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Abstract 
Detecting thermal insulation in buildings represents a big challenge to 
reduce the impact of domestic heating system in the global warming, 
but also in the economy. Thermal insulation failure detection is usually 
considered in the contract and rarely it is analysed in the normal 
situations, when the building is in operation. In this case, the lighting, 
occupancy and temperature profiles and ventilation services make this 
process quite complex. Identifying this kind of failures in operation 
would reduce the energy consumption in heating systems. In this paper, 
soft computing techniques are hybridized to detect the insulation 
thermal failures whenever the building is in operation. The study 
considered the local regulations in building and heating systems and the 
specific climate zone analysed. The three steps procedure is detailed. 
Firstly, the thermal dynamics have been modelled for different building 
characteristics and climate zones. Secondly, the Cooperative 
Maximum-Likelihood Hebbian Learning is used to extract the relevant 
features. Finally, neural projections and identification techniques have 
been applied in order to detect bias in the room temperatures and, 
consequently, thermal insulation failures. Although a vast amount of 
research has to be carried out, it is expected to outperform the energy 
consumption in the Spanish buildings.  
 
 

1. Introduction 
Soft computing represents a collection or set of computational techniques and intelligent 
systems principles in machine learning, computer science and some engineering 
disciplines, which investigate, simulate, and analyze very complex issues and phenomena 



 
in order to solve real-world problems. Specifically, the thermal insulation failure detection 
in buildings is one of such kind of complex problems [1], [2]. In thermal insulation 
detection several different disciplines conjunct [3].  
On the one hand, current local regulations need to be analysed and considered in order to 
accomplish with all the premises and to establish the legal bounds of the physical 
variables. In the case of Spain, the building regulations and also the heating systems 
regulations define up to five winter climate zones and five summer climate zones in the 
whole country territory. Considering the pair <winter zone, summer zone> the building 
materials, the insulation width and materials and so on are determined. Nevertheless, there 
is another factor given by market behaviour that should be included: the building design –
geometrical and orientation aspects–, the aesthetics aspects and the inner or in-door 
distributions aspects have a high impact in the thermal dynamic of a building. This is 
called the building topology. A topology and a pair of <winter zone, summer zone> forms 
what is called configuration. Given a configuration the environmental variables history –
such as sun radiation, outdoor temperature, wind speed, etc.– can be gathered. Also, the 
heating and ventilation systems can be designed and the occupancy profiles, lighting 
profiles, small power devices profiles, ventilation profiles and temperature set point 
profiles can be estimated. 
On the other hand, predicting the thermal dynamic in a building is a complex task. 
Thermal dynamic has been used mainly to estimate the power requirements in buildings. 
As an example, in [4] the difficulties in obtaining the black box model for a generic 
building is documented. Further more, in [5] the errors with different kind of techniques 
and a possible solution are given.  In both cases, the aim of the study is the design an 
electrical energy distribution device to control electrical heating systems in order to bound 
the electrical energy consumption while the comfort is kept in the building. Also, in [5] 
the influence in the thermal efficiency is analysed for a specific building component. In 
this case, the thermal dynamics of an aluminium roof is analysed and compared with 
standard roof materials. The mentioned works are all involved in the design of new 
buildings, but -up to our knowledge- nothing has been said about the efficiency in 
buildings that are in operation.  
This work represents a step forward the development of techniques to improve the thermal 
efficiency in buildings through the detection of thermal insulation failures while the 
building is in operation. The proposal is based in determining when the behaviour of the 
available variables is biased with respect the steady state. Although this can be seen as a 
simple task, the noise introduced due the occupancy or the lighting profiles of use in the 
building can distort to make such detection much more complex than it seems. The 
proposal includes a three steps procedure for testing and validating the model. Firstly, the 
thermal dynamics of a building in a specific configuration is calculated by means of the 
HTB2 software [6]. The outcome of the HTB2 should be post processed in order to obtain 
a suitable data set. Then the data set is analysed using the Cooperative Maximum-
Likelihood Hebbian Learning (CMLHL) to extract the structure of the data and the 
relationships between the variables. Afterwards, the modelling stage will produce a model 
to estimate the temperature in the room for the specific configuration. Finally, if the 
temperature error, which is measured as the difference between the room temperature and 
the model output temperature, is higher than a certain threshold it can be concluded that 
there are thermal insulation failures in that room. 
This paper is organised as follows. Section 2 introduces the used unsupervised 
connectionist techniques for analysing the data in order to extract the relevant internal 
structures. Section 3 deals with the classical identification techniques used in the system 



 
modelling. In Sect. 4, the problem details and the multi-step procedure are detailed. 
Finally, conclusions and future work are included. 

2. System Analyses Using Unsupervised Connectionist Techniques  

2.1. Data structure analysing using connectionist techniques  

The CMLHL [7] is used in this research in order to analyse the internal structure of  the 
data set, which describe the heaing process to establish whether it  is “sufficiently 
informative”. In the worse case, the experiments have to be performed again in order to 
collect a proper and informative data set. 
CMLHL is a Exploratory Projection Pursuit (EPP) method [8] [9]. In general, EPP 
provides a linear projection of a data set, but it projects the data onto a set of basic vectors 
which help reveal the most interesting data structures; interestingness is usually defined in 
terms of how far removed the distribution is from the Gaussian distribution [10].  
One connectionist implementation is Maximum-Likelihood Hebbian Learning (MLHL) 
[11], [12]. It identifies interestingness by maximising the probability of the residuals 
under specific probability density functions that are non-Gaussian. An extended version is 
the CMLHL [7] model, which is based on MLHL [11],[12] but adds lateral connections 
[13], [14] that have been derived from the Rectified Gaussian Distribution [10].  
Considering an N-dimensional input vector ( x ), and an M-dimensional output vector ( y ), 
with ijW  being the weight (linking input j to output i), then CMLHL can be expressed [15], 
[16] as:  
1. Feed-forward step: 
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Where: η is the learning rate,τ is the "strength" of the lateral connections, b the bias 
parameter, p a parameter related to the energy function [10], [11], [12] and A  a 
symmetric matrix used to modify the response to the data [10]. The effect of this matrix is 
based on the relation between the distances separating the output neurons. 

2.2. Feature selection and extraction  

Feature Selection and extraction [15], [16] includes feature construction, space 
dimensionality reduction, sparse representations and feature selection among others. All 
these techniques are commonly used as pre-processing tools to machine learning tasks 
including pattern recognition. Although researchers have tackled such problems for many 
years, there has been recently a renewed interest in feature extraction. A large number of 
new applications with very large input spaces critically need space dimensionality 



 
reduction for efficiency and efficacy of the predictors. Some of these applications include 
new and classical topics as bioinformatics (DNA microarrays, etc.), remote sensing multi- 
and hyperspectral imagery, pattern recognition (e.g. handwriting recognition, text 
processing, web mining), speech processing, artificial vision, industrial applications and 
so on. 
In this study, our approach to feature selection is based mainly on the dimensionality 
reduction issue, using initially a projectionist method called Cooperative Maximum 
Likelihood Hebbian Learning (CMLHL)[7], characterized for its capability to enforce a 
more sparse representation in each weight vector than other classical methods as PCA 
[17], [18] or Maximum Likelihood Hebbian Learing (MLHL) [11], [12] and its capability 
of preserving some global ordering [14], due to the effect of the lateral connections.  
 

3. System Modelling Using Classical Identification Algorithms  
 

3.1. The identification criterion  

The identification criterion consists in evaluating which of the group of candidate models 
is the best adapted and that best described the data set gathered for the experiment; i.e., 
given a certain model )( *θM , its prediction error may be defined as in Eq. (5). The aim 
is to obtain a model that complies with the following premise [9]: a good model is one that 
makes good predictions, and which produces small errors when the observed data is 
applied, i.e., on any one data set tZ it will calculate the prediction error ),( θε t , Eq. (5), 

in such a way that for any one t=N, a particular Nθ̂  (estimated parametrical vector) is 

selected so that the prediction error )ˆ,( Nt θε  in t=1,2,3…N, is minimized. 
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The methodology of black-box structures [9], is used for linear systems or for systems that 
are linear in the working area; this methodology has the advantage of only requiring very 
few explicit assumptions on the pattern to be identified, but that in turn makes it difficult 
to quantify the model that is obtained. The discrete linear models may be represented 
through the union of a deterministic model and a stochastic model, Eq. (6). In Eq. (6),  u(t) 
is the input, y(t) is the output, )( 1−qG  is the transfer function from u(t) to y(t), )( 1−qH  is 

the transfer function from e(t) to y(t) and 1, −qq are  forward and backward shift operators. 
The term e(t) (white noise signal) includes the modelling errors and is associated with a 
series of random variables, of mean null value and variance λ. 
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The structure of a black-box model depends on how the noise influences the model [12], 
that is, the term )( 1−qH . Thus, if this term is 1, then the FIR (Finite Impulse Response) 



 
and OE (Output Error) models are applicable; whereas if it is different from zero a great 
range of models are applicable; the most common being: ARX (Autoregressive with 
external input), ARMAX (Autoregressive Moving Average with external input), BJ (Box 
Jenkins) and ARMA (Autoregressive Moving Average).  

3.2. The ANN in the identification process  

The use of ANN in the process of identification requires the selection of several 
parameters: the number of layers, the number of neurons per layer and the activation 
functions. The methods to set up the parameters have been documented in depth in the 
literature, and it was found the ANN with two layers using sigmoidal of hyperbolic 
functions in the hidden layer are universal approximators or predictors [20], [21]. 
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Fig. 1. A MLP network with two layers, with two nodes per layer, and three inputs. W is the weight matrix 
between the hidden and output layer, while w is the weight matrix between the inputs and the h has two bias 
nodes with value 1.  
 
 
Also, the number of neurons per layer is a relevant design parameter that should be 
analyzed in order to avoid over fitting [22], [23]; which state that the number of neurons 
and the size of the weight matrix depends on the ANN training algorithm. Each algorithm 
will introduce some restrictions in the weight matrix. The most widely used training 
algorithms in system identification are the Lenvenberg-Marquardt method [24], recursive 
Gauss-Newton method [19], the batch and the recursive versions of the back-propagation 
algorithm [25]. 

3.3. The process of identification  

When using ANN, the purpose of a identification process is determining the weight matrix 
based on the observations Zt, so that the relationships between nodes in the network are 
given. The weight matrix is usually referred as w, W or θ. 
Then the supervised learning algorithm is carried out to find the estimator θ, so that the 
identification criterion is obtained. In the case of this work, the minimization of the mean 
square error criterion is used as defined in Equations (7) and (8). The iterative 
minimization scheme is defined in Eq. (9), where f(t) is the search direction and )(tµ  step 
size. 
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Several different well-known model structures are used when merging system 
identification with ANN. If the ARX model is used as the regresion vector θ, the model 
structure is called NNARX, as can be seen in Eq. (10). NNARX stands for neural network 
ARX. Likewise, NNFIR, Eq. (11), NNARMAX, Eq. (12) and NNOE structures, Eq. (13), 
are also used in depth. In the same way, it posible to use a estimator for the on-step 
prediction ahead of the output )|(ˆ θty , i.e., the NNARX, Eq. (14), the NNFIR, Eq. (14), 
the NNARMAX, Eq. (15) and the NNOE, Eq. (15). The value of the degree of each 
polynomio -na, nb, nc, nd, nf and nk- are given as parameters.  
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3.4. The system identification methodology 

The best model for estimating the conditions of the thermal dynamic must be chosen. The 
identification procedure includes establishing the identification techniques [19], [26], [27], 
[28], [29]], the selection of the model structure, the estimation of the suitable polynomials 
degree [30], [31], the identification criterion, and the optimization techniques in order to 
generate the final model. 
Also, the identification procedure includes a validation stage, which ensures that the 
selected model meets the necessary conditions for estimation and prediction. In order to 
validate the model, three tests were performed: residual analysis ))(ˆ,( tt θε , by means of a 
correlation test between inputs, residuals and their combinations; final prediction error 
(FPE) estimate as explained by Akaike [32] and finally the graphical comparison between 
desired outputs and the outcome of the models through simulation one (or k) steps before. 

 

4. The multi-step method for detecting thermal insulation failures 
in buildings.  

4.1. Thermal dynamics data gathering by means of simulation 

The methodology that follows is proposed to detect thermal insulation failures in 
buildings. Firstly, a model of the dynamics of a building should be determined.  In order 



 
to determine the dynamics, the building conditions in normal operational stage should be 
obtained. This data can be gathered by two methods: by distributing sensors among the 
building or by simulation. Once the thermal dynamics data is gathered, then a model of 
normal operation can be obtained. Finally, thermal insulation failures can be detected 
using this model when a significant bias in the room temperature is identified. 
This section deals with the whole method to detect the thermal insulation failures, In the 
next subsection, the procedure to gather thermal dynamics data from simulation is 
detailed. Then, it is shown how the CMLHL is used to extract features from the thermal 
dynamics data with the relevant information of the process. Finally, the system 
identification techniques are applied to obtain the model which must detect the thermal 
insulation failures. 
Thermal dynamics data gathering by meas of simulation There are two methods to obtain 
data for the dynamics of a building: by a network of sensors placed in each space of a 
scaled or real size building measuring the desired variables, and other method is based on 
the simulation of the dynamics by specific software [6]. We think that this second choice 
is more suitable than physical modelling because it’s a more flexible and scalable solution 
that shaves a lot of resources (money and time).   
The process of simulating the dynamics of a building requires the definition of the 
following elements: 

• The topology of the building: the distribution of spaces and orientation. 
• The climate zone: the Spanish regulation sets five winter/summer zones, from E1 

(more severe climate zone) to A3 (more soft climate zone).  
• Meteorological data for the climate zone and the simulated time period: such as 

sun radiation, outdoor temperature, wind speed, etc. These data can be taken from 
meteorological stations placed in a climate zone representative city. 

• The building materials that fulfill with local regulations for the chosen climate 
zone. 

• Heating profile: the installed power in each space according to the local 
regulations and the set point temperature profiles defined by the user. 

• Lighting profile: the lighting system of a building produces a sensible heat that 
influences in its dynamics, so it’s necessary to define the operation profile of the 
lighting system for each space. 

• Small power devices profile: as for lighting, small power sources (typically 
electric appliances) produce heat while they are in use, so they affect the thermal 
dynamics in the buildings.  

• Occupancy profile: occupant heat gains for each space are to be used. Also the 
metabolic rates (sensible heat gain per adult in W) suitable for the activities held 
in the space must be considered.  So, the timetable of occupancy for each space 
must be defined.   

• Ventilation profile: ventilation and infiltration are important factors in the energy 
transport in buildings. There are several ventilation specifications for a building; 
from specifying air change rates for spaces, through specifying space to space air 
flows, to specifying individual window openings. 

Once, these data are defined and/or collected, we can carry out the simulation with the 
chosen simulation tool and obtain the output data needed for the next step:  the air 
temperature in each space and required power output for each heater to accomplish the 
heating profiles. 



 
4.2. Extraction of the relevant internal structures 

As we can see in the figure 2, CMLHL is instrumental in identifying the internal structure 
of the data. It was applied to the data set in order to select the features that best described 
the relationships between the heating conditions and in order to establish whether the 
dataset was sufficiently informative. The results of applying the method is shown in 
Figure 2.  
. 
Having analysed the overall global results, we can see in Figure 2 has classified in two 
different clusters, then we can say the data set has an interesting internal structure. When 
the data set was considered sufficiently informative, the third step in the process began. 
This step accurately and efficiently optimizes the model of the heating system for 
detecting thermal insulation failures in buildings, through the application of several 
conventional modelling systems.  
 

 
 
Fig. 2. The CMLHL projection shows the original data set and the directions found by our 
probabilistic rule with p=2. The first direction is green. The projections of the data are shown in the 
right diagram in which we see that the first projection totally smears the clusters which the second 
projection completely separates the clusters. 
 

4.3. System identification to model normal building operation 

Once the relevant variables and their transformation have been extracted from the termal 
dynamics data, then a model to fit the normal building operation should be obtained in 
order to identify the bias in the room temperatura, which, at the end, is used for failure 
detection. The different model learning methods used were implemented in Matlab© 
making use of several toolboxes: the System Identification Toolbox, the Control System 
Toolbox, the Neural Network Toolbox and the Neural network Based System 
Identification Toolbox [33]. The experiment followed the identification procedure detailed 
in Section 3.4: the model structures were analyzed in order to obtain the models that best 
suite the data set. The Akaike Information Criterion (AIC) was used to obtain the best 
degree of the model and its delay for each model structure. A total of 70 techniques were 
carried out to obtain the models, including:  



 
• The frequency response analysis based on the spectrum analysis and the Fourier 

Fast Transform (FFT) were used to determine the data dynamics, 
• The finite impulse response method (FIR) correlation analysis was used to 

determine the steady state conditions, 
• The black-box models synthesis: there were considered up to 31 different 

combinations of model structure and optimization technique -such as the least 
squares method, the QR factorization of  ARX models, or the recursive 
normalized gradient algorithm of RARMAX models [19], [27], 

• The nonlinear model structures synthesis: there were considered up to 34 different 
combinations of model structures and optimization technique -such as the 
Lenvenberg-Marquardt method, the batch version of the back-propagation 
algorithm or recursive Gauss-Newton method for NNARX, NNFIR, NNARMAX 
and NNOE models [19], [24], [25], 

• Three different residual analysis based on cross correlation were carried out: the 
residual analysis between the residual )(ˆ τε

NR , between the residual and the input 

)(ˆ τε
N
uR  and the non linear residual correlation   )(ˆ

22 τ
ε
N
uR . 

To validate the obtained models, several different indexes have been used. The indexes 
are well-known and widely used measures in system identification [19], [26], [27]: 

• The percentage representation of the estimated model. This index is calculated as 
the normalized mean error for the one-step prediction (FIT1), for the ten-step 
prediction (FIT10) and with the ∞-step prediction (FIT). The FIT is known as 
simulation in classical system identification. 

• The graphical representation of the FIT1 – )|(ˆ1 mty –, the FIT10 – )|(ˆ10 mty – or the 

FIT – )|(ˆ mty∞ –. 
• The loss function or error function (V). This is the numeric value of the mean 

square error that is computed with the estimation data set. 
• The generalization error value (NSSE). This is the numeric value of the mean 

square error that is computed with the validation data set.  
• The FPE calculated as the average generalization error value computed with the 

estimation data set. 

5. Conclusions and future work 
Thermal insulation is essential in the energy efficiency of the heating systems in 
buildings. The higher the buildings closure the lower the energy losses due insulation 
failures. This thermal insulation failure detection represents a new challenge in building 
energy efficiency. In this paper, a new methodology for detecting thermal insulation 
failures is proposed. The procedure includes the possibility of using the sensors network 
in the building or the using specialized software in case there is no such network 
available. Finally, different techniques are applied to obtain the suitable model which will 
be the responsible of detecting the failures as a bias in the predicted room temperature. 
Future work include testing the proposal in different climate zones and with different 
buildings, so a generic methodology could be obtained.  
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