



Abstract—Most of the algorithms for extracting fuzzy

classification rules generate conjunctive antecedents that use all

the attributes of the system. Using this kind of antecedents, the

number of rules grows exponentially in terms of the number of

attributes of the system. This paper presents a new algorithm,

FuzzyCN2, for extracting conjunctive fuzzy classification rules.

This algorithm is a fuzzy version of the well known CN2

algorithm and produces an ordered list of fuzzy rules.

FuzzyCN2 generates antecedents that may not include all the

attributes of the system. These antecedents may cover a wide

number of instances and, so, the number of extracted rules is

smaller. The algorithm introduces the use of linguistic hedges as

part of the selectors, thus producing more compact rules and

reducing the number of generated rules.

I. INTRODUCTION

YSTEMS based on fuzzy rules have proved to be an

appropriate tool on classification problems. On the one

hand, the use of fuzzy rules facilitates the induction of

interpretable models from the sets of examples of

classification. On the other hand, the output of a fuzzy

classifier is not limited to the selected class, but indicates the

degree of activation of each class which may be related to

the degree of confidence given to the election of each class.

Fuzzy classifiers are particularly suitable to problems in

which the attributes are continuous. In these cases, classic

rule-based systems are built in term of consults of the form

attribute  value [1]. The inference on these classifiers

presents abrupt changes around the values of consultation.

By contrast, the behavior of fuzzy classifiers reflects an

assessment of the activation degrees of each class much

smoother thus easing to detect situations in which decision

making is more risky.

The best known algorithm for extracting fuzzy rules was

proposed by Wang and Mendel [2]. This algorithm is based

on first define linguistic labels associated with each attribute,

and then generate the most active fuzzy conjunctive rule for

each training example. The rules generated by the Wang and

Mendel algorithm contain queries on the values of all the

attributes of the system. This causes an exponential growth

This work was supported in part by the Spanish CICYT Projects

TEC2008-04920/TEC, and TIN2008-06681-C06-06, and by the Projects

P07-TIC-03179 and P08-TIC-03674 from the Andalusian Regional

Government.

P. Martín-Muñoz is with the Unidad para la Dirección Estratégica,

Universidad de Huelva, Huelva, SPAIN (e-mail: pablo.martin@sc.uhu.es).

F. J. Moreno-Velo is with the Departamento de Tecnologías de la

Información, Universidad de Huelva, Huelva, SPAIN (e-mail:

francisco.moreno@dti.uhu.es).

in the number of rules in terms of the number of attributes of

the problem. Many of the proposed algorithms for extracting

fuzzy rules try to reduce the number of rules generated by

the Wang and Mendel algorithm but keep the form of the

rules, that is, conjunctive rules containing all of the attributes

(for instance, [3], [4]).

This contrasts with the approach generally followed in the

algorithms for extracting classic rules. The goal in these

algorithms is to minimize the number of rules by inducing

more general rules in which not all the attributes are present.

Among these algorithms the best known is ID3, proposed by

Quinlan [5], which generates decision trees, and the AQ

family of algorithms proposed by Michalsky [6], which

generate sets of classification rules. Based on these

algorithms, Clark and Niblett proposed the CN2 algorithm in

1989 [7], which induces ordered lists of classification rules.

Later, Clark and Boswell suggested some improvements to

this algorithm [8].

Some proposals for extracting fuzzy classification rules

are based on fuzzy versions of the algorithms above. There

are many adaptations of the ID3 algorithm to generate fuzzy

decision trees [9]-[12]. The CN2 algorithm has also been

adapted to generate fuzzy classification rules [13] but in this

case the proposed algorithm is based on the CN2 version

which generates unordered list of rules.

This paper presents a different adaptation of the CN2

algorithm for extracting ordered lists of fuzzy rules. The

proposal contains not only a way to adapt the different

procedures and metrics of CN2 to the fuzzy case, but also

adds the capability to use linguistic hedges as part of the

queries on the attributes, thus inducing more compact and

expressive rules than those used usually in fuzzy classifiers.

II. THE CN2 ALGORITHM

The CN2 algorithm was proposed based on the AQ family

of algorithms, trying to introduce the ability of TDIDT

algorithms (Top Down Induction of Decision Trees) to treat

with noisy data. From the AQ algorithms, CN2 takes the idea

of finding the best set of rules through several parallel beam

searches (what is known as a star search). From the TDIDT

algorithms, CN2 takes the idea of ending the search when

they found the rules which do not exceed a certain threshold

for statistical significance (pruning techniques).

The algorithm is based on an external loop in which, given

a set of classification examples, the best rule for this

examples is found and, then, the examples covered by that

FuzzyCN2: An Algorithm for Extracting Fuzzy Classification Rule

Lists

Pablo Martín-Muñoz and Francisco J. Moreno-Velo

S

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain FUZZ-IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 1783

rule are removed from the set. The loop ends when the set of

examples is empty or when no rule is found with the required

level of significance. Since the rules are generated from a set

of examples where several examples may have been

eliminated, the result must be interpreted as an ordered list of

rules, so that a rule must be considered only in cases where

the precedents rules are not active.

In order to find the best rule related to an instance set, a

series of parallel beam searches are made. On each iteration,

rules candidates are specialized by adding a new selector (a

query term relating one attribute and one of its values). In the

AQ algorithms, all the selectors used in the search was

obtained from a positive example (seed). To avoid reliance

on this example, CN2 consider all possible selectors in its

search process.

In order to guide the process of finding the best rule, CN2

takes some ideas of the TDIDT algorithms. The heuristics

for quality, using in guiding the search beam, is the entropy

of information (such as in the ID3 algorithm). To avoid the

generation of poorly significant rules, the algorithm

introduces a second heuristic (the likelihood ratio) which is

used as a pruning in the search process.

A later work, presented in 1991, proposes the use of the

laplacian error estimate as the heuristic for quality, instead of

the entropy of information. The study of this new heuristic

shows that the effect of statistical significance in this case is

just a stopping criterion because the laplacian error drives

the search to the most significant rules by itself. The work

contains also a version of the algorithm for generating

unordered sets of rules.

The FuzzyCN2 algorithm, proposed in this paper, is based

on a fuzzy version of the CN2 algorithm generating ordered

lists of rules. The measure used as heuristic for quality is a

fuzzy version of the laplacian error estimate and the measure

used for the significance test is based on a minimum value

for the coverage of the rules.

III. ORDERED LISTS OF FUZZY RULES

FuzzyCN2 produces an ordered list of fuzzy rules rather

than an unordered set of fuzzy rules. Both representations

have their respective advantages and disadvantages for

comprehensibility. In an ordered list of fuzzy rules, the

interpretation of a single rule depends on which other rules

preceded it on the list. This can lead to a lost in the

comprehensibility of the rule list. On the other hand, an

unordered set of fuzzy rules may contain rules covering the

same input space. In this case, the rule set needs some

additional mechanism to decide which rule governs the

classification when these conflicts appear. So, the

interpretation of these overlapping rules cannot be

considered as independent.

Table 1 shows these two kinds of fuzzy rule sets. The

inference mechanism on an unordered list consists on taking

the activation degree of the consequent of a rule ((Ci)) as

the activation degree of the antecedent ((Ai)). The

inference mechanism on an ordered list is different. In an

ordered list there is and implicit else condition in each rule

with respect to the previous ones. So the activation degree of

a consequent ((Ci)) depends on the activation degree of its

antecedent ((Ai)) and also on the activation degrees of the

previous ones ((1-(Aj))).

IV. THE FUZZYCN2 ALGORITHM

There are several features that need to be redefined in

order to propose a fuzzy version of the CN2 algorithm. The

section above describe how does an ordered list of fuzzy

rules work, but this is not the only aspect to be considered.

When creating a fuzzy version of the CN2 algorithm there

are some problems to solve:

1) How to remove the examples covered by a fuzzy rule?

As a fuzzy rule covers an input vector only in a certain

degree (from 0 to 1), the example should be only

partially removed.

2) How to represent a set of classification examples

containing instances that are partially removed?

3) How to compute the coverage of a fuzzy rule over an

example that is partially removed?

4) How to represent a selector (a query relating an attribute

and one of its values) of a fuzzy rule?

5) How to traduce the Laplacian error estimate to the fuzzy

case?

6) How to compute a significance test over a fuzzy rule and

a set of examples partially removed?

The following definitions give an answer to the previous

questions.

Definition 1. A fuzzy selector is a fuzzy term relating an

attribute and one of its linguistic labels. This relation can

refer to the usual equality relation (i.e., attr is equal to label)

but also to relations based on linguistic hedges (as, attr is

greater than label). Fig. 1 shows the different fuzzy selectors

used in FuzzyCN2.

Definition 2. A complex refers to a conjunction of some

fuzzy selectors. They are used as antecedents of the fuzzy

rules generated by FuzzyCN2.

TABLE I

DIFFERENT KINDS OF FUZZY RULE SETS

Unordered list Ordered list

if(A1) then C1

if(A2) then C2

if(A3) then C3

if(A1) then C1

elseif(A2) then C2

elseif(A3) then C3

(C1) = (A1)
(C2) = (A2)
(C3) = (A3)

(C1) = (A1)
(C2) = (1-(A1))• (A2)
(C3) = (1-(A1))•(1-(A2))• (A3)

1784

Definition 3. A fuzzy instance set is a set of classification

examples in which every example has an associated

activation degree. A crisp instance set can be seen as fuzzy

instance set in which every activation degree is equal to the

unit. A fuzzy instance set can be truncated by deleting every

instance which activation degree is less than a certain cut

value.

Definition 4. Given a complex C and an example e with an

activation degree of (e), the support of C over e is defined

as the product of the activation degree of that complex when

evaluating the example and the activation degree of the

example, that is,

(1))(),(),support(eeCeC  

Definition 5. The support of a complex C over a fuzzy

instance set S is defined as the sum of the support of C over

every example e of the set.

(2)),support(),support(




Se

eCSC

Definition 6. The support of a complex C over a class c

and a fuzzy instance set S is defined as the sum of the

support of C over every example e of the set which class is c.






ceclassSe

eCcSC

)(,

(3)),support(),,support(

Definition 7. The relative support of a complex C over a

fuzzy instance set S is defined as






Se

eSCSC (4))(),support(),upport(relative_s 

Definition 8. The deactivation of the fuzzy instance set S

in terms of the complex C consist in updating the activation

degree of each example e in the instance set in the following

way:

)5()),(1()()(eCeedeactivate  

Definition 9. A complex C is said to be significant with

respect to a fuzzy instance set S if the relative support of C

over S is greater than a certain given value (minimum

relative support) and the support of C over S is greater than a

certain given value (minimum absolute support).

Definition 10. The fuzzy Laplacian error estimate of a

complex C is a measure of the quality of that complex and is

defined as

)6(
),support(

1),,support(
),(

kSC

cSC
SCLaplacian






where c is the class with the highest support and k is the

number of classes.

The definitions above let us to present a fuzzy version of

the CN2 algorithm. Table 2 shows the pseudocode of the

FuzzyCN2 algorithm. The algorithm takes a set of

classification examples and generates an ordered list of fuzzy

rules.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 1. Fuzzy selectors used in FuzzyCN2 for each

attribute (attr) and label (lb). (a) attr is equal to lb;

(b) attr is not equal to lb; (c) attr is greater than or

equal to lb; (d) attr is greater than lb; (e) attr is less

than or equal to lb; (f) attr is less than lb; (g) attr is

approximately equal to lb; (h) attr is strongly equal

to lb; (i) attr is slightly equal to lb.

1785

As the CN2 algorithm, the FuzzyCN2 algorithm is divided

into two parts. In the external loop, a fuzzy instance set is

considered by adding the activation degree to the set of

classification examples (this is the goal of the

AddActivationDegree method). Each iteration on that loop

consist in obtaining a new fuzzy rule (the FindBestComplex

method gives the antecedent of the new rule and the

MostCoveredClass method give the consequent of the rule),

adding this rule to the ordered list (the Add method), deleting

partially those examples covered by the new rule (the

Deactivate method) and truncating the fuzzy instance set to

eliminate those examples poorly activated (the Truncate

method). The loop ends when the fuzzy instance set is empty

or when no complex is found. The last step is to add the

default rule to the ordered list. The consequent of this default

rule is the most populated class of the instance set.

The internal loop of the algorithm is implemented by the

FindBestComplex procedure. This method takes a fuzzy

instance set and generates the better significant complex in

term of the heuristic of quality. The procedure considers a

set of selectors (the CreateAllSelectors method returns a set

with the selectors for each attribute and label using those

linguistic hedges chosen by the user). The star contains a set

of candidate complexes. Initially, the star just contains a

complex with no selectors (the InitializeStar method). The

internal loop consists in creating a new star with all possible

complexes generated by adding one of the selectors to one of

the complexes of the star (the SpecializeStar method). Then

those complexes of the new star which are not significant (as

describe in Definition 9) are removed from the new star (the

SignificantTest method). After that, the heuristic of quality

is computed as described in (6) and the worst complexes are

removed from the new star thus generating a star of a given

size (the QualityTest method). Finally, if there is a complex

in the new star that is better that the best complex found

previously, the best complex is set to this new one (the

BetterQuality method). The loop ends when the new star is

empty, that is, when every specialized complex in the new

star is found to be not significant.

In order to maintain the interpretability of the rules, there

is a constraint in the SpecializeStar method when adding a

selector to a complex. An attribute cannot appear twice into

the complex, unless in the relation “attr is greater than

label1 and attr is less than label2”. So, complexes like “attr

is strongly equal to label1 and attr is less than label2” are

forbidden.

V. EXPERIMENTS

This section shows an experimental study on the

behaviour of the FuzzyCN2 algorithm and some other fuzzy

and non-fuzzy classification algorithms. In this study, we

have used 11 well known classification datasets extracted

from the UCI repository on machine learning [14].

The selected datasets are all formed by continuous

attributes. In the case of the fuzzy algorithms, the attributes

have been described by means of three linguistic labels as

shown in Fig. 2b. Regarding the non-fuzzy algorithms, the

attributes have been discretized into three intervals with the

same size, as shown in Fig. 2a.

 Lb0 Lb1 Lb2

(a)

(b)

 Lb0 Lb1 Lb2

Fig. 2. Discretization on the continuous attributes used

in the study (a) with the non-fuzzy algorithms; (b) with

the fuzzy algorithms.

TABLE II

THE FUZZYCN2 ALGORITHM

procedure FuzzyCN2(InstanceSet)

returns RuleList

 RuleList  

 FuzzyInstSet  AddActivationDegree(InstanceSet)

 Complex  FindBestComplex(FuzzyInstSet)

 while IsNotNil(Complex) and IsNotEmpty(FuzzyInstSet)

 Conseq  MostCoveredClass(FuzzyInstSet,Complex)

 NewRule  “if(Complex) then class = Conseq”

 RuleList  Add(RuleList,NewRule)

 FuzzyInstSet  Deactivate(FuzzyInstSet,Complex)

 FuzzyInstSet  Truncate(FuzzyInstSet)

 Complex  FindBestComplex(FuzzyInstSet)

 endwhile

 return RuleList

end

procedure FindBestComplex(FuzzyInstSet)

returns BestComplex

 BestComplex  nil

 Selectors  CreateAllSelectors()

 Star  InitializeStar()

 while IsNotEmpty(Star)

 NewStar  SpecializeStar(Star, Selectors)

 NewStar  SignificanceTest(NewStar,FuzzInstSet)

 NewStar  QualityTest(NewStar,FuzzyInstSet)

 BestComplex  BetterQuality(NewStar,BestComplex)

 Star  NewStar

 endwhile

 return BestComplex

end

1786

The non-fuzzy algorithms used in the experimental study

have been ID3 and RIPPER. These algorithms were

analyzed using the software Weka [15] with the default

configuration of each algorithm. The fuzzy algorithms under

the experiments were the Wang and Mendel algorithm and

FuzzyID3. In this case, the algorithms were analyzed with

the Xfuzzy 3 environment [16].

In order to evaluate each algorithm, a 10 fold cross

validation test has been made. Tables III, IV and V shows

the results of this evaluation in terms of the mean number of

rules induced by each algorithm, the mean error on the

training sets and the mean error on test.

The last columns show the results for three different

configurations of the FuzzyCN2 algorithm. In the first

configuration we have used only selectors based on the

equality, that is, rules do not use linguistic hedges. The

second configuration (v2) considers some linguistic hedges

as selectors: greater than, smaller than, greater than or

equal to, and smaller than or equal to. In the third

configuration (v3) all the linguistic hedges shown in Fig. 1

TABLE III

MEAN NUMBER OF RULES INDUCED BY DIFFERENT ALGORITHMS

 ID3 RIPPER W-M FUZZYID3 FUZZYCN2

(V1)

FUZZYCN2

(V2)

FUZZYCN2

(V3)

haberman 17.6 2.1 17.6 15.3 9.7 9.3 16.5

iris 8.9 3.3 20.4 5.8 5.0 5.1 6.0

bupa 40.4 2.1 52.8 16.9 13.9 14.4 19.2

ecoli 51.0 8.6 71.4 20.7 12.1 10.6 11.0

pima 115.7 3.3 152.6 30.0 24.6 24.5 32.1

glass 41.4 7.2 55.2 17.5 9.4 9.5 12.0

wbc 54.0 5.9 231.4 19.3 15.4 14.2 15.5

wine 25.7 6.0 152.1 18.4 8.7 8.3 8.2

cleveland 143.4 3.8 249.1 60.2 22.5 24.0 24.2

vehicle 283.7 12.5 462.9 38.2 28.6 31.3 34.5

ion 56.4 7.7 239.4 28.2 18.7 18.6 18.0

average 76.2 5.7 155.0 24.6 15.3 15.4 17.9

TABLE IV

TRAINING ERROR

 ID3 RIPPER W-M FUZZYID3 FUZZYCN2

(V1)

FUZZYCN2

(V2)

FUZZYCN2

(V3)

haberman 24.1% 25.4% 24.8% 24.7% 24.8% 25.1% 22.2%

iris 2.1% 2.1% 2.7% 3.2% 4.4% 4.8% 2.7%

bupa 33.7% 39.0% 36.9% 41.3% 36.0% 36.0% 31.3%

ecoli 12.1% 17.5% 15.1% 19.5% 20.7% 14.4% 12.6%

pima 18.6% 25.4% 22.2% 27.7% 21.5% 20.9% 17.2%

glass 22.9% 31.2% 26.0% 48.2% 37.7% 34.1% 26.9%

wbc 0.4% 3.0% 1.4% 2.6% 2.6% 1.9% 1.2%

wine 0.1% 6.5% 0.0% 4.6% 3.5% 2.1% 1.1%

cleveland 1.4% 40.9% 4.1% 29.9% 27.1% 25.4% 19.6%

vehicle 13.2% 38.4% 23.9% 40.1% 30.3% 26.7% 20.7%

ion 0.6% 7.0% 1.4% 6.9% 3.2% 1.6% 1.1%

average 11.7% 21.5% 14.4% 22.6% 19.2% 17.5% 14.2%

TABLE V

TEST ERROR

 ID3 RIPPER W-M FUZZYID3 FUZZYCN2

(V1)

FUZZYCN2

(V2)

FUZZYCN2

(V3)

haberman 28.4% 26.5% 26.1% 29.4% 28.4% 27.1% 27.2%

iris 13.3% 12.0% 5.3% 3.3% 4.7% 5.3% 3.3%

bupa 52.4% 39.8% 42.6% 44.6% 41.8% 42.6% 43.5%

ecoli 32.1% 29.7% 19.3% 24.5% 23.8% 16.1% 14.9%

pima 43.2% 28.6% 27.2% 29.5% 27.6% 27.1% 25.8%

glass 56.8% 50.3% 34.5% 61.1% 41.4% 40.5% 34.9%

wbc 5.0% 4.4% 5.4% 3.5% 4.5% 4.1% 2.9%

wine 10.2% 13.5% 10.7% 9.5% 6.7% 5.0% 3.9%

cleveland 57.5% 46.1% 60.0% 46.4% 46.7% 47.4% 48.5%

vehicle 46.4% 50.6% 38.2% 42.3% 35.4% 33.1% 31.2%

ion 12.9% 13.7% 7.1% 12.2% 12.5% 10.5% 8.2%

average 32.6% 28.7% 25.1% 27.8% 24.9% 23.5% 22.2%

1787

were used. In all these configurations, the value of the alpha-

cut was 0.5, the star size was fixed to 5, the value of the

minimum absolute support was fixed to 5 and the minimum

relative support was fixed to 0.05.

Regarding the mean number of rules (Table III), the three

configurations of FuzzyCN2 show similar results, although

the configuration v3 seems to induce a number of rules a bit

higher. Comparing these results with respect to the other

algorithms, it can be seen that FuzzyCN2 generates a smaller

number of rules. Only the RIPPER algorithm induces a lower

number of rules. Generally, RIPPER induces a small number

of rules, but the test error is higher than that generated by the

rest of the algorithms.

Table V shows the test error for the different algorithms.

In this study, the ID3 algorithm shows the pourer results and

fuzzy algorithms obtain better results than the non-fuzzy

ones. It is also worth to notice that the Wang and Mendel

algorithm have quite good results on test error, but generates

a very high number of rules. The proposed FuzzyCN2

algorithm obtains the better results among the algorithms

under study. This is particularly true regarding the third

configuration (v3). In this last case, despite of the low

number of datasets in the study, the Wilcoxon´s Signed Rank

Test let us to affirm with a confidence level of 95% that the

FuzzyCN2 algorithm is the best of the algorithms included in

this study in terms of the test error.

Table VI shows an example of the rule list induced by

FuzzyCN2. The example uses the wine data set. In this case,

all the instances of the data set have been considered. The

description of the rule lists is written in XFL3, the

specification language used in Xfuzzy. In this language, the

term (attr ~= lb) means attr is approximately equal to lb; the

term (attr += lb) means attr is strongly equal to lb; and the

term (attr %= lb) means attr is slightly equal to lb.

TABLE VI

RESULTS FOR THE WINE DATA SET

FUZZYCN2 (V1)

 if(at12 == Lb0 & at11 == Lb0 & at7 == Lb0) -> class = c3;

 elseif(at13 == Lb0 & at1 == Lb0) -> class = c2;

 elseif(at1 == Lb2 & at9 == Lb1) -> class = c1;

 elseif(at13 == Lb0 & at5 == Lb0 & at2 == Lb0) -> class = c2;

 elseif(at7 == Lb1 & at1 == Lb2) -> class = c1;

 elseif(at10 == Lb1 & at2 == Lb0) -> class = c1;

 elseif(at7 == Lb0 & at2 == Lb1 & at9 == Lb0) -> class = c3;

 elseif(at7 == Lb1 & at13 == Lb1 & at6 == Lb1) -> class = c1;

 elseif(at10 == Lb0 & at2 == Lb0) -> class = c2;

FUZZYCN2 (V2)

 if(at1 == Lb0 & at12 > Lb0 & at10 == Lb0 & at13 <= Lb1) -> class = c2;

 elseif(at12 < Lb1 & at2 > Lb0 & at7 <= Lb0 & at3 != Lb0 & at11 <= Lb1 &

 at13 <= Lb1) -> class = c3;

 elseif(at13 >= Lb1 & at1 >= Lb2 & at7 != Lb0 & at4 < Lb2 & at12 != Lb0)

 -> class = c1;

 elseif(at13 == Lb0 & at7 != Lb0 & at5 <= Lb0 & at10 <= Lb1) -> class = c2;

 elseif(at7 > Lb0 & at13 != Lb0 & at5 < Lb2 & at1 != Lb0 & at4 <= Lb1 &

 at6 > Lb0 & at12 != Lb0) -> class = c1;

 elseif(at11 != Lb0 & at2 == Lb0 & at3 < Lb2 & at10 <= Lb1) -> class = c2;

 elseif(at7 == Lb0 & at10 >= Lb1 & at12 < Lb2 & at11 <= Lb1) -> class = c3;

 elseif(at1 != Lb2 & at8 != Lb0) -> class = c2;

FUZZYCN2 (V3)

 if(at1 <= Lb0 & at12 > Lb0 & at10 ~= Lb0 & at13 <= Lb1) -> class = c2;

 elseif(at13 %= Lb2) -> class = c1;

 elseif(at12 += Lb0 & at11 += Lb0) -> class = c3;

 elseif(at10 += Lb0 & at1 %= Lb0 & at13 <= Lb1) -> class = c2;

 elseif(at13 != Lb0 & at7 >= Lb1 & at4 <= Lb1 & at1 != Lb0 & at12 >= Lb1 &

 at6 != Lb0) -> class = c1;

 elseif(at7 += Lb0 & at4 != Lb0 & at2 != Lb0 & at3 != Lb0 & at12 < Lb2 &

 at11 < Lb2 & at5 <= Lb1) -> class = c3;

 elseif(at13 += Lb0 & at5 ~= Lb0 & at10 <= Lb1) -> class = c2;

 elseif(at7 != Lb0 & at5 ~= Lb1 & at11 < Lb2 & at12 >= Lb1 & at6 != Lb0 &

 at13 < Lb2 & at10 <= Lb1) -> class = c1;

1788

VI. CONCLUSION

Classifiers based on rule sets use to contain conflicting rules,

that is, rules covering a common space and with different

conclusions. Ordered lists of rules are a good choice to avoid

these conflicts. This paper proposes an algorithm to extract

ordered lists of fuzzy classification rules. The algorithm is an

adaptation of the well-known CN2 algorithm. The paper also

proposes the use of linguistic hedges to obtain more precise

and compact rules. These hedges are easily included in the

algorithm by adding them into the selector list in the beam

search. The experimental results show that the algorithm

produces a smaller number of rules and a lower classification

error than other well-known fuzzy classification algorithms,

thus giving a better balance interpretability-accuracy.

REFERENCES

[1] J. R. Quinlan, “Improved use of continuous attributes in C4.5,”

Journal of Artificial Intelligence Research, vol. 4, pp. 77-90, 1996.
[2] L. Wang and J. M. Mendel, “Generation of rules by learning from

examples,” IEEE Transactions on Systems, Man and Cybernetics,

vol. 22, pp. 1414-1427, 1992.

[3] D. Nauck and R. Kruse, “NEFCLASS – A neuro-fuzzy approach for

the classification of data,” in Proc. 1995 ACM Symposium on

Applied Computing, pp. 461-465.

[4] R. Senhadji, S. Sánchez-Solano, A. Barriga, I. Baturone, and F. J.

Moreno-Velo, “NORFREA: An algorithm for non-redundant fuzzy

rule extraction,” in Proc. IEEE International Conference on Systems,

Man and Cybernetics, 2002, pp. 604-608.

[5] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol.

1, pp. 81-106, 1986.

[6] R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac, “The multi-

purpose incremental learning system AQ15 and its testing application

to three medical domains,” in Proc. 5th National Conference on

Artificial Intelligence (AAAI86), 1986, pp. 1041-1047.

[7] P. Clark and T. Niblett, “The CN2 induction algorithm,” Machine

Learning, vol. 3, pp. 261-283, 1989.

[8] P. Clark and R. Boswell, “Rule induction with CN2: some recent

improvements,” in Proc. 5th European Working Session on Learning

(EWSL-91), 1991, pp. 151-163.

[9] R. Weber, “Fuzzy ID3: a class of methods for automatic knowledge

acquisition,” in Proc. 2nd Int. Conf. on Fuzzy Logic and Neural

Networks, 1992, pp. 265-268.

[10] T. Tani, M. Sakoda, and K. Tanaka, “Fuzzy modeling by ID3

algorithm and its application to prediction,” in Proc. IEEE

International Conference on Fuzzy Systems, 1992, pp. 923-930.

[11] M. Umano, H. Okamoto, I. Hatono, H. Tamura, F. Kawachi, S.

Umedzu, and J. Kinoshita, “Fuzzy decision trees by Fuzzy ID3

algorithm and its application to diagnosis systems,” in Proc. IEEE

International Conference on Fuzzy Systems, 1994, pp. 2113-2118.

[12] K. J. Cios and L. M. Sztandera, “Continuous ID3 algorithm with

fuzzy entropy measures,” in Proc. IEEE Int. Conf. on Fuzzy Systems,

1992, pp. 469-476.

[13] J. van Zyl and I. Cloete, “An inductive algorithm for learning

conjunctive fuzzy rules,” in Proc. 3rd IEEE International Conference

on Machine Learning and Cybernetics, 2004, pp. 4181-4187.

[14] A. Asunción and D. J. Newman,. UCI Machine Learning Repository

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. University of

California, School of Information and Computer Science.

[15] I. H. Witten and E. Frank, Data Mining: Practical machine learning

tools and techniques, 2nd Edition, Morgan Kaufmann, San Francisco,

2005.

[16] F. J. Moreno-Velo, I. Baturone, S. Sánchez-Solano, and A. Barriga,

“Nuevos algoritmos de clasificación integrados en Xfuzzy.” in Actas

del XIV Congreso Español de Tecnologías y Lógica Fuzzy (ESTYLF

2008), pp. 277-284, 2008 (in spanish).

1789

