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Abstract.

The price of electrical energy in Spain has not been requlated by the government since
1998, but determined by the supply from the generators in a competitive market, the so-
called “electrical pool”.

In this work, we present a methodology to improve the profit of the competitive firms
and detect collaboration situations in the pool.

This methodology is based on genetic algorithm-based method that allow us to simulate
the behavior of the Electrical Spanish strategies agents when hard deviations are applied
on one agent strateqy. A perfect oligopolistic behavior of the agents will be assumed.
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1 Introduction

The relationship between the cost of production and the selling price of electrical energy
is not direct. Production cost determines price in a regulated market, such as the one
that existed in Spain before 1998 and continues to exist in other European Community
countries. This is not so in a competitive market. Before 1998, prices in Spain were
fixed by a public agency that was also in charge of elaborating a list of the power plants
that should connect at any given time. This list was calculated by means of numeric
optimization algorithms, which minimized the global cost of the production necessary to
cover domestic demand.

In the modern model, based on free competition among the different companies [2], the
Market Operator (MO), a neutral agent appointed by the State to regulate competition,
calculates the energy prices for every hour, starting from the supply of the generators and
the demand of the consumers, this process is called “casation procedure”.

The procedure by which production is planned is based on the principle that “the
cheapest power plants connect first”. In this case, however, “cheapest” does not mean
“low cost”, but “low selling price”, because each agent is free to choose the price it wants
to charge for its power. It is interesting to note that the law stipulates that all power
plants are to receive the same payment for each MW of energy sold, as occurred in the
non-competitive model, and not the payment they asked for in their strategy. The second
principle of the competitive market is “the most costly power plant connected marks the
price”.

In previous works [4], [3], we designed a genetic tool (Tooly) able to estimate past
offers from the agents in the pool from publicily available data: hourly prices and amount
of energy consumed. This last model was a useful analysis tool in certain situations:
it allowed us to estimate the change in the price of the electrical energy under small
deviations of the supply curves of one agent. The simulation procedure was as follows:

1. The supply curves of all agents are estimated by means of the genetic tool.

2. One of the supplies is slightly modified. For example, the selling price of a group of
generators is lowered.

3. A new simulation is carried with the modified supply curve and the original demand.
Supply curves of the remaining agents remained untouched. In other words, it
was assumed that the agents did not react to the change, changing their prices to
maintain their market share.

In other work [5], we presented a new tool (Tooly) to generalize the previous tool by
dropping this last assumption. In other words: what would happen if the agents are
allowed to react?” We confront with a game theory problem, which we solve by means of
cooperative-fitness based genetic algorithms.

In present work, we propose a methodology, that use Tooly, to analyze the influence
on a pool when hard deviations are made over a supply curve agent with reaction of
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the remaining agents supply curves. Also, we shows the numerical results from applying
above methodology to a semi-synthetic problem.

1.1 Summary

The remainder of this paper is arranged as follows: The “casation process” in term
of Games Theory is described in Section 2. Our methodology and genetic algorithm is
described in Section 3. In Section 4, the methodology is applied to a Semi-Synthetic
problem. The paper finishes with concluding remarks

2 Electrical pool as a game theory problem

Given that preliminary data are insufficient to carry out a statistical analysis, it is
necessary to make conjectures regarding the results. This work assumes that the agents
are intelligent and that the market is fair, such that the unit profits (euros/MW) are
approximately the same for all the competitors.

With these hypotheses, if we know the cost of production of the agents (and we can
estimate that, using data prior to 1998), it is possible to simplify market operation and
abstract it to a game, which can be explained as follows. Let us assume that a certain
amount of energy is to be bought from several generators. None of them is capable of
supplying the total amount and the amount supplied by all of them exceeds the needs.

Each player (one of the generators) gives a referee (the MO) a closed envelope with its
sales strategy. It consists of a pair "quantity supplied - price demanded per unit”. The
referee opens the envelopes, arranges the strategies and chooses the cheapest ones until
demand is covered. Each player selected is then paid for the amount it sells at the price
of the most expensive strategy that was accepted.

Each player receives the difference between the price paid and their unit cost, multiplied
by the energy units sold.

The actual number of players is several hundred (one player per electrical power plant).
To simplify calculations, we group the price-quantity pairs of all the power plants belong-
ing to the same company into a single total quantity produced-unit price curve. In this
way, we reduce several hundred strategies to four aggregate supply curves (there are four
large electrical companies in Spain). The same is done with costs: each of the four par-
ticipants in the simplified game will have a curve that relates the negotiated MW with
their production cost. The mechanism of this new game is a bit more complex: each
player gives the referee an aggregate supply curve. The referee adds up all the curves
and intersects the results with a demand curve(it depends the price). The cross point
determines the market price. Given the price and the supply curves furnished by the
agents, the revenue of each player is calculated.

Finally, the net profit of each player is calculated using the difference between the
income received and the value of its cost curve at the point corresponding to the amount
negotiated.
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3 Proposed methodology

In this work, we want to estimate the reaction of the remaining competing agent supply
curves when a deviation is applied on one agent strategy curve.

In previous work, we use our tool Tool;, [4], to estimate the change in the price under
“small deviations” of the supply curve of one agent. Then, it was assumed that the
“competing agents did not react to the change”, changing their prices to maintain their
market share. In present work we drop above assumption and we use our optimization
tool Tooly, [5], to simulate the reaction of agents when “hard deviations” are applied on
one agent. Tool, was used in previous work to calculate optimal supply generation curves
of agents competing in the electrical pool. Here, we use Tool, to define our methodology
steps:

1. The supply curve of all agents are estimated by means of our genetic tool Tool;.

2. One of the supplies agent is hardly modified. For example, the quantity of energy
generated by a group of generators is raised.

3. By the last, Tools is applied to estimate the reactive supply curves of the remaining
agents. The modified supply curves agent is kept unchanged.

3.1 Using Tool, to simulate reactions to a modified supply curve

Genetic Tooly defines a nonlinear parametrization of the supply curves and use a co-
evolutionary genetic algorithm to find an equilibrium point generalizing, what is termed
Cournot equilibrium [1], Cournot equilibrium to our own definition of supply curve.
Briefly, the genetic algorithm works as follows: first, we define as many populations
of strategies as players. The population corresponding to modified supply curve agent is
initialized with its modified supply curve and is not evolved during simulating. To score
a strategy, we will simulate a game, making this strategy to compete with a selection of
strategies taken from the remaining players.

The algorithm studied in this work serves us to obtain (in Cournot terms) the reactive
supply curves of the companies competing in the market using demand curves of several
previous markets and the modified supply curve. The input data are the demand curves,
the costs of generation of all competing firms and the modified supply curve. The outputs
—the supply curves— represent market strategies.

3.2 Genetic Model
3.2.1 Definition of a supply curve

Strategic Planning Departments take into consideration the day of the week, the hour
of the day, the season, the weather forecast (rain, temperature) and some other indicators
before posting prices to the Market Operator. Following our own experience, three features
should be considered: the hour (which is related to the amount of energy negotiated,
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Figure 1: Actual (left), linear (center) and polygonal supply curves (right). Representation by a polygonal
line is closer to reality than the linear supply and does not depend on an excessive number of parameters.

depending on labor hours and daylight), the day of the week (the dependence between
labor hours and demand changes on weekends and holidays) and the season (electrical
cooling or heating, affects both previous dependencies).

Given this information, we decided to stay in an intermediate position between (a)
assuming that the supply curve is always the same for each agent, and (b) assuming a
different curve for every market. Since (a) is too imprecise and (b) is intractable, in this
work we will allow each agent to select its curve from a restricted set of choices, depending
on the values of the features mentioned before. In other words, a strategy comprises:

e arule-based classification system, that produces a segmentation of the market points
into a certain number of classes depending on hour, day of the week and type of
day, and

e as many supply curves as market segments.

That is, each individual is a set of rules whose antecedents are assertions with regard
to market characteristics and whose consequents are the supply curves that the player
can use. We shall call these consequents “prototype strategies”.

The simplest representation of a prototype strategy is a straight line. Linear models
can approximate the behavior of a competitive electrical market in the neighborhood of
its equilibrium point. Unfortunately, in spite of this kind of simplification, which is valid
for studying the response of the market under small changes, it is not accurate enough
to estimate complete supply curves of the agents, which are highly non linear. We have
decided to use piecewise linear supply curves instead (see Figure 1.) Their number of
segments will be a compromise between the accuracy of the model and the amount of
available data (three segments in most of the experiments in this paper.)
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Figure 2: Polygonal supply curve comprising three segments and a classifier with three variables that
segments the markets into 8 clusters; (top left) genetic representation, (bottom left) classifier variable
values, (right) graphical representation.

3.2.2 Genetic representation

Each individual in the coevolutionary approach [7], [9] codifies a possible set of strate-
gies (i.e., a fuzzy-rule-based classifier system and a set of prototype strategies) of one
of the agents; we will keep as many populations of individuals as agents exist. Fitness
is not assigned to an individual but to a combination of individuals extracted from all
populations [10] [11].

An individual in the coevolutionary approach will be codified with a chain of numbers.
This chain comprises two real numbers to define every segment in a prototype, plus a list
containing the numerical parameters on which the linguistic terms in the antecedents of
the classifier depends.

An example in showed in figure 2 for one firm with a classifier based on tree variables:
“Energy level” (fuzzy), “Type of day” (crisp) and “Temperature” (fuzzy).

3.2.3 Genetic operators

Individuals in the coevolutionary approach are represented by chains of real numbers,
thus there is no need to define custom genetic operators. However, the relative sizes of the
subchain codifying the consequents and the subchain codifying the list of parameters of
the classifier are very different. We have opted to let only one of these parts be modified
in every genetic operation, thus we can manually balance the evolution of both and speed
up the evolution of the classifier part. This is the only difference between our operators
and the standard versions of uniform arithmetic crossover and mutation [12][13].

When two individuals are to be crossed, a coin is tossed to decide whether we select (a)
the subchain codifying the classifier definition or (b) one subchain that codifies the defini-
tion of one of the prototypes. The selected subchains are recombined by means of standard
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arithmetic crossover, but the remaining part of the individual remains unchanged.
The mutation operator is defined as the crossing of an individual with another one,
generated at random.

3.2.4 Fitness function

Each firm has as an objective the maximization of its own profit, assuming that the
unitary benefits are all the same. This decision implies that we need to rank strategies
according to two different criteria. Let us compare two strategies f; and fy of the same
firm: after playing games with either f; and f, and all strategies of the remaining players,
an strategy fi is better than another one f; (a) the best aggregated profit of the remaining
players against f; is lower than their benefit if f5 is used (min-max strategy,) and (b) f;
produces similar unitary profits for all players. “Unitary profit” is defined as the difference
between cost and income, divided by the number of MWs sold. The first goal measures
the benefits of a strategy in the worst case, and the second one measures the degree of
fulfillment of the restriction “all unitary profits are the same.” We will use the profit of
the strategy to quantify the first objective, and the mean of the variances of the unitary
profits to quantify the second one.

Different methods exist for mapping multi-objective fitness into scalar fitness [8]. We
have studied the weighted average of values (a) and (b), but, according to our experiments
,[3], there is a significant improvement if we use a multi-objective approach instead [6].

4 Numerical Results

This section describes the application of our method to a semi-synthetic problem com-
poned by 40 market points. This problem was designed to reproduce current scenarios
in the Spanish electrical market, while being originated by theoretical data, thus we
can assess our results. The methods used here will be called “Reactive Equilibrium Co-
evolutionary Genetic Model” (RECGM), “Equilibrium Coevolutionary Genetic Model”
(ECGM) and “Regression Coevolutionary Genetic Model” (RCGM). The first method is
the one being proposed in this paper and tries to obtain the reacting supply curves when
hard deviation are applied to one supply curve agent; the second one was proposed in [5],
and obtains the optimal oligopolistic solution (Cournot solution); and the third one was
proposed in [3], and obtains the actual supply curves being used in the market.

4.1 Applying the methodology
Three steps of the methodology presented in this work are applied to the semi-synthetic

problem:

Step 1) RCGM is applied to our 40 market points to obtain an estimation of the supply
curves of all agents, an also knows their actual profits and market share.
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Step 2) Before, we select an agent to be modified. In this case, we decided to choose the
greater profit agent.

Step 3) Finallyy, RECGM is run to obtain the reaction supply curves to previous step
deviated supply curve.

Also, we will use ECGM model to calculate optimal profit and amount of energy for
oligopolistic solution (Cournot solution), and detect illegal agreement between generators
estimated.

4.1.1 Step 1

Individual strategies extracted by RCGM from 40 market points (price, energy, energy
level, type of day, temperature) score 100% linguistic matching respect theoretical indi-
vidual strategies used to generate market points. The mean perceptual error of estimated
individual quantities for each market was 2.92% and the mean error of estimated energy
share in each market was 0.69%. Profit, energy, market share for the competition of these
estimated individual strategies can be see in table 1.

Agent0  Agentl Agent2 Agent3

Energy 98210.3 196062 141886 226314
Energy Share(%) 14.82 29.60 2142  34.16
Profit 125191 156961 85585.2 135626

Table 1: Market share and profit for estimated supply curves agents (RCGM model)

We have select greater profit agent to apply the deviation, which is Agent1 with 156961.

4.1.2 Step 2

Results of competition of the strategies resulting from applying RCGM to semi-synthetic
problem, RCGM to same problem with modified supply curve of Agent 1, and optimal
equilibrium strategies calculated with ECGM are in table 2. It can be seen that modified
RCGM pool obtains 12.7445% more profit than original RCGM pool generating 4.86588%
less energy. Also we can see that our modified RCGM pool profits are lower than optimal
pool pools, thus there is still room to obtain more benefits if supply curves are improved.
Notice that the opposite result (better results than in the oligopolistic equilibrium) would
have meant that two or more of the agents have signed an illegal agreement.
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Agent 0 Agent 1 Agent 2 Agent 3

ECGM Pool Profit 198143 197669 195047 252652
RCGM Pool Profit 125191 156961 85585.2 135626
Modified RCGM Pool Profit 136020 176964 102945 159531
% Profit Variation +8.65029 +12.7445 +20.2836 +17.6252
% Global Profit Variation +14.3232

RCGM Pool Energy 98210.3 196062 141886 226314
Modified RCGM Pool Energy 103366 186522 142235 225119
% Energy Variation 1524978 -4.86588 +0.246243 -0.528113

% Global Energy Variation -0.789489
Table 2: Energy and Profit Comparison for ECGM, RCGM and Modified RCGM Resulting Pools

4.1.3 Step 3

Now, we have to simulate the reaction of the competing not modified strategy agents to
the changed strategy (Agent 1). Results of competition of the strategies resulting from this
simulation can be seen in table 3. Notice, that reactive pool, “Modified RECGM Pool”,
is obtains lower profits, both individual and global profit, than modified pool ,“Modified
RCGM Pool”. The reason for this situation, is that “Modified RCGM Pool” has been
select by hand, thereby modified strategy curve; instead the reactive strategies, “Modified
RECGM Pool”, are calculated by the equilibrium algorithm RECGM depending on the
selected by hand modified strategy. Also, we run the reactive algorithm, RECGM, but
with not modified studied strategy, and the results were worse than “Modified RECGM
pool” (see table 4).

Agent 0 Agent 1  Agent 2 Agent 3

Modified RCGM Pool Profit 136020 176964 102945 159531
Modified RECGM Pool Profit 68870.4 134561 118648 109580
% Profit Variation -49.3674  -23.9613  4+15.254 -31.3107
% Global Profit Variation -31.7781

Modified RCGM Pool Energy 103366 186522 142235 225119
Modified RECGM Pool Energy 108136 186908 171816 171221
% Energy Variation +4.61455 +0.20677 +20.7969 -23.9418
% Global Energy Variation +4.72133

Table 3: Energy and Profit Comparison for RCGM and Modified RECGM Resulting Pools
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4.1.4 Resume

By the last, we compare results from reactive pools for Not Modified Studied Strategy
and Modified Studied Strategy, calculated with RECGM, (see table 4). It can be seen
that “Modified RECGM Pool” obtains 33.7634% more profit than “Not Modified RECGM
Pool” generating 0.53552% less energy, i.e. the reaction for modified strategy is better
that reaction for not-modified strategy. Also, the modified strategy agent (Firm 1) obtains
25.1091% more profit that not-modified strategy agent (Firm 1), generation 5.72111% less
energy.

Agent 0 Agent 1 Agent 2 Agent 3

Not Modified RECGM Pool Profit 54707.8 107555 76044.9 84396.3
Modified RECGM Pool Profit 68870.4 134561 118648 109580
% Profit Variation +25.8879 +425.1091 +56.0234 +29.8402
% Global Profit Variation +33.7634

Not Modified RECGM Pool Energy 116536 198250 157643 169087
Modified RECGM Pool Energy 108136 186908 171816 171221
% Energy Variation -7.20822 -5.72111  +48.99041 +1.26211
% Global Energy Variation -0.53552

Table 4: Energy and Profit Comparison for Not Modified RECGM and Modified RECGM Resulting
Pools

5 Concluding Remarks

The methodology proposed here serves improve the profit of an electrical company
by adjusting it to the supply in terms of an oligopolistic market. Also, a competing
firm can apply hard deviations to its strategy and simulate the reaction of the remaining
strategies. Experiments presented show that the Reaction Pool calculated with presented
methodology obtains more profit for all agents when higher deviations are applied to
studied strategy. Moreover, this methodology may also serve to the Market Operator,
because the estimation of the theoretical maximum profit and its comparison to the actual
situation can be used to detect illegal agreements between generators.
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