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Abstract— A new algorithm is proposed to learn fuzzy partitions
with a high interpretability degree. The set of input variables, the
number of linguistic terms per variable, and the type (triangular or
trapezoidal) and parameters of the membership functions are learnt
by means of a meta-algorithm that uses a simple learning method
to generate a fuzzy rule set from the derived fuzzy partitions. Inter-
pretability constrains and powerful genetic operators are considered.
A multi-objective optimization approach is used to generate different
interpretability-accuracy tradeoffs. The algorithm is tested in a set
of real-world regression problems with successful results compared
to other methods.

Keywords— Fuzzy rule-based systems, fuzzy partitions, granu-
larity, interpretability, multi-objective genetic algorithms.

1 Introduction

In the last few years the interpretability (i.e. the capability of
the fuzzy model to express the behavior of the real system in
an understandable way) has received more and more attention
in the fuzzy community. Indeed, this property of the fuzzy
rule-based systems represents one of the main competitive ad-
vantages compared to other system modeling techniques.

In the literature we may find many alternatives to improve
the interpretability such as reducing the number of fuzzy
rules [1], selecting a subset of input variables [2], or using
more compact fuzzy rule expressions [3]. Within these op-
tions, one of the more important approaches involves to learn
the optimal number of linguistic terms per variable [4, 5, 6].
Indeed, to use a reduced number of linguistic terms is crucial
to understand the meaning of the variables and directly influ-
ences on the fuzzy rule set size.

In this paper we propose a new algorithm to learn the num-
ber of input variables, the number of linguistic terms per vari-
able, and the types of membership functions (triangular or
trapezoidal) and their parameters with the aim of generat-
ing highly interpretable fuzzy partitions. The learning is per-
formed by a wrapper-based embedded process where a meta-
algorithm generates different fuzzy partitions and a simple
learning method derives fuzzy rule sets from them.

The proposed algorithm, called EGLFP, has some interest-
ing characteristics that make it very competitive: it uses strong
fuzzy partition and includes distinguishability constrains for
a better interpretability, and it uses variable-length coding
schemes, powerful original crossover and mutation operators,
and multi-objective optimization for a better search process.

The paper is organized as follows. Section 2 describes the
proposed algorithm. Section 3 shows the results obtained in
a set of real-world problems compared with other fuzzy rule
learning methods. Finally, Sect. 4 concludes and suggests
some further works.

2 EGLFP Algorithm
EGLFP is a multi-objective genetic algorithm with a gener-
ational evolutionary approach. A crossover operator that re-
combines membership function parameters, a first mutation
operator that tunes these parameters, and a latter mutation op-
erator that changes the fuzzy partition granularity (i.e., the
number of linguistic terms) per variable are used in EGLFP.
The multi-objective approach is based on the well-known
NSGA-II algorithm [7]. The following sections detail the dif-
ferent components of EGLFP.

2.1 Coding Scheme

For the sake of a good interpretability and in order to reduce
the search space tackled by the genetic algorithm, we propose
the use of strong fuzzy partitions. Each gene (g) is a 2-tuple
that contains the information related to a linguistic term of a
specific variable. It consists of two real-valued fields (gleft

and gright) that encode the left and right extremes of the core
of the associated fuzzy set (i.e., the semantic rule of the lin-
guistic term) normalized to the interval [0, 1]. Figure 1 illus-
trates an example of gene’s coding.
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Coding of 2nd gene: [left(0.3) , right(0.7)]

Figure 1: Example of a gene coding. Each gene, which en-
codes a linguistic term, consists of two fields (left and right)
to encode the extremes of the fuzzy set’s core (normalized to
[0, 1]). Note that, since strong fuzzy partitions are used, the
extremes of the core of each fuzzy set coincide with the ex-
tremes of the support of the adjacent fuzzy sets

A chromosome is a variable-length string (the length will
depend on the number of linguistic terms used in each vari-
able) of these genes that will encode the complete definition
of the fuzzy partitions of all the input and output variables:

C =
n+m⋃
v=1

lv⋃
i=1

(gv
i,left, g

v
i,right) (1)

with n being the number of input variables, m the number of
output variables, and lv the number of linguistic terms used in
the variable v.
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It is worth mentioning this coding scheme allows the ab-
sence of some variables by using only one linguistic term.
Thus, if the variable v is not used, there will be only one gene
associated to it with the value (gv

1,left, g
v
1,right) = (0, 1).

2.2 Initialization

The initialization process generates the first pool. Among
the generated individuals, one of them will encode uniformly
distributed triangular-shaped strong fuzzy partitions with the
maximum number of linguistic terms allowed for each vari-
able (maxLVv). The remaining pool is filled up at random
with individuals of two types.

One the one hand, some individuals (approximately a half
of the pool) will preserve in some degree the above mentioned
uniformly distributed fuzzy partitions but with a lesser num-
ber of linguistic terms. To do so, a fusion operation (which
is described below in Sect. 2.5.1) on neighboring fuzzy sets is
applied over the original fuzzy partitions. On the other hand,
other individuals (approximately the another half of the pool)
will be generated completely at random. To do so, firstly the
number of linguistic terms is randomly assigned to each vari-
able, then each fuzzy set adopts a triangular or trapezoidal
shape at random and, finally, random values are assigned to
the extremes of the fuzzy sets’ cores.

2.3 Crossover

The crossover generates two individuals that inherit the mem-
bership function parameter definition given by two parents,
even when these parents hold fuzzy partitions with different
number of linguistic terms. This feature, the fact of crossing
the parameters of fuzzy partitions with different granularities,
provides the proposed algorithm with a powerful search pro-
cess and is one of the original contributions of the paper.

The proposed crossover is a kind of parent-centric crossover
operator [8] where each son is generated from a parent that
plays the main role (dominant parent) and the another parent
playing the secondary role (recessive parent). Thus, the son
S1 is generated focused on the parent C1, but using the parent
C2 to add diversity; analogously with the son S2.

Since the considered chromosomes have a variable length,
a process is followed to select a gene of the recessive parent to
be crossed with each gene of the dominant parent. This match
is based on the distance (see eq. 5 below) where, given a fuzzy
set of the dominant parent to be crossed, the closest fuzzy set
in the recessive parent is chosen. Furthermore, to maintain
the interpretability and well definition of the fuzzy partitions,
an interval variation is fixed every time a gene is going to be
crossed. An example is depicted in Fig. 2(a).

Once the dominant and recessive genes are fixed and
the interval variation is determined, an original real-coding
crossover operator is used. We have named this operator as
the Constrained Parent-Centric Crossover (CPCX). Contrary
to other previously proposed parent-centric crossover opera-
tors [8], CPCX is designed to generate the son’s gene con-
strained to a given interval, which is crucial in our EGLFP al-
gorithm to ensure well-defined and distinguishable fuzzy par-
titions. The operator is described in Algorithm 1 and an ex-
ample is given in Figure 2(b).

Algorithm 1: Constrained Parent-Centric Crossover
(CPCX) operator
Input: (g, h, min, max, m, M ) with g being the

dominant value and h the recessive value to be
crossed, [min, max] the variation interval of the
dominant value, and [m, M ] the definition interval
of the variable

Output: New value g′

begin
if g = h then

g′ ← g
else if h < g then

α← (g − h)/(g −m)
l← g − α(g −min)
r ← g
g′ ← U [l, r] /* Random number */

else
α← (h− g)/(M − g)
l← g
r ← g + α(max− g)
g′ ← U [l, r] /* Random number */

end

2.4 Parameter Mutation

The parameter mutation changes the real-valued membership
function parameter values of the input and output variables en-
coded in the chromosome. To do that, an original real-coding
mutation operator is proposed in this paper. Firstly, a ran-
dom process is followed to select the field of the gene to be
mutated. When the gene to be mutated encodes a triangular
fuzzy set, both left and right fields are mutated with the same
value to preserve the original type.

Then, given a gene’s field gv
i,e to be mutated, a variation

interval around its value is defined with the aim of avoiding
lack of distinguishability—i.e., two fuzzy sets very close—
and other kinds of deformities that would decrease the inter-
pretability degree. In this way, the following equations are
used—Fig. 3(a) shows an example:

mingv
i,e

=




minv if i = 1
gv

i−1,right + δ if e = left or gv
i,left = gv

i,right

gv
i,left if e = right and gv

i,left �= gv
i,right

(2)

maxgv
i,e

=




maxv if i = lv
gv

i+1,left − δ if e = right or gv
i,left = gv

i,right

gv
i,right if e = left and gv

i,left �= gv
i,right

(3)
with δ = 1/(2 · lv) being the allowed minimum distance be-
tween the extremes of the cores of the fuzzy sets for the sake
of a good distinguishability degree and lv the number of lin-
guistic terms used in the variable v.

Finally, an original real-coding mutation operator is applied
on gv

i,e constrained to the interval [mingv
i,e

, maxgv
i,e

]. We have
named this operator as the Constrained Asymmetric Mutation
(CAM), which is described in Algorithm 2. Figure 3(b) shows
an example of the resulting asymmetric probability density
function used to mutate a value.
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Figure 2: Example of crossover operation: (a) Given the gene g (which encodes the right extreme of the core of the fuzzy set
labeled as S M ) of the dominant parent to be crossed, the allowed interval variation [0.25, 0.6] is calculated (dashed lines)
and the gene h that encodes the right extreme of the closest fuzzy set in the recessive parent (V S S M ) is selected; (b) CPCX
operator applied on the dominant gene g = 0.5, the recessive gene h = 0.2, the allowed interval variation [min, max] =
[0.25, 0.6], and the definition interval [m, M ] = [0, 1]; a random value is generated in the interval [l, r] = [0.35, 0.5] (α = 0.6)
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Figure 3: Example of parameter mutation operation: (a) the right extreme of the core of the fuzzy set M is selected to be
mutated; then, the interval variation is defined by eq. 2 and 3 with δ = 0.167 since there are three linguistic terms (lv = 3);
(b) asymmetric probability density function used in the CAM operator to mutate the right extreme of M ’s core constrained to
the given interval [0.2, 0.733]

2.5 Granularity Mutation

The granularity mutation changes the number of linguistic
terms in both input and output variables. To do that, it can
fuse (merge) two neighboring fuzzy sets (thus decreasing in
one the number of linguistic terms of the corresponding vari-
able) or fission (split) a fuzzy set in two parts (thus increas-
ing in one the number of linguistic terms of the corresponding
variable). When fusion is applied on a variable with two lin-
guistic terms, it involves removing the variable from the fuzzy
model.

There are some constraints to apply fusion and fission. On
the one hand, if fusion is applied on an input variable, this vari-
able must have at least two linguistic terms and there must be
more than one input variable with at least two linguistic terms
(in order to avoid a fuzzy system without input variables af-
ter fusion). When fusion is applied on an output variable, this
variable must have at least three linguistic terms since output
variable removal is not allowed.

On the other hand, fission on variables with the maximum
number of linguistic terms is not allowed. A second constraint
is considered to avoid lack of distinguishability after fission.
Indeed, if the core width of the fuzzy set associated to the gene

to be fissioned is lower than a value inversely proportional to
the number of linguistic terms of the corresponding variable,
the core of the two fuzzy sets resulting from fission will be
too close and, therefore, fission is not allowed. It involves that
triangular fuzzy sets can not be fissioned since its core width
is zero.

The two following subsections explain in detail how fusion
and fission operate.

2.5.1 Fusion (merge) operation
Given a gene gv

i to be fused, let h be the closest gene to gv
i :

h =




gv
i−1 if i = lv

gv
i+1 if i = 1

gv
i−1 if d(gv

i , gv
i−1) ≤ d(gv

i , gv
i+1)

gv
i+1 otherwise

(4)

with

d(g, h) = |(gleft + gright)/2− (hleft + hright)/2| (5)

To fuse gv
i and h, the following steps are done:

• Firstly, if gv
i,left < hleft then gv

i,right ← hright; other-
wise, gv

i,left ← hleft.
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Algorithm 2: Constrained Asymmetric Mutation (CAM)
operator
Input: (x, min, max) with x being the value to be

mutated and [min, max] its variation interval
Output: Mutated value x′

begin
pleft ← (x−min)/(max−min)
if U [0, 1] < pleft then

σ ← (x−min)/3
x′ ← N [x, σ] /* Normal random */
if x′ > (2x−min) then x′ ← 2x−min
else if x′ < min then x′ ← min
if x′ > x then x′ ← x− (x′ − x)

else
σ ← (max− x)/3
x′ ← N [x, σ] /* Normal random */
if x′ > max then x′ ← max
else if x′ < (2x−max) then x′ ← 2x−max
if x′ < x then x′ ← x + (x− x′)

end

• Secondly, gene h is removed from the chromosome and
the number of linguistic terms is decreased by one (lv ←
lv − 1).

2.5.2 Fission (split) operation

The fission operation splits a trapezoidal fuzzy set into two
triangular ones. Thus, given a gene gv

i to be fissioned, the
following steps are done:

• A new gene, h, is inserted at the right of gv
i (h will be the

new gv
i+1) with hleft ← gv

i,right and hright ← gv
i,right.

Set gv
i,right ← gv

i,left.

• The number of linguistic terms is increased by one (lv ←
lv + 1).

2.6 Embedded Genetic Learning Approach

Every time a new individual (which encodes the fuzzy parti-
tion of each variable) is evaluated, a fuzzy rule set is firstly
derived and then the complete fuzzy model (the fuzzy par-
titions plus the fuzzy rule set) is analyzed. To design the
fuzzy rule set an efficient ad hoc data-driven method, the well-
known Wang-Mendel (WM) algorithm [9] in this paper, is
used. Therefore, a wrapper-based embedded genetic learning
process is followed [4].

2.7 Inference Mechanism

We consider FITA (first inference, then aggregate) approach,
the Max-Min inference scheme (i.e., T-conorm of maximum
as aggregation and T-norm of minimum as relational opera-
tor), the T-norm of minimum as conjunction, and center-of-
gravity as defuzzification. Moreover, the mean of the output
domain is returned when no rules are fired for the given input
data (this fact may only occur with test data since the algo-
rithm ensures complete fuzzy rule set regarding training data).

2.8 Objective Functions

The multi-objective optimization performed in EGLFP is
based on three objective functions to be minimized: O1 as-
sesses the error of the system, O2 the complexity of the de-
rived fuzzy rule set, and O3 the complexity of the learnt fuzzy
partitions. Thus, O1 is focused on improving the accuracy of
the fuzzy model while O2 and O3 improve its interpretability.

2.8.1 O1, accuracy objective
The root mean squared error (RMSE) is used to compute the
accuracy of the learnt fuzzy model S:

O1(S) = RMSE(S) =

√√√√ 1
N

N∑
k=1

(FS(xk)− yk)2 (6)

2.8.2 O2, rule set complexity objective
This second objective simply involves the final number of
fuzzy rules obtained after applying the WM algorithm on the
decoded fuzzy partitions as explained in Sect. 2.6:

O2(S) = r(S) (7)

2.8.3 O3, fuzzy partition complexity objective
The third objective is the sum of the linguistic terms used in
input and output variables:

O3(S) =
n+m∑
v=1

Lv with Lv =
{

lv if lv > 1
0 otherwise (8)

The use of Lv is to not computing the removed input variables,
where the number of linguistic terms is lv = 1.

Since the fuzzy partition complexity has a direct influence
on the fuzzy rule set complexity, it is expected that a low value
of O3 will imply a low value of O2. Therefore, O2 and O3 are
correlated in some degree. To improve the interpretability, O2

seems to be more influent than O3. However, we have decided
to also use the objective O3 with the aim of polishing good
solutions by reducing the number of linguistic terms as much
as possible.

This correlation will involve that, in the practice, the Pareto
front shape with three objectives will be similar to the one with
the two former ones and therefore, the inclusion of the third
objective will not significantly degrade the multi-objective op-
timization quality.

2.9 Multi-objective Approach

A generational approach with the multi-objective elitist re-
placement strategy of NSGA-II [7] is used. Crowding dis-
tance in the objective function space is considered. Binary
tournament selection based on the nondomination rank (or the
crowding distance when both solutions belong to the same
front) is applied. Instead fixing initial intervals for the ob-
jectives (which is not easy with the considered objectives) to
compute the crowding distance, it is normalized for each ob-
jective according to the extreme values of the solutions con-
tained in the analyzed front.

3 Experimental Analysis
This section includes the obtained results of the proposed
EGLFP algorithm in six real-world regression problems where
all the input and output variables are real-valued, and com-
pares them with other fuzzy model learning methods.
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3.1 Problems and Learning Methods

We have considered the following regression problems: Ele1
(the data set and partitions used in this paper are available at
the author’s website 1), Laser (available at KEEL website 2),
Ele2 1, DEE 2, Concrete (obtained from the UCI Reposi-
tory 3), and Comp-activ (obtained from L. Torgo’s website4).

Table 1 collects the main features of each problem, where
#InputVar stands for the number of input variables, #Exam
for the total number of examples, and maxLVv for the initial
number of uniformly distributed triangular-shaped linguistic
terms considered for each input variable in the experimental
analysis. The output variable is always initially provided with
seven uniformly distributed triangular-shaped linguistic terms.

Table 1: Data sets considered in the experimental analysis
Problem #InputVar #Exam maxLVv

Ele1 2 495 7
Laser 4 993 5
Ele2 4 1066 5
DEE 6 365 5
Concrete 8 1030 5
Comp-activ 21 8192 3

The experiments shown in this paper have been performed
with a 5-fold cross validation. Thus, the data set is divided
into five subsets of (approximately) equal size. The algorithm
is then applied five times to each problem, each time leaving
out one of the subsets from training, but using only the omitted
subset to compute the test error.

We have considered two learning methods for comparison
(both of them use the same inference engine described in
Sect. 2.7 for our proposal). The Wang and Mendel (WM) [9]
algorithm is a simple learning method that, in spite of not ob-
taining accurate results, is a traditional reference in the re-
search community; the algorithm has been implemented by
us. The Cordón, Herrera, and Villar (CHV) [4] algorithm is
a competitive genetic fuzzy system that provides a learning
flexibility similar to our EGLFP algorithm since it learns both
the number of linguistic terms per variable and the member-
ship function parameters. As in our case, this genetic learning
process is also performed by wrapping the WM algorithm. We
have used the original algorithm implementation provided by
the authors.

Our algorithm has been run with the following parameter
values: 1000 iterations, p = 30 as population size, pc = 0.7
as crossover probability, and ppm = pgm = 0.2 as parame-
ter and granularity mutation probability per chromosome, re-
spectively. We have not performed any previous analysis to
fix these values, so better results may probably be obtained by
tuning them though we have informally noticed our algorithm
is not specially sensitive to any parameter. The same param-
eter values are also used in the CHV algorithm in addition to

1J. Casillas. FMLib: fuzzy modeling library. http://
decsai.ugr.es/˜casillas/FMLib/

2KEEL: Knowledge extraction based on evolutionary learning.
http://www.keel.es

3UC Irvine Machine Learning Repository. http://archive.
ics.uci.edu/ml/

4L. Torgo. Collection of regression datasets. http://www.
liacc.up.pt/˜ltorgo/Regression/DataSets.html

a = 0.35 (for MMA crossover), b = 5 (for non-uniform muta-
tion), and α = 0.2 (weight of the number of rules in the fitness
function).

3.2 Analysis

Table 2 collects the obtained results according to different
quality measures such as approximation error, number of
rules, number of linguistic terms, number of input variables,
and fitness values. Average values of the five data partitions
for each problem are reported.

We have included two versions of our algorithm in the com-
parative. The first one (EGLFP-1) is guided by a single fitness
function in the same way as done in CHV [4] for the sake of a
fair comparison. This function is a normalized aggregation of
the error and the number of rules as follows:

f(S) = 0.8 ·MSE(S) + 0.2 · MSE(SWM )
r(SWM )

· r(S) (9)

with SWM being the fuzzy model generated by the WM al-
gorithm using uniformly-distributed triangular-shaped strong
fuzzy partitions with the maximum number of linguistic
terms allowed per variable (maxLVv) and MSE(S) =
RMSE(S)2.

The second version (EGLFP-3) is guided by the above
three-objectives multicriteria approach. Since in this case sev-
eral solutions are returned in each run, we show five repre-
sentative solutions from the final Pareto-optimal set. They are
computed by sorting in ascending order the solutions accord-
ing to the training RMSE and getting the 1 (i.e. best error),
25, 50 (i.e. mean), 75, and 100 (i.e. worst error) percentiles.

From the obtained results we can observe that our algorithm
EGLFP-1 clearly overcomes, according to the fitness values
(column Fit.), the CHV algorithm in all the considered prob-
lems. Indeed, our method generates more accurate fuzzy mod-
els in five cases. As regards the interpretability, it is not clear
between EGLFP-1 and CHV which method obtains simpler
models in terms of number of rules and number of linguistic
terms since it depends on the problem. However, our method
generates fuzzy models with more easily distinguishable fuzzy
partitions thanks to the constraints tackled by the proposed ge-
netic operators. Furthermore, CHV needs, in order to achieve
the obtained accuracy values, to use badly formed fuzzy par-
titions where the extreme fuzzy sets of every variable may not
hold normality within the corresponding domain.

If we analyze the results obtained by EGLFP-3 we can see
that the process is able to generate a wide range of solutions
with different accuracy-interpretability tradeoffs. It worths
noticing that the most accurate solution of EGLFP-3 over-
comes EGLFP-1 in both accuracy and interpretability in sev-
eral problems. This fact is due to the niche-based search pro-
cess caused by the use of the multi-objective approach, which
leads the algorithm to a better exploration of the search space.
It is also interesting to highlight the significant improvements
in interpretability compared with the solutions provided by the
WM algorithm. Very simple fuzzy models with a low num-
ber of variables, linguistic terms, and fuzzy rules are obtained
while preserving a good accuracy.

4 Conclusion and Further Work
We have proposed a competitive genetic algorithm to simulta-
neously learn many components of a fuzzy model such as the
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Table 2: Obtained results with Etra/tst standing for the RMSE
on the training/test data set (O1, eq. 6), #R the number of
fuzzy rules (O2, eq. 7), #L the sum of the number of linguistic
terms of each variable (O3, eq. 8), #I the number of input
variables, and Fit. the fitness (eq. 9)

Method Etra Etst #R #L #I Fit.
Ele1

WM 650.743 674.910 22.0 21.0 2.0
CHV 591.268 627.132 6.8 15.8 2.0 305924
EGLFP-1 558.793 618.857 12.8 15.0 2.0 298660

560.346 638.527 17.0 16.0 2.0 315981
577.568 632.652 11.1 12.9 2.0

EGLFP-3 588.422 618.726 7.7 10.5 2.0
643.637 651.702 4.2 6.5 2.0

1017.088 988.744 1.8 4.0 1.0
Laser

WM 15.994 16.521 58.4 27.0 4.0
CHV 8.791 10.602 58.8 25.0 4.0 97.694
EGLFP-1 8.509 9.750 33.6 18.6 4.0 87.611

7.955 9.050 30.2 18.8 4.0 77.168
9.570 11.099 17.8 14.8 3.8

EGLFP-3 12.322 13.273 10.7 11.2 3.2
22.477 24.230 5.2 8.1 2.4
29.411 29.536 2.0 4.0 1.0

Ele2
WM 312.446 314.944 65.0 27.0 4.0
CHV 235.053 238.263 22.6 20.4 4.0 50745
EGLFP-1 185.383 187.804 24.2 18.4 3.2 35371

183.883 193.290 17.6 17.4 3.0 32462
211.290 212.999 12.7 14.4 3.0

EGLFP-3 314.150 314.470 6.9 10.6 3.0
553.541 566.163 3.7 8.1 2.0
903.109 917.182 2.0 4.0 1.0

DEE
WM 0.36302 0.47091 178.4 37.0 6.0
CHV 0.34580 0.42109 112.0 32.8 0.0 0.11226
EGLFP-1 0.31916 0.41802 142.2 33.0 6.0 0.10254

0.31795 0.43921 154.8 33.8 6.0 0.10376
0.34773 0.43448 105.5 28.1 6.0

EGLFP-3 0.37248 0.43070 50.5 21.4 5.2
0.41404 0.43448 13.3 13.5 3.5
0.79297 0.79075 2.0 4.0 1.0

Concrete
WM 8.2581 9.6227 309.8 47.0 8.0
CHV 5.5686 7.4688 335.8 43.6 8.0 39.058
EGLFP-1 5.8652 7.1887 235.0 36.0 8.0 37.614

5.6360 7.3113 324.8 41.2 8.0 39.286
6.3962 7.1763 210.0 30.8 7.1

EGLFP-3 7.2349 7.8924 91.4 22.2 5.8
8.9515 8.8944 16.8 12.3 3.9

14.9830 15.0084 2.0 4.0 1.0
Comp-activ

WM 11.9387 11.9762 425.6 70.0 21.0
CHV 3.6004 3.6022 103.6 51.0 21.0 17.2945
EGLFP-1 3.3237 3.3848 14.0 19.4 6.4 9.7949

3.3506 3.4277 12.6 17.6 6.6 9.8424
3.4751 3.5417 8.6 14.1 5.3

EGLFP-3 4.4530 4.5192 6.3 10.5 3.7
6.6188 6.6736 4.0 8.4 2.8

18.3997 18.3876 1.8 4.0 1.0

subset of input variables, the number of linguistic terms per
variable, the type of membership functions (trapezoidal or tri-
angular), the membership function parameter values, and the
fuzzy rule set. The algorithm is designed to generate highly
legible and compact fuzzy partitions thanks to the use of inter-
pretability constraints and powerful genetic operators.

The originality and good performance of the proposal
mainly lies in the definition of new real-coding crossover and
mutation operators that properly deals with the constraints for
distinguishability, orderliness, and non-deformity imposed to
the learnt fuzzy partitions; the design of a variable-length cod-
ing scheme and a parent-centric crossover capable of handling
fuzzy partitions with different number of linguistic terms; and
the use of several criteria and a multi-objective optimization
scheme that provide with a range of different interpretability-
accuracy tradeoffs and endow the algorithm with an effective
niche-based search process. Successful results are obtained in
six real-world regression problems with up to 21 continuous
input variables.

As further work we will investigate the scalability of the
algorithm to large-scale problems and the use of more crite-
ria to assess the interpretability quality of the obtained fuzzy
models.
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