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Abstract. The main objective of this work is to automatically design
artificial neural network, ANN, models with sigmoid basis units for mul-
ticlassification tasks in predictive microbiology. The classifiers obtained
achieve a double objective: high classification level in the dataset and
high classification level for each class. For learning, the structure and
weights of the ANN we present an Hybrid Pareto Differential Evolu-
tion Neural Network (HPDENN), a Differential Evolutionary approach
based on the PDE multiobjective evolutionary algorithm . The PDE al-
gorithm is augmented with a local search using the improved Resilient
Backpropagation with backtraking–IRprop+ algorithm. To analyze the
robustness of this methodology, we have applied it to two complex prob-
lems of classification in predictive microbiology (Staphylococcus Aureus
and Shigella Flexneri). The results obtained in Correct Classification
Rate (C) and Minimum Sensitivity (S) for each class show that the gen-
eralization ability and the classification rate in each class can be more
efficiently improved within this multiobjective algorithm.

Keywords: Neural Networks; Multiobjective; Accuracy; Sensitivity;
Multiclassification; Memetic Algorithms; Differential Evolution; Predic-
tive Microbiology.

1 Introduction

Growth/No Growth models have been arisen in the predictive microbiology field
as an approach to determine the ability of growth of microorganisms. At this
respect, many works have been published in recent years for both spoilage and
pathogenic microorganisms. This fact is mainly due to the necessity of gain-
ing knowledge, by using mathematical models, about the microbial behaviour in
limiting conditions that prevent growth. Consequently, these mathematical mod-
els may lead to more realistic estimations of food safety risks and can provide
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useful quantitative data for the development of processes which allow production
of safer food products [1].

The main problems in modelling microbial interface are related to the abrupt
transition, i.e. the large change in the value of growth probability (p) at a very
narrow range of environmental factors, that is encountered between growth and
no growth conditions. Then, to define more properly the interface, growth and
no growth should only be considered if all replicas (or at least a very high
percentage of them) grow and do not grow, respectively. Indeed, in this paper
four observed microbial responses are obtained based in the probability of growth
for a microorganism, (p = 1 (growth), G; 0.5 ≤ p < 1 (growth high probability),
GHP; 0 < p < 0.5 (growth low probability), GLP, and p = 0 (no growth), NG).

The importance of the use of ANNs in predictive microbiology as an alter-
native to regression techniques was stated by Basheer and Hajmeer [2] due to
their flexibility and high degree of accuracy to fit to experimental data. In this
work, we discuss learning and generalization improvement of classifiers designed
using a Multi-Objective Evolutionary learning Algorithm (MOEA) [3] for the
determination of growth limits for two pathogenic Staphylococcus Aureus and
Shigella Flexneri. We specifically investigate the generation of neural network
classifiers that achieve high classification level for each class. The methodology is
based on two measures: the Correct Classification Rate, C, and the Sensitivity,
S, as the minimum of the sensitivities of all classes.

The basic structure of our MOEA has been modified by introducing an ad-
ditional step, where some individuals in the population have been enhanced by
a local search method. For this purpose, a Hybrid Pareto Differential Evolution
Neural Network (HPDENN) algorithm has been developed.

The rest of the paper is organized as follows. In section 2 an explanation of
Accuracy and Sensitivity is shown. Section 3 describes the HPDENN algorithm,
followed by the experimental design in Section 4. Section 5 shows the obtained
results and finally, the conclusions are drawn in Section 6.

2 Related Works

2.1 Accuracy and Sensitivity

In this section we present two measures to evaluate a classifier: the Correct Clas-
sification Rate or Accuracy, C, and the Sensitivity, S. To evaluate a classifier,
the machine learning community has traditionally used C to measure its default
performance. Actually, we simply have to realize that accuracy cannot capture
all the different behavioural aspects found in two different classifiers in multiclas-
sification problems. For that problems we consider two performance measures;
the traditionally-used accuracy, C = 1

N

∑Q
j=1 njj (where Q is the number of

classes, N is the number of patterns in training or testing and njj is the num-
ber of patterns from class j-th that are correctly classified), and the minimum
of the sensitivities of all classes, S, that is, the lowest percentage of examples
correctly predicted as belonging to each class, Si, with respect to the total num-
ber of examples in the corresponding class, S = min{Si}. The Sensitivity versus
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Accuracy pair (S, C) expresses two features associated with a classifier: global
performance (C) and the rate of the worst classified class (S). The selection of
S as a complementary measure of C can be justified upon considering that C is
the weighted average of the sensitivities of each class.

One point in (S, C) space dominates another if it is above and to the right,
i.e. it has more Accuracy and greater Sensitivity. Let C and S be respectively
the accuracy and the sensitivity associated with a classifier g, then S ≤ C ≤
1 − (1 − S)p∗, where p∗ is the minimum of the estimated prior probabilities.
Therefore, each classifier will be represented as a point in the shaded region in
Fig. 1, hence the area outside of the triangle is marked as unfeasible.

Fig. 1. Feasible region in the two dimensional (S, C) space

The area inside the triangle in Fig. 1 may be feasible (attainable), or may not
be, depending upon the classifier and the difficulty of the problem. A priori, we
can think that S and C objectives can be positively correlated, but while this
may be true for small values of S and C, it is not for values close to 1 on both
S and C. In this way competitive objectives are at the top right corner of the
shaded region. This fact justifies the use of a MOEA.

3 Learning Methodology

At the beginning of this section describes the neural networks employed. Then,
the proposed algorithm is shown and concludes with a description of the local
search algorithm used.

3.1 Base Classifier Framework

In this paper we use the Base Classifier Framework described in [4].
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3.2 Memetic Pareto Algorithm

We construct a MOEA with a local search algorithm, named as Hybrid Pareto
Differential Evolutionary Neural Network (HPDENN), that tries to move the
classifier population towards the optimum classifier located at the (1, 1) point
in the (S, C) space. The MOEA proposed is based on the PDE [5] and the local
search algorithm is the Improved Resilient Backpropagation–IRprop+ [6].

The Memetic Multiobjective Evolutionary Neural Network algorithm used
in this work considers a fully specified ANN as an individual and it evolves
architectures and connection weights simultaneously. The ANNs are represented
using an object-oriented approach and the algorithm deals directly with the
ANN phenotype. Each connection is specified by a binary value, which indicates
whether the connection exists, and a real value representing its weight.

The HPDENN is based on the algorithm described in [4]. In HPDENN, local
search does not apply to all childs to be added to the population. Instead, the
childs most representative of the population are optimized in some generations.
The pseudocode shown in Fig. 2.

1: Create a random initial population
2: while Stop condition is not met do
3: Evaluate population
4: Adjust the size of the population
5: while The population is not complete do
6: Select parents
7: Cross parents
8: Mutate the child
9: Evaluate the child
10: Add the child in the population according to dominance relationships with the main parent
11: end while
12: if k mod(LS) = 0 then
13: if Number of individuals of the first Pareto front of Pk < num then
14: Apply iRprop+ to the individuals of the first Pareto front
15: else
16: Generate num cluster in the first Pareto front using K-means
17: Apply iRprop+ to the num centers
18: end if
19: end if
20: end while

Fig. 2. HPDENN algorithm pseudocode

The algorithm starts generating a random population P0 of size M . The pop-
ulation is sorted according to the non-domination concept explained in Section
2.1. Dominated individuals are removed from the population. Then the popula-
tion is adjusted until its size is between 3 and half the maximum size by adding
dominated individuals or deleting individuals according to their distance from
the nearest neighbour respectively. After that, the population is completed with
news child generated from three randomly selected individuals of the popula-
tion. The child is generated by crossing the three parents. The resultant child
is a perturbation of the main parent. This perturbation occurs with a probabil-
ity Pc for each neuron. This perturbation may be structural, according to the
expression (1), with which neurons are removed or added to the hidden layer;
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or parametric, according to the expression (2) (for de hidden layer) or (3) (for
the output layer), with which weight of the main parent is modified with the
difference of the weights of secondary parents.

ρchild
h ←

{
1 if (ρα1

h +)N (0, 1) (ρα2
h − ρα3

h ) ≥ 0.5
0 otherwise

(1)

wchild
ih ← wα1

ih + N (0, 1) (wα2
ih − wα3

ih ) (2)

wchild
ho ← wα1

ho + N (0, 1) (wα2
ho − wα3

ho ) (3)

Afterwards, the mutation operator is applied on the child. The mutation operator
consists on adding or deleting neurons in the hidden layer depending on a Pm

probability for each them. Taking into account the maximum number of hidden
neurons that may exist in an individual in a specific problem, the probability
will be used as many times as number of neuron has the classifier. If the neuron
exists, is deleted, but if it does not exist, then it is created and the weights are
established randomly, according to the expression (4).

ρchild
h ←

{
1 ifρchild

h = 0
0 otherwise

(4)

Finally, the child is added to the population according to dominance relationships
with the main parent. In some generations, depending on the size of the first
Pareto front, local search is applied to all individuals in the first Pareto front
or the most representative individuals in this front (obtained by the K-means
algorithm [7]).

3.3 Local Search Algorithm

The combination of Evolutionary Algorithms, EA, and local procedures, EAs
would carry out a global search inside the space of solutions, locating ANNs near
the global optimum and the local procedure would arrive quick and efficiently
to the best solution. This type of algorithms receives the name of Memetic or
Hybrid Algorithms [8].

Many MOEAs use local optimizers to fine tune the ANNs weights. This is
called “lifetime learning” and it consists in updating each individual regarding
the approximation error. In addition, the weights modified during the lifetime
learning are encoded back to the chromosome, which is known as the Lamarckian
type of inheritance. This procedure has a high computational cost, something
that we wanted to avoid. For this reason we propose the following.

For reducing the runtime, local search is applied only in three generations of
evolution, the first to start the second half and the third at the end.

The local search algorithm is applied once the population is completed. Thus,
local search is not applied to those children who are rejected. Local search does
not apply to all individuals, but to the most representative. The process for
selecting these individuals is as follows: If the number of individuals in the first
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Pareto front is less than or equal to the desired number of clusters (num), local
search is carried out without necessity of applying the K-means [7]. Instead, if
the number of individuals of the first front is greater than num, the K-means
is applied to the first front to get the most representative num individuals to
which local search will be applied.

This local search will improve the obtained Pareto front in only one objective,
specifically in the direction of the objective that tries to minimize the classifica-
tion error.

As far as we are concerned, Rprop (resilient Backpropagation) algorithm [9]
is used to be one of the best techniques in terms of convergence speed, accuracy
and robustness.

4 Experiments

To analyze the robustness of the proposed methodology, in the experimental de-
sign we consider two complex problems on predictive microbiology for describing
the behavior of pathogen and spoilage micro-organism under a given set of envi-
ronmental conditions. The objective is to determine the conditions under which
these microorganisms can be classified as G/GHP/GLP/NG, and to create a
neural classifier for this purpose. Specifically, we have considered as problems
the pathogen growth limits of Staphylococcus Aureus and Shigella Flexneri.

In all experiment, the population size for HPDENN is established to M = 25.
The crossover probability is 0.8 and the mutation probability is 0.1. For IRprop+,
the adopted parameters are η+ = 1.2, η− = 0.5, Δ0 = 0.0125 (the initial value
of the Δij), Δmin = 0, Δmax = 50 and Epochs = 25, see [9] for IRprop+

parameters description. The optimization process is applied 3 times during the
execution (each 33.33% of generations, LS = 33.33) and use num = 5 cluster in
the clustering algorithm. To start processing data, each one of the input variables
was scaled in the ranks [−1.0, 1.0] to avoid the saturation of the signal.

In Table 1 we can see the features for each dataset. For each database we had
used the fractional factorial design present in different papers [10] for Staphylo-
coccus Aureus and [11] for Shighella Flexneri) in order to find out the growth
limits of each microorganism.

During the experiment, we train models using Entropy (E) and Sensitivity (S)
as objective functions, but when validated using Accuracy (C) and Sensitivity
(S). E is used instead of C in training because C is a discontinuous function,
which makes convergence vary difficult in neural network optimization.

Once the Pareto front is built, two methodologies are considered in order to
build a neural network model with the information of the models on it. These

Table 1. Characteristics for Datasets

Dataset #Patterns #Training #Test #Input #Classes #Patterns p∗

patterns patterns variables per class
S. Aureus 287 146 141 3 4 (117, 45, 12, 113) 0.0418
S. Flexneri 123 76 47 5 4 (39, 8, 7, 69) 0.0569
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are called HPDENN-E and HPDENN-S. These methodologies provide us single
models that can be compared with other classification methods existing in the
literature. The process followed in these methodologies is the next one: once the
first Pareto front is calculated using the patterns of the training set, the best indi-
vidual belonging to the Pareto front on Entropy (EI) is chosen for HPDENN-E,
and the best individual in terms of sensitivity (SI) is selected for HPDENN-S.
Once this is done, the values of C and S are obtained by testing the EI and SI
individuals. Therefore we will have an individual EItesting = (Ctesting , Stesting)
and an individual SItesting = (Ctesting , Stesting). This is repeated 30 times and
then the average and standard deviation obtained from the individuals is esti-
mated, EItesting = (Ctesting , Stesting) and SItesting = (Ctesting , Stesting). The
first expression is the average obtained taking entropy into account as the pri-
mary objective, and the second one is obtained by taking sensitivity into account
as the primary objective. So, the opposite extremes of the Pareto front are taken
in each of the executions. Hence, the first procedure is called HPDENN-E (En-
tropy) and the second HPDENN-S (Sensitivity).

5 Results

In Table 2 we present the values of the average and the standard deviation for
C, S and runtime in 30 runs of all experiments performed. It can be seen that de
HPDENN algorithm produces good results with respect to C, S and runtime.
In fact, from a purely descriptive point of view, HPDENN algorithm obtains
the best result in C in a dataset (equal that MPANN), the best result in S in
Staphylococcus Aureus and the best result in runtime in Shighella Flexneri (with
times well below those of MPANN).

In Fig. 3, we can see the graphical results obtained for HPDENN algorithm
for the datasets Staphylococcus Aureus and Shigella Flexneri in the training
(S, E) and the test (S, C) spaces. For the (S, E) space we select the Pareto
front for one specific run output of the 30 realized for each dataset, concretely
the execution that presents the best individual on Entropy in training, where
Entropy and Sensitivity are the objectives that guide HPDENN. On the (S, C)

Table 2. Statistical Resuls for PDE, MPANN and HPDENN

Dataset Method C(%) S(%) runtime(s)
S. Aureus PDE-E 71, 27 ± 2, 50 0 ± 0 49, 34 ± 5, 24

PDE-S 53, 52 ± 6, 57 20, 59 ± 10, 98 49, 34 ± 5, 24
MPANN-E 74, 44 ± 1, 41 0 ± 0 309, 14 ± 11, 51
MPANN-S 66, 71 ± 8, 87 9, 36 ± 10, 82 309, 14 ± 11, 51

HPDENN-E 73, 00 ± 1, 59 0 ± 0 48, 72 ± 3, 70
HPDENN-S 53, 64 ± 7, 24 21, 81 ± 14, 02 48, 72 ± 3, 70

S. Flexneri PDE-E 83, 75 ± 1, 04 0 ± 0 234, 90 ± 17, 93
PDE-S 84, 04 ± 3, 77 9, 77 ± 14, 82 234, 90 ± 17, 93

MPANN-E 87, 02 ± 0, 85 0 ± 0 1956, 93 ± 45, 28
MPANN-S 87, 02 ± 0, 85 0 ± 0 1956, 93 ± 45, 28

HPDENN-E 87, 02 ± 1, 16 0 ± 0 249, 12 ± 13, 99
HPDENN-S 86, 59 ± 2, 80 2, 22 ± 8, 45 249, 12 ± 13, 99
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Fig. 3. Pareto front in training (S, E) and (S, C) associated values in testing in one
specific run of the 30 runs carried out

testing graphics we show the S (Sensitivity) and C (Accuracy) values over the
testing set for the individuals who are reflected in the (S, E) training graphics.
Observe that the (S, C) values do not form Pareto fronts in testing, and the
individuals that in the training graphics were in the first Pareto front, now can
be located within space in a worst region. In general the structure of a Pareto
front in training is not maintained in testing. Sometimes it is very difficult to
obtain classifiers with a high percentage of classification and a high percentage
of sensitivity, for this reason some fronts have few individuals.

In order to determine the best methodology for training MLP neural networks
(in the sense of its influence on the Accuracy, C, and Sensitivity, S, in the test
dataset), and minimum runtime, R, in the training procedure; an ANalysis Of
the VAriance of one factor (ANOVA I) statistical method and the non parametric
Kruskal-Wallis (K-W) tests were used. The tests were used, depending on the
satisfaction of the normality hypothesis of C and R values. The factor Fi analyzes
the effect over C (or S or R) of the i-th level of this factor, where Fi represents
the different methodologies used in the algorithm, with levels: i = 1 to 6, (PDE-
E (PE), PDE-S (PS), MPANN-E (ME), MPANN-S (MS), HPDENN-E (HE)
and HPDENN-S (HS)). It is not possible to perform these test for S, because
some methodologies in the two data sets present cero values. For R, the resuls
are the same for -E and -S, and then there only exist three populations. The
results of the ANOVA I analysis for test C values show that for the two datasets
the six training methodologies effect is statistically significant at a 5% level of
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Table 3. p-values of the Snedecor’s F ANOVA I or K-W test and ranking of averages
of the Tamhane Statistical multiple comparison tests and M-W pair test

S. Aureus S. Flexneri
C(%) R(s) C(%) R(s)

F or K-W test 0.000(*) 0.000(*) 0.000(*)(o) 0.000(*)
Ranking of
averages

µME ≥ μHE ≥ μMP ANN > µHE ≥ μMS ; μMP ANN >
μP E ≥ μMS ≥ μP DE ≥ µHE ≥ μME ; μHP DENN

μHS > μP S µHP DENN µHE ≥ μHS ; ≥ µP DE

µHE > μP S ;
µHE > μP E

(*)The average difference is significant with p-value=0.05, µA ≥ µB: the fitness func-
tion A yields better results in mean than the fitness function B, but the difference are not
significant; and µA > µB: the fitness function A yields better results in mean than the
fitness function B with significant differences. The binary relation ≥ is not transitive.
(o)Kruskal-Walis Test and Mann-Whitney pairs test.

significance. The results of the ANOVA I analysis for R show that for the two
datasets the three training methodologies effect is statistically significant at a
5% level of significance. Table 3 shows the results obtained (in the second and
fourth columns for C and in the third and fifth columns for R).

Because there exists a significant difference in mean for C and R using the
Snedecor’s F or the K-W test; we perform, in the first case, under the normality
hypothesis, a post hoc multiple comparison test of the mean of C and R ob-
tained with the different levels of each factor. We perform a Tamhane test under
normality and a pair-wise Mann-Whitney test in other case. Table 3 shows the
results obtained (in the second and fourth columns for C and in the third and
fifth columns for R). If we analyze the test results for Accuracy C, we can observe
that HPDENN-E methodology obtains results that are, in mean, similar to the
obtained with MPANN-E (the second best methodology) in the two datasets,
but with a statistical significant less runtime. On the other hand, the results of
average Sensitivity S show that the HPDENN-S methodology obtains a perfor-
mance that is better than the rest of methodologies for S in S. Aureus database
and the second best for S. Flexneri. It can be noticed than the -E methodologies
classify the two databases but they leave a class with no well classified pattern.

6 Conclusions

In this paper we study the application of a memetic algorithm based on differen-
tial evolution in the resolution of multiclass classification problems in redictive
microbiology. With this algorithm, we intend to obtain good results in Sensitiv-
ity and Accuracy (S, C), but also decrease the computational cost to reduce the
runtime. We have proposed to apply local search to the most representative in-
dividuals of the population, selected through clustering techniques, to optimize
the most promising individuals. This memetic algorithm has obtained similar
results in C and better in S with respect to MPANN. In addition, HPDENN
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runs much faster. That’s why we recommend using those HPDENN to address
multiclass problems in which good results are desired in a reduced runtime.
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