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Abstract— When questionnaires are designed, each factor un-
der study can be assigned a set of different items. The answers
to these questions must be merged in order to obtain the level
of that input. Therefore, it is typical for data acquired from
questionnaires that each of the inputs and outputs are not
numbers, but sets of values.

In this paper, we represent the information contained in such a
set of values by means of a fuzzy number. A fuzzy statistics-based
interpretation of the semantic of a fuzzy set will be used for this
purpose, as we will consider that this fuzzy number is a nested
family of confidence intervals for the value of the variable. The
accuracy of the model will be expressed by means of an interval-
valued function, derived from a recent definition of the variance
of a fuzzy random variable.

A multicriteria genetic learning algorithm, able to optimize
this interval-valued function, is proposed. As an example of the
application of this algorithm, a practical problem of modeling in
marketing is solved.

I. INTRODUCTION

When acquiring data from interviews or questionnaires, it
is a common practice to evaluate the level of a factor by
examining the answers to a set of different questions. These
questions may show different aspects of the problem, or be
redundant, to ensure the coherence of the data. Therefore, it
is typical for data acquired from questionnaires that each of
the inputs and outputs are not single numbers, but sets of
values. The classical conversion of such a set of items into a
compound value [1] consists in replacing each one of them
by a suitable, numerical characteristic value, say its mean or
median. This solution might not be the best one, because it
discards the information about the dispersion of the items.

In this paper, we will transform each set of inputs into a
fuzzy interval, that contains information about the average
value and the dispersion of the items, and then learn the
model from the produced fuzzy data. We will use a novel
interpretation of the semantics of a fuzzy set [2], that regards
fuzzy sets as families of confidence intervals, and let the
learning be grounded in the minimization of an imprecisely
known function, as proposed in [3]. We also propose to
estimate the distance between the imprecisely known output
data and the response of the model by mean of a new definition
of squared error, derived from that of the variance of a fuzzy
random variable. This paper also details the modifications
that must be done to the NSGA-2 algorithm [4] in order
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to use our criterion. By last, this algorithm is applied to a
marketing problem, that of modeling the consumer behavior
from data obtained by questionnaires, and their crisp and fuzzy
implementations are compared.

This work is organized as follows. Section II introduces
the fuzzy representation issues, and Section III describes the
imprecise probabilities-based objective criteria. Section IV
briefly describes the practical problem based on consumer
behavior models. Section V shows some obtained experimental
results. Finally, Section VI concludes.

II. A FUZZY INTERPRETATION OF THE SEMANTIC OF A
LIST OF VALUES

A. Semantics of a Fuzzy Set

Under the imprecise probabilities framework, it makes sense
to understand a fuzzy set as a set of tolerances, each one of
them is assigned a confidence degree, being the lower degree
the narrower tolerance [5]. In particular, the α-cuts of the fuzzy
set can be regarded as confidence intervals with degree 1−α
[2].

This representation allows us to codify the information
contained in a set of numbers by means of a fuzzy set. This
will be made clear with the example that follows. Let us
suppose that a variable X has associated the items valued

X = {2, 1, 3, 3, 2, 2, 4}. (1)

The most immediate calculation of a summary value is the
sample mean, which is 2.429. While this is a good compromise
value, we are discarding information that might be relevant:
there are some items as low as 1, and others as high as 4. To
gain additional insight about the importance of the dispersion
of the values, we will assume that the set of items X is a
sample of a larger population, whose mean is unknown. Given
the sample X , we can calculate confidence intervals for the
value of this mean, at different degrees. If we want to simplify
the calculations, we can assume that the sample was drawn
from a normal population. Then, the α-cuts of the fuzzy set
X̃ that represent the value of the variable are the confidence
intervals

X̃α = 2.429± 0.9759 · qt6
(
1− α

2

)
. (2)

where qt6 is the quantile function for the t distribution. A
graphical representation of the membership function of X̃ is
shown in Figure 1. Observe that we can approximate it by a
triangular membership function without incurring large errors.
The same procedure must be applied to all lists of input and
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Fig. 1. Membership function of that set eX that represents the sample X
in Section II-A. The left one was obtained under normality assumptions, and
the right one is a basic bootstrap estimation.

output values, to obtain a fuzzy dataset, from which we want
to learn a model. This will be discussed in the next section.

It is remarked that other, different techniques for estimating
the needed confidence degrees would also be possible. If
the sample mean is selected as the summary measure, the
normality assumption will hold for many practical problems.
Otherwise, when the distribution of the data is asymmetric,
building the membership function from the quantiles of the
bootstrap distribution of the mean or the median is a sensible
choice. In the right part of Figure 1 we have plotted a
bootstrap-based estimation of the membership function asso-
ciated to the same data.

III. DESIGN OF LINGUISTIC MODELS FROM FUZZY DATA

A. Obtaining an output from a fuzzy input
Let our model f be a function that maps an input vector x

to an output value f(x). If all our knowledge about x is given
by a fuzzy set X̃ , built as described in the preceding section,
then y = f(x) is contained in the fuzzy set f(X̃), defined by
the family of α-cuts

f(X̃)α = {f(x) | x ∈ X̃α}. (3)

Depending on the properties of f , the computation of f(X̃)
can be NP-hard [6]. There exist some numerical procedures to
solve this problem, many of them derived from the so-called
vertex method [7]. We will use one of them, the fuzzy profile
method [8] and approximate all the fuzzy sets by means of
piecewise linear continuous membership functions, assuming
that the supports of the input data are small enough so that our
model f is locally monotonic with respect to each argument.

B. Measuring the quality of a model: different definitions of
the Mean Squared Error

To select the best model, we want to measure the differences
between its output and the desired values. Since we cannot
know the precise desired output data, but fuzzy sets that
describe them, we can not compute a number that measures
the error of a candidate model over our train data, but we can
provide a fuzzy interval for it. Let D̃ = Ỹ − f(X̃) be the
residual of the model. We are interested in computing E(D̃2),
and the definition of this value is similar to that of the variance
of a frv. In the following sections, we define the mean squared
error of three different forms, according to the three types of
variance of a fuzzy random variable described in [9].

1) Classical model: Let us consider a probability space,
(Ω,A, P ), and a metric, d, defined over the class of the fuzzy
subsets of IR (or over a subclass) and let us suppose that
X̃ : Ω → P̃(IR) is a function A−β(d)-measurable (here, β(d)
represents the Borel σ-algebra induced by d.) The classical
variance of X̃ is the quantity

VarCl(X̃) =
∫

Ω
d(X, E(X̃))2 dP

and we will call classical mean squared error (CMSE) of a
model with residual D̃ to the quantity

CMSE(D̃) =
∫

Ω
d(D̃, 0)2 dP

The different definitions of variance in the literature that fit
this formulation differ in the used metric and in the definition
of the expectation of a fuzzy random variable [10][11], and the
same distances would produce the corresponding definitions
of CMSE. This definition, beside being the most convenient
from a numerical point of view (the error of a fuzzy model
would be crisp number, that could be easily optimized) is not
compatible with our semantic interpretation, as we point out
in the example that follows:

Example 3.1: Let us suppose that we have a sample of size
2 of the residual of the model, and that this residual is the
frv D̃, whose images are the triangular fuzzy sets D̃(x1) =
(−K, 0,K) and D̃(x2) = (−K, 0,K) (see Figure 2.) This
frv, if regarded as a classical measurable function, have null
CMSE, since it is a constant function. But, it is not coherent
to say that we do not know the precise output of a model
but a set that contains it and then, using only the information
contained in this set, to assure that the unknown output has
null variance. At most, we could know some bounds of this
variance, because the margins of a function being constant do
not mean that the function is a constant.

2) Imprecise 2nd order model: In [12], Kruse defines the
variance of a multi-valued mapping, Γ : Ω → P(IR), as the
set:

VarKr(Γ) = {Var(X) | X ∈ S(Γ)},

where S(Γ) represents the set of all measurable selections
of the multi-valued mapping. The preceding definition can
be easily extended to the case of fuzzy random variables as
follows: Let us call Kruse’s variance of the fuzzy random
variable X̃ : Ω → P̃(IR), to the only fuzzy set determined by
the nested family of sets:

[VarKr(X̃)]α := VarKr(X̃α),∀α,

where X̃α is the multi-valued mapping α-cut of X̃ . (The
variance of the example 3.1 is plotted in the central part of
the figure 2.)

Therefore, we define the second order mean squared error
(SMSE) as the fuzzy set

[SMSE(D̃)]α := SqKr(D̃α),∀α,

where
SqKr(Γ) = {E(D2) | D ∈ S(D̃)}.



We can easily check that the membership function of this
fuzzy set is given by the expression

SMSE(D̃)(x) = sup{acc(D) | E(D2) = d}, ∀ d ∈ IR.

The membership degree of a value x to the fuzzy set
SMSE(D̃) represents the possibility degree of the original
random variable is one of those whose squared error is equal
to x. This definition is conceptually interesting, but hard
to include in practical problems without recurring to fuzzy
rankings, or other heuristically defined order relations between
fuzzy sets, which are not less arbitrary than the classical
definition of the variance of a frv.

3) First order imprecise model: In our opinion, the most
interesting definition, from a Genetic Learning point of view,
is the one that follows. It produces an interval instead of
a point or a fuzzy set, while keeps the coherence with the
representation of the data.

We will consider, on the one hand, the probability measure
P (defined over A), that models the first sub-experiment, and,
on the other, a family of conditional possibility measures,
{Π(· | ω)}ω∈Ω, defined as follows:

Π(A | ω) = ΠX̃(ω)(A) = sup
x∈A

X̃(ω)(x), ∀A ∈ βIR, ∀ω.

In the preceding formula, ΠX̃(ω) represents the possibility
measure determined by the possibility distribution X̃(ω) :
IR → [0, 1]. So, the value Π(A|ω) is an upper bound for
the probability of the final outcome is in A, verifying the
hypothesis that the outcome of the initial experiment is ω.
This family of possibility measures represents our (imprecise)
knowledge carried by X̃ about the relation that exists between
the outcome of the first sub-experiment and the set of all the
possible outcomes of the second one. Within this context, all
we know about the probability distribution that models the
second experiment is that it is in the set:

{Q2 | Q2 marginal of P and Q(·|·), Q(·|·) ∈ C}
where C = {Q(·|·) transition prob. | Q(A|ω) ≤ Π(A|ω)

∀A ∈ βIR,ω ∈ Ω}. (4)

(The first order variance of the example 3.1 is plotted in
the right part of the Figure 2.) Therefore, in the proposed
imprecise probabilities model proposed, all we know about
the squared error of the output of the second sub-experiment,
or first order mean squared error (FMSE) is that it is in the
interval:

FMSE(D̃) =






∫

IR
x2dQ2 | Q2 marginal of P

andQ(·|·), Q(·|·) ∈ C




 (5)

or, alternatively [9]:

FMSE(D̃) =
{∫

IR
d2dQ | Q(A) ≤ P D̃(A), ∀A ∈ βIR

}

(6)
where P D̃ is the sub-additive set-valued function given by

P D̃(A) =
∫ 1

0
P ∗

D̃α
(A) dα,∀A ∈ βIR
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Fig. 2. The three different definitions of variance explained in the text are
summarized here for the data in the example 3.1. The classical variance of
the residual of this model is 0, which is not adequate. Kruse’s et al variance,
when extended to frv, produces a valid result but it is not intuitive how to
define dominance relations between them. The first order variance produces
an interval, which is more convenient from a numerical point of view.

and, for every α ∈ (0, 1], P ∗
D̃α

is Dempster’s upper probability
of the random set D̃α.

The FMSE of a fuzzy residual is, as we will see in
section III-D, easy to implement in certain multicriteria search
techniques. Before explaining how, let us detail first how to
estimate the FMSE of a model from a sample of residuals.

C. Application of the profile method to compute the bounds
of the squared error from a sample

The same procedure described in [13] to estimate the
variance of a frv can be applied to estimate the FMSE from a
sample of residuals. For each of the membership functions
D̃(x1), D̃(x2), . . . .D̃(xn), we compute the fuzzy set D̃2,
whose α-cuts are D̃2

α = {x2|x ∈ D̃α}. Since the function
x2 is not locally monotonic, to evaluate the image of a fuzzy
set we must divide the area under the membership functions
in zones separated by the changes in the slope of this function.
This is graphically illustrated in Figure 3. If the membership
of D̃ does not cut the line x = 0, the number of vertices is
preserved. Otherwise, the left part of the profile is replaced by
a vertical segment, and the new right profile is the maximum
of the squares of the former left and right parts. After we have
computed all of the D̃2(xi), we compute the FMSE of each
one of them. Let M−

i be the left profile of D̃2(xi), and M+
i

the right one. Then,

FMSEi =
[∫ 1

0
M−

i dα,

∫ 1

0
M+

i dα

]
(7)

and the FMSE of the whole model is

FMSE =
1
n

(FMSE1 ⊕ . . .⊕ FMSEn) (8)

D. Use of the FMSE in the NSGA-2 algorithm
In this point, we have all the tools that we need to implement

an optimization algorithm that searches for the model that best
fits our fuzzy data. We have decided to adopt the NSGA-2
genetic algorithm [4], and to modify it for admitting fuzzy data
and an interval-valued fitness function. We need to provide:

1) an alternate definition of the precedence operator, that
will be used to assign each individual its non-domination
rank, and
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Fig. 3. The same extension to nonmonotonic functions of the profile method
that is used to compute the sample variance of a frv can be applied to obtain
its FMSE.

2) a definition of the crowding distance used to preserve
the diversity.

We propose to use the bounds of the FMSE as two different
numerical criteria. This solves the definition of the crowding
distance, which is not different from the standard case. The
dominance relation is not so immediate, though. Given two
models f1 and f2, with FMSEs [a−, a+] and [b−, b+], the
dominance is defined as follows: f1 ≺ f2 if a+ < b−,
f2 ≺ f1 if b+ < a−, and neither of them dominates the other,
otherwise. It is intuitively clear that we can only say that one
model is better than other when their FMSE do not intersect,
therefore we say that an individual dominates the other if the
upper bound of the first is lower that the lower bound of the
second.

IV. PRACTICAL APPLICATION: CAUSAL MODELING IN
MARKETING

In this section we briefly detail how the fuzzy set-based rep-
resentation of data and its associated imprecise probabilities-
based fitness function can be implemented in a practical
problem of casual modeling in marketing. In this respect, we
focus this section on the modeling estimation techniques by
providing a knowledge extraction method that provides more
quantity of qualitative information than preceding estimation
techniques used in this field [14].

A. Acquisition of data
Data are obtained by means of a questionnaire. Specifically,

in Table I we show a hypothetical example of the set of items
that could have been used for measuring each one, while
Table II shows an example of data available for this problem.

As we have mentioned in the introduction, To work with
this unusual kind of data, one could think on reducing the
items of a specific variable to a single value, but we have
adopted a more sophisticated process that allows us to take
profit from the original format without any pre-processing
stage: the consideration of fuzzy numbers to describe each
variable, as described in Section II.

B. Definition of the Genetic Fuzzy System
Once fixed the linguistic variables, a genetic fuzzy system is

proposed in this section to automatically extract the knowledge

TABLE I
EXAMPLE OF A QUESTIONNAIRE (EXTRACTED FROM [15])

Fashion consciousness
f1: Fashion is an important means of self-expression
f2: I’m usually the first among my friends to learn about a

new brand or product
Conservatism
c1: I tend to achieve my goals one step at a time
c2: I’m the type to deliberate things
c3: I gather various information and study well when decid-

ing to buy a specific item
Hedonism
h1: I want to enjoy the present rather than think about the

future
h2: I like to go out to night-time entertainment spots
h3: I want to lead a life with lots of ups and downs

TABLE II
EXAMPLE OF FOUR RESPONSES ABOUT THE ITEMS SHOWN IN TABLE I

Fashion consciousness Conservatism Hedonism
f1 f2 c1 c2 c3 h1 h2 h3

2 3 7 6 5 2 3 3
6 6 2 3 3 8 7 7
8 7 2 1 2 7 8 9
5 5 2 2 2 7 7 7

existing in the considered fuzzy data. The obtained model
should not be only accurate enough but also be easily legible,
therefore we consider a multiobjective genetic fuzzy system,
whose main components are described in the following sec-
tions.

1) Fuzzy Rule Structure: We opt by a compact descrip-
tion based on the disjunctive normal form (DNF) [16]:

IF X1 is cA1 and . . . and Xn is cAn THEN Y is B

where each input variable Xi takes as a value a set of
linguistic terms Âi = {Ai1 ∨ . . . ∨Aili}, whose members are
joined by a disjunctive (T -conorm) operator, whilst the output
variable remains a usual linguistic variable with a single label
associated. for instance, a fuzzy rule of the model given as
example could be as follows:

IF FashionConsciousness is A1 and Conservatism is A2

THEN Hedonism is B.

2) Coding scheme: Each individual of the population rep-
resents a set of fuzzy rules (i.e., Pittsburgh style). Each chro-
mosome consists of the concatenation of a number of rules.
The chromosome size is variable-length. Each rule (part of the
chromosome) is encoded by a binary string for the antecedent
part and an integer coding scheme for the consequent part.
The antecedent part has a size equal to the sum of the number
of linguistic terms used in each input variable. The allele ‘1’
means that the corresponding linguistic term is used in the
corresponding variable. The consequent part has a size equal to
the number of output variables. In that part, each gene contains
the index of the linguistic term used for the corresponding
output variable.

For example, assuming we have three linguistic terms (S, M,
and L) for each input/output variable, the fuzzy rule [IF X1 is S
and X2 is {M or L} THEN Y is M] is encoded as [100|011||2].
Therefore, a chromosome would be the concatenation of a



number of these fuzzy rules, e.g., [100|011||2 010|111||1
001|101||3] for a set of three rules.

3) Objective Functions: In addition to the two objectives
originating in the fuzzy approximation error and discussed in
section III-D, we also add a third objective that intends to
assess the linguistic complexity of the generated fuzzy rule
set. We measure the number of rules of the fuzzy system F
as C1(F). However, since each DNF-type fuzzy rule has also
a complexity degree itself, we should also consider this aspect.
Then, let C2(F) =

∑
Rr∈F

∏n
i=1 lri be the complexity of the

fuzzy system F , with lri being the number of linguistic terms
used in the ith input variable of the rth DNF-type fuzzy rule.
The total number of available linguistic terms is computed
when an input variable is not considered (i.e. “don’t care”).
The joint objective is the product of both complexities.

4) Evolutionary Scheme: A generational approach with the
multiobjective NSGA-II replacement strategy [4] is consid-
ered. Binary tournament selection based on the crowding
distance in the objective function space is used.

5) Genetic Operators: The crossover operator randomly
chooses a cross point between two fuzzy rules at each chro-
mosome and exchanges the right string of them. Therefore,
the crossover only exchanges complete rules, but it does
not create new ones since it respects rule boundaries on
chromosomes representing the individual rule base. In the case
that inconsistent rules appear after crossover, the ones whose
antecedent is logically subsumed by the antecedent of a more
general rule are removed. Redundant rules are also removed.

The mutation operator randomly selects an input or output
variable of a specific rule. If an input variable is selected, one
of the three following possibilities is applied: expansion, which
flips to ‘1’ a gene of the selected variable; contraction, which
flips to ‘0’ a gene of the selected variable; or shift, which
flips to ‘0’ a gene of the variable and flips to ‘1’ the gene
immediately before or after it. The selection of one of these
mechanisms is made randomly among the available choices
(e.g., contraction can not be applied if only a gene of the
selected variable has the allele ‘1’). If an output variable is
selected, the mutation operator simply increases or decreases
the integer value. In the same way, specific rules appeared
after mutation are subsumed by the most general ones and
redundant rules are removed.

V. EXPERIMENTAL RESULTS

The consumer behavior model we have used for the exper-
imentation is based on analyzing the consumer’s flow state in
interactive computer-mediated environments. Data have been
obtained from the survey used in [17] to test a conceptual
model previously presented by the same authors. We have
adapted the original structural model proposed in that work
by removing the least significant latent variable in each
second-order variable. According to the partition performed
by the authors, training data is composed by 1,154 examples
(consumers’ responses) and test data by 500 examples. As
an example, we focus the analysis on a specific relationship
among the six relationships with a total of 12 variables
available in the data set.
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Fig. 4. Crisp (upper part) and projection over the second (upper bound of
the fuzzy error) and third (complexity) criteria of the fuzzy (lower part) joint
Pareto-front

We have run 10 times the proposed genetic fuzzy system,
and compared its performance to that of a crisp error-based
multiobjective approach in [18]. The resulting joint Pareto-
fronts are displayed in Figure 4. Notice that in the fuzzy
case, the Pareto is projected over the second (upper bound
of the fuzzy error) and third (complexity) criteria. Although
this shows the worst case of the fuzzy error, it allows us
to compare the accuracy degree of crisp and fuzzy versions.
Observe that there are not important differences between them.
But the behavior of both is significantly different when we
select a different measure of accuracy: the average of the
differences between the output of these models and all the
items in every output variable. Moreover, it is remarked that
the result of this average is not a criteria being minimized
by the genetic algorithm. If it were, the instances with a
higher dispersion would contribute to the global error more
than the instances with low variance, thus we would be giving
more importance to the questionnaires with conflicting items.
Either the crisp and the fuzzy implementations of the fitness
function were meant to compare the output of the model with a
characteristic value of the set of items comprising the output of
each instance, and the measurements of accuracy in the Pareto
front reflect this design. But, given two models with similar
instance-wise error, we definitely prefer the model with the
best item-wise error, since it describes better the relationship
between the input and disperse sets of output items.

To prove this point, we include in Figures 5 and 6 the con-
vergence plots and two boxplots of the item-wise error in both
the fuzzy and crisp versions of the algorithm. Observe that
the maximum value of test error in the fuzzy fitness is almost
always better than the minimum value of the scalar fitness,
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and the boxplot evinces a statistically significant difference.

VI. CONCLUDING REMARKS

In this paper we have put into practice a recent semantic
interpretation of fuzzy sets. We have considered that a fuzzy
set is equivalent to a nested family of confidence intervals for
the value of an unknown parameter. By doing this, we have
converted data comprising multi-item examples into fuzzy
data. A knowledge extraction methodology has also been
proposed. That methodology is able to obtain a model, based
on fuzzy association rules, from the vague data that was
originated in the multi-item examples. We have shown, with
the help of a practical problem, that the models obtained
minimizing the bounds of the squared error between two
fuzzy random variables are more robust than “state of the art”
genetic fuzzy models, and are able to capture the dependence
between imprecise data without the need of aggregating them
or removing their fuzziness.
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