanks to the decomposition of the fuzzy
system made in an HFS, the complexity of each module is
significantly reduced. There are several kinds of modules:

• SISO (Single Input Single Output): It has one input and
one output.

• MISO (Multiple Inputs Single Output): It has several in-
puts and a single output [7]. We can find FLU (Fuzzy
Logic Unit) in this kind of modules. One FLU special
case is the one with two inputs and one output, which is
equally found in the literature [2, 8–11].

• MIMO (Multiple Inputs Multiple Outputs): They have
several inputs and outputs [12].

Apart from distinguishing several kinds of modules, it is
also possible to find different types of hierarchical structures.

There are different classifications [9, 13], though the most
general one is the following [11]:

• Serial HFS (SHFS): The input of one module is the out-
put of the previous ones, along with external variables
[10].

• Parallel HFS: This system is organized in layers. The first
one is made up of a set of modules receiving the input
variables. Each variable is used as input only in a single
module. The output of the modules in the first layer is the
input of the modules which constitute the next layer, and
so on. An aggregate operation might also exist in order
to combine the outputs of one layer [2, 12].

• Hybrid HFS: This type of HFS is a mixture of the two
previous ones [7, 14].

Other approaches study the best way to deal with the out-
put variables in the modules (through fuzzy numbers [9] and
matrixes modeling [11]) and the rules in different hierarchical
levels [15]. Besides, some metaheuristics have been applied
in this field with the purpose of obtaining an HFS capable of
getting the best balance between precision and interpretability.
For instance, Differential Evolution [10] has been employed to
find the best membership functions, Genetic Algorithms [8],
Ant Systems [14], Descendent Gradient Method [7] have been
used to learn the hierarchical structure.

In this paper, a multi-objective genetic fuzzy system is sug-
gested to obtain the best distribution of input variables and
modules belonging to SHFS removing variables by crossover
and mutation operators, so it can face the “curse of dimen-
sionality.” The paper is organized in the following sections:
in Section 2, the suggested algorithm is described; in Section
3, the empirical study is shown; in Section 4, conclusions and
future works are referred.

2 GSHFS algorithm
We propose a SHFS structure learning algorithm. These sys-
tems are a set of linked modules where the output of a module
is one of the inputs of the next module. A module has its own
fuzzy rule set which allows to infer the output variable from
the input variables.

The algorithm uses a multi-objective genetic algorithm
called Genetic SHFS (GSHFS) where there are two objec-
tives to minimize: the root mean squared error (RMSE) and
the number of rules. Our algorithm has three specific genetic
operators: one crossover operator and two mutation operators.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1751

The following subsections detail the different components
of the algorithm.

2.1 Coding scheme

In our algorithm, each individual represents a SHFS. The cod-
ing consists of a gene concatenation. Each gene has two fields:
a variable index and a flag. The flag takes binary values (0 if
it is an exogenous variable and 1 if it is an endogenous vari-
able). Figures 1, 2, and 3 show some examples of the coding
scheme.

A variable with 1 in the flag field means that is an endoge-
nous variable (variable linking two modules) and a module ex-
ists. This variable is the input of the next module. All treated
variables are variables of the problem. The algorithm decides
if a variable of the problem will be endogenous or exogenous,
but does not create new endogenous variables. In this way,
the correlation between the variables of the problem is con-
sidered. The length of chromosome is fixed to the number of
input variables of the problem. The highest hierarchy level
happens when all modules are SISO. In this case, all variables
will be endogenous except the first and the number of levels is
equal to the number of input variables.

2.2 Initialization

The algorithm randomly generates an initial population. The
variable index and the endogenous/exogenous flag is ran-
domly chosen for each gene. The only restriction is that the
variable can not be repeated and the flag of the first gene can
not be 1 (i.e., the first variable have to be exogenous).

2.3 Crossover operator

The crossover operator is applied according to a probabil-
ity between paired parents and provides exploitation. When
crossover operator is applied to two parents, P1 and P2, there
are a set of types of combinations which we must consider: 1)
both parents, P1 and P2, have several modules; 2) parent P1

has several modules and parent P2 has one module; 3) parent
P1 has one module and parent P2 has several modules (this
case is similar to previous case); 4) both parents, P1 and P2,
have one module. A parent-centric crossover has been used
in some cases where the offspring mainly inherits the infor-
mation of one of the parent and takes the secondary parent in
order to add diversity.

The crossover is applied to individuals depending on the
types of variables that two parents have in common. Each case
has a priority. In this way, the crossover operator is applied
from high to low priority as follows:

2.3.1 Both parents, P1 and P2, have several modules

• Priority 1.- Endogenous-Endogenous case. If P1 par-
ent has common endogenous variables with P2 parent, a
common endogenous variable is selected at random. This
variable is the crossover point. The offspring O1 is gen-
erated centered on P1. Thus, the offspring O1 inherits
from P2 the variables and modules from the beginning
to the crossover point, but excluding the crossover point.
The remaining is taken from P1 and repeated variables
are removed from the part inherited from P2. The off-
spring O2 is generated in the same way but centered on
P2.

Parent 2

X6

0

X5

0

X2

1

X7

0

X4

1

X8

1

Parent 1

Parent 1

Parent 2

Offspring 2

Offspring 1

Offspring 1

Offspring 2

M1

X6

X5

X7 Y

X2

M2
M3

X4 X8

M4

X1

0

X3

0

X2

1

X4

1

X7

1

X8

0

M1

X1

X3

X8

Y

X2

M2 M3

X4

M4

X7

X2

1

X7

0

X4

1

X8

1

X1

0

X3

0

X8

0

X5

0

X2

1

X4

1

X7

1

X6

0

X1

X3

X7 Y

X2

X4 X8

2

1M

1

2M

1

3M
1

4M

X2
X6

X5

X8

Y

X4
X7

1

1M
2

2M 2

3M

2

4M

Figure 1: Example of crossover of two parents with several
modules, Endogenous-Endogenous case (priority 1)

• Priority 2.- Endogenous-Exogenous case. If P1 has en-
dogenous variables which are exogenous in P2, a com-
mon variable is randomly selected as crossover point.
The offspring O1 is generated centered on P1. The com-
mon endogenous variable inherited from P1 is converted
into exogenous and the rest of previous modules to this
variable are removed. The idea of this type of crossover
is that if an endogenous variable of P1 is equal to an ex-
ogenous variable of P2, it indicates us that if we convert
this endogenous variable into exogenous variable, RMSE
will decrease, because the SHFS does not carry any error,
taking the variable directly as an input.

• Priority 3.- Exogenous-Endogenous case. If P1 has ex-
ogenous variables which are endogenous in P2, one of
those variables is randomly selected as crossover point.
The offspring O1 is created centered on P1, but excluding
the crossover point. The first part of O1 is inherited from
the first part of P2 (from the first gene to the crossover
point). The repeated variables are removed in O1 from
the part inherited from P2. Figure 2 shows an example of
this case. The generated SHFS offspring has four mod-
ules.

• Priority 4.- Exogenous-Exogenous case. If P1 has a set
of exogenous variables in common with exogenous vari-
ables in P2, the offspring O1 is generated as copy of P1,
but with a change: a common exogenous variable be-
tween P1 and P2 is randomly chosen. This variable in
P2, along with others variables, generates an endogenous
variable. This endogenous variable in P2 is selected to
replace the random exogenous selected variable in O1,
which is common in P1 and P2. Later, the repeated vari-
ables in O1 in part inherited from P1 are removed. If this
case comes true in P2, O2 offspring will be generated
with the same procedure, but centered on P2. Notice that
the common exogenous variables of P1 are looked for in
P2 excluding the exogenous variables of the module with
output Y in P2, because if this module is included, when
an exogenous variable is selected there is not endogenous
variable as output because it coincides with the output of

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1752

Parent 2

X6

0

X5

1

X2

0

X
7

0

X4

1

X8

0

Parent 1

Parent 1

Parent 2

Offspring

Offspring

X1

0

X8

0

X9

1

X2

0

X
7

1

X6

1

X1

X8

X2

Y

X9 X7
X6

X5X6

X2

X7

X8

Y

X4

X
2

0

X
8

0

X
5

0

X7

1

X1

0

X9

1

X
4

1

2

1M
2

2M
1

2M

X7

X1

X5

X2

X8

Y

X4

X9

1

3M

1

1M

1

2M

2

1M

1

3M

2

3M
2

4M
2

2M

Figure 2: Example of crossover of two parents with several
modules, Exogenous-Endogenous case (priority 3)

the SHFS.

• Priority 5.- Different variables case. If variables in P1

and P2 are different, an endogenous variable from P1 and
P2 is chosen at random as crossover point. The offsprings
are generated like priority 1.

2.3.2 Parent P1 has several modules and parent P2 has one
module

• Priority 1.- Endogenous-Exogenous case. If P1 has com-
mon endogenous variables with the exogenous variables
of P2, the offspring O1 is generated like Endogenous-
Exogenous case when P1 and P2 have several modules.

• Priority 2.- Exogenous-Exogenous case. If P1 and P2

have common exogenous variables, the offspring O1 cen-
tered on P1 is created as follows. Firstly, O1 is generated
as a copy of P1. Then, an exogenous common variable
of P1 and P2 is randomly chosen and moved to module
with output Y . This type of crossover carries lower error
and the output of SHFS is better.

• Priority 3.- Different variables case. In this case, O1 is
a copy of P1 and later, an exogenous variable of P2 is
selected at random and inserted in the module of O1 with
the output Y .

2.3.3 Parent P1 has one module and parent P2 has several
modules

• Priority 1.- Exogenous-Endogenous case. If P1 has ex-
ogenous variables which are endogenous in P2, the off-
spring O1 is generated like Exogenous-Endogenous case
when P1 and P2 have several modules.

• Priority 2.- Exogenous-Exogenous case. If P1 has
a set of exogenous variables in common with exoge-
nous variables in P2, the offspring O1 is generated like
Exogenous-Exogenous case when P1 and P2 have sev-
eral modules.

• Priority 3.- Different variables case. If variables in P1

and P2 are different, an exogenous variable from P1 and

an endogenous variable from P2 are chosen at random as
crossover point. The offsprings are generated like prior-
ity 1.

2.3.4 Both parents, P1 and P2, have one module
This case, the offsprings O1 and O2 are generated as follows.
The common exogenous variables of P1 and P2 are inserted
in both offsprings. The rest of variables (no common vari-
ables between parents) are inserted in a set V with |V | size.
A number r is randomly generated: if there are not common
variables between P1 and P2 then r ∈ {1, . . . , n − 1}; other-
wise, r ∈ {0, . . . , n}. r variables are randomly took out and
inserted in O1. Finally, the rest of variables are inserted in O2.

2.4 Mutation operator

The mutation operator makes local changes in the chromo-
some. Two kinds of mutations have been designed:

2.4.1 Exchange Mutation
This operator makes an exchange of variables in a module. It
chooses an exogenous variable at random in a module and ex-
changes between this exogenous variable and the endogenous
variable of the module.

2.4.2 Insertion Mutation
The mutation operator distinguishes between: used and un-
used variables in the individual. According to it and by means
of a probabilistic decision (Algorithm 1 shows a scheme), the
mutation operator will choose between inserting an unused
variable in a module, removing an used variable, or moving
an used variable to other module.

Algorithm 1 Insertion Mutation
r = U[0,1];
if (r < 0.5 and there are unused variables) then

v = Choose at random a unused variable();
Insert unused variable(v);

else
t = U[0,1];
if (t < 0.5 and the SHFS has only a SISO module) then

Remove one used variable();
else

Move used variable();
end if

end if

• The insertion of an unused variable is as follows. Given
an unused variable v, a module m is chosen randomly.
Next, the operator decides if v is inserted into m with a
probability of 0.5. If so, v is inserted as exogenous vari-
able. Otherwise, if m has at least an exogenous variable
as input, one of them, e, is selected at random. The mu-
tation operator creates a new SISO module previous to m
where the input is e and the output is v. In this case, v
will be endogenous variable and input of module m. If m
has not exogenous variables, the m’s output is converted
into a new exogenous variable of m and v will be the new
output of m.

• To remove an used variable, first a module m of the SHFS
is randomly chosen. If m has exogenous variables then
one of them is removed at random. Otherwise, the mod-
ule m is removed, thus linking the output of the module
before m with the input of the module after m.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1753

• To move an used variable from a module to other, two
modules of the chromosome are chosen at random: a
source module m1 where a variable is removed and a
destination module m2 where the variable is inserted. An
exogenous variable of the m1 is randomly removed and
inserted as exogenous variable of the m2. If there are not
exogenous variables into the m1 and consequently m1

has one input and one output (a SISO module), its en-
dogenous variable is chosen. In this situation, m1 disap-
pears and the chosen variable is inserted as an exogenous
variable into m2. If m1 = m2, an exogenous variable v
is randomly selected, then a new module is created after
m1/m2. The input of this new module (and therefore the
output of the module m1/m2) is v while the output of the
new module will be old output of m1/m2.

M
1

M
2

X
1

X
3

X
4

X
6

X
2 X

5

M
3

Y

X
1

0

X
3

0

X
4

0

X
2

1

X
6

0

X
5

1

X
7

1

X
1

0

X
3

0

X
4

0

X
2

1

X
6

0

X
5

1

Chosen

Module

Chosen

Variable

M
2

M
3

X
3

X
1

X
4

X
6

X
2 X

5

M
4

Y

M
1

X
7

Figure 3: Example of insertion mutation of a unused variable
(X7) as endogenous variable, thus creating a new module

2.5 Fuzzy rule set learning

The learning fuzzy rule set of SHFS is as follows. Each mod-
ule learns its fuzzy rule set with Mamdani rules depending
on the inputs variables by WM [16]. The endogenous vari-
ables in SHFS are inferred by its respective module according
to the input variables of the module. The obtained system is
evaluated by training data examples, choosing the correspon-
dent values of exogenous variables in that module. A module,
according to learned fuzzy rule set, generates a value of out-
put (an endogenous variable). The value is the next input of
the module along with others exogenous variables. The mem-
bership functions are triangular shape distributed strong fuzzy
partition.

2.6 Multi-objective approach

A generational approach with the multi-objective elitist re-
placement strategy of NSGA-II [17] is used. Crowding dis-
tance [17] in the objective function space is considered. Bi-
nary tournament selection based on the non-domination rank
(or the crowding distance when both solutions belong to the
same front) is applied. The crowding distance is normalized
for each objective according to the extreme values of the solu-
tions contained in the analyzed front.

2.7 Objective functions

We consider two objective functions to be minimize and so get
a better precision and interpretability of the system.

2.7.1 Accuracy
It is computed as the RMSE:

F1(S) =
√

1
N

∑N
i=1(S(xi) − yi)2 (1)

with S being the fuzzy system to be evaluated, N the data set
size and (xi, yi) the ith input-output pair of the data set. The
objective is to minimize this function to get good precision.

2.7.2 Interpretability
It is computed as follows:

F2(S) = r(S) (2)

with r() being the number of rules of the fuzzy system.
Although the number of modules or the number of variables

by module are notable criteria to evaluate the learned quality
of the SHFS, the number of rules is more intuitive to validate
the interpretability because it combines both criteria in one
objective. If the number of rules is considered, the number
of variables and modules is controlled automatically: as the
number of rules decreases, the number of modules and vari-
ables increase.

3 Experimental Results
This section presents the experimental results. The objective
of experimentation is to prove the reduction of number of rules
and so, to assess the interpretability that can be compared to a
referential learning method (WM in our case).

3.1 Problems

We have considered five regression problems with a moder-
ate and high number of input real-valued variables: Dee1,
Concrete2, Elevators3, Computer Activity (Comp-activ)3, and
Ailerons3.

Table 1 collects the main features of each problem, where
#InputVar stands for number of input variables, #Exam for to-
tal number of examples, and #LingTerms for the number of
triangular-shaped uniformly distributed linguistic terms con-
sidered for each variable in this experimental analysis.

Table 1: Data sets considered in the experimental analysis
Data set #InputVar #Exam #LingTerms
Dee 6 365 5
Concrete 8 1030 5
Elevators 18 16559 3
Comp-activ 21 8192 3
Ailerons 40 13750 3

The experiments shown in this paper have been performed
by a five fold cross validation with a total of 30 runs per prob-
lem (six runs for each data set partition). Thus, the data set
is divided into five subsets of (approximately) equal size. The
algorithm is then applied five times to each problem, each time

1KEEL: Knowledge extraction based on evolutionary learning.
http://www.keel.es

2UCI Machine Learning Repository. Collection of regression
datasets. http://archive.ics.uci.edu/ml/datasets.html

3L. Torgo, Collection of regression datasets.
http://www.liacc.up.pt/ ltorgo/Regression/DataSets.html

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1754

leaving out one of the subsets from training, but using only the
omitted subset to compute the test error.

Our algorithm has been run with the following parameter
values: 1,000 iterations, 60 as population size, 0.7 as crossover
probability, and 0.2 as mutation probability per chromosome.
We have not performed any previous analysis to fix these val-
ues, so better results may probably be obtained by tuning them
though we have informally noticed our algorithm is not spe-
cially sensitive to any parameter.

3.2 Obtained results

For each problem we present the five validation test results
(Table 2), where RMSEtra and RMSEtst are the approxi-
mation error (eq. 1) values over the training and test data set
respectively, #M, #R, #V stand for the number of modules, the
number of fuzzy rules, and the number of variables respec-
tively.

Since our algorithm performs multi-objective optimization,
several solutions are returned in each run. Therefore, we show
five representative solutions from the final Pareto-optimal set:
the first row of each problem is the best solution (highest pre-
cision), the second row is the first quartile, the third row is the
median (it is not the average), the fourth row is the third quar-
tile, and the fifth row is the worst solution (lowest precision).

Table 2: Obtained Results
Method RMSEtra RMSEtst #M #R #V

D
E

E

WM 0.375594 0.477303 1.0 178.4 6.0
0.372482 0.474365 1.2 157.3 5.6
0.396565 0.460321 1.8 95.6 5.2

GSHFS 0.430456 0.484292 1.8 66.1 4.6
0.495178 0.507092 2.1 28.6 3.7
0.681968 0.695144 1.2 5.5 1.2

C
O

N
C

R
E

T
E WM 8.548268 9.822000 1.0 310.4 8.0

8.479054 9.356946 1.4 257.1 7.2
9.436752 9.812343 2.2 114.7 6.0

GSHFS 10.700607 10.839647 2.3 53.3 5.2
13.111270 13.450416 2.4 25.4 4.2
16.669822 16.477185 1.3 5.6 1.3

E
L

E
VA

TO
R

S WM 0.567771 0.542072 1.0 511.0 18.0
0.487507 0.488641 2.3 39.7 7.7
0.498203 0.498650 2.2 27.5 6.5

GSHFS 0.517594 0.517673 2.4 18.9 5.7
0.563252 0.563026 2.0 11.7 4.3
1.421620 1.422627 1.6 3.8 1.8

C
O

M
P-

A
C

T
IV WM 9.050474 9.084798 1.0 425.6 21.0

5.398862 5.400107 2.5 37.5 8.1
5.880516 5.874316 2.3 25.1 6.6

GSHFS 6.708214 6.719212 2.2 16.8 5.5
8.888890 8.935257 2.1 9.7 3.9

31.900506 31.756379 1.7 4.1 2.0

A
IL

E
R

O
N

S WM 0.253971 0.255557 1.0 1080.6 40.0
0.238855 0.239763 2.8 57.1 10.0
0.254118 0.254958 2.7 37.7 8.2

GSHFS 0.276632 0.277216 2.6 24.0 6.8
0.318274 0.318159 2.3 12.9 5.0
0.724993 0.731567 2.2 5.9 2.9

3.3 Analysis

The main objective is to obtain a fuzzy system with good
tradeoffs between precision and interpretability. When the

number of rules of a fuzzy system decreases, the system gets
better interpretability, but the precision is lower and vice versa.
This event can be observed clearly in the results obtained as
problems with either low or high number of variables. Notice
that the fuzzy rule set is learned individually for each module.

First set of Table 2 shows five solutions of the Pareto ob-
tained by our algorithm in Dee problem. We can observe that
the precision is high when the number of rules is high and,
consequently, the fuzzy system has a lower interpretability. If
we compare our algorithm with WM method, the best solu-
tion (highest precision) is better in precision, having a number
of rules and a number of variables lower. In first quartile, the
precision has a little increase according to solution obtained
by WM in the RMSEtra, but the RMSEtst is lower and the
interpretability is decreased in more than a half.

However, if we observe the problems with a considerable
number of variables (more than eight), our algorithm has bet-
ter performance. Lets look at Elevators problem. It has 18
variables. The best solution (highest precision) obtained by
our algorithm is better than WM solution. The RMSEtra

and RMSEtst have been decreased. The interpretability is
better because the SHFS has a lower number of variables and
a higher number of modules. The number of rules has been de-
creased by 92%. The third quartile of the RMSEtra is better
in precision than WM. The third quartile of the RMSEtst is a
little worse but the number of rules obtained by our algorithm
has decreased by 95%, 98%, and 96%, respectively.

In Ailerons problem (40 variables), we can see that our solu-
tion with highest precision is better than the solution obtained
by WM. We want to emphasize that the number of rules is
decreased by 95% and the number of variables by 75%. The
median of the RMSEtra is a solution with a precision a lit-
tle higher than WM solution, but the median of the RMSEtst

is lower and the interpretability is better than the solution of
WM, due to decrease of the number of variables and its distri-
bution in modules.

To sum up, we have seen that in problems with a low moder-
ate number of variables, the precision is worse when the num-
ber of rules decrease. It does not happen in problems with a
higher number of variables because with a lower number of
variables, the correlation between them is low, because they
are important. Nevertheless, in problems with a higher num-
ber of variables exists more dependence between them: a hi-
erarchical structure and a lower number of variables help to
decrease the complexity of the learned fuzzy model.

Figure 4 shows the average Pareto front obtained in
Ailerons problem by our algorithm. In it we can see that if
there are many rules (lower interpretability), then the preci-
sion is higher. The SHFS gets a better interpretability with a
lower precision.

Finally, we show an example of GSHFS hierarchical struc-
ture obtained by our algorithm in Figure 5. It is an example
of non-dominated solution obtained by GSHFS in a data set
partition of Ailerons. The obtained values are: RMSEtra =
0.214068, RMSEtst = 0.219682, #M = 3, #R = 63, #V =
9. The results obtained by WM in the same data set partition
are: RMSEtra = 0.254144, RMSEtst = 0.261472, #M = 1,
#R = 1072, #V = 40. We can observe that RMSEtra and
RMSEtst obtained by our algorithm is lower than the values
obtained by WM, decreasing the number of rules by 94%.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1755

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

F
1
 (

R
E

C
M

)

F2 (#R)

Figure 4: Average Pareto front obtained in Ailerons problem

��

���� ��

����

�	

����

�	�
��

���
�	
��
�

���

��

��

�

Figure 5: Example of a solution obtained by GSHFS in the
Ailerons problem with #M = 3, #R = 63, #V = 9

4 Conclusion and Further Work
We have proposed a multi-objective algorithm applied to
learning SHFS for palliate exponential increase of the num-
ber of rules when number of variables increases. The set of
variables is divided into modules by the algorithm. We have
proved that this division by SHFS can obtain good results in
problems with a higher number of variables.

As further work, we suggest to add mechanisms for a better
precision, for example, a global learning of fuzzy rule set, a
detailed study of the interpretability of each rule of the fuzzy
system, and to extend this algorithm for parallel and hybrid
structure learning.

Acknowledgment
This work was supported in part by the Spanish Ministry of
Science and Innovation (grant no. TIN2008-06681-C06-01),
and by Andalusian Government (grant no. P07-TIC-3185).

References

[1] G.V.S. Raju, J. Zhou, and R.A. Kisner. Hierarchical fuzzy con-
trol. International Journal Control, 54(5):1201–1216, 1991.

[2] M.G. Joo and J.S. Lee. Hierarchical fuzzy control scheme using
structured takagi-sugeno type fuzzy inference. In Proceedings
of IEEE International Fuzzy Systems Conference, pages 78–83,
Seoul, Korea, 1999.

[3] T.P. Hong and J.B. Chen. Finding relevant attributes and mem-
bership functions. Fuzzy Sets and Systems, 103(3):389–404,
1999.

[4] A. González and R. Pérez. Selection of relevant features in a
fuzzy genetic learning algorithm. IEEE Transactions on Sys-
tems, Man, and Cybernetics—Part B: Cybernetics, 31(3):417–
425, 2001.

[5] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka. Select-
ing fuzzy if-then rules for classification problems using genetic
algorithms. IEEE Transactions in Fuzzy Systems, 3(3):260–
270, 1995.

[6] T. Taniguchi, K. Tanaka, H. Ohtake, and H.O. Wang. Model
construction, rule reduction, and robust compensation for gen-
eralized form of takagi-sugeno fuzzy systems. IEEE Transac-
tions on Fuzzy Systems, 9(4):525–538, 2001.

[7] D. Wang, X.J. Zeng, and J.A. Keane. Learning for hierarchical
fuzzy systems based on gradient-descent method. In Proceed-
ings of IEEE International Conference on Fuzzy Systems, pages
92–99, 2006.

[8] K. Shimojima, T. Fukuda, and Y. Hasegawa. Self-tuning fuzzy
modeling with adaptive membership function, rules, and hier-
archical structure based on genetic algorithm. Fuzzy Sets and
Systems, 71:295–309, 1995.

[9] A.E. Gaweda and R. Scherer. Fuzzy number-based hierarchical
fuzzy system. Lecture Notes in Computer Science, 3070:302–
307, 2004.

[10] F. Cheong. A hierarchical fuzzy system with high input dimen-
sions for forecasting foreign exchange rates. IEEE Congress on
Evolutionary Computation, CEC, pages 1642–1647, 2007.

[11] S. Aja-Fernández and C. Alberola-López. Matriz modeling of
hierarchical fuzzy systems. IEEE Transactions in Fuzzy Sys-
tems, 16(3):585–599, 2008.

[12] P. Salgado. Rule generation for hierarchical collaborative fuzzy
system. Applied Mathematical Modelling, Science Direct,
32:1159–1178, 2008.

[13] V. Torra. A review of the construction of hierarchical fuzzy
systems. International Journal of Intelligent Systems, 17:531–
543, 2002.

[14] Y. Chen, J. Dong, and B. Yang. Automatic design of hierar-
chical ts-fs model using ant programming and pso algorithm.
In C. Bussler and D. Fensel, editors, Proceedings 12th Interna-
tional Conference on Artificial Intelligence, Methodology, Sys-
tems and Applications, Lecture Notes on Artificial Inteligence,
LNAI 3192, pages 285–294, 2004.

[15] T.M. Jelleli and A.M. Alimi. Improved hierarchical fuzzy con-
trol scheme. Adaptive and Natural Computing, 1:128–131,
2005.

[16] L.X. Wang and J. Mendel. Generating fuzzy rules by learn-
ing from examples. IEEE Transactions on Systems, Man, and
Cybernetics, 22(6):1414–1427, 1992.

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarevian. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans-
actions on Evolutionary Computation, 6(2):182–197, 2002.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1756

