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Abstract. Improving the detection of thermal insulation failures in buildings 
includes the development of models for heating process and fabric gain -heat 
flux through exterior walls in the building-. Thermal insulation standards are 
now contractual obligations in new buildings, the energy efficiency in the case 
of buildings constructed before the regulations adopted is still an open issue, 
and the assumption is that it will be based on heat flux and conductivity 
measurement. A three-step procedure is proposed in this study that begins by 
considering the local building and heating system regulations as well as the 
specific features of the climate zone. Firstly, the dynamic thermal performance 
of different variables is specifically modelled. Secondly, an exploratory 
projection pursuit method called Cooperative Maximum-Likelihood Hebbian 
Learning is used to extract the relevant features. Finally, a supervised neural 
model and identification techniques are applied, in order to detect the heat flux 
through exterior walls in the building. The reliability of the proposed method is 
validated for a winter zone, associated to several cities in Spain.  

KEYWORDS: Computational Intelligence, Soft computing Systems, Identification 
Systems, Artificial Neural Networks, Non-linear Systems. 

1. Introduction 

The identification of thermal insulation failures (TIF) could significantly increase 
building energy efficiency and substantially contribute to reductions in energy 
consumption and in the carbon footprints of domestic heating systems. Conventional 
methods can be greatly improved through the application of learning techniques to 
detect the TIF when a building is in operation through heat flux model - heat flux 
through exterior walls in the building-. 

Nevertheless, predicting the thermal dynamics of a building is a complex task. The 
dynamic thermal performance of a building has mainly been used to estimate its 
power requirements. As an example, the difficulties of obtaining a black-box model 
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for a generic building are documented in [1]. Furthermore, [2] cites examples of the 
errors associated with different kinds of techniques while providing possible 
solutions. Also, in order to determine the thermal insulation failures local building 
regulations need to be analysed in order to profile the premises and the legal 
specifications for the physical parameters. 

This research represents a step forward in the development of techniques to 
improve dynamic thermal efficiency in existing buildings through a modelling of heat 
flux in the building. Although this may appear simple at first sight, noise due to 
occupancy and lighting profiles can introduce distortions and complicate detection. A 
three-step procedure for testing and validating the model is proposed: firstly, the 
dynamic thermal behaviour of a specific configuration is calculated using HTB2 
software [3]. The outcome of the HTB2 should then be post-processed to obtain a 
suitable dataset. Subsequently, the dataset is analysed using an exploratory projection 
pursuit (EPP) [4, 5] called Cooperative Maximum-Likelihood Hebbian Learning 
(CMLHL) [6, 7], extract the dataset structure and key relationships between the 
variables. A model is then produced, at the modelling stage, to estimate the heat flux 
through exterior walls in the building at a specific configuration.  

This paper is organised as follows. The following Sub-Section 1.1 details the 
problem description. Section 2 introduces the unsupervised connectionist techniques 
for analysing the datasets in order to extract their relevant internal structures. Section 
3 deals with classical identification techniques used in the system modelling. Section 
4 describes the case of study details and the multi-step procedure. Finally, the 
conclusions are set out and comments are made on future lines of work. 

1.1. Spanish regulations and the problem description  

In 2007, several regulations on buildings and construction were approved in Spain. 
Firstly, the minimum pre-requisites for energy efficiency with which buildings must 
comply are given in the European Directive 2002/91/CE [8]. Project and 
specifications, the constructing conditions and the basic requirements in Spain are 
specified in the CTE (Código Técnico de Edificación [Building Regulations]) [9, 10, 
11]. One of the basic requirements is document HE1 that considers the energy 
consumption limitation in buildings [9] and its updates.  

The Spanish regulation on heating systems in buildings is the RITE (Reglamento 
de las Instalaciones Térmicas en los Edificios) [12], which establishes the minimum 
requirements and parameters for heating systems and thermal comfort. Finally, the 
procedure for certifying energy efficiency in new buildings is detailed in [13]. Energy 
efficiency is calculated as the ratio of combustible consumption needed to satisfy the 
energy demand of the building. The energy efficiency in the case of buildings 
constructed before the CTE approval is still an open issue, and the assumption is that 
it will be based on heat flux and conductivity measurement.  
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2. Analysis of the Internal Structure of the data set  

2.1. Principal Component Analisis 

Principal Component Analysis (PCA) originated in work by Pearson [14], and 
independently by Hotelling [15] describing multivariate data set variations in terms of 
uncorrelated variables, each of which is a linear combination of the original variables. 
Its main goal is to derive new variables, in decreasing order of importance, which are 
linear combinations of the original variables and are uncorrelated with each other.  

2.2. A Neural Implementation of Exploratory Projection Pursuit 

The standard statistical method of EPP [4, 5], provides a linear projection of a data 
set, but it projects the data onto a set of basic vectors which best reveal the interesting 
structure in data; interestingness is usually defined in terms of how far the distribution 
is from the Gaussian distribution [16].  

One neural implementation of EPP is Maximum Likelihood Hebbian Learning 
(MLHL) [5, 17]. It identifies interestingness by maximising the probability of the 
residuals under specific probability density functions that are non-Gaussian. 

An extended version of this model is the Cooperative Maximum Likelihood 
Hebbian Learning (CMLHL) [6] model. CMLHL is based on MLHL [5, 17] adding 
lateral connections [18, 6] which have been derived from the Rectified Gaussian 
Distribution [16]. The resultant net can find the independent factors of a data set but 
does so in a way that captures some type of global ordering in the data set. 

Considering an N-dimensional input vector (x), and an M-dimensional output 
vector (y), with Wij being the weight (linking input j to output i), then CMLHL can be 
expressed [18, 17] as:  

 
1. Feed-forward step: 
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4. Weight change: 
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Where: η is the learning rate, τ is the "strength" of the lateral connections, b the 
bias parameter, p a parameter related to the energy function [5, 6, 17] and A a 
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symmetric matrix used to modify the response to the data [6]. The effect of this 
matrix is based on the relation between the distances separating the output neurons. 

3. System Modelling Using Identification Algorithms  

System identification (SI) aims to obtain mathematic models to estimate one or more 
behaviours from a physical process whose dynamic equations are unknowns. Classic 
SI refers to the parametrical literature [19], which has its origin from the linear system 
analysis.  

The SI procedure includes several steps [19, 20, 21, 22]: the selection of the 
models and their structure, the learning methods [23, 24], the identification and 
optimization criteria and the validation method. The validation ensures that the 
selected model meets the necessary conditions for estimation and prediction. 
Typically, validation is carried out using three different methods: the residual analysis 

))(ˆ,( tt θε  -by means of a correlation test between inputs, their residuals and their 
combinations-; the final prediction error (FPE) estimated as explained by Akaike [25] 
and finally a graphical comparison between desired outputs and the outcome of the 
models through simulation, with one (or k) steps ahead. 

3.1. The ANN in the identification process  

The use of ANN in the process of identification requires the selection of several 
parameters: the number of layers, the number of neurons per layer and the activation 
functions. The methods by which the parameters are set up are fully documented in 
the literature [26, 27]. It was found that ANN with two layers using non-linear 
functions in the hidden layer are universal approximators or predictors [28, 29].  

The number of neurons per layer is also a relevant design parameter. It should be 
analyzed in order to avoid over fitting [30, 31]. Each algorithm will introduce some 
restrictions in the weight matrix. The most widely used training algorithms in system 
identification are the Lenvenberg-Marquardt method [32], recursive Gauss-Newton 
method [19], the batch and recursive versions of the back-propagation algorithm [33]. 

Several well-known model structures are used when merging system identification 
with ANN. If the ARX (Autoregressive with external input) model is used as the 
regression vector θ, the model structure is called NNARX (neural network for ARX 
model), as can be seen in Eq. (5). Likewise, NNFIR for neural network FIR (Finite 
Impulse Response) Eq. (6), NNARMAX for neural network ARMAX 
(Autoregressive Moving Average with external input) Eq. (7) and NNOE for neural 
network OE (Output Error) Eq. (8), are also extensively used. In the same way, it is 
possible to use an estimator for the one-step ahead prediction of the output ( )θ|ˆ1 ty , 
i.e., the NNARX and the NNFIR –using Eq. (9)–, or the NNARMAX and the NNOE 
–using Eq. (10)–. The polynomial degree values -na, nb, nc, nd, nf and nk- are given as 
parameters. 
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4. A multi-step method for modelling of heat flux in buildings  

A novel three-step method is proposed to detect the heat flux through exterior walls in 
the building. Firstly, the building is parameterised and its dynamic thermal 
performance in normal operation is obtained by means of simulation. Then, the data 
gathered is processed using CMLHL as a dimensionality reduction technique to 
choose the most relevant features in order to determine the heat flux. The second step 
outcome is a data set which is finally used to train and validate the heat flux model.  

4.1. Thermal dynamics data gathering by means of simulation 

In order to simulate the thermal behaviour of a building, the following variables and 
data sets should be gathered: building topology; climate zone according to the specific 
regulations; building materials that comply with local regulations for the chosen 
climate zone; meteorological data for the climate zone and the simulated time period: 
such as solar radiation, outdoor temperature, wind speed, etc., and realistic profiles for 
heating, lighting, small power devices, occupancy and ventilation.  

In this study, the country where the system is applied is Spain. In Spain, the 
Spanish regulations establish five winter/summer zones, from E1 (more severe 
climate zones) to A3 (gentler climate zone). 
Having defined and/or gathered these data sets, then the chosen simulation tool is 
applied to obtain the output data. In our case, the simulation software used is HTB2 
[3]. The typical values that each variable could take for an E winter climate zone of 
maximum severity in Spain -i.e. the cities of León, Burgos or Soria among others- are 
shown in Table 1.  
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Table 1. Typical values of each variable in a E winter climate zone city in Spain 

4.2. Selection of the relevant features 

As detailed in Section 2, PCA (Fig. 1.a.) and CMLHL (Fig. 1.b.), which were both 
applied to this real-life problem, are instrumental in identifying the internal structure 
of the data. In this procedure, the data set gathered in the previous step is analysed. 
The objective is to find the relationships between the input variables with respect to 
the heat flux. CMLHL (Fig. 1.b.) allows to detect the relations of dependence and to 
choose the more relevant features. The outcome of this step is a new data set with the 
features for which a relationship with the heat flux is found.  

4.3. System identification applied to model normal building operation 

Once the relevant variables and their transformations have been extracted from the 
thermal dynamics data, then a model to fit the normal building operation should be 
obtained in order to identify bias in the heat flux through exterior walls in the 
building. The different model learning methods used in this study were implemented 
in Matlab© [34]. The experiment followed the identification procedure detailed in 
Section 3: the model structures were analyzed in order to obtain the models that best 
suited the dataset. The Akaike Information Criterion (AIC) is used to obtain the best 
degree of the model and its delay for each model structure. A total of seventy 
techniques were carried out to obtain the models, among which are the following: the 
frequency response analysis; the finite impulse response method (FIR); Black-box 
techniques: up to 31 different combinations of model structure and optimization 
techniques are considered -such as the least-squares method and QR factorization of 
ARX models [19, 21]. The nonlinear model structures synthesis: up to thirty four 
different combinations of model structures and optimization techniques are 
considered -such as the Lenvenberg-Marquardt method and the recursive Gauss-
Newton method for the NNARX, NNFIR, NNARMAX and NNOE models [19, 32, 
33]. 

Variable (Units) Range of 
values 

Transmittance level 
(W/m2K) 

Fabric gain -heat flux- (w), y1(t).  0 to -7,100 
Heater gain (W), u1(t). 0 to 4,500 
Occasional gain –small power, occupancy and 
lighting gain- (W), u2(t). 

0 to 5,500 

Ventilation gain (w), u3(t). 0 to -5,500 
Exterior air temperature in February (ºC ), u4(t). 1 to 7  
Air temperature of the house (ºC), u5(t). 14 to 24 

-External cavity wall: 
0.54 
-Double glazing: 2.90 
-Floor/ceiling: 1.96 
-Party wall between 
buildings: 0.96 
-Others party wall: 1.05  
-Internal partition: 2.57 
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Three different residual analyses based on cross correlation are carried out: 
residual analysis between the residual )(ˆ τε

NR , between the residual and the input 
)(ˆ τε

N
uR  and the non-linear residual correlation )(ˆ

22 τε
N

uR . 
The heating process exhibits nonlinear behaviour between output and inputs. Due 

to this reason, the linear modelling techniques do not behave properly except in the 
linear behaviour zones of the process. Consequently, the heating process has been 
modelled using soft-computing techniques, specifically an ANN. 

5. Experimentation and results 

In order to validate the proposal some realistic situations have been considered. A 
building in the E winter zone, in the city of Avila city is used as the actual building. 
This building was parameterised and the HTB2 simulation tool was used to gather the 
data set. This initial data set has been analysed in order to select the features that best 
described the relationships with the heat flux. As may be seen in Fig. 1, PCA (Fig. 
1.a) and CMLHL (Fig. 1.b), both methods have identified  the occasional gain as the 
most relevant variable but in the CMLHL projections (Fig. 1.b.) can be noticed more 
structured clusters than in the PCA projections.  
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Fig. 1.a. PCA  projections. Fig. 1.b. CMLHL projections. 

Fig. 1. PCA projections (Fig. 1.a.) and CMLHL projection (Fig. 1.b.) after 20000 iterations 
using a learning rate of 0.05, 3 output neurons p=0.3 and τ=0.3.  

Having analysed the results obtained with the CMLHL model (Fig. 1.b.) it is 
concluded that CMLHL has identified four relevant variables and seven clusters order 
by occasional gain. Inside each cluster there are further classifications by the heater 
gain, the ventilation gain and to a lesser degree the exterior air temperature. Then, the 
heat flux and the dataset may be said to have an interesting internal structure. When 
the dataset is considered sufficiently informative, the third step in the process begins. 
This step performs an accurate and efficient optimization of the heating system model 
to detect heat flux model in the building, through the application of several 
conventional modelling systems. 

Occasional gain 

Occasional gain 
Heater gain 

Ventilation gain 
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Thus, an ANN was used to monitor the thermal dynamics of the building. The 
objective was to find the best suite of polynomial model orders [na nb1 nb2 nb3 nb4 nc nd 
nf nk1 nk2 nk3 nk4]. Using the data set from the previous stage and the Optimal Brain 
Surgeon (OBS) [30, 31] network pruning strategy to remove superfluous weights, the 
best suite model was found from the residual analysis. Fig. 2 shows the time 
responses of the heat flux - ( )ty1 - and of the estimated heat flux - ( )mty |ˆ1 - for the 
NNARX model described in Eq. (5). The x-axis shows the number of samples used in 
the estimation and validation of the model and the y-axis represents the normalized 
output variable range: which is the normalized heat flux of the house. The estimation 
and validation data sets include 2000 and 1126 samples, respectively, and have a 
sampling rate of 1 sample/minute. Fig. 3 indicates the final neural network structure 
chosen for modelling the heat flux. 
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Fig. 2.a. NNARX model for the training  
data set. 

Fig. 2.b. NNARX model for the validation  
data set. 

Fig. 2. Output response of NNARX model: The actual output (solid line) is graphically 
presented with one-step-ahead prediction (dotted line). In Fig. 2.a. the real measure can be 
compared with the estimated data, while in Fig. 2.b. the real measure is compared with the 
validation data. 
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Fig. 3.a. Initial fully connected structure of 
the NNARX model. 

Fig. 3.b.Optimal architecture of the 
NNARX model, with the network pruned. 

Fig. 3. Optimal architecture of the NNARX model, with the network pruned, for the heat flux 
through exterior walls in the building -output y1(t)- (Fig. 3.b.). Positive weights are represented 
in solid lines, while a dashed line represents a negative weight. A vertical line through the 
neuron represents a bias. The initial fully connected structure is shown in the Fig. 3.a. 
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From Fig. 2, it can be concluded that the pruned network NNARX model is able to 
simulate and predict the behaviour of the heat flux through exterior walls in the 
building –as a consequence of the heating process- and it is capable of modelling 
more than 91,4% of the actual measurements. The model thus obtained is ANN 
model, NNARX regressor, the order of the polynomials of the initial fully connected 
structure are na=4, nb1=4, nb2=5, nb3=1, nb4=4, nk1=2, nk2=2, nk3=2, nk4=2. The model 
was obtained using the regularized criterion. This model was optimised by CMLHL 
analysis, residual analysis and the pruned network, using OBS. The model structure 
has 10 hidden hyperbolic tangent units and 1 linear output unit. The network is 
estimated using the Lenvenberg-Marquardt method, and the model order is decided 
on the basis of the best AIC criterion of the ARX model.  

6. Conclusions and future work 

Effective thermal insulation is an essential component of energy efficient heating 
systems in buildings. Thus, the possibility of improving the detection of thermal 
insulation failures represents a fresh challenge for building energy management.  

The new methodology proposed in this study to predict the heat flux through 
exterior walls in the building can be used to determine the normal operating 
conditions of thermal insulation in buildings in Spain, which is a mandatory test in the 
evaluation of insulation in buildings. 

Future work will create a quality standard of the heat flux process, based on the 
type of insulation that can detect faults of insulation in buildings. Also, modelling the 
ventilation and infiltration in the process of heating, in order to develop generic 
methods, so that it can allow adequate ventilation in intelligent buildings, but 
efficiently, that is at the lowest possible cost.  
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