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Abstract—Most of the algorithms for extracting fuzzy 

classification rules generate conjunctive antecedents that use all 

the attributes of the system. Using this kind of antecedents, the 

number of rules grows exponentially in terms of the number of 

attributes of the system. This paper presents a new algorithm, 

FuzzyCN2, for extracting conjunctive fuzzy classification rules. 

This algorithm is a fuzzy version of the well known CN2 

algorithm and produces an ordered list of fuzzy rules. 

FuzzyCN2 generates antecedents that may not include all the 

attributes of the system. These antecedents may cover a wide 

number of instances and, so, the number of extracted rules is 

smaller. The algorithm introduces the use of linguistic hedges as 

part of the selectors, thus producing more compact rules and 

reducing the number of generated rules. 

I. INTRODUCTION 

YSTEMS based on fuzzy rules have proved to be an 

appropriate tool on classification problems. On the one 

hand, the use of fuzzy rules facilitates the induction of 

interpretable models from the sets of examples of 

classification. On the other hand, the output of a fuzzy 

classifier is not limited to the selected class, but indicates the 

degree of activation of each class which may be related to 

the degree of confidence given to the election of each class. 

Fuzzy classifiers are particularly suitable to problems in 

which the attributes are continuous. In these cases, classic 

rule-based systems are built in term of consults of the form 

attribute  value [1]. The inference on these classifiers 

presents abrupt changes around the values of consultation. 

By contrast, the behavior of fuzzy classifiers reflects an 

assessment of the activation degrees of each class much 

smoother thus easing to detect situations in which decision 

making is more risky. 

The best known algorithm for extracting fuzzy rules was 

proposed by Wang and Mendel [2]. This algorithm is based 

on first define linguistic labels associated with each attribute, 

and then generate the most active fuzzy conjunctive rule for 

each training example. The rules generated by the Wang and 

Mendel algorithm contain queries on the values of all the 

attributes of the system. This causes an exponential growth 
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in the number of rules in terms of the number of attributes of 

the problem. Many of the proposed algorithms for extracting 

fuzzy rules try to reduce the number of rules generated by 

the Wang and Mendel algorithm but keep the form of the 

rules, that is, conjunctive rules containing all of the attributes 

(for instance, [3], [4]). 

This contrasts with the approach generally followed in the 

algorithms for extracting classic rules. The goal in these 

algorithms is to minimize the number of rules by inducing 

more general rules in which not all the attributes are present. 

Among these algorithms the best known is ID3, proposed by 

Quinlan [5], which generates decision trees, and the AQ 

family of algorithms proposed by Michalsky [6], which 

generate sets of classification rules. Based on these 

algorithms, Clark and Niblett proposed the CN2 algorithm in 

1989 [7], which induces ordered lists of classification rules. 

Later, Clark and Boswell suggested some improvements to 

this algorithm [8]. 

Some proposals for extracting fuzzy classification rules 

are based on fuzzy versions of the algorithms above. There 

are many adaptations of the ID3 algorithm to generate fuzzy 

decision trees [9]-[12]. The CN2 algorithm has also been 

adapted to generate fuzzy classification rules [13] but in this 

case the proposed algorithm is based on the CN2 version 

which generates unordered list of rules. 

This paper presents a different adaptation of the CN2 

algorithm for extracting ordered lists of fuzzy rules. The 

proposal contains not only a way to adapt the different 

procedures and metrics of CN2 to the fuzzy case, but also 

adds the capability to use linguistic hedges as part of the 

queries on the attributes, thus inducing more compact and 

expressive rules than those used usually in fuzzy classifiers. 

II. THE CN2 ALGORITHM 

The CN2 algorithm was proposed based on the AQ family 

of algorithms, trying to introduce the ability of TDIDT 

algorithms (Top Down Induction of Decision Trees) to treat 

with noisy data. From the AQ algorithms, CN2 takes the idea 

of finding the best set of rules through several parallel beam 

searches (what is known as a star search). From the TDIDT 

algorithms, CN2 takes the idea of ending the search when 

they found the rules which do not exceed a certain threshold 

for statistical significance (pruning techniques). 

The algorithm is based on an external loop in which, given 

a set of classification examples, the best rule for this 

examples is found and, then, the examples covered by that 

FuzzyCN2: An Algorithm for Extracting Fuzzy Classification Rule 

Lists 

Pablo Martín-Muñoz and Francisco J. Moreno-Velo 

S 

WCCI 2010 IEEE World Congress on Computational Intelligence 
July, 18-23, 2010 - CCIB, Barcelona, Spain FUZZ-IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 1783



 

 

 

rule are removed from the set. The loop ends when the set of 

examples is empty or when no rule is found with the required 

level of significance. Since the rules are generated from a set 

of examples where several examples may have been 

eliminated, the result must be interpreted as an ordered list of 

rules, so that a rule must be considered only in cases where 

the precedents rules are not active. 

In order to find the best rule related to an instance set, a 

series of parallel beam searches are made. On each iteration, 

rules candidates are specialized by adding a new selector (a 

query term relating one attribute and one of its values). In the 

AQ algorithms, all the selectors used in the search was 

obtained from a positive example (seed). To avoid reliance 

on this example, CN2 consider all possible selectors in its 

search process. 

In order to guide the process of finding the best rule, CN2 

takes some ideas of the TDIDT algorithms. The heuristics 

for quality, using in guiding the search beam, is the entropy 

of information (such as in the ID3 algorithm). To avoid the 

generation of poorly significant rules, the algorithm 

introduces a second heuristic (the likelihood ratio) which is 

used as a pruning in the search process. 

A later work, presented in 1991, proposes the use of the 

laplacian error estimate as the heuristic for quality, instead of 

the entropy of information. The study of this new heuristic 

shows that the effect of statistical significance in this case is 

just a stopping criterion because the laplacian error drives 

the search to the most significant rules by itself. The work 

contains also a version of the algorithm for generating 

unordered sets of rules. 

The FuzzyCN2 algorithm, proposed in this paper, is based 

on a fuzzy version of the CN2 algorithm generating ordered 

lists of rules. The measure used as heuristic for quality is a 

fuzzy version of the laplacian error estimate and the measure 

used for the significance test is based on a minimum value 

for the coverage of the rules. 

III. ORDERED LISTS OF FUZZY RULES 

FuzzyCN2 produces an ordered list of fuzzy rules rather 

than an unordered set of fuzzy rules. Both representations 

have their respective advantages and disadvantages for 

comprehensibility. In an ordered list of fuzzy rules, the 

interpretation of a single rule depends on which other rules 

preceded it on the list. This can lead to a lost in the 

comprehensibility of the rule list. On the other hand, an 

unordered set of fuzzy rules may contain rules covering the 

same input space. In this case, the rule set needs some 

additional mechanism to decide which rule governs the 

classification when these conflicts appear. So, the 

interpretation of these overlapping rules cannot be 

considered as independent. 

Table 1 shows these two kinds of fuzzy rule sets. The 

inference mechanism on an unordered list consists on taking 

the activation degree of the consequent of a rule ((Ci)) as 

the activation degree of the antecedent ((Ai)). The 

inference mechanism on an ordered list is different. In an 

ordered list there is and implicit else condition in each rule 

with respect to the previous ones. So the activation degree of 

a consequent ((Ci)) depends on the activation degree of its 

antecedent ((Ai)) and also on the activation degrees of the 

previous ones ( (1-(Aj)) ).  

 

IV. THE FUZZYCN2 ALGORITHM 

There are several features that need to be redefined in 

order to propose a fuzzy version of the CN2 algorithm. The 

section above describe how does an ordered list of fuzzy 

rules work, but this is not the only aspect to be considered. 

When creating a fuzzy version of the CN2 algorithm there 

are some problems to solve:  

1) How to remove the examples covered by a fuzzy rule? 

As a fuzzy rule covers an input vector only in a certain 

degree (from 0 to 1), the example should be only 

partially removed. 

2) How to represent a set of classification examples 

containing instances that are partially removed? 

3) How to compute the coverage of a fuzzy rule over an 

example that is partially removed? 

4) How to represent a selector (a query relating an attribute 

and one of its values) of a fuzzy rule? 

5) How to traduce the Laplacian error estimate to the fuzzy 

case? 

6) How to compute a significance test over a fuzzy rule and 

a set of examples partially removed? 

 

The following definitions give an answer to the previous 

questions. 

 

Definition 1. A fuzzy selector is a fuzzy term relating an 

attribute and one of its linguistic labels. This relation can 

refer to the usual equality relation (i.e., attr is equal to label) 

but also to relations based on linguistic hedges (as, attr is 

greater than label). Fig. 1 shows the different fuzzy selectors 

used in FuzzyCN2. 

 

Definition 2. A complex refers to a conjunction of some 

fuzzy selectors.  They are used as antecedents of the fuzzy 

rules generated by FuzzyCN2. 

TABLE I 

DIFFERENT KINDS OF FUZZY RULE SETS 

Unordered list Ordered list 

 

if(A1) then C1 

if(A2) then C2 

if(A3) then C3 

 

 

if(A1) then C1 

elseif(A2) then C2 

elseif(A3) then C3 

 

(C1) = (A1) 
(C2) = (A2) 
(C3) = (A3) 

 

 

(C1) = (A1) 
(C2) = (1-(A1))• (A2) 
(C3) = (1-(A1))•(1-(A2))• (A3) 
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Definition 3. A fuzzy instance set is a set of classification 

examples in which every example has an associated 

activation degree. A crisp instance set can be seen as fuzzy 

instance set in which every activation degree is equal to the 

unit. A fuzzy instance set can be truncated by deleting every 

instance which activation degree is less than a certain cut 

value. 

 

Definition 4. Given a complex C and an example e with an 

activation degree of (e), the support of C over e is defined 

as the product of the activation degree of that complex when 

evaluating the example and the activation degree of the 

example, that is, 

 

(1)                           )(),(),support( eeCeC    

 

Definition 5. The support of a complex C over a fuzzy 

instance set S is defined as the sum of the support of C over 

every example e of the set. 

 

(2)                        ),support(),support( 

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Definition 6. The support of a complex C over a class c 

and a fuzzy instance set S is defined as the sum of the 

support of C over every example e of the set which class is c. 
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Definition 7. The relative support of a complex C over a 

fuzzy instance set S is defined as 

 





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Definition 8. The deactivation of the fuzzy instance set S 

in terms of the complex C consist in updating the activation 

degree of each example e in the instance set in the following 

way: 

 

)5(                      )),(1()()( eCeedeactivate    

 

Definition 9. A complex C is said to be significant with 

respect to a fuzzy instance set S if the relative support of C 

over S is greater than a certain given value (minimum 

relative support) and the support of C over S is greater than a 

certain given value (minimum absolute support). 

 

Definition 10. The fuzzy Laplacian error estimate of a 

complex C is a measure of the quality of that complex and is 

defined as 

 

)6(                 
),support(

1),,support(
),(

kSC

cSC
SCLaplacian




  

 

where c is the class with the highest support and k is the 

number of classes. 

 

The definitions above let us to present a fuzzy version of 

the CN2 algorithm. Table 2 shows the pseudocode of the 

FuzzyCN2 algorithm. The algorithm takes a set of 

classification examples and generates an ordered list of fuzzy 

rules. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) 

Fig. 1. Fuzzy selectors used in FuzzyCN2 for each 

attribute (attr) and label (lb). (a) attr is equal to lb; 

(b) attr is not equal to lb; (c) attr is greater than or 

equal to lb; (d) attr is greater than lb; (e) attr is less 

than or equal to lb; (f) attr is less than lb; (g) attr is 

approximately equal to lb; (h) attr is strongly equal 

to lb; (i) attr is slightly equal to lb. 
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As the CN2 algorithm, the FuzzyCN2 algorithm is divided 

into two parts. In the external loop, a fuzzy instance set is 

considered by adding the activation degree to the set of 

classification examples (this is the goal of the 

AddActivationDegree method). Each iteration on that loop 

consist in obtaining a new fuzzy rule (the FindBestComplex 

method gives the antecedent of the new rule and the 

MostCoveredClass method give the consequent of the rule), 

adding this rule to the ordered list (the Add method), deleting 

partially those examples covered by the new rule (the 

Deactivate method) and truncating the fuzzy instance set to 

eliminate those examples poorly activated (the Truncate 

method). The loop ends when the fuzzy instance set is empty 

or when no complex is found. The last step is to add the 

default rule to the ordered list. The consequent of this default 

rule is the most populated class of the instance set. 

The internal loop of the algorithm is implemented by the 

FindBestComplex procedure. This method takes a fuzzy 

instance set and generates the better significant complex in 

term of the heuristic of quality. The procedure considers a 

set of selectors (the CreateAllSelectors method returns a set 

with the selectors for each attribute and label using those 

linguistic hedges chosen by the user). The star contains a set 

of candidate complexes. Initially, the star just contains a 

complex with no selectors (the InitializeStar method). The 

internal loop consists in creating a new star with all possible 

complexes generated by adding one of the selectors to one of 

the complexes of the star (the SpecializeStar method). Then 

those complexes of the new star which are not significant (as 

describe in Definition 9) are removed from the new star (the 

SignificantTest method).  After that, the heuristic of quality 

is computed as described in (6) and the worst complexes are 

removed from the new star thus generating a star of a given 

size (the QualityTest method). Finally, if there is a complex 

in the new star that is better that the best complex found 

previously, the best complex is set to this new one (the 

BetterQuality method). The loop ends when the new star is 

empty, that is, when every specialized complex in the new 

star is found to be not significant. 

In order to maintain the interpretability of the rules, there 

is a constraint in the SpecializeStar method when adding a 

selector to a complex. An attribute cannot appear twice into 

the complex, unless in the relation “attr is greater than 

label1 and attr is less than label2”. So, complexes like “attr 

is strongly equal to label1 and attr is less than label2” are 

forbidden. 

V. EXPERIMENTS 

This section shows an experimental study on the 

behaviour of the FuzzyCN2 algorithm and some other fuzzy 

and non-fuzzy classification algorithms. In this study, we 

have used 11 well known classification datasets extracted 

from the UCI repository on machine learning [14].  

The selected datasets are all formed by continuous 

attributes. In the case of the fuzzy algorithms, the attributes 

have been described by means of three linguistic labels as 

shown in Fig. 2b. Regarding the non-fuzzy algorithms, the 

attributes have been discretized into three intervals with the 

same size, as shown in Fig. 2a. 

 

          Lb0                 Lb1                 Lb2 

(a) 

(b) 

       Lb0                    Lb1                     Lb2 

Fig. 2.  Discretization on the continuous attributes used 

in the study (a) with the non-fuzzy algorithms; (b) with 

the fuzzy algorithms. 

TABLE II 

THE FUZZYCN2 ALGORITHM 

 

procedure FuzzyCN2(InstanceSet)  

returns RuleList 

   RuleList   

   FuzzyInstSet  AddActivationDegree(InstanceSet) 

  Complex  FindBestComplex(FuzzyInstSet) 

   while IsNotNil(Complex) and IsNotEmpty(FuzzyInstSet) 

      Conseq  MostCoveredClass(FuzzyInstSet,Complex) 

      NewRule  “if( Complex ) then class = Conseq” 

      RuleList  Add(RuleList,NewRule) 

      FuzzyInstSet  Deactivate(FuzzyInstSet,Complex) 

      FuzzyInstSet  Truncate(FuzzyInstSet) 

      Complex  FindBestComplex(FuzzyInstSet) 

   endwhile  

   return RuleList 

end 
 

 

procedure FindBestComplex(FuzzyInstSet) 

returns BestComplex 

   BestComplex  nil 

   Selectors  CreateAllSelectors() 

   Star  InitializeStar() 

   while IsNotEmpty(Star) 

       NewStar  SpecializeStar(Star, Selectors) 

       NewStar  SignificanceTest(NewStar,FuzzInstSet) 

       NewStar  QualityTest(NewStar,FuzzyInstSet) 

       BestComplex  BetterQuality(NewStar,BestComplex) 

       Star  NewStar 

   endwhile 

   return BestComplex 

end 
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The non-fuzzy algorithms used in the experimental study 

have been ID3 and RIPPER. These algorithms were 

analyzed using the software Weka [15] with the default 

configuration of each algorithm. The fuzzy algorithms under 

the experiments were the Wang and Mendel algorithm and 

FuzzyID3. In this case, the algorithms were analyzed with 

the  Xfuzzy 3 environment [16]. 

In order to evaluate each algorithm, a 10 fold cross 

validation test has been made. Tables III, IV and V shows 

the results of this evaluation in terms of the mean number of 

rules induced by each algorithm, the mean error on the 

training sets and the mean error on test. 

The last columns show the results for three different 

configurations of the FuzzyCN2 algorithm. In the first 

configuration we have used only selectors based on the 

equality, that is, rules do not use linguistic hedges. The 

second configuration (v2) considers some linguistic hedges 

as selectors: greater than, smaller than, greater than or 

equal to, and smaller than or equal to. In the third 

configuration (v3) all the linguistic hedges shown in Fig. 1 

 
TABLE III 

MEAN NUMBER OF RULES INDUCED BY DIFFERENT ALGORITHMS 

 ID3 RIPPER W-M FUZZYID3 FUZZYCN2 

(V1) 

FUZZYCN2 

(V2) 

FUZZYCN2 

(V3) 

haberman 17.6 2.1 17.6 15.3 9.7 9.3 16.5 

iris 8.9 3.3 20.4 5.8 5.0 5.1 6.0 

bupa 40.4 2.1 52.8 16.9 13.9 14.4 19.2 

ecoli 51.0 8.6 71.4 20.7 12.1 10.6 11.0 

pima 115.7 3.3 152.6 30.0 24.6 24.5 32.1 

glass 41.4 7.2 55.2 17.5 9.4 9.5 12.0 

wbc 54.0 5.9 231.4 19.3 15.4 14.2 15.5 

wine 25.7 6.0 152.1 18.4 8.7 8.3 8.2 

cleveland 143.4 3.8 249.1 60.2 22.5 24.0 24.2 

vehicle 283.7 12.5 462.9 38.2 28.6 31.3 34.5 

ion 56.4 7.7 239.4 28.2 18.7 18.6 18.0 

average 76.2 5.7 155.0 24.6 15.3 15.4 17.9 

 

TABLE IV 

TRAINING ERROR 

 ID3 RIPPER W-M FUZZYID3 FUZZYCN2 

(V1) 

FUZZYCN2 

(V2) 

FUZZYCN2 

(V3) 

haberman 24.1% 25.4% 24.8% 24.7% 24.8% 25.1% 22.2% 

iris 2.1% 2.1% 2.7% 3.2% 4.4% 4.8% 2.7% 

bupa 33.7% 39.0% 36.9% 41.3% 36.0% 36.0% 31.3% 

ecoli 12.1% 17.5% 15.1% 19.5% 20.7% 14.4% 12.6% 

pima 18.6% 25.4% 22.2% 27.7% 21.5% 20.9% 17.2% 

glass 22.9% 31.2% 26.0% 48.2% 37.7% 34.1% 26.9% 

wbc 0.4% 3.0% 1.4% 2.6% 2.6% 1.9% 1.2% 

wine 0.1% 6.5% 0.0% 4.6% 3.5% 2.1% 1.1% 

cleveland 1.4% 40.9% 4.1% 29.9% 27.1% 25.4% 19.6% 

vehicle 13.2% 38.4% 23.9% 40.1% 30.3% 26.7% 20.7% 

ion 0.6% 7.0% 1.4% 6.9% 3.2% 1.6% 1.1% 

average 11.7% 21.5% 14.4% 22.6% 19.2% 17.5% 14.2% 

 

 
TABLE V 

TEST ERROR  

 ID3 RIPPER W-M FUZZYID3 FUZZYCN2 

(V1) 

FUZZYCN2 

(V2) 

FUZZYCN2 

(V3) 

haberman 28.4% 26.5% 26.1% 29.4% 28.4% 27.1% 27.2% 

iris 13.3% 12.0% 5.3% 3.3% 4.7% 5.3% 3.3% 

bupa 52.4% 39.8% 42.6% 44.6% 41.8% 42.6% 43.5% 

ecoli 32.1% 29.7% 19.3% 24.5% 23.8% 16.1% 14.9% 

pima 43.2% 28.6% 27.2% 29.5% 27.6% 27.1% 25.8% 

glass 56.8% 50.3% 34.5% 61.1% 41.4% 40.5% 34.9% 

wbc 5.0% 4.4% 5.4% 3.5% 4.5% 4.1% 2.9% 

wine 10.2% 13.5% 10.7% 9.5% 6.7% 5.0% 3.9% 

cleveland 57.5% 46.1% 60.0% 46.4% 46.7% 47.4% 48.5% 

vehicle 46.4% 50.6% 38.2% 42.3% 35.4% 33.1% 31.2% 

ion 12.9% 13.7% 7.1% 12.2% 12.5% 10.5% 8.2% 

average 32.6% 28.7% 25.1% 27.8% 24.9% 23.5% 22.2% 
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were used. In all these configurations, the value of the alpha-

cut was 0.5, the star size was fixed to 5, the value of the 

minimum absolute support was fixed to 5 and the minimum 

relative support was fixed to 0.05. 

Regarding the mean number of rules (Table III), the three 

configurations of FuzzyCN2 show similar results, although 

the configuration v3 seems to induce a number of rules a bit 

higher. Comparing these results with respect to the other 

algorithms, it can be seen that FuzzyCN2 generates a smaller 

number of rules. Only the RIPPER algorithm induces a lower 

number of rules. Generally, RIPPER induces a small number 

of rules, but the test error is higher than that generated by the 

rest of the algorithms.  

Table V shows the test error for the different algorithms. 

In this study, the ID3 algorithm shows the pourer results and 

fuzzy algorithms obtain better results than the non-fuzzy 

ones. It is also worth to notice that the Wang and Mendel 

algorithm have quite good results on test error, but generates 

a very high number of rules. The proposed FuzzyCN2 

algorithm obtains the better results among the algorithms 

under study. This is particularly true regarding the third 

configuration (v3). In this last case, despite of the low 

number of datasets in the study, the Wilcoxon´s Signed Rank 

Test let us to affirm with a confidence level of 95% that the 

FuzzyCN2 algorithm is the best of the algorithms included in 

this study in terms of the test error. 

Table VI shows an example of the rule list induced by 

FuzzyCN2. The example uses the wine data set. In this case, 

all the instances of the data set have been considered. The 

description of the rule lists is written in XFL3, the 

specification language used in Xfuzzy. In this language, the 

term (attr ~= lb) means attr is approximately equal to lb; the 

term (attr += lb) means attr is strongly equal to lb; and the 

term (attr %= lb) means attr is slightly equal to lb. 

 

 
TABLE VI 

RESULTS FOR THE WINE DATA SET 

FUZZYCN2 (V1) 

 

  if(at12 == Lb0 & at11 == Lb0 & at7 == Lb0) -> class = c3; 

  elseif(at13 == Lb0 & at1 == Lb0) -> class = c2; 

  elseif(at1 == Lb2 & at9 == Lb1) -> class = c1; 

  elseif(at13 == Lb0 & at5 == Lb0 & at2 == Lb0) -> class = c2; 

  elseif(at7 == Lb1 & at1 == Lb2) -> class = c1; 

  elseif(at10 == Lb1 & at2 == Lb0) -> class = c1; 

  elseif(at7 == Lb0 & at2 == Lb1 & at9 == Lb0) -> class = c3; 

  elseif(at7 == Lb1 & at13 == Lb1 & at6 == Lb1) -> class = c1; 

  elseif(at10 == Lb0 & at2 == Lb0) -> class = c2; 

 

FUZZYCN2 (V2) 

 

  if(at1 == Lb0 & at12 > Lb0 & at10 == Lb0 & at13 <= Lb1) -> class = c2; 

  elseif(at12 < Lb1 & at2 > Lb0 & at7 <= Lb0 & at3 != Lb0 & at11 <= Lb1 &  

         at13 <= Lb1) -> class = c3; 

  elseif(at13 >= Lb1 & at1 >= Lb2 & at7 != Lb0 & at4 < Lb2 & at12 != Lb0) 

         -> class = c1; 

  elseif(at13 == Lb0 & at7 != Lb0 & at5 <= Lb0 & at10 <= Lb1) -> class = c2; 

  elseif(at7 > Lb0 & at13 != Lb0 & at5 < Lb2 & at1 != Lb0 & at4 <= Lb1 &  

         at6 > Lb0 & at12 != Lb0) -> class = c1; 

  elseif(at11 != Lb0 & at2 == Lb0 & at3 < Lb2 & at10 <= Lb1) -> class = c2; 

  elseif(at7 == Lb0 & at10 >= Lb1 & at12 < Lb2 & at11 <= Lb1) -> class = c3; 

  elseif(at1 != Lb2 & at8 != Lb0) -> class = c2; 

 

FUZZYCN2 (V3) 

 

  if(at1 <= Lb0 & at12 > Lb0 & at10 ~= Lb0 & at13 <= Lb1) -> class = c2; 

  elseif(at13 %= Lb2) -> class = c1; 

  elseif(at12 += Lb0 & at11 += Lb0) -> class = c3; 

  elseif(at10 += Lb0 & at1 %= Lb0 & at13 <= Lb1) -> class = c2; 

  elseif(at13 != Lb0 & at7 >= Lb1 & at4 <= Lb1 & at1 != Lb0 & at12 >= Lb1 & 

         at6 != Lb0) -> class = c1; 

  elseif(at7 += Lb0 & at4 != Lb0 & at2 != Lb0 & at3 != Lb0 & at12 < Lb2 &  

         at11 < Lb2 & at5 <= Lb1) -> class = c3; 

  elseif(at13 += Lb0 & at5 ~= Lb0 & at10 <= Lb1) -> class = c2; 

  elseif(at7 != Lb0 & at5 ~= Lb1 & at11 < Lb2 & at12 >= Lb1 & at6 != Lb0 & 

         at13 < Lb2 & at10 <= Lb1) -> class = c1; 
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VI. CONCLUSION 

Classifiers based on rule sets use to contain conflicting rules, 

that is, rules covering a common space and with different 

conclusions. Ordered lists of rules are a good choice to avoid 

these conflicts. This paper proposes an algorithm to extract 

ordered lists of fuzzy classification rules. The algorithm is an 

adaptation of the well-known CN2 algorithm. The paper also 

proposes the use of linguistic hedges to obtain more precise 

and compact rules. These hedges are easily included in the 

algorithm by adding them into the selector list in the beam 

search. The experimental results show that the algorithm 

produces a smaller number of rules and a lower classification 

error than other well-known fuzzy classification algorithms, 

thus giving a better balance interpretability-accuracy. 
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